
A New Implementation
Elimination

ROBERT SCHREIBER
Stanford University

of Sparse Gaussian

An lmplementat]on of sparse LDL T and L U factorlzatlon and back substitution, based on a new
scheme for storing sparse matrmes, is presented. The new method appears to be as efficmnt m terms
of work and storage as existing schemes It is more amenable to efficmnt implementation on fast
plpehned scmntlfic computers

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Lmear Algebra--
sparse and very large systems; G.4 [Mathemat ics of Comput ing] , Mathematical Software--
algorithm analysts

General Terms" Algorithms, Theory

Addttional Key Words and Phrases' Sparse matmx, sparse systems of linear equatmns

1. INTRODUCTION

Let A be an n × n, irreducible, symmetr ic positive definite matrix. Th e system

can be ,~olved by a Cholesky factorization

A = L D L T, (1.2)

with L unit lower tr iangular and D diagonal, and forward and backward solves

L Z = b, L T x = D - I z . (1.3)

When only a small fraction of the elements of A are nonzero, A is said to be
sparse. When a sparse matr ix is factored, "fill-in" occurs: the tr iangular factors
contain nonzeros in positions where A has zeros. We use the t e rm s p a r s e G a u s s i a n
e l i m i n a t i o n to refer to methods for tr iangular factorization and back subst i tut ion
tha t take maximum advantage of zeros in the matr ix and the factors. We present
a new way to implement sparse Gaussian elimination in this paper.

Ordinarily, the rows and columns of A are first pe rmuted so tha t the fill-in is
made small. We are not concerned with the problem of finding such permutat ions.

Sparse Cholesky factorization is ordinarily implemented as a two-step process.
First, the nonzero s t ructure of the factor is computed by a symbolic factorization

Partial support has been provided by the NASA-Ames Research Center, Muffet Fmld, Cahf., under
Interchange No NCA2-OR745-002.
Author's address Department of Computer Science, Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this material Is granted provided that the copies are not
made or distmbuted for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is gwen that copying is by permlsmon of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or specific
permission.
© 1982 ACM 0098-3500/82/0900-0256 $00.75

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982, Pages 256-276

A New Implementatton of Sparse Gausstan Ehmtnation • 257

I
x sym]

A= 0 x
X X X

x O x x

aa: all 31 41 22 32

row. 1 3 4 2 3
colbegtn 1 4 6 8

33 43 44

3 4 4

Fig. 1. Standard column-oriented storage for a
sparse matrix.

step. Using a data s t ructure provided by the symbolic step, a numeric factorizat ion
computes the (nonzero) e lements of L. T h e elements, including any fill-ins, are
s tored in p rede te rmined locations.

The usual da ta s t ructure is this. E lements of the lower triangle of A, including
zeros tha t la ter fill in, are s tored in a one-dimensional array, which we call a a . A

separa te array, r o w , records the row to which the corresponding e lement of a r ray
a a belongs: if a64 is s tored at aa(12) , then r o w (1 2) = 6. Columns of A occupy
successive contiguous blocks of a a and are sor ted by row. Pointers to diagonal
e lements are stored in an array, c o l b e g i n . Figure 1 gives an example of this
scheme.

This paper proposes a me thod for implement ing sparse el imination which uses
a new scheme to store A and L. A tree s t ructure links every column k < n of A
to the first c o l u m n j > k such tha t l~k # 0. We say t h a t j = n e x t (k) . Then, instead
of the row to which a nonzero e lement belongs (its a b s o l u t e row index), a pointer
to the location in a a of the nonzero in the same row (say row i, i > k) and the
n e x t column is stored: the pointer for l,k points to the s torage for 1,j. La te r it is
shown tha t if l,k # 0, then 1,~ # 0. We call these pointers r e l a t i v e row indices. Th is
scheme bears some similarities to a scheme based on the idea of a " represen ta t ive"
column due to George and Liu [10].

T h e principal advantage of a relat ive row-index scheme is the efficiency with
which a column (k, above) can be added to or sub t rac ted f rom its n e x t column
(j, above). T h e pseudo-ALGOL for such an operat ion is

f o r t : = l t o n k d o
a a (j + p t r (k + i)) := a a (j + p t r (k + t)) + a a (k + t);

assuming column k has n k off-diagonal nonzeros and variables j and k point to
the beginnings of columns k and j in aa .

When an absolute row-index scheme is employed, the code for adding or
subtract ing two columns is more complicated. Gus tavson [12] and Eisens ta t et al.
[3] avoid a complicated inner loop by unpacking one of the columns into a
t e m p o r a r y a r ray of size n and using a loop similar to the one above. This scheme
suffers f rom a significant drawback: the code accesses this large t e m p o r a r y in a
r a n d o m way, degrading per formance on a machine with a cache memory .

T h e new scheme has several advantages. Because it accesses m e m o r y a lmost
sequentially, it makes good use of a cache memory . Efficient implementa t ion on
a vector machine is possible. T h e pointers it uses are all small integers; in a
storage-cri t ical s i tuat ion more of t h e m can be packed into a word. When redun-
dancies in the relat ive row indices are fully exploited, their n u m b e r can be
reduced. For k × k grid p rob lems k 2 pointers are required. Previous me thods
have required a t least 12k 2 row indices [10, 16]. Sect ion 5 gives a detai led analysis

ACM Transactmns on Mathematmal Software, Vol. 8, No. 3, September 1982.

".2

258 • Robert Schreiber

of storage requirements for these problems. An analysis of implementat ion on
vector computers is given in Section 6. A discussion of symbolic factorization and
a numerical exper iment to determine pointer storage requirements for general
sparse problems is given in Sect ion 7.

Relative row-index schemes are not useful for solving A x = b with arbi t rary
nonsymmetr ic A. But if A has a symmetr ic nonzero s t ructure and can be factored
as L U (without partial pivoting) so tha t the s t ructure of U, which is the transpose
of tha t of L, can be precomputed, then a me thod based on the techniques of this
paper is possible.

