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1. INTRODUCTION 

Let  A be an n × n, irreducible, symmetr ic  positive definite matrix. Th e  system 

can be ,~olved by a Cholesky factorization 

A = L D L  T, (1.2) 

with L unit  lower tr iangular and D diagonal, and forward and backward solves 

L Z  = b, L T x  = D - I z .  (1.3) 

When  only a small fraction of the elements  of A are nonzero, A is said to be 
sparse. When  a sparse matr ix  is factored, "fill-in" occurs: the tr iangular factors 
contain nonzeros in positions where A has zeros. We use the t e rm s p a r s e  G a u s s i a n  
e l i m i n a t i o n  to refer  to methods  for tr iangular factorization and back subst i tut ion 
tha t  take maximum advantage of zeros in the matr ix  and the factors. We present  
a new way to implement  sparse Gaussian elimination in this paper. 

Ordinarily, the rows and columns of A are first pe rmuted  so tha t  the fill-in is 
made small. We are not  concerned with the problem of finding such permutat ions.  

Sparse Cholesky factorization is ordinarily implemented  as a two-step process. 
First, the nonzero s t ructure  of the factor  is computed  by a symbolic factorization 
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I 
x sym ] 

A= 0 x 
X X X 

x O x  x 

aa: all 31 41 22 32 

row. 1 3 4 2 3 
colbegtn 1 4 6 8 

33 43 44 

3 4 4 

Fig. 1. Standard column-oriented storage for a 
sparse matrix. 

step. Using a data  s t ructure  provided by  the symbolic  step, a numeric  factorizat ion 
computes  the (nonzero) e lements  of L. T h e  elements,  including any  fill-ins, are 
s tored in p rede te rmined  locations. 

The  usual  da ta  s t ructure  is this. E lements  of the lower triangle of  A, including 
zeros tha t  la ter  fill in, are s tored in a one-dimensional  array,  which we call a a .  A 

separa te  array,  r o w ,  records the row to which the  corresponding e lement  of  a r ray  
a a  belongs: if a64 is s tored at  aa(12) ,  then  r o w ( 1 2 )  = 6. Columns  of  A occupy 
successive contiguous blocks of  a a  and are sor ted by row. Pointers  to diagonal  
e lements  are stored in an array,  c o l b e g i n .  Figure 1 gives an example  of  this 
scheme. 

This  paper  proposes  a me thod  for implement ing  sparse el imination which uses 
a new scheme to store A and L. A tree s t ructure  links every column k < n of A 
to the first c o l u m n j  > k such tha t  l~k # 0. We say t h a t j  = n e x t ( k ) .  Then,  instead 
of the  row to which a nonzero e lement  belongs (its a b s o l u t e  row index), a pointer  
to the  location in a a  of the  nonzero in the  same row (say row i, i > k) and the  
n e x t  column is stored: the pointer  for l,k points to the s torage for 1,j. La te r  it is 
shown tha t  if l,k # 0, then  1,~ # 0. We call these pointers  r e l a t i v e  row indices. Th is  
scheme bears  some similarities to a scheme based on the idea of a " represen ta t ive"  
column due to George and Liu [10]. 

T h e  principal  advantage  of a relat ive row-index scheme is the  efficiency with  
which a column (k, above) can be added to or sub t rac ted  f rom its n e x t  column 
(j,  above).  T h e  pseudo-ALGOL for such an operat ion is 

f o r t : =  l t o n k d o  
a a ( j  + p t r ( k  + i)) := a a ( j  + p t r ( k  + t)) + a a ( k  + t); 

assuming column k has  n k  off-diagonal nonzeros and variables  j and k point  to 
the beginnings of columns k and j in aa .  

When an absolute row-index scheme is employed,  the  code for adding or 
subtract ing two columns is more  complicated.  Gus tavson  [12] and Eisens ta t  et  al. 
[3] avoid a complicated inner loop by  unpacking one of the  columns into a 
t e m p o r a r y  a r ray  of size n and using a loop similar to the one above.  This  scheme 
suffers f rom a significant drawback:  the code accesses this large t e m p o r a r y  in a 
r a n d o m  way, degrading per formance  on a machine  with a cache memory .  

T h e  new scheme has  several  advantages.  Because it accesses m e m o r y  a lmost  
sequentially,  it makes  good use of a cache memory .  Efficient  implementa t ion  on 
a vector  machine  is possible. T h e  pointers  it uses are all small  integers; in a 
storage-cri t ical  s i tuat ion more  of t h e m  can be packed  into a word. When  redun-  
dancies in the relat ive row indices are fully exploited, their  n u m b e r  can be 
reduced. For  k × k grid p rob lems  k 2 pointers  are required. Previous  me thods  
have  required a t  least  12k 2 row indices [10, 16]. Sect ion 5 gives a detai led analysis  
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of storage requirements  for these problems. An analysis of implementat ion on 
vector  computers  is given in Section 6. A discussion of symbolic factorization and 
a numerical  exper iment  to determine pointer  storage requirements  for general 
sparse problems is given in Sect ion 7. 

Relative row-index schemes are not  useful for solving A x  = b with arbi t rary  
nonsymmetr ic  A. But  if A has a symmetr ic  nonzero s t ructure  and can be factored 
as L U (without partial  pivoting) so tha t  the s t ructure  of U, which is the transpose 
of tha t  of L, can be precomputed,  then  a me thod  based on the techniques of this 
paper  is possible. 

A scheme for f ini te-element systems of Eisenstat  et  al. [4] has several of the 
characterist ics and advantages of the proposed scheme, as do the schemes of 
Peters  [14], and Duff  [2]. 

