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Preface

David Young’s thesis is one of the monumental works of modern numerical analysis. His creation,
development and analysis of the Successive Overrelaxation (SOR) method has been fundamental
in our understanding of iterative methods for solving linear equations. He cleverly abstracted the
linear algebra problem from the origin of the matrix and by studying matrices with 'Property A’ ,
he could analyze the SOR method for large classes of problems. The discussion of matrices with the
red/black ordering has been of great importance in developing methods for parallel architectures.
The many ideas generated in this thesis have had lasting impact.

The thesis was originally typed by a typist in Cambridge, MA who was typing three other theses
at the time — all of which were past due, Young recalls. David and his wife, Mildred, wrote in all
the equations and symbols in ink in three copies of the thesis. In 1975, Dorothy Baker re-typed
this thesis at The University of Texas at Austin.

Barbara Morris XTgXed the current version, reconciling the two versions of the typed thesis.
Some editorial choices and changes were made throughout using modern typographical style since
modern typography is a bit different from when Young wrote his thesis 50 years ago!

David Kincaid compared this type-set version to two copies of the original thesis and to
Dorothy’s version. David Young and Gene Golub clarified and resolved any questions. Some
minor changes have been made. For instance, Lemmas 8.4 and 8.5 are taken from an early revision;
but, we have tried to keep to the original as far as possible.

Gene H. Golub and David R. Kincaid
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Introduction

Finite difference methods afford a powerful tool for obtaining approximate numerical solutions for
many differential equations whose analytic solutions are not known. The differential equation is
replaced by a difference equation which must be satisfied by the values of the unknown function u
at a finite set of points in the domain, 2, of the independent variable. This set of points usually
consists of the nodes, or net points, of a square network €2; contained in ). The mesh size is
denoted by h (> 0).

It is shown in Chapter I that if N is the number of net points and v = (u1,ug,...,uy) is the
unknown function, corresponding to a linear self adjoint second order partial differential equation
of elliptic type with prescribed boundary values, u must satisfy a system of linear equations of the
form

N
(0.1) Zai,juj +d; =0 (Z =1,2, ,N)
7j=1

where the coefficients a; ; are real and where

([ (a) a; >0 (i=1,2,...,N)
(b) ai,jSO (Z#]a i,j:1,25"'aN)
N
(€) aii > Y |aiyl (t=1,2,...,N) and for some 3
j=1
J#
(0.2) ¢ N
ai > 3 |ai]
j=1
J#i
(d) The N x N matrix (a; ;) is irreducible, that is, given any two
non empty complementary subsets, S¢ and S, of the set of the first
L N integers there exists a; j # 0 such that 1 € Sg and j € Sp.

Definition 0.1 A difference equation is elliptic if, when reduced to the form (0.1), the coefficients
of (a; ;) satisfy conditions (0.2).

Definition 0.2 An elliptic difference equation is self adjoint if
(03) (e) Qi = Qj4 (Z,] = 1, 2, cee ,N).

Although the finite difference analogue of a self adjoint partial differential equation is self adjoint,
if the mesh size is altered, as for example near the boundary, (e) will no longer be fulfilled. We
shall avoid using (e) whenever possible, and shall always state when it is used.

Geiringer [12] has shown that any system of equations, fulfilling the conditions (0.2) has a
unique solution. The proof will be given in Chapter I. Actually obtaining the solution, however,
may be very laborious.

It is the purpose of this thesis to consider the practicability of the various methods for solving
these equations, with special emphasis on those methods which are adapted to large automatic
computing machines. I shall be particularly concerned with the Dirichlet Problem.

fGeiringer [12]. Numbers in brackets, [ ], refer to the bibliography at the end of the thesis.



Direct methods such as the use of determinants and elimination for solving (0.1) do not appear
to be very practical when N is large, and various methods of successive approximation are usually
employed, including the iterative methods of Kormes [19] and Liebmann [21] (modified by Shortley
and Weller [30]) and the relaxation methods of Southwell [32].

(0) (0)

For these methods an arbitrary initial approximation u(®) = (ugo),u2 ,---,uy’) is chosen and
successively improved. One obtains a sequence {u(™} such that under the conditions on (a; ;)

(0.4) im ™ =vu;  (i=1,2,...,N)

m—0o0

(a) For the Kormes Method, which was applied by Kormes to a special case of (0.1), the sequence
{ul™} is defined by

N
(m+1) _ @ij  (m) _ di -
(0-5) ’U/Z —_;a—“ uj _a_u (Z—].,2,...,N)
J#t
or
(0.5a) ulmtl) = [u(m)] +c,

where K is a linear operator on V the vector space of N-tuples of complex numbers, and where

the vector c¢ is given by

4 d d
(0.6) co(o B _d o dn

)-

(b) For the Liebmann Method, which is actually a special case of the Gauss-Seidel Method [28],
the equations are taken in a prescribed order, o, and the sequence {u(m)} is defined by

i— N
0.7 u{mt) = Bij g, (m+1) Bij o) _ % 1=1,2,...,N
07) ' JZZ:I aig ? j:zi;—l aig ? Qii ( )
or
(0.72) W) = £,[u)] ¢

Clearly, L, is a linear operator on V.
In Chapter I, a proof, due to Geiringer [12] is given for the convergence of the Kormes and
Liebmann Methods, using the fact that the matrix (a; ;) satisfies the conditions (0.2).

(c) For the relaxation methods, one first computes the residuals of () by the formula

N
(0.8) 7 = - [Z ai,jU§O) +d;
=1

If ZZ-(O) = 0 for all i, u(?) satisfies (0.1). Otherwise, the values of uz(o) are adjusted and the residuals
are recomputed. This process is continued until all residuals are reduced to a negligible amount. No
exact instructions are usually given for doing this; “the former (the relaxation methods) challenges
one’s intellect at each step to make the best possible guess ... ” [11]. On the other hand, high
intellectual powers are not required; by adjusting the coordinates of u(9) one at a time, just enough



to remove the corresponding residual, and so that the coordinates are adjusted cyclically in a
prescribed order, one has the Liebmann Method. Any one residual Zi(m) can be removed as follows

(0.9)

Qi

as can be verified directly. This is called relaxing the residual ZZ-(m). One logical way of relaxing
the residuals is to relax the residual of largest magnitude at each stage. In Chapter I, a proof due
to Temple [35], is given for the convergence of this procedure when (a; ;) satisfies (0.2) and (0.3).
If only (0.2) is assumed, the method is shown to converge under a weak assumption on the order
of relaxing.

