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Abstract. A novel framework for the design and analysis of energy-aware algo-
rithms is presented, centered around a deterministic Bit-level (Boltzmann) Ran-
dom Access Machine or BRAM model of computing, as well its probabilistic
counterpart, the RABRAM . Using this framework, it is shown for the first time
that probabilistic algorithms can asymptotically yield savings in the energy con-
sumed, over their deterministic counterparts. Concretely, we show that the ex-
pected energy savings derived from a probabilistic RABRAM algorithm for solv-
ing the distinct vector problem introduced here, over any deterministic BRAM al-

gorithm grows as Θ
(

n ln
(

n
n−ε log(n)

))
, even though the deterministic and proba-

bilistic algorithms have the same (asymptotic) time-complexity. The probabilistic
algorithm is guaranteed to be correct with a probability p ≥ (1− 1

nc ) (for a con-
stant c chosen as a design parameter). As usual n denotes the length of the input
instance of the DVP measured in the number of bits. These results are derived
in the context of a technology-independent complexity measure for energy con-
sumption introduced here, referred to as logical work. In keeping with the theme
of the symposium, the introduction to this work is presented in the context of
“computational proof” (algorithm) and the “work done” to achieve it (its energy
consumption).

1 Introduction

The word “fact” conjures up images of a sense of definitiveness in that there is a belief
in its absolute truth. This notion is the very essence of modern mathematical theories,
with their foundational framework based on (formal) languages such as the predicate
calculus. Thus, following Russell and Whitehead’s seminal formalization of mathemat-
ical reasoning embodied in their Principia [31], the very notion of the consistency of an
axiomatic theory disallows even a hint of a doubt about a fact, often referred to as a the-
orem (or its subsidiary lemma) in modern as well as ancient mathematical thought. The
modern foundations of verification as proof, with emphasis on its automatic or mecha-
nized form, applied to problems motivated in large part from within the disciplines of

� This work is supported in part by DARPA under seedling contract #F30602-02-2-0124.

N. Dershowitz (Ed.): Verification (Manna Festschrift), LNCS 2772, pp. 524–547, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.2
     Für schnelle Web-Anzeige optimieren: Ja
     Piktogramme einbetten: Ja
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 600 600 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 600 dpi
     Downsampling für Bilder über: 900 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein
     Bitanzahl pro Pixel: Wie Original Bit

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Untergruppen bilden unter: 100 %
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
     Methode: Standard
Arbeitsbereiche:
     Graustufen ICC-Profil: 
     RGB ICC-Profil: sRGB IEC61966-2.1
     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Nein
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Nein
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Nein
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
     EPS-Info von DSC beibehalten: Nein
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Nein

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 600 600 ]
>> setpagedevice
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computer science and electrical engineering (see Manna for example [13, 14]) are also
bound in essential ways to this notion of an absolute or deterministic truth.

Concomitant to this absolute notion of truth, and a significant contribution of the
mathematical theory of computing (referred to in popular terms as theoretical computer
science) is the notion of the complexity or equivalently, the “degree of difficulty” of
such a proof. Thus, starting with Rabin’s [23] work as a harbinger with further con-
tributions by Blum [1], the notion of a machine independent measure of complexity
led to the widely used formulations of Hartmanis and Stearns [7]—essentially within
the context of a deterministic mechanistic approach to proof. Here, a deterministic
algorithm—equivalently, any execution of a Turing machine’s program [28]—upon
halting, is viewed as proving a theorem or fact, stated as a decision problem. For ex-
ample, determining the outcome of the celebrated halting problem [14, 28] would con-
stitute proving such a theorem in the context of a given instance, where an answer of
a yes would imply that the Turing machine program given as the input would halt with
certainty.

Both this notion of absolute truth as well as the deterministic (Turing machine
based) approach to arriving at it mechanically are subject to philosophically signifi-
cant revision if one considers alternate approaches that are not deterministic. A critical
first step involves non-deterministic approaches with the foundations laid by Rabin and
Scott [25]. Based on these foundations, Cook’s [4] (and Levin’s [12]) characterizations
of NP as a resource bounded class of proofs, whose remarkable richness was demon-
strated by Karp [9], elevated NP to a complexity class of great importance, and the
accompanying P=?NP question to its exalted status. Here, while the approach to prov-
ing is not based on the traditional deterministic transition of a Turing machine, the
meaning of truth one associates with the final outcome—accept or reject—continues to
be definite or deterministic.

Moving beyond nondeterminism, the early use of statistical methods with empha-
sis on probability can be found in Karp’s [10] introduction of average case analysis.
Compelled by the need to better understand the gap between the empirical behavior
and the results of pessimal (mathematical) analysis of algorithms (or a determination of
lengths of proofs in our sense), in Karp’s approach, the input is associated with a prob-
ability distribution. Thus, while the proof itself is deterministic, its difficulty, length, or
more precisely its expected time complexity is determined by averaging over all possible
inputs.

A striking shift in the notion of proof as well as the truth associated with it em-
anated from the innovation of probabilistic methods and algorithms. In this context,
both the method or “primitive” proof-step (of the underlying program) as well as the cer-
tainty associated with the proof undergo profound revision. Schwartz [26] anticipated
the eventual impact of the role of probability in the context of these influential devel-
opments best: “The startling success of the Rabin-Strassen-Solovay (see Rabin [24])
algorithm, together with the intriguing foundational possibility that axioms of random-
ness may constitute a useful fundamental source of mathematical truth independent of,
but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and
Schwartz [3]), suggests that probabilistic algorithms ought to be sought vigorously.”
Thus, in this probabilistic context, both the deduction step as well as the meaning of
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truth are both associated with probabilities as opposed to certainties. For convenience,
let us refer to these as probabilistic proofs (or algorithms when convenient).

With this as background, we now consider the long and fruitful relationship be-
tween the notions of proof in the domain of mathematics and its remarkable use in the
physical sciences over the past several centuries. Historically, mathematical theories
have served remarkably well in characterizing and deducing truths about the universe
in a variety of domains, with notable successes in mechanics (classical and quantum),
relativity and cosmology, and physical chemistry to name a few areas—see von Neu-
mann’s [30] development of quantum mechanics as a notable example. In this role,
knowledge about the physical world is derived from mathematical frameworks, meth-
ods, and proofs, which could include the above mentioned algorithmic form of proof
as well. Thus, in all of the above endeavors, the direction is from (applying) mathe-
matics to (creating knowledge about) physical reality. By contrast, in this work, we are
concerned with the opposite direction—from using computational devices rooted in the
reality of the physical universe such as transistors, to establishing (computationally de-
rived) mathematical facts or theories. Let us, for convenience (and without a careful
and scholarly study of the possible use of this concept by philosophers earlier on), refer
to this opposing perspective as a reversal of ontological direction, wherein the phys-
ical universe and its empirical laws form the basis for all deduction of mathematical
facts through computational proof. To clarify, the reversal in “ontological direction”
which this work (and earlier publications of this author on which it is based [19, 20])
explore, refers to the fact that the physical universe and its laws as embodied in comput-
ing devices, form the basis for (algorithmically) generating mathematical knowledge,
by contrast with the traditional and opposite direction wherein mathematical methods
produce knowledge about the physical world.