2. THE NEW SCHEME 

Let  L be the Cholesky factor of A. We define an n-vertex undirected graph G = 
G ( L )  = (V, E) ,  with vertices V -  {1, 2 . . . . .  n} and edges E -= ( ( i , j )  I i > j  and l,j 

0}. Define 

and 

co l ( j )  - (i > j ]  1,j ~ 0}, 

r o w ( j )  =- (k < j i l l ,  ~ 0}, 

n e x t ( j )  =- min{t ~ co l ( j ) } ,  

1 <_j<n, 

l < j < _ n ,  

l _ j _ _ < n -  1, 

N ( L )  =- {(j, n e x t ( j ) )  E E I 1 <_j <_ n - 1}. 

T h e  edges (j, n e x t ( j ) )  play a special role in the scheme: the relative row indices 
associated with nonzeros in c o l u m n j  of L will point  to nonzeros in column nex t  ( j )  
of L. 

We now review some graph terminology. Vertices k, j are adjacen t  if (k, j )  E 
E. A k - j p a t h  in a graph G is a sequence k = Vo, vl . . . . .  v~ -- j of vertices with 
v,-1 adjacent  to v,, 1 _ i _ 1. I t  is monotone  if v, > v,-1, 1 _< i _< 1. We use the 
words smaller and larger for comparing vertices. 

A graph is strongly connected  if, for every pair k, j of vertices, there  is a k - j 
path. A tree is a strongly connected n-vertex graph with n - 1 edges. Trees  have 
no cycles: there  is a unique pa th  between every pair of vertices. A tree T is 
ordered  wi th  root n if, for every vertex j,  the j - n pa th  is monotone.  

If  G = (V, E )  and V~ C V, then  the subgraph reduced  by V1, 

Gv, = (V1, E n (V1 x V1)). 

A clique is a subset V~ C V such tha t  

E A  (V, × V~) = V, × VI; 

in o ther  words, every vertex in V1 is adjacent  to every other  ver tex in 171. 
Since A is irreducible, L is, too. I t  follows tha t  G (L) is strongly connected.  
T he  fill-in obeys an impor tan t  law. 

PROPOSITION 1. I f  there is a j - k p a t h  in G ( L )  through vertices smal ler  
than  both j a n d  k, then (j,  k)  ~ E. 
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PROOF. Th i s  is an easy consequence of the  corresponding s t a t e m e n t  abou t  
pa ths  in the  graph of A [14, L e m m a  4]. [] 

COROLLARY. I fJ  = next  (k) and  l,k ~ O, then lu ~ O. 

T h e  corollary is essential; wi thout  it we couldn ' t  necessari ly define a relat ive 
row index for the nonzeros of a column k < n. With  it, we know tha t  for every 
nonzero in column k there  is a corresponding nonzero in column next(k):  

col(k)  C col (next (k) )  U (next (k)} .  

PROPOSITION 2. For each 1 <_ k < n, col(k)  is not  empty. 

PROOF: G(L)  is s trongly connected.  Choose any  ver tex  1 > k and  consider 
a k - l pa th  in G(L) .  Let  l '  be the first ver tex on the  p a t h  larger t han  k. 
Since there is a k - l '  p a th  in G(L)  consisting of vert ices smal ler  t han  k or l ' ,  
(k, l ') ~ E,  and so l' E col(k).  Q.E.D. 

Thus,  the definition of nex t  makes  sense, since the  sets whose min ima  are 
required are not  empty .  

Using relat ive row indices it is easy to add a mult iple of a column to its next  
column. T h e  inner loop of our  scheme does this. T h e  inner loop of Cholesky 
factorization ordinarily subt rac ts  f rom the pivot  column (the f lh)  a mult iple  of  
each column k of L such tha t  k E row( j ) .  The  key idea is to accumula te  instead 
a sum of mult iples of columns k E row( j ) .  

Define the graph T = (V, N(L) ) .  We are going to show tha t  T is an ordered 
tree with root  n, and for every 1 ~ j __ n, the subgraph  TrowU~uu~ is an ordered 
tree with root  j .  Thus,  for every k E row ( j )  there  is a unique k - j  p a t h  in T t ha t  
goes th rough  other  vert ices in row ( j ) .  A sum of appropr ia te  mult iples  of  columns 
of L in row ( j )  is accumula ted  by  a depth-f i rs t  t raversal  of T~o~u~u u}. 

Here  is an example.  Suppose 

T h e n  T = 

L = 

X 

X X  

0 0 x  0 
0 x x x  
0 0 0 0 x  
X X X X X X - . .  

o o o o . o  

o o o o o o  

. o o o o o  

ACM Transacnons  on Mathemat ical  Software, Vol. 8, No. 3, September  1982. 



260 Robert Schreiber 

Since row(6) = {1, 2, 3, 4, 5}, the algori thm will subtract  a multiple of each of 
those columns from column 6. I t  can subtract  the multiple of column 5 easily 
since 6 -- next  (5). Next,  it can add  the  multiple of column 1 to the multiple of 
column 2, add the sum (of 1 and 2) to column 4, add column 3 to column 4, and, 
finally, subtract  the 1-4 sum from column 6. Th e  algori thm only uses the 
operat ions of adding or subtracting a column to or f rom its nex t  column. Note  
tha t  it was essential tha t  Trow(6)u(6} be an ordered tree with root  6. 

Now the proofs. 

PROPOSITION 3. T is an ordered tree with root n. 

PROOF. Construct  T. S tar t  with the single ver tex n. Add the preceding vertices 
n - 1, n - 2 . . . . .  1, each with its incident nex t  edge. Th e  single ver tex n is an 
ordered tree with root  n. Adding a vertex and nex t  edge leaves the graph ordered 
with root  n. Q.E.D. 

PROPOSITION 4. For every 1 <_ j <_ n, Trow(y)o{j} is an ordered tree with root j.  