A scheme for f ini te-element systems of Eisenstat et al. [4] has several of the
characterist ics and advantages of the proposed scheme, as do the schemes of
Peters [14], and Duff [2].

2. THE NEW SCHEME

Let L be the Cholesky factor of A. We define an n-vertex undirected graph G =
G (L) = (V, E) , with vertices V - {1, 2 n} and edges E -= ((i , j) I i > j and l,j

0}. Define

and

co l (j) - (i > j] 1,j ~ 0},

r o w (j) =- (k < j i l l , ~ 0},

n e x t (j) =- min{t ~ co l (j) } ,

1 <_j<n,

l < j < _ n ,

l _ j _ _ < n - 1,

N (L) =- {(j, n e x t (j)) E E I 1 <_j <_ n - 1}.

T h e edges (j, n e x t (j)) play a special role in the scheme: the relative row indices
associated with nonzeros in c o l u m n j of L will point to nonzeros in column nex t (j)
of L.

We now review some graph terminology. Vertices k, j are adjacen t if (k, j) E
E. A k - j p a t h in a graph G is a sequence k = Vo, vl v~ -- j of vertices with
v,-1 adjacent to v,, 1 _ i _ 1. I t is monotone if v, > v,-1, 1 _< i _< 1. We use the
words smaller and larger for comparing vertices.

A graph is strongly connected if, for every pair k, j of vertices, there is a k - j
path. A tree is a strongly connected n-vertex graph with n - 1 edges. Trees have
no cycles: there is a unique pa th between every pair of vertices. A tree T is
ordered wi th root n if, for every vertex j, the j - n pa th is monotone.

If G = (V, E) and V~ C V, then the subgraph reduced by V1,

Gv, = (V1, E n (V1 x V1)).

A clique is a subset V~ C V such tha t

E A (V, × V~) = V, × VI;

in o ther words, every vertex in V1 is adjacent to every other ver tex in 171.
Since A is irreducible, L is, too. I t follows tha t G (L) is strongly connected.
T he fill-in obeys an impor tan t law.

PROPOSITION 1. I f there is a j - k p a t h in G (L) through vertices smal ler
than both j a n d k, then (j, k) ~ E.

ACM Transactions on Mathematmal Software, Vol 8, No 3, September 1982

A New Implementat ion of Sparse Gauss,an Elimination • 259

PROOF. Th i s is an easy consequence of the corresponding s t a t e m e n t abou t
pa ths in the graph of A [14, L e m m a 4]. []

COROLLARY. I fJ = next (k) and l,k ~ O, then lu ~ O.

T h e corollary is essential; wi thout it we couldn ' t necessari ly define a relat ive
row index for the nonzeros of a column k < n. With it, we know tha t for every
nonzero in column k there is a corresponding nonzero in column next(k):

col(k) C col (next (k)) U (next (k)} .

PROPOSITION 2. For each 1 <_ k < n, col(k) is not empty.

PROOF: G(L) is s trongly connected. Choose any ver tex 1 > k and consider
a k - l pa th in G(L) . Let l ' be the first ver tex on the p a t h larger t han k.
Since there is a k - l ' p a th in G(L) consisting of vert ices smal ler t han k or l ' ,
(k, l ') ~ E, and so l' E col(k). Q.E.D.

Thus, the definition of nex t makes sense, since the sets whose min ima are
required are not empty .

Using relat ive row indices it is easy to add a mult iple of a column to its next
column. T h e inner loop of our scheme does this. T h e inner loop of Cholesky
factorization ordinarily subt rac ts f rom the pivot column (the f lh) a mult iple of
each column k of L such tha t k E row(j) . The key idea is to accumula te instead
a sum of mult iples of columns k E row(j) .

Define the graph T = (V, N(L)) . We are going to show tha t T is an ordered
tree with root n, and for every 1 ~ j __ n, the subgraph TrowU~uu~ is an ordered
tree with root j . Thus, for every k E row (j) there is a unique k - j p a t h in T t ha t
goes th rough other vert ices in row (j) . A sum of appropr ia te mult iples of columns
of L in row (j) is accumula ted by a depth-f i rs t t raversal of T~o~u~u u}.

Here is an example. Suppose

T h e n T =

L =

X

X X

0 0 x 0
0 x x x
0 0 0 0 x
X X X X X X - . .

o o o o . o

o o o o o o

. o o o o o

ACM Transacnons on Mathemat ical Software, Vol. 8, No. 3, September 1982.

260 Robert Schreiber

Since row(6) = {1, 2, 3, 4, 5}, the algori thm will subtract a multiple of each of
those columns from column 6. I t can subtract the multiple of column 5 easily
since 6 -- next (5). Next, it can add the multiple of column 1 to the multiple of
column 2, add the sum (of 1 and 2) to column 4, add column 3 to column 4, and,
finally, subtract the 1-4 sum from column 6. Th e algori thm only uses the
operat ions of adding or subtracting a column to or f rom its nex t column. Note
tha t it was essential tha t Trow(6)u(6} be an ordered tree with root 6.

Now the proofs.

PROPOSITION 3. T is an ordered tree with root n.

PROOF. Construct T. S tar t with the single ver tex n. Add the preceding vertices
n - 1, n - 2 1, each with its incident nex t edge. Th e single ver tex n is an
ordered tree with root n. Adding a vertex and nex t edge leaves the graph ordered
with root n. Q.E.D.

PROPOSITION 4. For every 1 <_ j <_ n, Trow(y)o{j} is an ordered tree with root j.

PROOF. Let k ~ row(j) . Consider the (unique, monotone) pa th from k to n in
T. Le t l < j be on this path. T h e n the edge (j, k) together with the k - 1 pa th is
a j - 1 pa th through smaller vertices; hence (1, j) ~ E, and 1 ~ r o w (j) . [This
diagram illustrates the argument:

Vertices increase going left to right.] We claim tha t j is actually on the k - n
path, showing tha t a uniqae monotone k - j pa th in Trow(])u{~} exists, which
proves the proposition. Suppose not. T h e n an edge (l, l') on the pa th with 1 < j
< l' exists. But l' = next(1), so l' <_j, a contradiction. Q.E.D.