Various devices have been introduced to accelerate the convergence, such as block relaxation
(m)

,  are modified simultaneously, and overrelaxation

(

and underrelaxation ([32] page 65), where one modifies uim) by more or less, respectively, than
indicated by (0.9). These will be discussed later in this section.

Emmons [11] estimates that by proper use of the relaxation methods, the labor required by the
Liebmann Method can be reduced by a factor of 5. However, the effective use of relaxation methods
requires scanning of the residuals, a process which is easy for a human computer but which cannot
be done efficiently by any large automatic computing machine in existence or being built.

Iterative methods, on the other hand, appear to be best suited for large automatic computing
machines. In Chapter II, the rates of convergence of the Kormes and Liebmann Methods are
studied in detail. The rates of convergence depend on the eigenvalues of the operators K and L,
respectively. For the study of these eigenvalues, we make use of the fact that the matrix (a; ;) has
property (A,) for some ¢. This property is now defined.

([32] page 55) where a group of values u

Definition 0.3 An N x N matrix (a;;) has property (Ag) if there exist non empty disjoint
q
subsets 11, Ty, ..., T, of T, the set of the first N integers, such that |J T, = T, and such that the
=1
T; can be labeled so that

(0.10) a;; =0 unless i = j or 1€Ty; and j€ Ty UT£+1-
(By convention T and Ty denote the empty set.)

Since (a; ;) has property (A,) for some g, it is easy to show that if y is an eigenvalue of K, (—pu) is
also an eigenvalue. There exist certain orderings, o, of the equations, called consistent orderings,
such that to each such pair (i, —u) of eigenvalues of K corresponds an eigenvalue A = p? of £,. The
rate of convergence of L, is exactly twice that of XC. This has been shown to be true asymptotically
in N by Shortley and Weller [30]. An explicit expression of the eigenvectors of L, in terms of the
eigenvectors of K is also given. If a; ; = a;; all eigenvalues of K and L, are real and the Jordan
normal form of the corresponding matrices are diagonal with the possible exception of the subspace
associated with A = 0 for L,.

If, also, a;; = constant, as for the Dirichlet Problem, the eigenvectors of K are orthogonal. For
the Dirichlet Problem the eigenvalues and eigenvectors of K and L, can be computed exactly for
a rectangular region. For one ordering, o2, the normal form of the matrix of £,, is diagonal and if
the coordinates of an arbitrary vector in Vi referred to the basis of eigenvectors of K are known,
the coordinates of that same vector referred to the basis of eigenvectors of £,, can be computed at
once.



For the symmetric case, a conjecture that by the Liebmann Method, the rate of convergence
can not be increased by using an ordering which is not consistent is proved in one special case.
Some numerical studies bear out a conjecture by Shortley and Weller [30] that for large N (hence
small h) the rate of convergence of L, is practically independent of o.

It is also shown that for those methods the number of iterations required to reduce the norm
of the initial error function

N L1172
(0.11) e = [Ze?) ]

where
(0.12) =0, (i=1,2,...,N)

7

to a definite fraction of itself is asymptotically for small h proportional to h~2. For some problems,
the time required to obtain an acceptable degree of accuracy, even with a fast large automatic
computing machine such as the UNIVAC, is prohibitive.

In Chapter III, it is shown that the required number of iterations can be greatly reduced by
using the Successive Overrelaxation Method, where the idea of systematic overrelaxation, first used
by L. F. Richardson, [26], is combined with the Liebmann Method. The idea of overrelaxation itself
has been used in connection with the relaxation methods by such authors as Hartree, [14], page
120, Southwell, [32], page 65, and Emmons [11]. Overrelaxation is an attempt to “anticipate at
each step the effect of later steps in the process,” [14]. By Richardson’s Method, the values of an
approximate solution, u{"™ of (0.1) are modified simultaneously by the formula

N
(0.13) uz(mﬂ) = uz(m) —w {Z ai,jug-m) + di} (1=1,2,...,N)
j=1
or
(0.13a) ul™ = Ry [u™] + wd
where w is the relaxation factor. If a;; is constant for i = 1,2,..., N and w = 1/a;; we have the

Kormes improvement formula (0.5). In general, for the Kormes Method combined with overrelax-
ation we have the improvement formula

N

(0.14) uz(mﬂ) = w[z _ G ug-m) _di) (w— 1)ul(-m) (1=1,2,...,N),
o G @i
JF#i

or

(0.14a) w1 = [, [u(™] + we

where ¢ is given in (0.6). Again if a;; is constant for ¢ = 1,2,..., N (0.14) is equivalent to (0.13)
for suitable choice of w.

The gain in convergence rate using a fized relaxation factor is in general very slight indeed for
either (0.13) or (0.14). Richardson used different values of w for each iteration, but it appears
doubtful that a gain of a factor of greater than 5 in the rate of convergence can in general be
realized unless one is extremely fortunate in the choice of the values of w. Shortley and Weller [30],
are of the opinion that the gain is even less. This is discussed further in Chapter III.

However, by the simple device of improving the values uz(m) successively in a cyclic order ¢ and
using new values as soon as they are available, one can use a fized relaxation factor, and, if this
single factor is suitably chosen, a large gain in the rate of convergence is possible. For the Dirichlet

4



Problem, the gain is of the order of h~! and for the general self adjoint case, if the required number
of iterations with the Liebmann Method is of the order of h=* that number is of the order of h=*/2
if this new method, the Successive Overrelaxation Method, is used with the proper value of
w.