PROOF. Let  k ~ row( j ) .  Consider the (unique, monotone)  pa th  from k to n in 
T. Le t  l < j  be on this path. T h e n  the edge (j, k) together  with the k - 1 pa th  is 
a j - 1 pa th  through smaller vertices; hence (1, j )  ~ E,  and 1 ~ r o w ( j ) .  [This 
diagram illustrates the argument:  

Vertices increase going left to right.] We claim tha t  j is actually on the k - n 
path,  showing tha t  a uniqae monotone  k - j pa th  in Trow(])u{~} exists, which 
proves the proposition. Suppose not. T h e n  an edge (l, l') on the pa th  with 1 < j 
< l' exists. But  l' = next(1), so l' <_j, a contradiction. Q.E.D. 

A more  realistic and interesting example, a 3 x 3 finite-difference grid, is shown 
in Figure 2. 

For  the backsolving scheme, we need one last fact. 

PROPOSITION 5. For each 1 <_j < n, eo l ( j )  is a subset o f  the vertices on the 
p a t h  from vertex j to the root n o f  T. 

PROOF. Use induction on the depth  o f j  in T. Certainly, n e x t ( j )  E eo l ( j )  and 
n e x t ( j )  is the first vertex on the j - n path. Moreover,  by the corollary to 
Proposi t ion 1, co l ( j )  C eo l (nex t ( j ) )  U {nex t ( j ) } .  Q.E.D. 

3. AN IMPLEMENTATION OF THE NEW SCHEME 

In this section we present  the details of an implementa t ion of the new sparse 
L D L  w factorization method.  The  data  s t ructure  is covered in Sect ion 3.1. Th e  
algori thm is described in Sections 3.2 and 3.3. 
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G(L) = 

k" 1 2 3 4 5 6 7 8 
next(k): 5 6 5 6 7 7 8 9 

T , , , , , . , 7 , u l ~ *  

Fig. 2. A 3 x 3 fimte-dlfference grid. 

3.1 Storage Scheme 

The  nonzeros of L and D are stored in a one-dimensional array, aa. Initially, the 
array contains the corresponding elements  of the lower triangle of A;  the code 
overwrites them with L and D. The  columns are stored together,  sorted by  row. 

For  each 1 <_j <_ n, l o c d t a g ( j )  + 1 is the location in aa  of aj~ and d~j. Thus ,  the 
tth nonzero of column j is stored in a a ( l o c d i a g ( j )  + i). Also, l o c d i a g ( n  + 1) is 
the location of the last e lement  in aa. An integer array w h e r e n e x t  contains the 
relative row indices. Suppose the nonzero in position m of a a  is a member  of 
column k of L, and t h a t ]  = n e x t ( k ) .  Moreover,  suppose this nonzero is in the ith 
row of L. Somewhere  in the storage for column j,  say at  t h e / t h  position, is a 
location for the e lement  1,j In o ther  words, 1,j is stored at  a a ( l o c d i a g ( j )  + 1). 

T h e n  

w h e r e n e x t ( m )  - I. 

Note  tha t  w h e r e n e x t  need not  be defined for elements  on the diagonal; they  are 
never  subtracted from elements in o ther  columns. 
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T: 

son brother  1 = [ - - [ 4 [  - - ] 1 6 1 3 1 5  [ 2  - -  
1 2 3 4 5 6 7 

Fig. 3. Storage of T. 

a ~  

51 

10 44: 
64 
94 
55 
75 

I{ 85 
95 

76 
86 

2 0 9 6  
77 
87 
97 
88 

2 ~ 9 8  

Flg. 4. 

where- 

nex t  

1 
2 

1 
2 

1 
4 

1 
4 

1 

2 
3 

1 
2 
3 

1 
2 

1 

l o c d m g  

1 0 
2 3 

3 6 
4 9 
5 12 
6 16 
7 20 
8 23 
9 25 

10 26 

son brother  

1 
2 

3 - -  
4 5 
6 - -  

7 - -  

8 - -  

Storage scheme applied to the 3 × 3 grid example of Figure 2. 

T is encoded as a b inary  tree. An a r ray  s o n ( j )  contains a pointer  to any  of the  
sons of  ver tex  j in T. Remain ing  sons are l inked in a l inear  list, wi th  pointers  
s tored in b r o t h e r  (see Figure 3). No te  t ha t  the  n e x t  links are not  stored. Figure 4 
i l lustrates this  s torage scheme applied to the  example  of  Figure 2. T h e  number s  
in a a  a r e  the  indices (i, j )  of  the  e lement  1,j s tored a t  t h a t  position. I t  m a y  be 
advan tageous  to s tore diagonal  e lements  in a separa te  array;  the n unused 
pointers  could then  be el iminated.  
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3.2 The Numeric Factorization Algorithm 

T h e  following pseudo-ALGOL procedures  per form the Cholesky factorizat ion of  
the  mat r ix  [a,j],  overwrit ing a,~ with l,~ for i > j  and a,, wi th  d , .  I t  uses a column- 
or iented method.  At  the j t h  s tep it subt rac ts  f rom column j a mult iple  of  each  
column k E row  ( j )  by first accumulat ing such column multiples.  