A more realistic and interesting example, a 3 x 3 finite-difference grid, is shown
in Figure 2.

For the backsolving scheme, we need one last fact.

PROPOSITION 5. For each 1 <_j < n, eo l (j) is a subset o f the vertices on the
p a t h from vertex j to the root n o f T.

PROOF. Use induction on the depth o f j in T. Certainly, n e x t (j) E eo l (j) and
n e x t (j) is the first vertex on the j - n path. Moreover, by the corollary to
Proposi t ion 1, co l (j) C eo l (nex t (j)) U {nex t (j) } . Q.E.D.

3. AN IMPLEMENTATION OF THE NEW SCHEME

In this section we present the details of an implementa t ion of the new sparse
L D L w factorization method. The data s t ructure is covered in Sect ion 3.1. Th e
algori thm is described in Sections 3.2 and 3.3.

ACM Transact ions on Mathemat ica l Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elimination • 261

G(L) =

k" 1 2 3 4 5 6 7 8
next(k): 5 6 5 6 7 7 8 9

T , , , , , . , 7 , u l ~ *

Fig. 2. A 3 x 3 fimte-dlfference grid.

3.1 Storage Scheme

The nonzeros of L and D are stored in a one-dimensional array, aa. Initially, the
array contains the corresponding elements of the lower triangle of A; the code
overwrites them with L and D. The columns are stored together, sorted by row.

For each 1 <_j <_ n, l o c d t a g (j) + 1 is the location in aa of aj~ and d~j. Thus , the
tth nonzero of column j is stored in a a (l o c d i a g (j) + i). Also, l o c d i a g (n + 1) is
the location of the last e lement in aa. An integer array w h e r e n e x t contains the
relative row indices. Suppose the nonzero in position m of a a is a member of
column k of L, and t h a t] = n e x t (k) . Moreover, suppose this nonzero is in the ith
row of L. Somewhere in the storage for column j, say at t h e / t h position, is a
location for the e lement 1,j In o ther words, 1,j is stored at a a (l o c d i a g (j) + 1).

T h e n

w h e r e n e x t (m) - I.

Note tha t w h e r e n e x t need not be defined for elements on the diagonal; they are
never subtracted from elements in o ther columns.

ACM Transact ions on Mathematmal Software, Vol. 8, No. 3, September 1982.

262 • Robert Schreiber

T:

son brother 1 = [- - [4 [- -] 1 6 1 3 1 5 [2 - -
1 2 3 4 5 6 7

Fig. 3. Storage of T.

a ~

51

10 44:
64
94
55
75

I{ 85
95

76
86

2 0 9 6
77
87
97
88

2 ~ 9 8

Flg. 4.

where-

nex t

1
2

1
2

1
4

1
4

1

2
3

1
2
3

1
2

1

l o c d m g

1 0
2 3

3 6
4 9
5 12
6 16
7 20
8 23
9 25

10 26

son brother

1
2

3 - -
4 5
6 - -

7 - -

8 - -

Storage scheme applied to the 3 × 3 grid example of Figure 2.

T is encoded as a b inary tree. An a r ray s o n (j) contains a pointer to any of the
sons of ver tex j in T. Remain ing sons are l inked in a l inear list, wi th pointers
s tored in b r o t h e r (see Figure 3). No te t ha t the n e x t links are not stored. Figure 4
i l lustrates this s torage scheme applied to the example of Figure 2. T h e number s
in a a a r e the indices (i, j) of the e lement 1,j s tored a t t h a t position. I t m a y be
advan tageous to s tore diagonal e lements in a separa te array; the n unused
pointers could then be el iminated.

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982

A New Implementation of Sparse Gaussian Elimination • 263

3.2 The Numeric Factorization Algorithm

T h e following pseudo-ALGOL procedures per form the Cholesky factorizat ion of
the mat r ix [a,j], overwrit ing a,~ with l,~ for i > j and a,, wi th d , . I t uses a column-
or iented method. At the j t h s tep it subt rac ts f rom column j a mult iple of each
column k E row (j) by first accumulat ing such column multiples.

1. p rocedure factor (a, n)
2. in teger n; rea l a r r a y a;
3. beg in in teger i, j, k;
4. for j := 1 to n
5. begin real a r r a y t;
6. for k ~ row(j)
7. if next (k) = j then begin
8. searchtree (], k, t);
9. for t ~ col(j)
10. a,~ := a,~ - t,
11. end;
12. for i ~ col(j) a,~ := a~l/a~
13. end
14. end (factor);
1. p rocedure searchtree (j, k, t)
2. in teger j, k; rea l a r r a y t;
3. c o m m e n t add to t multiples of all columns l E row (]) in the subtree of T rooted at

column k;
4. begin in teger i, l; rea l amult;
5. real a r r a y t~'h;
6. commen t the temporary t ~'k accumulates the multiples of columns;
7. i f k ~ row(j) then begin
8. amult := ak~ * ajk;
9. for i E col(k) t j'k, .-'- amult * a,k;
10. for l < k i f next(l) = k then searchtree (j, l, t~'k);
11. for t ~ col(k) t, = t, + t~ "k
12. end
13. end (searchtree);

We now briefly discuss how member sh ip of column k in r o w (j) can be
efficiently de te rmined (line 7 of searchtree) , how e lements a,j can be located in
aa, and how t e m p o r a r y storage (the t vectors) can be managed.