The improvement formula for the Successive Overrelaxation Method is

i—1 N
mwwﬁ””=4—§j%“$””—23%4ﬁm—jf—w-n%m (i=1,2...,N)
.7:1 142 ]:Z+1 142 742

or

(0.152)  ul™) = £, ,[u™] + we

where the subscripts o and w of £, denote the ordering and the relazation factor respectively.
Clearly L, is a linear operator, and if w = 1 we have the Liebmann Method. The Successive
Overrelaxation Method is included in a more general class of iterative methods considered by H.
Geiringer [12].

It is by using the fact that the matrix (a; ;) has property (4,) that it can be shown, for the first
time, that one can obtain the above mentioned remarkable gain in the rate of convergence. We show
that, always assuming o consistent, there is an exact algebraic relation between the eigenvalues and
eigenvectors of K and L, ,.

If p is any eigenvalue of K there exists an eigenvalue X of Lo, such that

(0.16) pwA /2 =X+ (w—1)

and conversely every eigenvalue of L, can be determined by (0.16) for some u. The eigenvectors
of L, can also be expressed explicitly in terms of the eigenvectors of K. If (a; ;) is symmetric then
the optimum relaxation factor wy is given by

(0.17) piwp = 4wy — 1)

where 111 is the largest eigenvalue of K. For all w > wj every eigenvalue of L, has absolute value
(w —1) and the Jordan normal form of the matrix of L, is diagonal unless w = wp. In this case,
the normal matrix form contains precisely one non diagonal element.

For the Dirichlet Problem for small h, p; is very nearly equal to one. u; can be calculated
for a rectangle and can be estimated for other regions by comparison theorems. For the general
self adjoint case, provided p; is not underestimated (for the Dirichlet Problem a non trivial upper
bound for p; can always be found) the relative decrease in the rate of convergence if w' > wy is
used is approximately

(0.18) ¢2
where
(0.19) (1—p)=CA—-m) (1<¢<LY

and where ' is determined from (0.17) but with p; replaced by the estimated value p}. Thus a
relatively large error in the estimation of (1 — y1) can be allowed, and the improvement over the
Liebmann Method will not suffer appreciably. This also suggests that the Successive Overrelaxation
Method can be successfully applied to self adjoint equations other than Laplace’s Equation.

The Successive Overrelaxation Method can be used with any large automatic computing ma-
chine for which the Liebmann Method can be used. The machine time per iteration would not be
increased by more than 10%. It is expected that the use of the Successive Overrelaxation Method
will considerably augment the class of problems for which the use of large automatic computing
machines is practical.



Chapter I

Partial Difference Equations of Elliptic Type

Let © be a closed bounded region in Euclidean n-space, with interior R and boundary S. Consider
the self adjoint elliptic partial differential equation of the second order

L01) (L@ + G)(z) =0 z€R

u(z) = g(=z) z€eS

where
n. g ou
1.0.2 Lia)= Y — (a® —) F @
L02)  zfa)= £ 5 (a® Z5) 4 Fa
and @, o/®) (k=1,2,...,n), F, and g are functions of the vector z whose components, (referred
to an orthogonal basis eq, €9, .. ., e, of unit coordinate vectors), are (z1, 2, ...,Z,). We assume F,

o¥) and G are continuous functions of z with continuous first and second partial derivatives in €,
and that g is a continuous function of z on S. ¥ and F satisfy the conditions

(1.0.3a) a® >0  (k=1,2,...,n)
(1.0.3b) F<O0.

If f is any function defined on 2 we write

(I.0.4) f(z) = f(z1,22,...,24) -

An important special case of (1.0.2) is the Dirichlet Problem, Kellogg [18] page 236. In this
case

R s S
(1.0.5) L[] = V?[u] = kgl 952



§1. Basic Facts

For the Dirichlet Problem, the existence of a unique solution has been proved for a wide class of
regions, see for example Lichtenstein [20] and Kellogg [18], Chapter XI. In [18] page 329 Zaremba’s
criterion is given for n = 3:

a unique solution exists if each point P of S is the vertex of a right circular cone,
which has no points in the portion of R in any sphere about P however small.

Phillips and Wiener [25] gave a proof, based on the use of finite difference methods, for the existence
of a unique solution of the Dirichlet Problem for any region 2 with the following property:

Whenever a point P belongs to S there are positive numbers a and b such that if
r < a and an n-sphere I of radius r is drawn with P as center, and if 3 is the set of points
in I but not in R, then the projection of ¥ on at least one of the (n — 1) dimensional
spaces determined by a set of n perpendicular axes exceeds br"~! in content.

Courant, Friedrichs and Lewy, [8] have given a proof for the more general problem (I.0.1) based on
finite difference methods. The existence of a unique solution of (I1.0.1) is proved for regular regions
( [18] page 113), such that

1
(1.1) lim — / u? dry doy ... dz, =0

implies u = 0 on S where S, is the set of all points of 2 at a distance less than r from some point
of S and where u is any continuous function. This condition is always fulfilled for n = 2, [8].

The analytic solution is not known, however, except for the simplest regions. Consequently if
one desires numerical results, approximate methods must ordinarily be used. Included among these
methods are variational methods [16], the use of orthogonal functions [1] (for n = 2), conformal
mapping (for n = 2 and for the Dirichlet Problem), and finite difference methods [16].

In this dissertation, I shall be concerned with finite difference methods. The region €2 is covered
by a network €2, and the differential equation is replaced by a difference equation involving the
values of the unknown function at the nodes (net points) of €. The solution of the difference
equation differs from the solution of the differential equation by an amount which depends on the
fineness of the mesh and on the type of finite difference approximation which is used. Consider a
square network* whose nodes are the set

x = (r1,T2,-..,Tp)

such that
.’Ek:pkh (k:l,?,...,n)

where h is the mesh size and the p; are integers.
Two net points z and z' are adjacent if py, = p'j, for all k except for a single %

lpi —p'il =1
where
T = (plh,p?ha s apnh)
z' = (pih,phh,...,plh)

If z is adjacent to z’ we write z A z'.

*Triangular and hexagonal networks have been used by Southwell and his collaborators [32]. Square networks are
simpler, and have been used almost exclusively in the United States.