1. p rocedure  factor (a, n) 
2. in teger  n; rea l  a r r a y  a; 
3. beg in  in teger  i, j, k; 
4. for  j := 1 to n 
5. begin  real  a r r a y  t; 
6. for  k ~ row( j )  
7. if  next (k)  = j then  begin 
8. searchtree (], k, t); 
9. for  t ~ col( j )  
10. a,~ := a,~ - t, 
11. end; 
12. for  i ~ col( j )  a,~ := a~l/a~ 
13. end 
14. end (factor); 
1. p rocedure  searchtree (j, k, t) 
2. in teger  j, k; rea l  a r r a y  t; 
3. c o m m e n t  add to t multiples of all columns l E row (]) in the subtree of T rooted at 

column k; 
4. begin in teger  i, l; rea l  amult; 
5. real  a r r a y  t~'h; 
6. commen t  the temporary t ~'k accumulates the multiples of columns; 
7. i f k  ~ row( j )  then  begin 
8. amult := ak~ * ajk; 
9. for  i E col(k) t j'k, .-'- amult * a,k; 
10. for  l < k i f  next(l)  = k then  searchtree (j, l, t~'k); 
11. for  t ~ col(k) t, = t, + t~ "k 
12. end 
13. end (searchtree); 

We now briefly discuss how member sh ip  of column k in r o w ( j )  can be  
efficiently de te rmined  (line 7 of  searchtree) ,  how e lements  a,j can be located in 
aa,  and how t e m p o r a r y  storage (the t vectors) can be managed.  

Defme,  for every  k E r o w ( j )  

f irs t(k ,  j )  =- the  relat ive posit ion of ljk in column k ' s  s torage 

and let f i r s t ( j ,  j )  = 1. Note  that ,  i f j  -- n e x t ( k ) ,  then  f irs t (k ,  j )  = 2. T h e  pa r t  of  
column k tha t  is sub t rac ted  f rom column j begins a t  l ocd iag(k )  + f irs t (k ,  j ) ,  and 
has  length 

n u m ( k ,  j )  = locd iag (k  + 1) + 1 - ( locd iag (k )  + f irs t (k ,  j ) ) .  

Also, define 

n u m c o l ( k  ) =- l ocd iag (k  + 1) - l o c d i a g ( k  ), 

which is the n u m b e r  of nonzeros, counting the diagonal, in column k of L. 
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f i rs t (5 ,  7)" ffi 2 

1 4 ]  11151171 
[ / / ~  1 21 

] 77 ] 87[ 97 ] f i rs t (7 ,  7) = 1 

f irs t(6,  7) ffi 2 

6~ 7~ 
4 

last f irs t (3)  = 2 f i r s t ( l ,  7) -- 3 f i rs t (2 ,  7) = 3 last f irs t (4)  = 2 
last f irs t (1)  = 2 last f irs t (2)  = 2 

A tree link traversed and 
(3.1) satisfied. 

. . . . . . . . . . .  ~, A tree link traversed, but  
(3.1) not satisfied. 

Fig 5. Data  structures used during depth-first search 

For each pivot column j, the program does a depth-first search of the subtree 
Trow(j)u{j} starting at the root, vertex j. At every internal node k, a temporary 
vector tempk of size num(k, j)  is allocated and initially filled with the contribution 
of column k to the pivot column. The sons of vertex k in Trow(j)u{~} are then all 
searched, the temporary tempk being passed to each of them. Then  the elements 
of tempk are added to the temporary passed by vertex-k's father; correspondence 
of elements is determined using column k's wherenext pointers. 

In some implementations of sparse elimination a data structure for representing 
row(j) is maintained during numeric factorization; the columns belonging to 
row(j) are explicitly available from that  data structure [15]. In this implemen- 
tation membership in row(j) is determined as part of the tree search process. 

When a son k '  of k is searched, the pointer first(k, j )  is passed. Whether k '  is 
an element of row(j) at all can be determined by attempting to find the location 
first(k', j )  of the element 1j.k.. For, if k' ~ row(j), then 1j.k, # 0, so there exists p 
such that  

wherenext(locdiag(k') + p) = first(k, j ) ,  (3.1a) 

1 <_ p <_ numcol(k'). (3.1b) 

If such a p exists, then we set first(k', j)  = p and continue the search process. 
If not, k' ~ row(j), and the search immediately backtracks to column k. 

It is not actually necessary to search the pointers of column k'  to either find a 
p satisfying (3.1) or determine that  none exists--only one value of p need be 
examined, one larger than the last to have satisfied (3.1). We store this value of 
p in lastfirst(k'); initially it is 1. Figure 5 illustrates the depth-first search of 
Trow(7)o{7} for the 3 x 3 example of Figure 2. 
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Note  tha t  the overhead associated with t ree  searching is small, since the 
operat ions performed on every traversal  of a t ree  edge are not  dependent  on the 
number  of nonzeros in the corresponding columns. 

The  storage requi rement  of the method  is certainly no greater  t han  for absolute 
row-index methods.  In fact, e lements  of w h e r e n e x t  are all less than  the  maximum 
of n u m c o l ( j ) ,  1 <_ j <_ n,  which will ordinarily be much  less t han  n, so more  can 
be packed in a word. The  only other  minor  issue is tha t  of  temporaries.  These  
can be allocated off a stack. If  the depth  of T is d, then  at  most  d t emporary  
vectors are needed. The  symbolic factorization can determine the amount  of 
stack space tha t  will be required. 

3.3 BacksoIving 

It  is not  evident  tha t  the relative row-index scheme is at  all suitable for backsolv- 
ing 

L z  = b, (3.2a) 

or 

L T x  = D - ~ z .  (3.2b) 

I t  appears at  first that ,  to access b, z, and x (which share  the same n storage 
locations) absolute row indices are required. These  could be precomputed  (by the 
symbolic factorization routine) and stored, or they  could be genera ted  f rom the 
relative row indices after  the factorization is accomplished. T h e  first al ternat ive 
costs storage, the  second, time. 

I t  is, however, possible to solve both  (3.2a) and (3.2b) using relative row indices. 
Moreover,  the resulting algori thm accesses storage in a more  near ly  sequential  
manner  than  the obvious absolute row-index algorithm. Other  advantages of 
relative row indices have already been mentioned.  Thus,  this scheme is as 
at t ract ive for backsolving as for factorization. 