To reiterate, in all of this work, the meaning we associate with proof will be that
associated with the execution of a Turing machine program, and we will be interested in
the “complexity” of realizing such a (mechanized proof) in the physical universe. Thus,
to reiterate, we will consider a concrete and physically realizable form of a proof—
such as that generated by a theorem-prover executing on a conventional microprocessor,
or perhaps its Archimedian predecessor—as a physical counterpart of Putnam’s [22]
“verificationist” approach by contrast with (as observed by him [22]) the “Platonic”
approach with “evidence that the mind has mysterious faculties of grasping concepts”
(or “perceiving mathematical objects...”).

Continuing, a first and important observation about the universe of physical objects
such as modern microprocessors is that their inherent behavior is best described statis-
tically. Thus, all notions of determinism are “approximations” in that they are only true
with sufficiently high probability. (See Meindl [15] and Stein [27] for a deterministic
interpretation of the values 0 and 1 within the context of switching based computing
through electrical devices, to better understand this point.) Building on this observa-
tion, the work described in this paper characterizes the (somewhat oversimplified in
this introduction) fact that the process of computational proof entails physical “work”,
which in turn consumes energy described in its most elegant form through statistical
thermodynamics. The crux of our thesis is that since nature at its very heart, or our
perception of it, as we understand it today, is statistical at a (sufficiently) small, albeit
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classical scale—side-stepping the debate whether “God does or does not play dice”
(attributed to Einstein to whom a statistical foundation to physical reality was a source
of considerable concern)—the most natural physical models for algorithmic proof or
verification using fine-grained physical devices such as increasingly small transistors,
are essentially probabilistic, and their energy consumption is a crucial figure of merit!
Thus, any deterministic form of computational proof based on using modern computing
devices are essentially approximations derived by investing (sufficiently) large amount
of energy to make the probability of error small [15]. For completeness, we reiterate
here that following the principle of reversal of ontological direction, we are only con-
cerned with the discovery of mathematical knowledge via computational proofs realized
through the dynamics of a physical computing device, such as the repeated switching
of semiconductor devices in a microprocessor.

Now, considering the specific technical contributions of this work, first, in order to
describe and analyze these physically realized proofs or algorithms, we introduce (Sec-
tion 2) a simple energy-aware model for computing: the Bit-level (Boltzmann) Ran-
dom Access Machine or BRAM , as well as its probabilistic variant, the RABRAM (in
Section 2.4). Specifically, each primitive step or transition of these models involves a
change of state—realized in a canonical way through a transition function associated
with a finite state control as in Turing machines [28]—that mirrors a corresponding and
explicit change in some physically realizable device. One variant of such a realization
is through the notion of a switching step [15, 20] whereas an earlier more abstract varia-
tion is through the notion of an emulation [19] of the transition in the physical universe.

Any computational proof (or equivalently algorithm) described in such a model has
an associated technology-independent energy complexity, introduced as logical work
in Section 3 for the deterministic as well as the probabilistic cases. Historically, the
interest and subsequently the success of probabilistic algorithms within the context of
algorithm design, was to derive (asymptotically) faster algorithms. Assuming that all
steps take (about) the same amount of energy, traditional analysis of time-complexity
will trivially imply that a probabilistic algorithm might consume less energy, because
it computes and solves problems faster—shorter running time implies lesser switching
energy. In contrast to these obvious advantages, we show in Section 4 that the energy
advantages offered by probabilistic algorithms can be more subtle and varied. Con-
cretely, we prove that for the distinct vector problem or DVP , a probabilistic algorithm
and its deterministic counterpart take the same number of (time) steps asymptotically,
whereas the probabilistic approach yields energy savings that grow as n → ∞.

Solving the DVP involves computationally (in the BRAM or RABRAM model) prov-
ing that a given n− tuple defined on the set of symbols {0,1} has the symbol 1 in all of
its n positions; the answer to this decision question (or theorem) is YES if indeed all po-
sitions of the input n− tuple have the symbol 1 and the answer is NO otherwise. In this
paper, we are interested in the following dense variant of the DVP : the input n− tuple
either has no 0 symbol in it, or if it does have a 0 symbol, it has log(n) such symbols.
For this (dense) version of the DVP problem, which for convenience will be referred to
as the DVP problem throughout (defined in Section 4.1), we prove that a novel proba-
bilistic value amplification algorithm, proves the (algorithmic) theorem, or resolves the
associated decision question with an error probability bound above by 1

nc (for a constant



528 Krishna V. Palem

c chosen as a design parameter) using an expected (2n + logk(n))κT ln
(

2
[
1− ε logn

n

])

Joules, where 0 < ε < 1 and k > 2 are constants. The algorithm and its associated anal-
ysis are outlined in Section 4.

In an earlier publication, this author proved [19] that any deterministic BRAM algo-
rithm for solving the DVP consumes at least (2n− log(n)+ 1)κT ln2 Joules; this is a
lowerbound. By combining these two facts, we show that through the use of the prob-
abilistic algorithm introduced here, the expected savings in energy measured in Joules

grows as Θ
(

n log
(

n
n−ε log(n)

))
, for a constant 0 < ε < 1, and for an n bit input to the

DVP . Thus both the savings as well as the error probability are respectively monotone
increasing and decreasing functions of n. To the best of our knowledge, this result is the
first of its kind that establishes an asymptotic improvement in the energy consumed.

These models and analysis methodology build on the following results (from [18,
20]) that bridge computational complexity and statistical thermodynamics for the first
time: a single deterministic computation step, which corresponds to a switching step,
consumes at least κT ln(2) Joules, and this is a lowerbound. Furthermore, using prob-
abilistic computational steps (or switching), the energy consumed by each step can be
shown to be as low as κT ln(2p) Joules, where p ≥ 1

2 is the probability that the tran-
sition is correct; (1− p) is the per-step error probability. Also, κ is the well-known
Boltzmann’s constant, T is the temperature of the thermodynamic system, and ln is the
natural logarithm. In all of this work, the physical models are based on the statistical and
hence probabilistic generalizations of switches formulated originally by Szilard [11]
within the context of clarifying the celebrated Maxwell’s demon paradox [11, 29]. A
detailed comparison and bibliography of relevant work from the related field referred to
as the Thermodynamics of Computing can be found in [20]. Additionally, Feynman [5]
provides a simple and lucid introduction to the interplay between thermodynamically
based physical models of computing, mathematical models, and abstractions such as
Turing machines.