Defme, for every k E r o w (j)

f irs t(k , j) =- the relat ive posit ion of ljk in column k ' s s torage

and let f i r s t (j , j) = 1. Note that , i f j -- n e x t (k) , then f irs t (k , j) = 2. T h e pa r t of
column k tha t is sub t rac ted f rom column j begins a t l ocd iag(k) + f irs t (k , j) , and
has length

n u m (k , j) = locd iag (k + 1) + 1 - (locd iag (k) + f irs t (k , j)) .

Also, define

n u m c o l (k) =- l ocd iag (k + 1) - l o c d i a g (k),

which is the n u m b e r of nonzeros, counting the diagonal, in column k of L.

ACM Transactions on Mathematical Software, Vol. 8, No 3, September 1982

264 • Robert Schre,ber

f i rs t (5 , 7)" ffi 2

1 4] 11151171
[/ / ~ 1 21

] 77] 87[97] f i rs t (7 , 7) = 1

f irs t(6, 7) ffi 2

6~ 7~
4

last f irs t (3) = 2 f i r s t (l , 7) -- 3 f i rs t (2 , 7) = 3 last f irs t (4) = 2
last f irs t (1) = 2 last f irs t (2) = 2

A tree link traversed and
(3.1) satisfied.

. ~, A tree link traversed, but
(3.1) not satisfied.

Fig 5. Data structures used during depth-first search

For each pivot column j, the program does a depth-first search of the subtree
Trow(j)u{j} starting at the root, vertex j. At every internal node k, a temporary
vector tempk of size num(k, j) is allocated and initially filled with the contribution
of column k to the pivot column. The sons of vertex k in Trow(j)u{~} are then all
searched, the temporary tempk being passed to each of them. Then the elements
of tempk are added to the temporary passed by vertex-k's father; correspondence
of elements is determined using column k's wherenext pointers.

In some implementations of sparse elimination a data structure for representing
row(j) is maintained during numeric factorization; the columns belonging to
row(j) are explicitly available from that data structure [15]. In this implemen-
tation membership in row(j) is determined as part of the tree search process.

When a son k ' of k is searched, the pointer first(k, j) is passed. Whether k ' is
an element of row(j) at all can be determined by attempting to find the location
first(k', j) of the element 1j.k.. For, if k' ~ row(j), then 1j.k, # 0, so there exists p
such that

wherenext(locdiag(k') + p) = first(k, j) , (3.1a)

1 <_ p <_ numcol(k'). (3.1b)

If such a p exists, then we set first(k', j) = p and continue the search process.
If not, k' ~ row(j), and the search immediately backtracks to column k.

It is not actually necessary to search the pointers of column k' to either find a
p satisfying (3.1) or determine that none exists--only one value of p need be
examined, one larger than the last to have satisfied (3.1). We store this value of
p in lastfirst(k'); initially it is 1. Figure 5 illustrates the depth-first search of
Trow(7)o{7} for the 3 x 3 example of Figure 2.

ACM Transactions on Mathematmal Software, Vol 8, No 3, September 1982

A New Implementahon of Sparse Gaussian Elimination • 265

Note tha t the overhead associated with t ree searching is small, since the
operat ions performed on every traversal of a t ree edge are not dependent on the
number of nonzeros in the corresponding columns.

The storage requi rement of the method is certainly no greater t han for absolute
row-index methods. In fact, e lements of w h e r e n e x t are all less than the maximum
of n u m c o l (j) , 1 <_ j <_ n, which will ordinarily be much less t han n, so more can
be packed in a word. The only other minor issue is tha t of temporaries. These
can be allocated off a stack. If the depth of T is d, then at most d t emporary
vectors are needed. The symbolic factorization can determine the amount of
stack space tha t will be required.

3.3 BacksoIving

It is not evident tha t the relative row-index scheme is at all suitable for backsolv-
ing

L z = b, (3.2a)

or

L T x = D - ~ z . (3.2b)

I t appears at first that , to access b, z, and x (which share the same n storage
locations) absolute row indices are required. These could be precomputed (by the
symbolic factorization routine) and stored, or they could be genera ted f rom the
relative row indices after the factorization is accomplished. T h e first al ternat ive
costs storage, the second, time.

I t is, however, possible to solve both (3.2a) and (3.2b) using relative row indices.
Moreover, the resulting algori thm accesses storage in a more near ly sequential
manner than the obvious absolute row-index algorithm. Other advantages of
relative row indices have already been mentioned. Thus, this scheme is as
at t ract ive for backsolving as for factorization.

The forward solve (3.2a) is done by a depth-first search of T. T h e basic process
is, as in the factorization, the accumulat ion in t emporary storage of multiples of
columns of L. Here is a pseudo-ALGOL procedure. A call to fwd-solve(n) solves
(3.2a). Le t Tj be the subtree of T rooted at j .

1. p rocedure fwd-solve(/); c o m m e n t t j stores {t~ I i ~ co l (j) U {j}};
2. begin real a r r ay t~;

c o m m e n t determine zk for every k in Tj and, for all i E co l (j) U {j}
set t~ = ~,k'~o~(~)uO} z~,l,k';

3. begin
4. for i ~ c o l (j) t ~, := 0;
5. t~ := 0;
6. for each son l of j begin
7. fwd-solve (/);
8. for i ~ col(1)t~ := t J, + t~
9. end
10. z~ := bj - t~J;
11. for t ~ c o l (j) t J, := t~ + zjl,~;
12. t~ := t~ + z~;
13. e n d

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

266 • Robert Schreiber

(~) (xg)

(9)
[1] (~ (xs, x~)

/
(8, 9)

(7, 8 9) ~ ~7 R cji ~ . , ' j ~ | (Xs, X7,~gS, X9/ ~ ' ~ ' ~ Y [O] (X5, X 7 , X s , Xg)

Fig. 6. T r e e sea rch for L T x = D - I z .

Note that the accumulation of temporary column multiples (line 8) is done
using relative row indices. A temporary vector for storing (t i l i E c o l (j) U (j })
is allocated when the procedure is invoked and released after being used by the
caller.