The  forward solve (3.2a) is done by a depth-first  search of T. T h e  basic process 
is, as in the factorization, the accumulat ion in t emporary  storage of multiples of 
columns of L. Here  is a pseudo-ALGOL procedure.  A call to fwd-solve(n) solves 
(3.2a). Le t  Tj be the subtree of T rooted at j .  

1. p rocedure  fwd-solve(/); c o m m e n t  t j stores {t~ I i ~ co l ( j )  U {j}}; 
2. begin real  a r r ay  t~; 

c o m m e n t  determine zk for every k in Tj and, for all i E co l ( j )  U {j} 
set t~ = ~,k'~o~(~)uO} z~,l,k'; 

3. begin 
4. for  i ~ c o l ( j ) t  ~, := 0; 
5. t~ := 0; 
6. for  each son l of j begin 
7. fwd-solve (/); 
8. for  i ~ col(1)t~ := t J, + t~ 
9. end 
10. z~ := bj - t~J; 
11. for  t ~ c o l ( j ) t  J, := t~ + zjl,~; 
12. t~ := t~ + z~; 
13. e n d  
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(~) (xg) 

(9) 
[1] ( ~  (xs, x~) 

/ 
(8, 9) 

(7, 8 9) ~ . . . . .  ~7 R cji ~ . , ' j ~ |  (Xs, X7,~gS, X9/ ~ ' ~ ' ~ Y  [ O ]  (X5, X 7 , X s ,  Xg) 

Fig. 6. T r e e  sea rch  for  L T x  = D - I z .  

Note that  the accumulation of temporary column multiples (line 8) is done 
using relative row indices. A temporary vector for storing ( t i l i  E c o l ( j )  U ( j } )  
is allocated when the procedure is invoked and released after being used by the 
caller. 

Backsolving (3.2b) is also done by a depth-first traversal of T. In contrast to 
the forward solve, no information need propagate up: as soon as a vertex k of T 
is searched, the value of xk is determined. 

To begin, x ,  ffi z , / d , , .  Now suppose vertex k is searched. Then 

Z k  
xk = - -  - ~, x, l ,k ,  (3.3) 

dk~ 

where the sum is taken over indices i such that  1,~ ~ 0, that  is, for i ~ co l (k ) .  The 
elements of L involved, (1,k, i ~ c o l ( k ) } ,  are a contiguous ( n u m c o l ( k )  - 1)-long 
vector. The elements x ~k~ = {x, ,  i E co l (k )  U {k}} are also needed. Since 
{Proposition 5) co l (k )  is a subset of the vertices on the path from k to the root n, 
x ~k) is already known. 

The  solution vector x is stored in an n-vector b. It  is not convenient to get at 
x ~k~ by accessing this array: absolute indices are required, and the elements 
needed are scattered randomly. Let j = n e x t ( k ) .  The  algorithm passes a temporary 
vector containing x ~J~ when searching vertex k. The elements of x ~k~ reside in 
positions pointed to by column k's relative row indices. The inner loop extracts 
these elements, performs the dot product in (3.3), and creates the temporary 
vector holding x~h~, which will be passed to the sons of vertex k in T. 

Figure 6 illustrates the backsolve for Example 1. T is shown. To the right of 
vertex j is x ~ ;  to the left, c o l ( j )  is shown in parentheses; the relative row indices 
are in square brackets. When vertex 3 is searched, x5 and x9 are extracted from 
x ~5~ using the relative row indices, 1, 4, of column 3. Then  x3 -- z3/d33 - (15~x5 + 

193X9). 

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982. 



A New Implementation of Sparse Gaussian Elimination • 267 

4. REFINEMENTS TO THE METHOD 

Fini te-element  problems, especially "when ordered by  nestect dissection tech- 
niques, lead to matrices with many  columns having relative row pointers  of 1, 2, 
3, . . . ,  ~. Such a column has below its diagonal the same nonzeros as its n e x t  
column. This  si tuation can be exploited in three  ways. Storage for the  pointers  
can be saved- - in  fact, they are not  needed at  all. T h e  inner loop used to add such 
a column to its n e x t  column can be simplified. The  code 

for  t := 1 to nk do 
aa( j  + t) := a a ( j  + i) + aa(k + i); 

is u sed - -no  pointers are needed. Finally, the t emporary  vector  allocated for the 
n e x t  column can be passed to the  sons of this column. T h e  sons" relative row 
indices can be used to access it. 

Nontrivial  relative row-index sets can be redundant:  two different columns may  
have exactly the same set of relative row indices, and so only one set  would have 
to be stored. The  difficulty in exploiting this redundancy is in recognizing the 
columns with identical relative row indices. One possibility is to exploit  symme- 
tries of the  graph G(L) .  If there  is a k-fold symmet ry  in the graph, and the nodes 
are suitably numbered,  then  in general a vertex will have a row-index set  identical 
to tha t  of its k - 1 images. The  model  problem of Sect ion 5 is ano ther  such 
situation. 

5. A MODEL PROBLEM 

For a symmetr ic  n × n matr ix  A we define the undirected graph G(A)  = 
(V,  E ( A ) ) ,  where V -- {1, 2 . . . . .  n}, and E ( A )  = {(i, j )  [a,  s ~ 0}. T h e  model  
problem is a symmetr ic  positive definite problem with n = k 2 and a k × k "grid- 
graph." 

( 

G ( A )  = • 

• • • 

k 
• • ° • 

T 
k 

Thus,  vertices are adjacent  to every other  vertex with which they  share  a square 
cell, or element.  