Qy, is the set of all such net points contained in 2. Rj, the interior of € is the set of all
points z such that all net points adjacent to x belong to Q. All other points of €2 belong to S,
the boundary of Q. A segment is a straight line joining two adjacent net points. €2, is connected
provided any two points of Rj, can be joined by an unbroken line consisting of segments contained
in Rp. We assume that h is sufficiently small so that 2}, is connected.

Let N be the number of points of Rp and Np be the number of points of Sj. The general point
of 5, may be denoted by

(1.2) 2 =V 20, 2®),  (i=1,2,...,N + Ng)

n

where ‘ ‘
m,(;) = p,(;)h .

We assume that if i < N, () € R,. Let VN4ny be the space of all complex valued functions
defined on §2; and let Viy be the space of all functions on Vi, vanishing on S,
A function (vector), f € Viy;n, has coordinates

f = (flaf?a"'afN—}—NB)

referred to a basis of unit functions which equal one at one point of €;, and vanish elsewhere, where
(1.3) fi=f@@¥)  (i=1,2,...,N +Ng).
We define the operators ([33] page 4)
Ey f(z) = f(z+ hex)
(1.4) (k=1,2,...,n)
E_of(z) = f(z— hex)

To derive the finite difference analogue of (I.0.1), we replace the derivatives by difference quo-
tients. Thus as in [8], the differential operator

0 0
B (PN(C) R
Oz (a 35%)
is replaced by

(1.5) W2 {1 = Bgy)le® (B, - 1)1}

and the operator (L) is replaced by

(1.6) —th™% =h? {Z oW By, — [0 + B 4, a® + (B 4, a®) B4, ] + hQF}
k=1



The finite difference analogue of (1.0.1) becomes

(1.7) (£[u]); — h*Gi =0 (1=1,2,...,N)
' Ui = gi (i=N+1,...,N+ Np)
or
N+Np .
(1.8) X aijuj— G =0 (i=1,2,...,N)
. ~
Ui =9 (i=N+1,...,N + Np)t

where the general element of the N x (N + Np) matrix (a; ;) is

[ Sl + B0 i) =)
(1.9) wis = —agk) (219 = 2() 4+ hey, for some k)
—B_g, o™ (z) = z() — hey, for some k)
| 0 (i # j and £ not adjacent to z())

For the Dirichlet problem,! we have

(1.10) —(£[u]); = q i(Emk +E_g)— 2n] [u]> =0 (i=12,...,N)
k=1

and
m (= j)
(1.10a) aj=1 -1 (2 A 50))
0 (i # j and z not adjacent to z(9)).

Since y; =¢g; (i=N+1,...,N + Ng), we have

N

(1.11) Yaijuj +di=0 (i=12,...,N)
j=1

where
N+Np

(1.12) di= Y ay;g,—h*G; (i=1,2,...,N).
j=N+1

We may also at times write (1.11) in the form

N
(1.13) wi=Y bjui+e (i=1,2,...,N)
j=1

tHere g; is taken as the value g(x) where z € S and z is the nearest point of S to ® € Sj. Alternatively,
one might extend the function g to R and take g; to be the value of this extended function. Another possibility is
to change the mesh size near R whenever ‘) € S}, does not belong to S, [30]. This does not make the problem
essentially more difficult from a practical point of view but does spoil some of the mathematical relationships to be

given later. Further discussion of this question will be given later.

tOther finite difference analogues of the Dirichlet Problem, with a square net, have been considered by Milne [23]

and Bickley [2].



where

Gi,j
_ A
0 (i =)
(1.15) 6=—2 (i=1,2,...,N).
Qg

Clearly by (1.8) and (1.0.3a,b), the coefficients of (a; ;) have the following properties

( (a) ai,i>0 (i=1,2,...,N)
(b) ai,]‘SO (i,j=1,2,...,N)

N
(¢) ai; > Y laij| (i=1,2,...,N), and for some i f
j=1

(1.16) < e
aii > 3 |ai]
7j=1
j#i o
(d) a;;<0 (2 A ()
[ () a;;=0 (i # j and £ not adjacent to z(7)
(1.17) ) aij=a;; (i,7=12,...,N)}.

Theorem 1.1 The matrix (a; ;) satisfying (1.16d), (1.16e) is irreducible and has property (As).

Proof: (a) By (1.16d), given any two non empty complementary subsets of Rj there must exist
two adjacent points not belonging to the same subset since €2 is connected. The irreducibility
follows

N .
(b) Let T5 be the set of integers such that > pg) is even, and let 77 be the set of integers such
k=1

)
that »_ p;’ is odd.

k=1

Then T and T, are complementary subsets of 7 and by (1.16e), if i # j
ai,j =0
unless 2 € T7 and j € T or ¢ € Ty and 7 € T1.
Thus (a; ;) has property (As).
Q. E. D.

Corollary 1.1 (1.7) is an elliptic self adjoint difference equation.

The existence of a unique solution of (1.11) has been proved by Gerschgorin [13], without
requiring that (a; ;) be symmetric but using (1.16d). We shall give a proof for a somewhat more
general case, which is due to Geiringer [12].

ti.e. for all 4 such that (i) is adjacent to a point of Sj,.
As already stated we avoid using this fact wherever possible. For if the mesh size is varied (see (1.8) footnote),
this condition is no longer fulfilled.

10



Theorem 1.2 If the matrix (a; ;) satisfies (0.2), then the determinant of (a;;) does not vanish,
and there exists a unique solution of (0.1).

Proof: To prove the theorem we need only show that d; =0, (i=1,2,...,N) implies
u; =0, (i=1,2,...,N) is the only solution of (0.1). By linear equation theory, this will imply
that the determinant of (a; ;) is not zero, and that there exists a unique solution of (0.1).

Thus, let d; = 0, (i =1,2,...,N) and suppose u; > 0 for some i. Then u must assume a
maximum value u;, = M for some 4. By (0.2) this is not possible unless u; = M for j € &
where & is the set of all integers such that a;, ; # 0. Similarly, by induction u; = M for all j € &,
where S; is the set of all integers such that a;; #0 i€ S;_1. If we let So = {ip} we have Sy C
S1 C Sy ... where the inclusion relation is strict by the irreducibility of (a; ;). Therefore we have
u; =M, (i=1,2,...,N) and by (0.2) this is impossible. Therefore u; <0, (i =1,2,...,N).
Similarly u; >0, (i=1,2,...,N); therefore u; =0, (i=1,2,...,N).