Backsolving (3.2b) is also done by a depth-first traversal of T. In contrast to
the forward solve, no information need propagate up: as soon as a vertex k of T
is searched, the value of xk is determined.

To begin, x , ffi z , / d , , . Now suppose vertex k is searched. Then

Z k
xk = - - - ~, x, l ,k , (3.3)

dk~

where the sum is taken over indices i such that 1,~ ~ 0, that is, for i ~ co l (k) . The
elements of L involved, (1,k, i ~ c o l (k) } , are a contiguous (n u m c o l (k) - 1)-long
vector. The elements x ~k~ = {x, , i E co l (k) U {k}} are also needed. Since
{Proposition 5) co l (k) is a subset of the vertices on the path from k to the root n,
x ~k) is already known.

The solution vector x is stored in an n-vector b. It is not convenient to get at
x ~k~ by accessing this array: absolute indices are required, and the elements
needed are scattered randomly. Let j = n e x t (k) . The algorithm passes a temporary
vector containing x ~J~ when searching vertex k. The elements of x ~k~ reside in
positions pointed to by column k's relative row indices. The inner loop extracts
these elements, performs the dot product in (3.3), and creates the temporary
vector holding x~h~, which will be passed to the sons of vertex k in T.

Figure 6 illustrates the backsolve for Example 1. T is shown. To the right of
vertex j is x ~ ; to the left, c o l (j) is shown in parentheses; the relative row indices
are in square brackets. When vertex 3 is searched, x5 and x9 are extracted from
x ~5~ using the relative row indices, 1, 4, of column 3. Then x3 -- z3/d33 - (15~x5 +

193X9).

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

A New Implementation of Sparse Gaussian Elimination • 267

4. REFINEMENTS TO THE METHOD

Fini te-element problems, especially "when ordered by nestect dissection tech-
niques, lead to matrices with many columns having relative row pointers of 1, 2,
3, . . . , ~. Such a column has below its diagonal the same nonzeros as its n e x t
column. This si tuation can be exploited in three ways. Storage for the pointers
can be saved- - in fact, they are not needed at all. T h e inner loop used to add such
a column to its n e x t column can be simplified. The code

for t := 1 to nk do
aa(j + t) := a a (j + i) + aa(k + i);

is u sed - -no pointers are needed. Finally, the t emporary vector allocated for the
n e x t column can be passed to the sons of this column. T h e sons" relative row
indices can be used to access it.

Nontrivial relative row-index sets can be redundant: two different columns may
have exactly the same set of relative row indices, and so only one set would have
to be stored. The difficulty in exploiting this redundancy is in recognizing the
columns with identical relative row indices. One possibility is to exploit symme-
tries of the graph G(L) . If there is a k-fold symmet ry in the graph, and the nodes
are suitably numbered, then in general a vertex will have a row-index set identical
to tha t of its k - 1 images. The model problem of Sect ion 5 is ano ther such
situation.

5. A MODEL PROBLEM

For a symmetr ic n × n matr ix A we define the undirected graph G(A) =
(V, E (A)) , where V -- {1, 2 n}, and E (A) = {(i, j) [a, s ~ 0}. T h e model
problem is a symmetr ic positive definite problem with n = k 2 and a k × k "grid-
graph."

(

G (A) = •

• • •

k
• • ° •

T
k

Thus, vertices are adjacent to every other vertex with which they share a square
cell, or element.

With a row-by-row ordering of the vertices, A is banded with bandwidth k + 1.
To best utilize sparse matr ix techniques, the vertices of G(A) are ordered by
nested dissection [1, 5]. The vertices of a separating cross are numbered last. T h e
remaining vertices consti tute four independent grid-graphs of size (k - 1)/2 by
(k - 1)/2. These are numbered by (recursively applying) nested dissection. For

ACM Transactions on Mathematical Software, VoL 8, No. 3, September 1982

268 Robert Schreiber

example, w i t h k = 7, G(A) is

30

43

4 4 I I

145 28

57 58 39 I !46 [42 41

47

56

!35 F

34

3~

29

48

(The numbering of the other 3 x 3 subproblems is obvious.) The first level's
separating cross consists of a vertical separator Cv (nodes 43-49), a left-horizontal
separator CL (nodes 37-39), and a right-horizontal separator CR (nodes 40-42).
The whole cross is denoted by C, where

C "----- Cv U CL U CR.

The structure of the Cholesky factor L of A, and hence of its graph G, can be
surmised from Proposition 1. Gc, the subgraph of G describing the last 2k - 1
rows and columns of L, has the structure

The "vertices" of this graph represent cliques, and the heavy lines indicate that
all possible edges are present. We suppose that the three separators of a cross
are always numbered in this sequence: vertices of CL, vertices of CR, vertices
of Cv.

In effect, nested dissection defines a binary tree of grids; its structure is
mirrored in the structure of the tree T. For the example with the numbering

ACM Transactions on Mathematmal Software, Vol. 8, No. 3, September 1982

shown, T c is

A New Implementation of Sparse Gaussian Elimination • 269

~ 49

48

47

39

38

37

The re is a chain of seven vert ices (those in Cv) and two subchains, of three
vert ices each (one for CL and one for Cn). Denote by 0 = ~ a chain of length r, let
k = 2 "z - 1, and k~ ~ 2 ~-J - 1. T h e tree for nested dissection of a k × k model
p rob lem is shown in Figure 7.

A n u m b e r of questions arise. For example, how well do the opt imizat ions of
Sect ion 4 work for these problems? W h a t is the amoun t of s torage used for
relat ive row indices? How large mus t the s tack be? W h a t will be the cost, in
running t ime, for each multiplication, compared with tha t of a s tandard imple-
menta t ion?

We first show tha t only 12k 2 row indices remain if trivial sets are not stored. At
level l in the dissection, square subgraphs of size kz - 2 m-l - 1 remain; Figure 8
i l lustrates the case 1 = m - 2. T h e numbers shown indicate the o r d e r in which
these vert ices are eliminated, r a the r than their n u m b e r in the overall ordering of
the grid.