With a row-by-row ordering of the  vertices, A is banded with bandwidth  k + 1. 
To  best  utilize sparse matr ix techniques, the vertices of G(A)  are  ordered by  
nested dissection [1, 5]. The  vertices of a separating cross are numbered  last. T h e  
remaining vertices consti tute four independent  grid-graphs of  size (k - 1)/2 by  
(k - 1)/2. These  are numbered  by (recursively applying) nested dissection. For  
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example, w i t h  k = 7, G(A) is 

30 

43 

4 4  I I 

145 28 

57 58 39 I !46 [ 42 41 

47 

56 

!35 F 

34 

3~ 

29 

48 

(The numbering of the other 3 x 3 subproblems is obvious.) The first level's 
separating cross consists of a vertical separator Cv (nodes 43-49), a left-horizontal 
separator CL (nodes 37-39), and a right-horizontal separator CR (nodes 40-42). 
The whole cross is denoted by C, where 

C "----- Cv U CL U CR. 

The structure of the Cholesky factor L of A, and hence of its graph G, can be 
surmised from Proposition 1. Gc, the subgraph of G describing the last 2k - 1 
rows and columns of L, has the structure 

The "vertices" of this graph represent cliques, and the heavy lines indicate that  
all possible edges are present. We suppose that  the three separators of a cross 
are always numbered in this sequence: vertices of CL, vertices of CR, vertices 
of Cv. 

In effect, nested dissection defines a binary tree of grids; its structure is 
mirrored in the structure of the tree T. For the example with the numbering 
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~ 49 

48 

47 

39 

38 

37 

The re  is a chain of  seven vert ices (those in Cv) and two subchains,  of  three  
vert ices each (one for CL and one for Cn). Denote  by  0 = ~  a chain of  length r, let  
k = 2 "z - 1, and k~ ~ 2 ~-J - 1. T h e  tree for nested dissection of a k × k model  
p rob lem is shown in Figure 7. 

A n u m b e r  of  questions arise. For  example,  how well do the  opt imizat ions of  
Sect ion 4 work for these problems?  W h a t  is the  amoun t  of  s torage used for 
relat ive row indices? How large mus t  the  s tack be? W h a t  will be  the  cost, in 
running t ime, for each multiplication, compared  with tha t  of  a s tandard  imple- 
menta t ion?  

We first show tha t  only 12k 2 row indices remain  if trivial sets  are not  stored. At  
level l in the  dissection, square  subgraphs  of size kz - 2 m-l - 1 remain;  Figure 8 
i l lustrates the  case 1 = m - 2. T h e  numbers  shown indicate the  o r d e r  in which 
these vert ices are eliminated, r a the r  than  their  n u m b e r  in the  overall  ordering of 
the  grid. 

When  vertex 7 is eliminated, it is adjacent  to all the vert ices 8-25, t ha t  is, to all 
vert ices on its separa to r  and on the  four surrounding separators .  (For subgrids a t  
the edge of the graph there  will be only two or three  surrounding separators .)  
Obviously, n e x t ( 7 )  = (8). Vertex 8 is adjacent  to the  same vert ices as 7, so the  
relat ive row indices of ver tex 7 are jus t  1, 2, . . . ,  18. Similarly, ver tex 8 has  a 
trivial relat ive row-index set. In  fact, it is clear tha t  for all bu t  the  highest  
numbered  vertex on any  separator ,  the row-index set  is trivial. So, only one row- 
index set  is needed for each separa tor  in the  grid. 

To  bound the  total  n u m b e r  of pointers  required, assume l levels of  nested 
dissection have  left 2 2l independent  square grids of  size (2 ~-l - 1). T h e  first 
separa tor  of each of these will be adjacent  to a t  mos t  four surrounding separa to r  
pieces, each  of size 2 ~-~, and is itself 2 " -~  - I long, so less t han  5.2 ~-z pointers  are 
needed for its vertices. T h e  two second separa tors  are each 2 " - l - ~  - 1 long, and 
are adjacent  to two separa tor  pieces of  size 2 m-~ and two of size 2 ~-t- l ,  so two sets 
of  less than  7.2 ~-~-~ pointers  are needed for these two separators .  T h e  tota l  count  
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~ f f i n  separatiatg cross 

. . . . . . . . .  ! , e , ,  veO . . . .  . . . . . . . .  

| separating crosses 
kl 

} 

/ ~  ~ leatel 

• . . u  t j  u u . . . [  4°,-,_-~ 

f 
J 1 x 1 problems. 

Fig. 7. Separator tree for k × k model problem. 

of pointers, therefore, is bounded by 
m--2 

12- 2 m-l. 2 2t ___ 12k 2. 
l=0 

This agrees with the results of Sherman [16] and George and Liu [10], who use 
a different storage scheme, but  take advantage of the structure of the model 
problem in essentially the same manner. 

A second question is how much stack space for temporaries is needed. Edges 
of T within one of the separator chains meet  the requirement for not generating 
a new temporary. So only one temporary vector, of length kj = k 2 -~ is needed for 
ACM Transact ions  on Mathemat ica l  Software, Vol. 8, No. 3, September  1982 



A New Implementation of Sparse Gaussian Elimination • 271 

0]6 Oj2 Oil • m O2] 
o,~ o~ F$~'1o3, o22 
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O~7 Ois Oi9 02o O2.~ 

Fig. 8. A 3 x 3 subgrid. 

each chain at level j. The total requirement is then 

m - - I  

kt + kl+l < 3k 
l=0 

words. Thus the stack is of trivial size compared with the storage for L, or even 
compared with that needed for the pointer arrays locdiag, son, and brother. 

These results can be generalized to dissection orderings of arbitrary graphs, as 
proposed by Lipton et al. [13], and George and Liu [9]. 

Next, consider the possibility that  nontrivial row-index sets are repeated. This 
occurs frequently in the model problem. In fact, only a constant number of 
different row-index sets occurs for vertices on separators at a given level. At level 
m - l, the sets have O (2 t) elements, and no more than C of them are required, 
where C is independent of n and 1. Thus O (k) relative row indices are needed! 