Q. E. D.

Phillips and Wiener [25] proved that, for the Dirichlet Problem, under the assumptions on
stated above u — @ as h — 0. Courant, Friedrichs and Lewy [8] proved the same result for the
general problem under their assumptions on €2 already stated.

Gerschgorin [13] derived an error bound for |u — u| under the assumption that @ has continuous
partial derivatives of all orders up to and including the fourth. He also obtained an error bound
for |u' — u| where v’ is any approximate solution of (1.11). For the Dirichlet Problem the proof is
relatively simple and is given below.

Theorem 1.3 If

_ " 0%u(x)
(V=3 TG =0 wer
and if .
My = max {max 8u(4x) }
k=1,2,..,n | =€ | Oz
then
h4

Proof: By (1.10), we have

—(f[a)); = (i Ey +E 4 — 2n> a(z™).

k=1
i (#a) 8 (9) B (k)
2! 835% 3! &vz 4 Gacé k
7 1

where &,‘C" is a point on the segment joining @ and 29 + hey. We have

ety = Gy (o + g 32 [ €0+ 5 )

By Taylor’s Theorem,

9
By () = 4(z ‘”+hek)—uz+h<8;‘k) +

Hence,
4

el < % My

11



Theorem 1.4 For the Dirichlet Problem, if r is the radius of any n-sphere containing 2 and if

M; = max {max du(z) }
k=1,2,..,n | 2€Q | Oz
then’ M
(1.19) |u; — ;| = 2—44h2r2 +vn Mk (i=1,2,...,N).
Proof:

Lemma 1.1 If (Y[u]); >0, (:=1,2,...,N)andifu; >0, ({=N+1,...,N+ Np), then
w>0 (i=12,...,N).

Lemma 1.2 If |(4[u]);| < (4[v])i;, (i =1,2,...,N), and if |u;| <wv;, (i=N+1,...,N+ Np),
then |u;| <wv;, (1=1,2,...,N).

Lemma 1.3 Let (0 = (xgo)’wgo), . ,:c%o) ) € R and let Q C C, where C, is the closed n-sphere

i (:vk — :B,(CO))Q < r? .

k=1

Let A be a non negative real constant and let

+v/n Mih

i _ (02
#o) = A1 - = (wkrg ) ]

then

We have by the mean value theorem
lu; — w;| < v/nMih  (i=N+1,...,N + Np)

since for (") € S, wu; is taken as the value of @(z) on the nearest point of S.
Also, by Theorem 1.4 and Lemma, 1.3,

h2
:ﬂr

|(C[a])el = [(£la —u])i| < (L[¢]):  (1=1,2,...,N)

A 2 M,

and

The theorem follows by Lemma 1.2. Q. E. D.
Corollary 1.2 For the Dirichlet Problem, if 4/ is an approximate solution of (1.11) and if

7} = 2
max {71} =7

$Collatz [6] has shown that by a modification of the difference equations near the boundary, the second term can
be made to approach zero with h2.

12



where
= —(£[u]);
and u is the solution of (1.11), then
2
(1.20) juf —wil < 55 2 (i=1,2,...,N).
Proof: We first note that |u] — u;| =0 (t=N+1,...,N + Np).
Also, if we let
n
> (zp — ﬂU;(CO))2
o) = ANl -

72 ’
then 4Ah2
([¢'])i =
If
TQZ(I) ' ' !
A= s then (£¢7]); > |(€uT])| = |(€fw” — ul)il -
Also

therefore the result follows by Lemma 1.3.

Q. E.D.

A disadvantage of (1.19) is that the derivatives of @ are not known, in general. However, we may
estimate the derivatives by difference quotients of w.
Thus for n = 2, we replace

o _otu_ o
ozt 0zh  0220x3
Dy(z) = ht [(Bzy + E_g,) (B, + E_g,) — 4 u(z).

If S;, C S, we have by (1.19)

by

< h2’l"2 D4 . 7‘2ﬁ4

i —wl & S e = o
where
D, = max Dy(z).
For the unit square with I intervals on a side, we have
h=1I71 and T = % V2.

then 2 ) = L
I Dy Dy

Duh2= A 2| ==,

gq Dah " =5 55 = 0833 ( 4 )

Shortley and Weller [30] give
D
2 (4
we ()

THere the symbol é means “approximately less than or equal to.”

as an asymptotic estimate for the error.

13



§2. Numerical Methods

The existence and uniqueness of a solution of (1.11) has already been proved. Thus, from the
standpoint of pure mathematics, the problem might be considered solved. From the practical,
numerical point of view, however, actually solving the equations is the hardest part of the problem.

a. Direct Methods

The formal solution of (1.11) in terms of determinants is of little practical value except for very
small N. Direct solution by elimination methods might be practical for large automatic computing
machines but the number of operations required increases very rapidly with N.

Runge [27] proposed a method by which one can reduce the number of linear equations by a
factor which is of the order of h~!. The simplicity of the original equations is sacrificed. To apply
the method one first expresses the u; , (z(¥) € Rp), in terms of the u; , (z(V) € (¢;) U Sy) where
(¢F) is the set of points z(*) of Ry, such that

(:E(i) - heh) €Sy .

For example, consider the Dirichlet Problem for a plane region (Figure 1.1).

T2
A
10 11 12 13 14 15
16 1 17 18 2 19

20 3 21 22 23 4 24

25 5 6 7 8 9 26

27 28 29 30 31 32 33
* . . . 1

Figure 1.1

Here (C,j), (k = 1), consists of the points 1, 3, 5, 2, 4 and ({, ) consists of the points 1, 3, 2, 4, 9
where, in general, (¢, ) is the set of points @) of Ry, such that

(29 + heg) € S, .