When vertex 7 is eliminated, it is adjacent to all the vert ices 8-25, t ha t is, to all
vert ices on its separa to r and on the four surrounding separators . (For subgrids a t
the edge of the graph there will be only two or three surrounding separators .)
Obviously, n e x t (7) = (8). Vertex 8 is adjacent to the same vert ices as 7, so the
relat ive row indices of ver tex 7 are jus t 1, 2, . . . , 18. Similarly, ver tex 8 has a
trivial relat ive row-index set. In fact, it is clear tha t for all bu t the highest
numbered vertex on any separator , the row-index set is trivial. So, only one row-
index set is needed for each separa tor in the grid.

To bound the total n u m b e r of pointers required, assume l levels of nested
dissection have left 2 2l independent square grids of size (2 ~-l - 1). T h e first
separa tor of each of these will be adjacent to a t mos t four surrounding separa to r
pieces, each of size 2 ~-~, and is itself 2 " -~ - I long, so less t han 5.2 ~-z pointers are
needed for its vertices. T h e two second separa tors are each 2 " - l - ~ - 1 long, and
are adjacent to two separa tor pieces of size 2 m-~ and two of size 2 ~-t- l , so two sets
of less than 7.2 ~-~-~ pointers are needed for these two separators . T h e tota l count

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

2 7 0 • R o b e r t S c h r e i b e r

~ f f i n separatiatg cross

. ! , e , , veO

| separating crosses
kl

}

/ ~ ~ leatel

• . . u t j u u . . . [4°,-,_-~

f
J 1 x 1 problems.

Fig. 7. Separator tree for k × k model problem.

of pointers, therefore, is bounded by
m--2

12- 2 m-l. 2 2t ___ 12k 2.
l=0

This agrees with the results of Sherman [16] and George and Liu [10], who use
a different storage scheme, but take advantage of the structure of the model
problem in essentially the same manner.

A second question is how much stack space for temporaries is needed. Edges
of T within one of the separator chains meet the requirement for not generating
a new temporary. So only one temporary vector, of length kj = k 2 -~ is needed for
ACM Transact ions on Mathemat ica l Software, Vol. 8, No. 3, September 1982

A New Implementation of Sparse Gaussian Elimination • 271

0]6 Oj2 Oil • m O2]
o,~ o~ F$~'1o3, o22
e . [er--oF-m j .~

O~7 Ois Oi9 02o O2.~

Fig. 8. A 3 x 3 subgrid.

each chain at level j. The total requirement is then

m - - I

kt + kl+l < 3k
l=0

words. Thus the stack is of trivial size compared with the storage for L, or even
compared with that needed for the pointer arrays locdiag, son, and brother.

These results can be generalized to dissection orderings of arbitrary graphs, as
proposed by Lipton et al. [13], and George and Liu [9].

Next, consider the possibility that nontrivial row-index sets are repeated. This
occurs frequently in the model problem. In fact, only a constant number of
different row-index sets occurs for vertices on separators at a given level. At level
m - l, the sets have O (2 t) elements, and no more than C of them are required,
where C is independent of n and 1. Thus O (k) relative row indices are needed!

Of course, when sharing the relative row indices, a pointer is needed for every
vertex showing where its relative row indices are stored. Thus, we require only

k 2 + O (k)

pointers for the model problem, a 12-fold savings compared with earlier results.
(It should be noted that 12k 2 pointers use far less space than the approximately
7¼k 2 log2k nonzeros in L, so the overall storage savings are relatively minor.) This
sort of situation occurs whenever a simple repeated pattern of elements is used
to discretize a differential equation.

The method requires storage for three auxiliary arrays of size n. This is the
same number required by the numeric factorization routine of the Yale sparse
matrix package [3].

An experiment reported in Section 7 shows that for other sparse matrix
problems the pointer storage requirement of this method is nearly the same as
for absolute row-index methods.

6. TIMING FOR A VECTOR IMPLEMENTATION

Consider the r vertices on a separator. Assume that each is adjacent to # other
higher numbered vertices and to the higher numbered vertices of the separator.
The situation for the vertical separator of an interior subgrid is this:

)

I
kt~4~

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

272 • Robert Schreiber

T h e r e are # + p - j + I e lements in the column for t h e j t h ver tex of the separator .
For each of these there is a column f rom which the given column will be
subtracted.

Except for the highest num bered ver tex of the separa tor , all the vert ices j are
sons in T of a ver tex with the same col set. Therefore , the wherenex t pointers for
these vert ices are jus t (1, 2, 3 numco l (j)) . Therefore , whenever co lumn j is
used by the factorizat ion algori thm, it is jus t mult ipl ied by a scalar and added to
ano ther vector.

We assume a mach ine in which the cost of mult iplying a vector of length V by
a scalar is SM + PMV, and the cost of adding two vectors of length Vis SA + PAV.
SM, PM, SA, and PA are mach ine -dependen t constants . SM and SA are called
" s t a r t -up" costs. On cur ren t machines , Sx >> Px for e i ther opera t ion x - M, A.
T h e tota l of all costs for the j t h ver tex of the sepa ra to r is, then,

v+tt

(SA + SM) + (PA + PM)(r + # + 1 -- i)
txJ+ l

(v + # - j) (r + # + 1 - j)
= (v + It - -J) (SA + SM) + (PA + PM).

2

T h e cost for all vert ices 1 _< j _ r of the sepa ra to r is approx imate ly
v v

(SA + SM) 2 (P + It - J) + (PA + PM) ~ (# + r _ j) 2
J=l y--I 2

(Sa + SM) (PA + PM)
2 [(# + v)2 - #2] + 6 [(# + r)3 - #3].

We have ignored the complicat ions due to the inapplicabil i ty of this analysis to
the last ver tex of a separa tor .