Of course, when sharing the relative row indices, a pointer is needed for every 
vertex showing where its relative row indices are stored. Thus, we require only 

k 2 + O ( k )  

pointers for the model problem, a 12-fold savings compared with earlier results. 
(It should be noted that 12k 2 pointers use far less space than the approximately 
7¼k 2 log2k nonzeros in L, so the overall storage savings are relatively minor.) This 
sort of situation occurs whenever a simple repeated pattern of elements is used 
to discretize a differential equation. 

The method requires storage for three auxiliary arrays of size n. This is the 
same number required by the numeric factorization routine of the Yale sparse 
matrix package [3]. 

An experiment reported in Section 7 shows that  for other sparse matrix 
problems the pointer storage requirement of this method is nearly the same as 
for absolute row-index methods. 

6. TIMING FOR A VECTOR IMPLEMENTATION 

Consider the r vertices on a separator. Assume that  each is adjacent to # other 
higher numbered vertices and to the higher numbered vertices of the separator. 
The situation for the vertical separator of an interior subgrid is this: 

) 

I 
kt~4~ 
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T h e r e  are # + p - j  + I e lements  in the  column for t h e j t h  ver tex of the  separator .  
For  each of these there  is a column f rom which the  given column will be 
subtracted.  

Except  for the  highest  num bered  ver tex of the  separa tor ,  all the  vert ices j are 
sons in T of a ver tex with the same col set. Therefore ,  the  wherenex t  pointers  for 
these vert ices are jus t  (1, 2, 3 . . . . .  numco l ( j ) ) .  Therefore ,  whenever  co lumn j is 
used by  the  factorizat ion algori thm, it is jus t  mult ipl ied by  a scalar  and  added to 
ano ther  vector.  

We assume a mach ine  in which the cost  of  mult iplying a vector  of  length V by  
a scalar  is SM + PMV, and the  cost  of  adding two vectors  of  length Vis  SA + PAV. 
SM, PM, SA, and PA are mach ine -dependen t  constants .  SM and SA are called 
" s t a r t -up"  costs. On cur ren t  machines ,  Sx >> Px for e i ther  opera t ion x - M, A. 
T h e  tota l  of  all costs for the  j t h  ver tex  of the  sepa ra to r  is, then, 

v+tt 

(SA + SM) + (PA + PM)(r + # + 1 -- i) 
txJ+ l 

(v + # - j ) ( r  + # + 1 - j )  
= (v + It - -J ) (SA + SM) + (PA + PM). 

2 

T h e  cost  for all vert ices 1 _< j _ r of  the  sepa ra to r  is approx imate ly  
v v 

(SA + SM) 2 (P + It - J )  + (PA + PM) ~ (# + r _ j ) 2  
J=l y--I 2 

(Sa + SM) (PA + PM) 
2 [(# + v)2 - #2] + 6 [(# + r)3 - #3]. 

We have  ignored the  complicat ions due to the  inapplicabil i ty of  this analysis  to 
the  last  ver tex  of  a separa tor .  

T h e  separa to rs  a t  level 0 are a vert ical  sepa ra to r  of  length r = k = 2 m - 1, and  
two of length v = 2 m-' - 1, wi th  # = k = 2 m - 1. 

T h e  cost  for these  are (from the analysis  above)  

2 ~ k  2 ¢ 6 -8 - k 3 "  

At  deeper  levels, there  are three  different types  of  regions to be separa ted :  
corners,  sides, and interiors. At  levels l, the  regions being separa ted  are of  size 
(2 m-t - 1) = kl square.  T h e r e  are 4 l such regions. Of  these, 4 are corners,  4(2 l - 2) 
are sides, and  (21 - 2) 2 are interior. For  corner  regions there  is a vert ical  separa to r  
wi th  v = kl and # = 2kl + 1, and  two different horizontal  separa to rs  with v = kt+l 
and g = 5kt+~ + 4 and # = 3kl+~ + 2, respectively.  For  sides, there  is a vert ical  
s epa ra to r  wi th  v = k~ and  # = 3kt + 2, and  two horizontal  separa to rs  with v = kt+l 
and # = 5k~+l + 4. Finally, in interior  regions, the  vert ical  sepa ra to r  has  r = kz and  
It = 4(kt + 1), while the  horizontal  separa to rs  have  v --- kl+~ and It = 6(kt+~ + 1) 
(see Figure 9). Sum m i ng  all the  contr ibut ions  a t  level I yields, approximate ly ,  for 
l _ l ,  

Cl -- (SA + SM) k2 [38  (22 - 2) (2 t - 2)21 
2 L ~  + 50 22------7--- + 62 ~ + ~  j 

6 2~------- ~ 4 2 3 l +  2 . 
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Fig. 9 Corner, side, and interior regions 
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Summing the various geometric series yields a total cost of 
rrt--1 

el = k3(eA + PM)" 829 k2 l-0 -~ -  + log2 k(Sn + SM). + O(ke). 

George et al. [7] proposed an implementation of sparse Gaussian elimination 
that uses a block factorization and is most suitable for matrices arising from 
dissection of grids. The corresponding timing for this scheme is 

[ 31 ~ ]  k2 [ 31 ] 
k 3 (PA + PM) -~  + P1 + log2 k (SA + SM) "~" + SI • 17 + O(k2), 

the time for an inner product being S~ + P[V. Thus both schemes do the same 
number of operations, but the new scheme avoids the use of inner products, 
which on some machines are relatively slow, and also saves 17k 2 log2 k start-ups 
of inner products. We have neglected an additional O(1) start-ups associated with 
the last vertex of every separator. As there are approximately k2/4 separators in 
total, this does not change the leading terms. 