The u;, (z()) € Rp,) can be expressed in terms of u;, (z(¥ € S, U (¢;")) by means of the difference
equation. Thus, in Figure 1.1, we have

ug + uz + ugy + uog — 4us = 0.

Solving for ug we have
Ug — 4u5 — U3 — U27 — U928.
If NV}, is the number of points of ((;"), N is also the number of points of ({; ). The condition that
the difference equation must be satisfied at the points of ({, ) gives N equations and N unknowns.
Solving these we have u;, (z( € ((;7)), and hence all u;, () € Ry,).
The method does not appear well adapted to large automatic computing machines. The com-
plicated equations are not easy to solve either directly or by iterative methods. Moreover, the

14



determination of the coefficients is laborious, especially for large N. In practice, one would obtain
the non-homogeneous part of the equations by assuming u; = 0, (z() € (¢;7)), and determining
ug, (20 € (¢z ), from the boundary values alone. Then, letting the boundary values equal zero,
the coefficients of the homogeneous part of the equations are determined as follows:

Assume u; = 1 at one point of ({;) and zero at all other points of (¢;"). Then
calculate the values of u at the points of (¢ ).

High accuracy in all calculations is very necessary because of the instability of the method.
Thus, in the example (Figure 1.1), an error of € in the final determination of us would result in the
following errors:

ug = 4€, uy = 15¢, wug = 5bbe, ug = 209,

If I, is the average number of intervals in the zj direction, the accumulated error would be about
€ 4.

Thomas [36] suggests a method for direct solution which he asserts is at least as good as the
ordinary methods of iteration for n = 2. However, the method does not appear to be suitable for
large automatic computing machines and is certainly not as good as The Successive Overrelaxation
Method of Iteration (Chapter III).

For the Dirichlet Problem and for a rectangle with commensurable sides, an explicit solution in

terms of the boundary values is possible. Thus let €2 be a rectangular region with sides 71, 72,..., 7,
where 7, = Ith (k=1,2,...,n) and where Iy, (k=1,2,...,n) are integers.
We assume that on S,u = 0 except on z, = 7, where u = g(z1,22,...,2Zn_1). Obviously the

general solution can be obtained by linear superposition of such solutions. Using the method of
separation of variables for (1.10), as for the continuous case (see Jackson [17] page 95) and noting
that

I —1 ! Ik/2 Vi = v,
. (VT . (T k

E sin (— pkh) sin (L pkh) = (k=1,2,...,n)
pr=1 Tk Tk 0 w#v

we obtain by the methods of Phillips and Wiener [25] *

w(x1,Z9,...,&Ty) =

-1 nll I1—-1 nllnl

s 2 2 (S T T (2 ) Tl (4 ) 55072

sinh BT
n=l  vpa=1 ‘pi=1  pl =1 k=1 AT

sinh? (%) = nilsinQ (Vk—ﬁ E) .
k—1

where

T 2

I have used the above formulas to obtain elementary solutions, (solutions where g = 1 at one
point of S; and 0 elsewhere), for squares with 4, 6 and 8 intervals on a side. The solution for
any boundary values is clearly a linear combination of these solutions. For a rectangle with I x I
intervals on a side, 2(I; —1)(Ia—1)(I1 +I2—2) multiplications are required, assuming the elementary
functions are known.

However, the computation of elementary functions for other regions is in general more difficult,
and even for rectangular regions, unless several problems are to be done for the same region, the
labor of computing the elementary functions would ordinarily not be justified.

*Phillips and Wiener gave the solution for a unit cube n = 3.
fMoskovitz [24] has published tables for various rectangular regions whose shortest side contains at most four
intervals. Liebmann [21] has given tables to 4 decimals for square regions with 4 and 6 intervals on a side.
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For large N and for a region of general shape it seems more practical to proceed by successive
approximation methods.

b. Iterative Methods

The Kormes, Liebmann and the Successive Overrelaxation Methods of systematic iteration have
been described in the Introduction for general systems of linear equations. We shall give a rather
general proof of the convergence of the Kormes and Liebmann Methods which is due to Geiringer
[12]. From this the convergence of the Successive Overrelaxation Method follows as will be shown
in Chapter ITI, where this method is discussed.

Theorem 2.1 Given the system of linear equations
N

(0.1) Zlai’ju]'—l-di:() (i:1,2,...,N)
j:

where (a; ;) is irreducible and where the elements of (a; ;) satisfy (0.2), then the sequence of vectors
given by the Kormes Method, (0.5), and the Liebmann Method, (0.6), each converge to the solution
of (0.1).

Proof: (a) For the Liebmann Method, if u{™ is the m-th approximation to u defined by (0.7),
then the m-th error function

em — ,,(m) _ .,
is given by
i—1 a N a
egm) = —Z hd eg-m) Z hd eg-m_l) (1=1,2,...,N)
(2-1) j=1 "4 j=i+4+1 T8
e(0) = (0 _y
Let e(()m) = max |e§m)|
=1,2,...,N

For all i, we have by (0.2) part (c) |el(-1)| < e(()o)

()] < O

and for some %, by (0.2) part (c) les, ey -

By the irreducibility of (a; ), we have |e§f)| < e((]o)

|eg)| < e(()o) for some ig # ;.

P < (i=1,2,...,N).

Continuing this process, we have finally |el(-N)| < e(()o) (t=1,2,...,N).

where e:(o):e(()o) (1=1,2,...,N),

Lettin Yy = max
& i=1,2,...,N e(()O)

we have
e(()N) <y e(()o), (v <1).
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(mN) (0)

Similarly €y <"

and hence lim e(()m) =0
m—oQ

and lim u(™ = 4.
m—0oQ

(b) For the Kormes Method, the argument is practically the same.
Q. E. D.

Corollary 2.1 For (1.11), the Kormes Method and the Liebmann Method each converge.