T h e separa to rs a t level 0 are a vert ical sepa ra to r of length r = k = 2 m - 1, and
two of length v = 2 m-' - 1, wi th # = k = 2 m - 1.

T h e cost for these are (from the analysis above)

2 ~ k 2 ¢ 6 -8 - k 3 "

At deeper levels, there are three different types of regions to be separa ted :
corners, sides, and interiors. At levels l, the regions being separa ted are of size
(2 m-t - 1) = kl square. T h e r e are 4 l such regions. Of these, 4 are corners, 4(2 l - 2)
are sides, and (21 - 2) 2 are interior. For corner regions there is a vert ical separa to r
wi th v = kl and # = 2kl + 1, and two different horizontal separa to rs with v = kt+l
and g = 5kt+~ + 4 and # = 3kl+~ + 2, respectively. For sides, there is a vert ical
s epa ra to r wi th v = k~ and # = 3kt + 2, and two horizontal separa to rs with v = kt+l
and # = 5k~+l + 4. Finally, in interior regions, the vert ical sepa ra to r has r = kz and
It = 4(kt + 1), while the horizontal separa to rs have v --- kl+~ and It = 6(kt+~ + 1)
(see Figure 9). Sum m i ng all the contr ibut ions a t level I yields, approximate ly , for
l _ l ,

Cl -- (SA + SM) k2 [38 (22 - 2) (2 t - 2)21
2 L ~ + 50 22------7--- + 62 ~ + ~ j

6 2~------- ~ 4 2 3 l + 2 .

A C M T r a n s a c t m n s on M a t h e m a t i c a l Sof tware , Vol. 8, No 3, S e p t e m b e r 1982

A New Implementatton of Sparse GaussJan Eliminat,on 273

CORNER

()

SIDE 1 (Z) I (')

()
Fig. 9 Corner, side, and interior regions

iNTERIOR
()

(-) ~ C---)

Summing the various geometric series yields a total cost of
rrt--1

el = k3(eA + PM)" 829 k2 l-0 -~ - + log2 k(Sn + SM). + O(ke).

George et al. [7] proposed an implementation of sparse Gaussian elimination
that uses a block factorization and is most suitable for matrices arising from
dissection of grids. The corresponding timing for this scheme is

[31 ~] k2 [31]
k 3 (PA + PM) -~ + P1 + log2 k (SA + SM) "~" + SI • 17 + O(k2),

the time for an inner product being S~ + P[V. Thus both schemes do the same
number of operations, but the new scheme avoids the use of inner products,
which on some machines are relatively slow, and also saves 17k 2 log2 k start-ups
of inner products. We have neglected an additional O(1) start-ups associated with
the last vertex of every separator. As there are approximately k2/4 separators in
total, this does not change the leading terms.

George et al. [8] have shown that an incomplete nested dissection ordering, in
which dissection stops one or two levels early and the remaining small grids are
ordered row by row, yields an improved time estimate when using their imple-
mentation. The same observations are valid with the new scheme. When stopping
with small grids, it may be better to treat the corresponding matrices as dense,
thereby saving some storage for pointers and some vector start-ups.

7. SYMBOLIC FACTORIZATION
In order to use an absolute row-pointer storage scheme in a sparse matrix code,
the nonzero structure of L has to be determined. This is done before numeric

ACM Transact ions on Mathematmal Software, Vol 8, No 3, September 1982.

2 7 4 ° R o b e r t S c h r e t b e r

factorization, but after a suitable ordering of the rows and columns has been
obtained. A "symbolic factorization" of A is carried out. Lists of the nonzeros in
the columns of A are input; lists of the nonzeros in L are output. By merging the
completed lists for columns k E r o w (j) into the list for column j (initialized with
the nonzeros from A) the nonzeros in co lumnj of L are obtained.

In part, sparse Gaussian elimination is a success because symbolic factorization
can be done efficiently. The key to its speed is that i f j = nex t (k) = n e x t (n e x t (k ')) ,
then there is no need to merge the nonzero list of column k ' into the list for
column j: since col(k ') C col(k) U (k} already, all the necessary nonzeros are
represented in the column k list. Thus, only lists of celumns k ~ n e x t - l (j) (the
sons of j in T) need be merged into the j list. The speed of this accelerated
procedure is thus proportional to the size of L (since each column except the last
is merged exactly once) and this is usually much smaller than the number of
operations done during the numeric phase.

In the Yale sparse matrix package [3] and a method of George and Liu [10],
symbolic factorization is even faster. The output is a compressed representation
of the nonzero lists; redundancy in the lists is exploited, much as we have taken
advantage of trivial relative row-index sets. These methods have running times
proportional to the size of their compressed outputs, usually much smaller again
then the size of L.

The obvious approach to symbolic factorization with relative row indices is to
use an existing absolute row-index method, then process the output to get the
relative row indices. But such a scheme would seem to have to spend a lot of time
searching for elements in lists or arrays of indices, so it has not been pursued.

The essence of the problem is this. Lists of the nonzeros in columns (of L)
k E n e x t - ~ (j) are merged with the nonzero-list of column j (of A) t o form
the nonzero-list of co lumnj of L. In addition to this (ordered and linked) list, we
also must find, for every element of every k-list, the relative position in the j-list
of the nonzero in the same row.

We have implemented a code to do this with a small modification of the routine
SSF of the Yale package. This code processes columns in the order 1, 2 , n. In
processing column j it creates a list of the nonzero elements of this column of L
(the j-list). An n-long array q holds the j-list in a linked form:

~?, if L , j = 0
q (i) = [i , if L ,~#0 and i ' = m i n ((n + l } U (r > i l L r j # O } } .