George et al. [8] have shown that an incomplete nested dissection ordering, in 
which dissection stops one or two levels early and the remaining small grids are 
ordered row by row, yields an improved time estimate when using their imple- 
mentation. The same observations are valid with the new scheme. When stopping 
with small grids, it may be better to treat the corresponding matrices as dense, 
thereby saving some storage for pointers and some vector start-ups. 

7. SYMBOLIC FACTORIZATION 
In order to use an absolute row-pointer storage scheme in a sparse matrix code, 
the nonzero structure of L has to be determined. This is done before numeric 
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factorization, but after a suitable ordering of the rows and columns has been 
obtained. A "symbolic factorization" of A is carried out. Lists of the nonzeros in 
the columns of A are input; lists of the nonzeros in L are output. By merging the 
completed lists for columns k E r o w ( j  ) into the list for column j (initialized with 
the nonzeros from A) the nonzeros in co lumnj  of L are obtained. 

In part, sparse Gaussian elimination is a success because symbolic factorization 
can be done efficiently. The key to its speed is that  i f j  = nex t ( k )  = n e x t ( n e x t ( k ' ) ) ,  
then there is no need to merge the nonzero list of column k '  into the list for 
column j:  since col(k ' )  C col(k)  U (k} already, all the necessary nonzeros are 
represented in the column k list. Thus, only lists of celumns k ~ n e x t - l ( j )  (the 
sons of j in T)  need be merged into the j list. The speed of this accelerated 
procedure is thus proportional to the size of L (since each column except the last 
is merged exactly once) and this is usually much smaller than the number of 
operations done during the numeric phase. 

In the Yale sparse matrix package [3] and a method of George and Liu [10], 
symbolic factorization is even faster. The output is a compressed representation 
of the nonzero lists; redundancy in the lists is exploited, much as we have taken 
advantage of trivial relative row-index sets. These methods have running times 
proportional to the size of their compressed outputs, usually much smaller again 
then the size of L. 

The obvious approach to symbolic factorization with relative row indices is to 
use an existing absolute row-index method, then process the output to get the 
relative row indices. But such a scheme would seem to have to spend a lot of time 
searching for elements in lists or arrays of indices, so it has not been pursued. 

The essence of the problem is this. Lists of the nonzeros in columns (of L) 
k E n e x t - ~ ( j  ) are merged with the nonzero-list of column j (of A) t o  form 
the nonzero-list of co lumnj  of L. In addition to this (ordered and linked) list, we 
also must find, for every element of every k-list, the relative position in the j-list 
of the nonzero in the same row. 

We have implemented a code to do this with a small modification of the routine 
SSF of the Yale package. This code processes columns in the order 1, 2 . . . .  , n. In 
processing column j it creates a list of the nonzero elements of this column of L 
(the j-list). An n-long array q holds the j-list in a linked form: 

~?, if L , j = 0  
q ( i ) = [ i ,  if L ,~#0  and i ' = m i n ( ( n + l } U ( r > i l L r j # O } } .  

After the array q is created it is traversed, the nonzeros in column j are stored in 
an array holding the nonzero-lists of columns of L, and each entry is replaced by 
its relative position in the list. The code is this: 

i :=0;  
m m  := j; 

loop: m := ram; 
store m into j-list; 
mm := q(m); 
i : = t +  1; 
q(m) := t; 
if mm <- n then go to loop; 

Finally, every k-list (for k ~ n e x t - l ( j  )) is traversed, and each (absolute) row 
index is replaced by the relative index in the element of q to which it points. This 
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Table I Comparison of Symbohc Factorizatlon Codes 

Relative scheme Absolute scheme 

T i m e  
Problem N (seconds) ptrs Time ptrs 

Graded-L 3937 0.242 26862 0.195 26733 
Square 4225 0.256 27931 0 211 27834 
H-domain 5185 0 295 30711 0 244 29920 

process is slower than  the unmodified procedure,  since every k-list is scanned 
twice. 

The  arrays son and brother are also constructed during symbolic factorization. 
Initially all entries are zero. Whenever  a j-list is completed,  ] is added to the list 
of sons of next(j)  by setting 

brother(j) := son(next(j)) and son(next(j)) :ffi j .  

Of course next(j  ) is known since it is the second e lement  in the j-list. Whenever  
the set next-~(j) is needed, the arrays son and brother are used to generate it. 

Trivial  row-index sets can be recognized readily. T h e y  occur when ei ther  (case 
A) k is the only column in next-~(j ) and every nonzero in column j of A is present  
in column k of L; or (case B) the number  of nonzeros in column k of L below the 
diagonal is the same as the number  of nonzeros in c o l u m n j  -- next(k) (including 
the diagonal). In case A the merging of lists and creat ion of the j-list  can be 
avoided al together  by making the k-list the j-list. 

A potential  difficulty (observed by the referee) is tha t  of putt ing the  elements  
of A into the data  structure.  This  can be done by replacing the absolute row 
indices of these elements  with their  relative row indices, exactly as is done for 
columns of L. This  might  involve the use of an additional array of pointers,  one 
for every nonzero in A. 

An exper iment  was done to compare  the speed of this "relat ive" symbolic 
factorization to tha t  of the "absolute" version in the Yale package. Th ree  test  
problems due to George and Liu [11] were used; we omit  a detailed description. 
Orderings were generated using the Yale minimum-degree subroutine.  The  results 
are shown in Table  I. The  times shown are each the average of two trails. The  
numbers  of row indices generated are also shown. The  experiments  were done on 
the IBM 3081 at the Stanford Linear  Accelerator Center  (SLAC). The  data  show 
tha t  the relative code takes between 20 and 25 percent  more t ime than  the 
absolute code. Because numeric factorization is so much  more  time-consuming, 
this difference is not  important .  
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