We remark that the Liebmann Method is convergent for any ordering of the equations, and that
the ordering may be changed after each total step. [12]

As we shall see in Chapter II, although the Liebmann Method converges exactly twice as fast
as the Kormes Method, the rate of convergence in either case is very slow. Shortley and Weller [30]
have introduced two modifications to accelerate the convergence of the Liebmann Method for the
Dirichlet Problem for n = 2:

(a) The first is the use of formulas by means of which the values of ugm) for an entire block are
improved simultaneously. Square blocks with 4, 9 and 25 blocks are used. Ordinarily, the gain in
convergence would seem to be offset by the extra work involved in the use of more complicated
formulas. However, by a slight modification of the difference equations this extra work is reduced
to about 20% using a square block with nine points, while the rate of convergence is improved by
a factor of about 3.5.

(b) The second modification is the use of an extrapolation procedure after some iterations have
been performed. In most cases the required number of iterations can be reduced by a factor of two
or three. Recently Shanks [29] has developed a method which may permit a sufficiently accurate
extrapolation after fewer iterations and hence increase the gain somewhat.

Nevertheless the factor of saving, effected by these modifications does not increase appreciably
with h~!. The Successive Overrelaxation Method described in Chapter III, on the other hand,
affords a gain in convergence which does increase with A~! and for the Dirichlet Problem is pro-
portional to h™L.

c. Relaxation Methods

Relaxation methods have been described briefly in the Introduction. We shall give below a
proof, due to Temple [35], of the convergence of the relaxation methods when applied to any linear
system (0.1) assuming that (a; ;) is symmetric and positive definite.

Theorem 2.2 For the system of linear equations (0.1), if (a; ;) is symmetric and positive definite,
and if at each step a largest residual (in absolute value) is relaxed, then the relaxation method
converges to the solution of (0.1).

Proof: Obviously, since (a; ;) is positive definite a unique solution of (0.1) exists. Let u) be an
approximate solution of (0.1) and let a largest residual (in absolute value) occur at z(®.
For any two vectors u,v € Vi, we define the following symmetric bilinear form

N
Q(u,v) = Z aij U vj -

1,j=1

17



Since (a;,;) is positive definite, Q(u,v) > 0 and Q(u,u) = 0 if and only if u = 0.
If we now let

1 N
W(u) = EQ(u,u) + Zdi U
=1

then .
ow
8.:Zai,juj+di:0 (1=1,2,...,N)
ui
and
o*w

Ou;0u; = % (5,5 =1,2,...,N).

As is well known, see, for example, Widder ([37] pages 109-112), if u satisfies (0.1), then, since
(as,) is positive definite, W assumes a relative minimum, which we denote by Wy. If we choose a
new orthogonal basis of Viy by an orthogonal transformation ([3] page 247), we have

N
Qu,u) =Y Auf® (X >0)
i=1

where u},u3,...,u)y are the coordinates of u referred to the new basis. It is clear that as

N

> i’

=1

becomes very large, W (u) is also very large. Hence, W) is an absolute minimum for W (u) for all

u € Vy.
We have
1 al 1
W(u +te) = §Q(u(1) +te; ,u) 4 te;) + Zdj[ug ) 4 te;]
j=1
L ou® o (1) 1 W)
= EQ(u ,utt) +1 Q(ul, e;) + §t Qlei, ei) + Zdj[uj + te;]

=1

N
1
WD +te;)) = W)+t [Q(u(l),ei) + Zdj] + itZQ(ei, €i) -
=1
This expression is minimized by setting

N

_ (1) )

Q(u), e;) + d; [ng Gty d,]
O Qlee) i

t=

If, as in (0.9), we obtain u(® from u(!) by relaxing the residual at ("), we have

N
— [ Z ai,jugl) + dz]
=1

(L7

’

u =ul) (i #))

18



and

W@ =ww®) =ww®) -

If this process is repeated we get a decreasing sequence of values of W™ which approach a limit
since W™ is bounded below by Wy. Since a;; > 0 (i = 1,2,...,N) (because (a;;) is positive

definite), the largest residual of u{™ approaches zero; hence for all i =1,2,...,N
(m)
a4} =0

Now let a®/ be the cofactor of a; j in the determinant of (a; ;). We have

N

u = Y —a“d; (i=1,2,...,N)
j=1
N

u{™ = ai(dj+2™)  (i=1,2,...,N)
7j=1
Therefore, for 1 = 1,2 N,
(m) S Ny
1 — 7.7 m 7.7
™ = Jim, 3 —a(d; + 27 = -3 —ad; =

Q. E. D.
Theorem 2.3 If (a; ;) is an N x N matrix satisfying (0.2) and (0.3) then (a; ;) is positive definite.

Proof: It is well known that if (a; ;) is symmetric, then (a; ;) is positive definite if and only if
N
> aij uj = uf (AZ0) (i=1,2,...,N)

implies w;* =0, (:=1,2,...,N) : see for instance [3] pages 245 and 305. Thus, suppose for some
A<0

N
Zam u*jIAu*i (iZl,Z,...,N).

Then N
(@i — Nuj + > _aijuj=0 (i=1,2,...,N)
j=1
J#i
and by (0.2)

Mz

(aii — |lai,j] (1=1,2,...,N)
J:1
J#

and for some 1

(@i — A) > Z lai ;| -

J#Z
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By Theorem 1.2, since a; ; — Al satisfies (0.2), the determinant of (a; j— AI), (where I is the identity
matrix), does not vanish. Therefore

Q. E. D.

Corollary 2.2 If (a; ;) satisfies (0.2) and (0.3) then the relaxation method converges to the solution
of (0.1) if, at each step a largest residual is relaxed.

By the method of Theorem 2.1, it is clear that the relaxation method converges if (a; ;) satisfies
(0.2) if the residuals are relaxed in any order subject to the following restriction:

There exists a fixed number M such that for all s and m the residual at z(%) is relaxed at least
once, on an iteration after the m-th and before the (m + M)-th.

We have already observed that relaxation methods are not well suited for large automatic
computing machines. However, an electric computing board developed at the Watertown Arsenal
Laboratory [5], affords a convenient method of relaxing residuals for the Dirichlet Problem with a
plane region €} which can be inscribed in a square region with 21 intervals on a side. A machine
capable of being used with larger regions could be built.