2 The Bit-Level (Boltzmann) Random Access Machine - BRAM

In this section, we will introduce our machine model for computing, exclusively oper-
ating in the logical domain. However, to reiterate, a fundamental theorem of this work
is that each of its state transitions—explained below—will be associated with definite
amounts of energy expenditure. Furthermore, this energy consumption will be precisely
related to the inherent amount of energy needed to compute, using this model. Signif-
icantly, a BRAM model will allow us to abstract away all aspects of the underlying
physics and characterize energy purely in the world in which models of computation
such as Turing machines are realized. We anticipate this as being very helpful from the
perspective of algorithm analysis and design—an exercise which, in a BRAM , can be
decoupled from the specificities of physical implementations.

The BRAM however does provide a bridge to the physical world through the en-
ergy costs associated with the transitions of its finite state control (defined below). This
bridge to the world of implementation and energy allows us to define the novel complex-
ity measure of logical work as detailed in Section 3, which characterizes the “energy
complexity” of the algorithm being designed.
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2.1 Informal Introduction to a BRAM

Informally, a BRAM (a bit-level random access machine1) has a program with a finite
number of states. The transition from a current state to the next involves evaluating the
associated transition function leading to the “reading” of one or more bits of an input
from a specific memory location, transitioning to a new state and writing a new value in
a designated memory location. The number of bits read is dependent of the size of the
alphabet, to be defined below. Every execution starts in a unique START state, and halts
upon reaching a unique STOP state.

To extend such models to be able to account for the energy consumed, we define a
BRAM (somewhat) formally. For a computer scientist, defining a BRAM based on well-
understood elements of a random access machine (or RAM) is elementary; however, we
define it here for completeness. The textbook by Papadimitriou [21] provides a rigorous
and complete introduction to models such as Turing machines and random access ma-
chines including definitions of conventional measures of complexity for representing
time and space. This book also provides a comprehensive introduction to the numer-
ous well-understood interrelationships between classes of (time and space) complexity,
and can serve as an excellent guide to the topic of defining models of computation in
classical contexts, not concerned with energy.

2.2 Defining a BRAM

A BRAM consists of several components, which will be introduced in the rest of this
section.

The BRAM Program Following convention, the program P is represented as a five-
tuple {PC,Σ,R,δ,Q}. Note that conventionally, variants of the program are referred to
as the finite state control.

The Set of States - PC is the set of states. Each state pci ∈ PC has designated loca-
tions in memory, defined below, that serve respectively as its input and output. Without
loss of generality, let the states be labeled 1,2,3, . . . , |PC|. The set Q consists of three
special states, START , STOP and UNDEFINED-STATE not in PC.

The Alphabet of the BRAM - Σ is a finite alphabet, and without loss of generality,
we will use the set {1,2, . . . |Σ|}, which includes the empty symbol φ to denote this
alphabet. From the standpoint of algorithm design, in most cases, it suffices to work
with an alphabet drawn from the set Σ = {0,1}. However, as we will discuss in this
paper, the size of the alphabet |Σ| has important consequences to the precise energy
behavior of the associated state transitions. Therefore, the contexts wherein the more
restricted alphabet is used need to be distinguished from those contexts in which the
more general alphabet of size |Σ| > 2 is used.

The Address Registers of the States in PC - These registers are places where the
input and output addresses of a state are stored. In conventional computer science and
engineering parlance, a BRAM uses a form of accessing memory that is referred to

1 Given a BRAM’s eventual connection with energy and its statistical interpretation, one can also
interpret the acronym to mean a Boltzmann random access machine.
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as indirect addressing. We shall return to a discussion of the role of these registers
in Section 2.3. The address registers, represented by the set R is partitioned into two
classes Rin and Rout ; these are both sets (of registers) where each register ρin

j ∈ Rin

(ρout
j ∈ Rout) is a (potentially unbounded) linearly ordered set of elements referred to as

cells < s j,1,s j,2, . . . ,s j,k > (< t j,1, t j,2, . . . ,t j,k >). Each of the cells sl (tl) is associated
with a value from the set {0,1,φ}. We note that even though the overall alphabet may
be of size |Σ| > 2, each cell in the registers either stores a single bit, or is empty. Fur-
thermore, if the value associated with such an element is φ (not defined) for some value
of k′ ≤ k, then the value associated with all s j,k′′ (t j,k′′ ) is φ for all k′ ≤ k′′ ≤ k; thus, in
the general case, the values stored in any of the address registers are a continuous “run”
of values from the set {0,1} followed by a run, possibly of length zero, of the symbol φ.

We associate the pair ρin
j ∈ Rin and ρout

j ∈ Rout uniquely with the state pc j. For a
given state, intuitively, these pair of registers yield the addresses from where the input
σ is to be read, and to where the output σ′ (if any) is to be “written” respectively.
It is important to note that these addresses can in fact be the registers themselves. The
potentially unbounded lengths of the registers denote the fact that the range of addresses
being accessed (corresponding to the length of a Turing machine’s tape for example)
could be unbounded2.

The Transition Function - We are now ready to define the transition function δ,
which will play a central role in characterizing the energy behavior of computations. In
its most general form, a transition function is based on an alphabet of size |Σ| ≥ 2.

Syntactically, δ : (PC∪{START })×Σ → (PC∪Q−{START })×Σ is the transition
function. Whenever δ(pci,σ ∈ Σ) = (pc j,σ′ ∈ Σ), we say that δ transitions from pci to
the next-state pc j with σ as input and σ′ as the output.

Some useful remarks about the transition function follow. First, we note that the
state UNDEFINED-STATE is in the range of δ. Given a state pci, let νi denote the number
of symbols from Σ for which δ transitions into a state in PC ∪{ STOP }, as opposed
into the UNDEFINED-STATE . For the remaining (|Σ| − νi) symbols, δ transitions into
UNDEFINED-STATE . (This is one way of defining transitions of varying “arity” νi as-
sociated with state pci, thus allowing states with varying number of successors with an
alphabet of fixed size). In this setting, it is trivial to verify that there is no loss of gener-
ality in defining δ such that the first νi symbols from the linearly ordered set Σ represent
defined transitions whereas symbols νi+1,νi+2, . . . |Σ| represent undefined transitions.
These notions are illustrated in Figure 1. In the sequel, we will (mostly) be concerned
with BRAM programs whose transition function has a maximum arity of two. (It is triv-
ial to verify that any BRAM program with transition function of arity more than two
can be replaced with a BRAM program with transition function whose maximum arity
is two although its energy behavior need not be preserved). Furthermore, any transition
with an arity of two will henceforth be referred to as the BRANCH instruction.