After the array q is created it is traversed, the nonzeros in column j are stored in
an array holding the nonzero-lists of columns of L, and each entry is replaced by
its relative position in the list. The code is this:

i :=0;
m m := j;

loop: m := ram;
store m into j-list;
mm := q(m);
i : = t + 1;
q(m) := t;
if mm <- n then go to loop;

Finally, every k-list (for k ~ n e x t - l (j)) is traversed, and each (absolute) row
index is replaced by the relative index in the element of q to which it points. This

ACM Transact ions on Mathematmal Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elirn,nation • 275

Table I Comparison of Symbohc Factorizatlon Codes

Relative scheme Absolute scheme

T i m e
Problem N (seconds) ptrs Time ptrs

Graded-L 3937 0.242 26862 0.195 26733
Square 4225 0.256 27931 0 211 27834
H-domain 5185 0 295 30711 0 244 29920

process is slower than the unmodified procedure, since every k-list is scanned
twice.

The arrays son and brother are also constructed during symbolic factorization.
Initially all entries are zero. Whenever a j-list is completed,] is added to the list
of sons of next(j) by setting

brother(j) := son(next(j)) and son(next(j)) :ffi j .

Of course next(j) is known since it is the second e lement in the j-list. Whenever
the set next-~(j) is needed, the arrays son and brother are used to generate it.

Trivial row-index sets can be recognized readily. T h e y occur when ei ther (case
A) k is the only column in next-~(j) and every nonzero in column j of A is present
in column k of L; or (case B) the number of nonzeros in column k of L below the
diagonal is the same as the number of nonzeros in c o l u m n j -- next(k) (including
the diagonal). In case A the merging of lists and creat ion of the j-list can be
avoided al together by making the k-list the j-list.

A potential difficulty (observed by the referee) is tha t of putt ing the elements
of A into the data structure. This can be done by replacing the absolute row
indices of these elements with their relative row indices, exactly as is done for
columns of L. This might involve the use of an additional array of pointers, one
for every nonzero in A.

An exper iment was done to compare the speed of this "relat ive" symbolic
factorization to tha t of the "absolute" version in the Yale package. Th ree test
problems due to George and Liu [11] were used; we omit a detailed description.
Orderings were generated using the Yale minimum-degree subroutine. The results
are shown in Table I. The times shown are each the average of two trails. The
numbers of row indices generated are also shown. The experiments were done on
the IBM 3081 at the Stanford Linear Accelerator Center (SLAC). The data show
tha t the relative code takes between 20 and 25 percent more t ime than the
absolute code. Because numeric factorization is so much more time-consuming,
this difference is not important .

ACKNOWLEDGMENT

I am especially grateful to Mr. Philip Kuekes for his suggestions and comments.

REFERENCES

(Note. Reference [6] is not cited in the text)

1. BIRKHOFF, G, AND GEORGE, J.A Ehmination by nested d,ssectlon In Complexity of Sequential
and Parallel Numertcal Algortthms, J. F. Traub (Ed), Academm, New York, 1973.

2. DUFF, I.S. Full matmx techniques in sparse Gaussian ehmlnatmn. In Proc. Dundee Conf. on
Numerical Analysis, Sprmger-Verlag, New York, 1981.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

276 • Rober t Schre lber

3. EISENSTAT, S.C., GURSKY, M.C., SCaULTZ, M H., AND SHERMAN, A.H. Yale sparse matrix
package I. The symmetric codes. Res. Rep. 112, Yale Computer Science Dep. Yale Univ., New
Haven, Conn.

4. EISENSTAT, S.C., SCHULTZ, M.H., AND SHERMAN, A.H. Software for sparse Gaussmn elimination
with limited core storage. In Sparse Matrix Proceedings, Iain S. Duff and G.W Stewart (Eds.),
SIAM, 1978.

5. GEORGE, A. Nested dissection of a regular fimte element mesh. SIAM J. Numer Anal 10
(1973), 345-363

6. GEORGE, A Numermal experiments using dissection methods to solve n by n grid problems.
SIAM J Numer Anal. 14 (1977) 161-179.

7. GEORGE, A, POOLE, W.G., AND VOIGT, R G. Analysis of d]ssectlon algorithms for vector
computers Math Dep. Tech. Rep. 13, College of William and Mary, Wflhamsburg, Va , 1976.

8. GEORGE, A., POOLE, W G, ANn VOIGT, R G. Incomplete nested dissection for solving n by n grid
problems. SIAM J. Numer Anal. 15 (1978), 662-673.

9 GEORGE, A., AND LIU, J W H An automatic nested dissection algorithm for arregular fimte
element problems. SIAM J Numer Anal 15 (1978}, 1053-1069.

10 GEORGE, A., AND LIu, J.W H. An optimal algorithm for symbohc factorlzation of symmetric
matrices. Res Rep. CS-78-11, Faculty of Mathematics, Univ. Waterloo, Waterloo, Ont , Canada

11. GEORGE, A, AND LIU, J.W. Computer Solutmn of Large Sparse Pos$twe Deftntte Systems.
Prentme-Hall, Englewood Cliffs, N J , 1981.

12 GUSTAVSON, F.G. Some basic techniques for solving sparse systems of linear equations. In
Sparse Matrices and Their Apphcatmns, D.J. Rose and R.A. Willoughby (Eds), Plenum, New
York, 1972.

13 LIPTON, R J , ROSE, D.J., AND TARJAN, R.E. Generahzed nested dlssectmn. SIAM J Numer
Anal. 16 (1979), 346-358.

14 PETERS, F.J. Sparse Matrwes and Substructures" A Novel Implementatmn of F~ntte Element
Algorithms. Mathematical Center Tracts MC 119, The Mathematmal Center, 49, 2e Boerhaav-
erstratt, Amsterdam

15. RosE, D J., TARJAN, R.E., AND LUEKER, G.S. Algorithm aspects of vertex elimination on graphs
SIAM J Comput 5 (1975), 266-283.

16 SHERMAN, A.H. On the Efftctent Solution of Sparse Systems of Ltnear and Nonlinear Equa-
tmns Ph D. Thesis, Yale Univ , New Haven, Conn., 1975.

Recewed February 1981, revised August 1981, accepted March 1982

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