For convenience, drawing upon graph theoretic terminology, let us refer to νi as
the fanout of pci and furthermore, refer to state pc j as being a successor of pci if and
only if there exists a symbol σ ∈ Σ such that δ(pci,σ) yields pc j as the next state. Let
successorsi denote the set of all successors of state pci from PC.

2 In any terminating computation, there will be a limit on this bound, typically specified as a
function of the length of the input [21].
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pc νi successors

Input symbols  1,2,�νi a re  legal

Current s ta te

1

2

νi

Fig. 1. Illustrating the legal and illegal cases of a transition function with an alphabet of
size |Σ| ≥ νi

pc

Successors  of PC

Input

Current s ta te

pc‘2

Alphabe t ∑ = {1,2,3,4} U φ

pc'33

pc'44

pc'22

pc'11

Trans ition toInput
pc'1

pc‘3

pc‘4

1

2

3

4

Fig. 2. A state, its successors and related transitions

The Memory Each BRAM has a (potentially unbounded) MEMORY denoted as the
set of L = (2|PC|+ 1) linearly ordered sets or banks, each potentially unbounded. As
shown in Figure 3, elements I and (I +1) in MEMORY are denoted MI and MI+1 where
1≤ I ≤ 2|PC| are respectively used as registers ρin

i ∈ Rin and ρout
i ∈ Rout , where i = � I

2	.
Additionally, the last set ML of MEMORY, denoted M is a potentially unbounded set
M < m1,m2, . . . ,mk >. Each cell m j of memory is associated with an element from the
set {0,1,φ}. Informally, M is the set of locations where the inputs and outputs values
being computed by the BRAM “program” are stored—it is the workspace.

Recall that the input arguments to the transition function δ are the current state pc
and the input value from the alphabet Σ. Since the input can only be a symbol from Σ, a
maximum of log(|Σ|) bits are needed to store this value 3. Therefore, for convenience,

3 Unless specified otherwise, all logarithms written as log are to the base two
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ρ1
in ρ1

out ρ2
in ρ2

out ρpc
in ρpc

out

Addresses  for PC1
Addresses  for PC2 Addresses  for PCpc

loca tion1

loca tion2

Scra tch/

Working

Memory

log ∑ bits

J → 1         2                 3        4 � 2|PC|-1  2|PC|          L=2|PC| + 1 

Fig. 3. The Memory Structure of the BRAM

each MI will be partitioned into “locations” where location LJ for J ≥ 1 is made up of
log(|Σ|) constituent cells; let s = (log |Σ|(J−1)). Then LJ =< ms+1 . . .m(s+log |Σ|) >

The Memory Access Unit The value at a location LJ is the concatenation of the
values in its constituent cells. Since the value of a location, when defined, is a natural
number from the range {1,2, . . . |Σ|}, it is determined by a binary interpretation, of the
concatenation of symbols from the set {0,1}. If one of the values associated with any
of the cells in Lj is φ, then the value of this location is undefined.

A VALUE in MEMORY is a function from (N+ ×N+) into the set Σ∪{φ} defined as
follows:

1. If 1 ≤ I ≤ 2|PC| namely if index I corresponds to a register, then VALUE (I,J) = §
where § is the value at the Jth location of MI .

2. If I = ML, VALUE (ML,J) = § is the value at the Jth location (LJ) of M.

The function VALUE that is implemented through the memory access unit of a BRAM

yields the value associated with the Jth location in one of the registers in R or at the
location LJ from M depending on the value of I.

The address in register ρin
i (or ρout

i ) is the unique non-negative integer whose value
is u, where the address is represented in unary. The MAU is a function that uses these
(pair of) addresses as an argument. Throughout the rest of this paper we will consider
an alphabet where |Σ|= 2, and this unary representation will across locations L be used
to analyze the energy advantages of probabilistic computing. Alternate alphabet sizes
as well as binary representations will be the topic of future study as discussed briefly in
Section 6.

We define functions read and write with addresses as their domain. Thus, using con-
ventions inspired by Turing machines as originally defined [28], read (I,LOCATION )
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and write (Σ, I,LOCATION ) are respectively used to read the value or (over)write the
values associated with the constituent cells of location L in MI . The MAU is the union
of the read and write functions. It will be used to evaluate the transition function as
explained in Section 2.3 below.

2.3 The Computation of a BRAM

Building on the elements introduced above, we will now introduce the operational be-
havior of a BRAM . Given an arbitrary BRAM program P , initially, all computations start
in the START state. All the registers and the memory cells are initialized from the set
{0,1,φ}. It is convenient to define the operation of the BRAM inductively as follows.
The START state transitions to, without loss of generality, state pc1 at which point the
computation starts where the concatenation of the cells in ML is interpreted as a number
in unary representation and is referred to as the input I to P . Now, state pc1 is said to
be the current state. More generally, let pcl be the current state. In state pcl ∈ PC, the
transition function is evaluated.

The input to the transition function is a symbol from Σ, which is accessed using
σ = read(M,LOCATION ), where LOCATION is the address stored in unary in ρin

l . These
notions are illustrated in Figure 4.

Continuing with the evaluation of the transition function δ(pcl,σ) yields the next
state pcl′ which then becomes the current state. Furthermore, the output symbol σ′ is
written (using write ) into the LOCATION whose address is stored in register ρout

l . The
computation halts whenever pcl′ ≡ STOP .

pcl

Input σ

δ(pcl , σ)

Next s ta te  pcl' Output va lue σ �

WRITE σ�OUTPUT VALUE

CURRENT STATE = pcl'NEXT STATE?READ

Evalua te

Location

from ρI
in

Location

from ρI
out

Fig. 4. Illustrating the Evaluation of the Transition Function
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More generally, a computation C is the sequence of state transitions s1 ≡ START →
s2 → . . . → . . . sπ ≡ STOP where π ∈ N+. Given si ≡ pcl to be the current state during
the evaluation of the transition, si+1 ≡ pcl′ is the next state. A computation is legal if
and only if, during the evaluation of the transition function with si ≡ pcl as the cur-
rent state, the addresses in ρ j

in and ρ j
out as well as the input determined by evaluating

read, are all defined. The computation is illegal otherwise. In the sequel, we will be
concerned with legal computations only and will, for convenience, refer to them simply
as computations.

Fact 1. All computations of a BRAM program P with input I are the identical. Formally,
given any two computations Cq = s1 ≡ START → s2 → . . . → . . . sπ ≡ STOP and Cr =
ŝ1 ≡ START → ŝ2 → . . . → . . . ŝπ ≡ STOP generated by program P with inputs I and Î ,
s j = ŝ j whenever I ≡ Î

2.4 The Randomized BRAM or RABRAM

A RABRAM is identical to a BRAM in all aspects except that the transition from the cur-
rent state to the next state occurs probabilistically. There are alternate forms of defining
the particular approach through which this probabilistic transition is introduced into the
formulation of a RABRAM . In our formulation, the transition function δ (representing
a BRANCH ) from Section 2 is extended to a transition function δr. Let P be the open
interval ( 1

2 ,1). Now, δr:((PC∪{START })×Σ) → (PC∪Q−{START })×Σ×P is the
transition function. Let pc j and pck be the possible successors of pci, where j = k is
allowed. For 1

2 ≤ pi ∈ P ≤ 1, whenever δr(pci,σ = 0) = (pc j,σ′ ∈ Σ, pi ∈ P), δ transi-
tions from pci into the next-state pc j with σ = 0 as input, and with σ′ as output, with
probability pi, and to state pck with σ̄′ as output with probability (1− pi). Note that σ̄′
is the symbol from Σ that is output whenever δr yields a transition from state pci to nest
state pck. The transition function with σ = 1 can be defined accordingly. Let us refer to
this branch instruction as a randomized BRANCH with probability parameter pi.

Two clarifications are in order here. First, in the current definition of the RABRAM,
for simplicity, the probability parameter is defined to be independent of the input sym-
bol. This is consistent with the definition of randomized algorithms where the source of
the random bits is not biased based on the input. However, the definition of the RABRAM

does allow for different probability parameters for different states in PC. Secondly, the
probability parameter pi only ranges from 1

2 to 1 because any transition of the form
δr(pci,σ = 0) = (pc j,σ′ ∈ Σ, pi < 1

2) can be rewritten as δr(pci,σ = 0) = (pck, σ̄′ ∈
Σ, 1

2 ≤ p′i ≤ 1) where p′1 = 1− pi.
While this is a formal model, an equivalent representation can couple the determin-

istic transition function with a coin-toss and base the outcome on the input symbol and
the outcome of the coin-toss based on a previously specified probability distribution on
the set of successors of pci. This notion of a randomized transition function is shown in
Figure 5.
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pci

pci

Current State

pck with probability pi

pcj with probability (1- pi)

pck1

pcj with probability pi

pck with probability (1- pi)

pcj0

Randomized TransitionDeterminis tic Trans itionInput Symbol

Fig. 5. The Transition Function of a Randomized BRANCH where the output symbols
are uniquely associated with the next state

3 Logical Work as a Measure of Complexity

Recall that a computation of the BRAM program P with an input I , is the sequence of
state transitions C ≡ s1 ≡ START → s2 → . . .→ . . . sπ ≡STOP , as defined in Section 2.3;
recall that si ≡ pcl ∈ PC for some index l. The deterministic logical work D done by
computation C is

D(C ) =
π

∏
i=1

F(si)

where F(si) is the fanout of state si. State si represents a BRANCH (or where appropriate,
a randomized BRANCH ) instruction whenever F(si) > 1. Let In denote the set of all
inputs to P of length n bits. The logical work done by the BRAM program P with length
n is

L(P ,n) ≡ MAX(D(C ,I |I ∈ In))

In earlier work [18, 20], this author established the following theorem

Theorem 1. The energy consumed in evaluating the transition function in the context
a state pci of any BRAM program P is at least κT ln(F(si)) Joules.

It follows that

Corollary 1. For a deterministic BRAM computation, the energy consumed by a pro-
gram P with inputs of length n is no less than κT ln(L(P ,n)) Joules.

Proof. Immediate from Theorem 1, the fact that energy is additive and the identity

ln

(
π

∏
i=1

F(si)

)
=

π

∑
i=1

ln(F(si))
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Also, we recall (from [18, 20]) that

Theorem 2. The energy consumed in evaluating the transition function in the context
a state pci of any RABRAM program PR can be as low as κT ln(F(si)p) Joules, where
p is the probability parameter.

We note that in the context of computations realized through a RABRAM each state
transition is probabilistic. Therefore, since Fact 1 does not hold in this case, different
computations are possible with the same input. Thus, given a fixed input I there exits a
set of computations C where each computation C ∈C has a probability qc of occurrence.
Thus, in this case, the notion of logical work has to be modified where the MAX function
is applied over the expected length of the probabilistic computations from C. We define
the expected logical work for an input I to be the expected sum of the fan-outs of the
states visited by the family of computations corresponding to I .

R (C,I ) = ∑
∀C∈C

qcD(C )pπ

Corollary 2. For a RABRAM program PR , the expected energy consumed with input I
can be as low as

κT ∑
∀C∈C

qc ln(D(C )pπ)

The Probabilistic logical work of a RABRAM program PR is defined to be

LR (PR ,n) = MAX [R (C,I |I ∈ In)]

As before, In is the set of all valid inputs of length n.
In the general case, the logical work of an algorithm L might consist of determin-

istic as well as probabilistic logical work components. Given the nature of asymptotic
analysis and in this hybrid case, it will be sufficient only to consider the dominant term.

4 Design and Analysis of Algorithms in the BRAM and the
RABRAM

In this Section, we will demonstrate the use of the models described in the previous
sections, in the context of analyzing energy savings using probabilistic algorithms. Our
problem of choice will be the distinct vector problem or DVP for short, introduced in
Section 4.1. In Section 4.2, we will outline a probabilistic algorithm for solving this
problem, whose energy consumed is provably better than any deterministic algorithm
for solving the DVP in the BRAM model. To establish this result, we have to prove
a lowerbound on the deterministic logical work needed to solve this problem using
any (deterministic) BRAM algorithm (claimed in Section 5 and proved in this author’s
earlier work [19]). While the central ideas and some of the details are presented in
the sequel, complete proofs and other implementation specifics that are easy to verify,
will be included in a full-version of the paper. Thus, this paper should be viewed as an
extended abstract. For notational succinctness, we will use the symbols i, j,k, l,m and
n in a new context throughout the rest of this paper, where this reuse will not cause any
ambiguity.
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4.1 The Distinct Vector Problem DVP

Informally, the DVP is defined to be the problem of determining whether a given n− tu-
ple, defined on the set of symbols {0,1}, is distinct from an n− tuple which has the
symbol 1 in all of its positions. Formally,

Input: a vector T ≡< t1,t2, . . . ,tn > where T ∈ {0,1}n such that

1. ti = 1 in all n positions or,
2. ti = 0 for logn values of i where 1 ≤ i ≤ n.

Also, a string of length COUNT is given where the length is a design parameter which
will determine the probability of correctness. In our case COUNT = c logn for an ap-
propriately chosen constant c.

Question: Is ti = 1 for 1 ≤ i ≤ n ?

Let T denote the set of all possible inputs to the DVP. A RABRAM program PR
solves the DVP with probability p provided, given an input as defined above, it halts
with a symbol 1 denoting an answer of “yes” to the above question, in a designated
output cell in memory whenever ti = 1 for 1 ≤ i ≤ n in T , and with the symbol 0 oth-
erwise, denoting the answer “no” with probability p. For convenience, we will refer to
the value in the cell output to be the output bit.

4.2 A Probabilistic Algorithm PROBDVP

The proposed (probabilistic) RABRAM algorithm for solving the DVP , PROBDVP is
now described below and shown in Figure 6. This algorithm revolves around a sin-
gle crucial step, described and analyzed as the value-amplification technique below; it
is a probabilistic “test” for detecting whether or not a given value ti is 1 (or equiva-
lently 0). For convenience, all of the algorithms in this section are specified as a type
of “pseudo-code” and not in the more detailed RABRAM (or BRAM ) notation. To the
extent necessary, we will specify the extensions for converting these specifications into
full fledged RABRAM programs.

Value Amplification and Voting Without loss of generality, let n be a power of 2.
Value amplification is the following simple algorithm (Figure 7) performed on each of
the positions of T using an auxiliary two-dimensional array X [i, j] of size n× (c log(n))
where 1 ≤ i ≤ n, initialized to zero. Here c is a suitably chosen constant. Throughout,
let p = 1− ε logn

n , where ε < 1
c .

Let 1 ≤ i ≤ n and recall that in a RABRAM , each step has an associated probability
parameter p, the probability that the outcome of a probabilistic BRANCH is correct, for
example in the comparison in Step-1 (Figure 7. This comparison is implemented as a
BRANCH with fan-out two and with probability parameter p as stated before. In this
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Algorithm: PROBDVP

1.For i = 1 to n Do
2. If t ′i ==1 Then/*probability parameter (p)*/
3. continue
4. Else /* t ′i �= 1 */
5. VALAMP

6. MAJORITY

7. If out put = 0
8. halt
9. Else
10. continue
11. End If
12. End If
13.End For

Fig. 6. The probabilistic DVP algorithm based on value amplification

case, the following basic fact about the probability of correctness of value amplification
can be derived.

Let us now consider applying value amplification using the value of element ti,
which by definition is either 0 or 1. Also, upon completion of value amplification with
value ti its outputs or “amplified values” are recorded in locations or memory cells
Xi ≡ X [i,1],X [i,2], · · · ,X [i,c logn]. Let xi denote the number of these locations with
value identical to ti. For example if ti = 0, xi denotes the number of elements or cells in
Xi with value zero upon completion of the value amplification step with ti as input, and
vice-versa.

Algorithm: VALAMP

1. While j <COUNT ≡ c log(n)
2. If ti = 0
3. Then set X [i, j] = 1;
4. End If
5. j = j + 1
6. End While

Fig. 7. Algorithm to perform value amplification
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We will first state two useful facts

Fact 2. (Chernoff bound [16]) Let Y1,Y2, · · · ,Yl be independent Poisson trials such that,
for 1≤ i≤ l, Pr[Yi = 1] = pi, where 0 < pi < 1. Then for Y = ∑l

i=1 Yi, µ = E[Y ] = ∑l
i=1 pi

and any δ > 0,

Pr[Y > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ

As above, let Pr[Y > m] denote the probability that event Y occurs at least m times
out of l independent trials, where p denotes the probability of occurrence of Y in any
one trial. That is pi = p j for 1 ≤ i ≤ l. Similarly we define Pr[Y ′ > m] where Y ′ is
associated with probability p′. The following useful fact is immediate.

Fact 3. Pr[Y > m] > Pr[Y ′ > m] whenever p > p′ for all l > 0.
Using these facts, we can now prove

Lemma 1. In any single invocation of algorithm VALAMP with input value ti the (error)
probability that the number of elements xi is less than c

2 logn,

Pr[xi <
c
2

logn] ≤ 1
nĉ

for all n ≥ 2 and constants ĉ and ε that are design parameters.

Proof. Let p̂ = 1− 1
c′ for c′ a constant, and also let yi = (c logn− xi). The expected

value µ of yi = c
c′ logn. Now,

Pr[yi >
c
2

logn] = Pr[yi > (1 + δ)
c
c′

logn] (1)

for (1 + δ) =
c′

2
From Fact 2

Pr[yi > (1 + δ) logn] ≤




e
c′
2 −1

(
c′
2

)( c′
2

)




c
c′ logn

(2)

≤ 1
nĉ (3)

for a constant ĉ > 1, with an appropriate choice of c and c′.
Now, the specified probability of error (1− p) = ε logn

n < 1
c′ for any n ≥ 2 and ε < 2

c′
for n = 2, and hence for any n > 2 since n

logn is an increasing function of n. With this
observation we are done from Fact 3 since the bound in inequality (2) will serve as an
underestimate to the error probability.
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Intuitively, the basic idea behind value amplification is that whenever the value at a
position ti is probabilistically tested and found it be 0, its value is “suspect”. In this case,
algorithm VALAMP performs repeated independent tests on the same bit, and sets the
output based on the majority of the tests. The result of an individual test will henceforth
be referred to as a vote. The democratic-voting algorithm entitled MAJORITY (Figure 8)
accomplishes the goal of counting the total number of votes and setting the output bit
appropriately, based on a simple majority.

Algorithm: MAJORITY

1. If the number of entries with the symbol 1
in X [i, j]: 1 ≤ j ≤ c log(n) is greater than c

2 log(n)
2. Then set output to 0 and terminate.
3. Else
4. set output to 1 and terminate.
5. End If

Fig. 8. Algorithm to count majority vote

Based on analysis identical to that developed in the proof of Lemma 1 above, it is a
simple exercise to verify that

Corollary 3. The probability that upon termination, the democratic-voting algorithm

MAJORITY is correct is pm ≥
(

1− 1
nĉ

)
.

Implementation-Issues While a RABRAM implementation of algorithm VALAMP is
immediate—we will defer the discussion of implementing the iteration control to the
end of this section—it is interesting to consider an implementation of algorithm MA-
JORITY in some detail. Specifically, we will propose two alternate approaches for com-
pleteness.

The first approach “combines” an implementation of algorithm MAJORITY with
that of algorithm VALAMP. In this case, each primitive BRANCH instruction will serve
two purposes, as shown in Figure 9. First it is used to test the bit in the input array T .
Second, whenever the input bit from T is 0 and hence algorithm VALAMP is invoked
(by the overall algorithm referred to as algorithm PROBDVP), it is used to increment
the POINT ER value that points to the location where the “next bit” is to be written
in array X [i, j]. The input value COUNT is used as a unary counter, realized as a sin-
gle BRANCH instruction which will terminate the iteration (Figure 9) when a zero is
detected in COUNT after c logn iterations.

Using this algorithm, it is easily verified inductively that for any value of i, there
always exists a ĵ ≥ 0 such that X [i, j′ ≤ ĵ] ≡ 1 and X [i, j′′ > ĵ] ≡ 0. Informally, all the
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Test input bit i
from T

bit ti = 0

bit ti = 1

Advance POINTER
to next location 
by testing 
COUNT

1,2,….c log n

X[i,j]

j

Repeat till value 
amplification terminates

Fig. 9. A combined RABRAM implementation of algorithm VALAMP and algorithm MA-
JORITY

“1 entries” in row i of X [i, j] will be contiguous as shown in Figure 10. Thus, in this im-
plementation, the analysis from Lemma 1 immediately implies that upon completion of
value amplification, the “majority” test can be replaced by testing whether the location

X [i,1 +
(

c
2 logn

)
] has value 1,

11111110000000

1,2,….c log n

j

ĵ
X

Fig. 10. The structure of any row i in X

Corollary 4. When considering input ti and after applying algorithm VALAMP, algo-

rithm MAJORITY sets out put to 1 if and only if ti = 1 with probability pv ≥
(

1− 1
nĉ

)

for some constant ĉ, a design parameter.

For convenience, this “one bit” test as well as the unary counter implementation
shown in Figure 9 above are presented to be deterministic BRAM implementations.
They can however be realized as probabilistic BRANCH instructions in a RABRAM by
“bootstrapping” on the value amplification notion.
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The second approach to realizing algorithms VALAMP and MAJORITY is to con-
sider separate implementations. Again, considering algorithm MAJORITY, we note that
a straightforward approach to determining the majority will involve a tree-structured
computation with c logn leaves, where the output of the root is a value of 1 if and only
if the number of entries in row i of array X designated Xi is greater than c

2 logn. Each
“node” of the tree represents some constant number, say r, of tests, such that a value of
1 is recorded iff both of its children are associated with a value of 1. The value of r is
chosen so that with (1− p) = ε logn

n , we have an overall error probability bounded above
by 1

nĉ as in Corollary 3.

5 Analysis of Algorithm PROBDVP

Considering Algorithm PROBDVP from Section 4.2 above, we note that the counter that
controls the iteration over the input vector can be implemented through a single branch
for each position till the “end-of-array” symbol is detected in the input vector T to
determine termination of the entire algorithm. To reiterate, for convenience, we assume
that the branch instruction associated with this test is deterministic. We again note in
passing that the value amplification algorithm used above can in fact be used to replace
this deterministic test by a probabilistic test. For completeness we recall that each test
in the “for” loop specified as Step-2 in algorithm PROBDVP (Figure 6) is implemented
using a probabilistic branch, with an associated error probability of p = ε log(n)

n .
With this as background, let α and β denote the number of times that that the branch

used to realize Step-2 is executed incorrectly—α denotes the number of times that an
event of type A, wherein the input vector has a value 0 and the branch determined it to
be erroneously 1 occurs, whereas β denotes the number of times that an event of type B
wherein an input value of 1 is erroneously determined to be 0. Similarly, λ denotes the
number of times this step is executed correctly, and the corresponding event is said to
be of type Λ. Λ0 denotes an event of type Λ with an input symbol of 0, with Λ1 defined
similarly.

Using the Chernoff bound (from Fact 2), once again, and using analysis similar that
that used in the proof of Lemma 1, we can show that

Lemma 2. The probability that α or β is greater than εc′ logn where ε ≤ 1
c and 1 ≤

c′ ≤ c, is bound above by 1
nĉ , for constants c,c′ and ε which are design parameters.

The Expected Logical Work Done by Algorithm PROBDVP Using the above devel-
opment as background, we are now ready to analyze the expected logical work LR
done by algorithm PROBDVP.

Fact 4. The value amplification in Step-5 of Algorithm PROBDVP is invoked iff events
of type B or Λ0 occur in Step-2.

From the above fact, we have

Theorem 3. The expected logical work LR (PROBDVP,n) is (2n + logk n) for some
positive constant k > 2.
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Proof. The logical work during each invocation of value amplification is trivially c logn,
for some constant c. Furthermore, the number of such invocations due to events of type
Λ0 is bound above by logn from the definition of the input to the DVP. From Lemma 2
the probability that the number of invocations of value amplification caused by events of
type B will exceed εc′ logn is no more than 1

nĉ . This in turn implies an expected logical

work of c log2 n from events of type B. Also the number of steps (BRANCH ) and hence
logical work that can be caused by events of type Λ1 as well as type A is cumulatively
bound above by n. By noting that a unary implementation of a counter in Step-1 of the
algorithm can be realized using n branches, we have LR (PROBDVP,n) ≤ 2n + logk n
with a suitable constant k.

Expected Energy Savings Using Algorithm PROBDVP In earlier work [19], we have
shown that the L(P ,n) of any deterministic BRAM algorithm P for solving the DVP

problem is bound below by 2n− logn + 1. From this lowerbound, from Theorem 3,
from Corollaries 1 and 2, we can claim that

Theorem 4. The expected savings in energy in Joules using Algorithm PROBDVP over

any deterministic algorithm for solving the DVP grows as Θ
(

n log
(

n
n−ε logn

))
Joules,

for constant 0 < ε < 1, and therefore is monotone increasing in n.

5.1 Probability of Error of Algorithm PROBDVP

We note that errors can occur either due to events of type A or of type B. For these types
of events, we have:

Theorem 5. The probability that Algorithm PROBDVP will terminate correctly is at
least p = (1− 1

nc ) for c a constant and a design parameter.

Proof. We note that an incorrect termination occurs if and only if the input vector had
the value 1 in all of its positions and upon termination, the value of output was 0 (events
of type B), which we will refer to as Case-1, and vice-versa, (events of type A) which
we will refer to as Case-2.

Case-1: From algorithm PROBDVP, let us consider events from set B. From
Lemma 1, the probability of any one of these events setting out put = 0, ≤ 1

nĉ . Since
there are a total of n positions and hence a maximum of n such events, this probability
is trivially bound above by 1

nĉ−1 and therefore we are done with c = ĉ− 1. (We note
that using the bound on β from Lemma 2 will yield a better estimate of c.)

Case-2: Since in this case there exists a ti = 0, by the definition of the DVP , there
exist logn positions such that t j = 0 at every one of these positions; let ξ0 denote the
set of all such indices j. Considering events of type A, we note from Lemma 2 that the

probability that α < logn is bound below by
(

1− 1
nĉ

)
. Therefore, there exists one index

j′ ∈ ξ0 such that upon execution of Step-2 of algorithm PROBDVP with t j′ as input, the
resulting event is not of type A with probability p′ ≥ 1− 1

nĉ . Therefore with t j′ as input,
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Step-5 and Step-6 of algorithm PROBDVP would have been executed with probability
p′ and we are done from Lemma 1.

6 Remarks and Conclusions

With the ever increasing emphasis on the energy consumed by computers and the need
to minimize it, our goal here is to develop a framework and a supporting complexity
(theory) that is technology independent, intending to parallel classical computational
complexity theory developed in the context of running-time and space (see Papadim-
itriou [21] for details concerning the classical theory of computational complexity). The
work presented here is one approach towards accomplishing this goal wherein energy
is the figure of merit—as opposed to traditional time or space. In this context, the mea-
sure of complexity introduced here and referred to as logical work serves to provide an
abstract, albeit representative measure of the energy consumed. Thus, while analyzing
an algorithm as demonstrated in the context of the DVP for example, the logical work
can be the figure of merit that one seeks to improve, which is then easily “translated” to
deduce energy gains, as demonstrated in Section 4.

The particular formulation presented here affords a clear separation of concerns
between the energy behavior of an algorithm across the logical and physical levels, by
introducing an “abstract” estimate of energy-consuming behavior through logical work,
which is independent of particular physical implementations. Subsequently, we provide
specific translations from the domain of logical work, through idealized physical models
of computing as summarized in Section 3, into the domain of energy.

Thus, using this framework, the specific physical devices that implement the com-
puting elements can be changed, without perturbing the algorithm framework affecting
the design and analysis where the latter constitute the logical components of our frame-
work. Furthermore, our particular choice of an idealized physical device abstracts away
dependencies on specific technologies, but nevertheless exposes the logical components
of the framework to the inherent limits to energy consumed—specifically the idealized
physical devices used here are based on statistical thermodynamics building on the his-
toric work of Maxwell [29], Boltzmann [2], and Gibbs [6], rather than being based in
a specific physical domain such as transistors of a particular feature size for example.
Furthermore, these idealized devices consume energy as they compute and once energy
is consumed, the complexity measure of logical work irreversibly charges for this ex-
penditure; this is in contrast with the reversible style of computing (see Feynman [5]
for a survey) which allows energy consumed to be recovered allowing, in theory, com-
putations to be realized with zero energy consumption.

From a utilitarian perspective of course, any framework such as that introduced in
this paper is “only as useful as the results that it can help achieve.” In this context, the
central thesis established in this paper that is used to validate the value of this framework
is: probabilistic techniques and algorithms—or, as referred to in the introduction and
in keeping with the theme of this symposium, “probabilistic proofs”—yield expected
energy savings, when compared to their deterministic counterparts.

Several directions of inquiry suggest themselves, given that the energy behavior of
algorithms in general and probabilistic algorithms in particular remains a largely un-
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chartered domain. While deferring the cataloging of such “open questions” — com-
putations on finite-fields suggest themselves immediately as candidates for study—
including those aimed at developing an energy-based complexity theory to a future
publication, we will briefly comment on some of the more immediate questions here.

An obvious first step is to consider other interesting as well as more meaningful
candidate problems for demonstrating possible energy savings achieved through proba-
bilistic algorithms or proofs. In this regard, results similar to those presented for the DVP

in Section 4 have been derived by this author for string matching. The classical prob-
abilistic algorithm for solving this problem based on fingerprinting is due to Karp and
Rabin [8]. Commenting on the specifics briefly, our energy savings are derived by ex-
tending the notion of value amplification (from Section 4.2) rather than through the use
of the Karp-Rabin fingerprints. It will be of interest to analyze fingerprinting from an
energy perspective using the framework provided by the BRAM and the RABRAM mod-
els, and to systematically compare the power and scope of this technique with that of
value amplification. Specifically, the error probability of value amplification is higher
than the error probability achieved through fingerprinting. The first interesting ques-
tion is to determine whether value amplification can yield the same error probability
as fingerprinting does. Assuming that the probabilities of error are different, it will be
interesting to determine whether energy can be used to separate the complexity of fin-
gerprinting from value amplification, even though both of then would yield algorithms
that run in O(n).

All of the results presented in this paper were using unary representations of num-
bers, as opposed to the more natural binary representation. This choice was deliberate
in that in a model such as a BRAM , the particular choice of representation has an impact
on the asymptotic energy behavior, and our interest in this (first) work is to understand
the energy behavior at the most elementary level possible. A basic question to consider
in this regard is that of implementing a binary counter and its accompanying arithmetic,
and comparing it to the unary design used to implement iteration in realizing Algorithm
PROBDVP for example.

A direction of inquiry that is only hinted at here but not elaborated upon, is the
implication of this work to novel physical computing devices that are probabilistic. As
the analysis in Section 4 demonstrated, such implicit randomization in the (abstract)
device can lead to energy improvements, even asymptotically. To reiterate, these im-
provements are not due to faster running times that probabilistic algorithms might yield,
but follow from the following fundamental reason: using the idealized physical devices
(from [18, 20]) referred to above, a physical interpretation of randomization allows
computation to be realized with higher thermodynamic-entropy (or Boltzmann-entropy)
which is a physical quantity, thus yielding energy savings. Pursuing realizations of such
devices and validating them in the context of implementing probabilistic algorithms
promises to be a particularly interesting direction for inquiry, which is being collabora-
tively pursued [17]. Intuitively, a physical interpretation of probabilistic computing can
be viewed as “merely” riding the wave of naturally occurring thermodynamic phenom-
ena, which are best characterized statistically.
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