Mounted on a large board is a square lattice of electric terminals, each corresponding to a
net point. Each net point is connected to the four adjacent points by fixed resistances. The
terminals corresponding to points of Sj are grounded. The residuals of the trial solution ul0)
are computed and currents, proportional to these residuals are introduced into the corresponding
terminals. The voltages, which are then measured, are approximately to within the accuracy of the
electric measuring devices, proportional to the corrections to be added to the ugo). The residuals of
u(Y) the first improved approximation thus obtained, are then computed and the process repeated
if necessary. Any desired accuracy may be obtained.

Through the courtesy of the Watertown Arsenal Laboratory, I was able to use the computing
board to solve several problems each involving about 150 net points. I found that the maximum
residual was reduced by a factor of from 10 to 50. Each iteration required about 3 hours, with the
greatest part of the time being devoted to computing the residuals (by a desk machine), adjusting
the currents and reading the voltages. An experienced operator can perform about three complete
iterations with a 20 x 20 region in two eight-hour days.
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Chapter II

Rates of Convergence of the Kormes Method
and of the Liebmann Method

Shortley and Weller [30] investigated the rapidity of convergence of £, the transformation defined
by the Liebmann Method, see (0.7), for the case of the Dirichlet Problem. They considered the
eigenvalues of £, and derived asymptotic estimates for them, for small A. In this chapter, I will
derive an exact relation, for certain o, between the eigenvalues and eigenvectors of L, and those
of K, the transformation defined by the Kormes Method, see (0.5). The analysis of K is relatively
easy, and using these relations an exact analysis is made of £,. From this analysis, estimates for
the number of iterations required to obtain a specified accuracy are derived.

§3. The Rate of Convergence of a Linear Transformation

We shall consider first the rate of convergence of a linear transformation T of an N dimensional
complex vector space, Vy, onto itself. If f = (f1, f2,..., fn) is any vector of Vi, we define the
norm of f by

N

(3-1) Il = [ > 1A ]
i=1

Also, with the inner product

(32) (F.9) =Y. i

1/2

Vn is a Euclidean vector space.

Definition 3.1 T is a convergent transformation if for all f € Vi

lim |7 ()| =0

m—0oQ

Definition 3.2 The rate of convergence of a convergent transformation, T, is

(3-3) ¢(T) = —logy(T)

where

- [T (f) ]
. = lim lub ma /2= 2270
o= o | e (P

As we shall see later, the number of times 7" must be applied to a vector f to reduce ||f]| to a
specified fraction of itself is, approximately, inversely proportional to the rate of convergence.

It is well known, see for example MacDuffee [22], Chapter VII, that T has M distinct eigenvalues
A, A9, ..., Ay with multiplicities k1, Ko, ...,ky where

M
ZFJi =N.
i=1
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Definition 3.3 )\; is the dominant eigenvalue of T if
[At] > [Al
where A is any eigenvalue of T'.

We shall show below that |A;| = ¥(T'). The Jordan normal matrix form is, written in block
form, ([22] pages 236 and 241)

J 0 0 0
0 J 0 . .. 0
(3.5) 0 0 J3 . .. 0
0 0 0 I,

where M1 > M and J; (i =1,2,..., M) is a square Jordan matrix of the form

A 00 .. .0

1 A 0 ... 0

(3.6) 01 N ... 0
00 0 . . . X\

Here, not all the \; need be distinct. Let the number of rows and columns of the matrix J; be
Vi, (i:1,2,...,M1).
Associated with the normal matrix form (3.5) is a basis

i=1,2,..., M
et ( )

k)=1,2,...,lji

with associated eigenvalue ;.
We can normalize the {v;;} so that

1=1,2,..., M,
_ el =1 .

(3.7) [[vikl (k:1,2,---,l/z’)
For any f € Vi we have

My v;
58 =35 Ak

i=1k=1
and

k—1 _ 1=1,2,..., My
(39) Tm('Ui,k) = ; mCls )\;n s Vik—s ( E=1,2,...,u )
where
m!
mb&s = m :

By using (3.8) and (3.9), Dresden proved that if |A1| < 1, 7" is a convergent transformation.
The following theorem is obtained in a similar way. It undoubtedly has appeared in the literature
although I have been unable to find it.
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Theorem 3.1 If T is a convergent transformation and if A; is the dominant eigenvalue of 7' then

(3.10) P(T) = |\l -

Proof: If we let
N (2]
seve {1
1>m

the sequence {z,} is monotone decreasing, and is bounded below by zero. Therefore, li_1>n T
m—0o0
exists.
By the homogeneity of T', we can assume ||f|| = 1. By (3.8) and (3.9) we have

My v; k-1

(3.11) T™(f) =D 3> Aig myCsA™ ™ vy

1=1 k=1 s=0

But s < N; hence, ,,, Cs < mj < m™.
By the linear independence of the v; j, the coefficients A; j, of (3.8) are bounded for all || f|| = 1.
Let A= max |A; k|- We have
2y

IT™ ()] < NA mf¥ |x|[™ =N

and y
m
Zm < lub [{NA mi AN 1]

~ mi>m

Tm < Tub [(NA)Y/™ mp /™ |y [N/ ]

mi1>m

But for all m; > e, miv/ "™ is a decreasing function of mi. Hence

T < (NA)I/m mN/m |)\1|1—N/m .
Therefore,
P(T) = Jim 2, < [A1]-

On the other hand, if T(f) = M f, zm = |\i| for all m. Therefore ¥(T") > || and the theorem
follows.

Q. E. D.

Corollary 3.1
(3.12) $(T) = —log |Ay].

Corollary 3.2 T is a convergent transformation if and only if all eigenvalues of T" are smaller than
one in absolute value.

Theorem 3.2 By similar methods we can prove

(3.13) H(T) = 1im_{fjTm]

e 1™ (O
3.14 T"|| = lub .

fWe note that |\1| < 1 since T is convergent. For if f is chosen so that T(f) = A1 f then [|[T™(f)| = |A1|™ Il
and would not approach zero unless |A1]| < 1.
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We now consider the number of iterations necessary to reduce ||f]|| to a specified fraction of
itself.

Definition 3.4 If T is a convergent transformation on Vi

Nf (Ta P VN)
denotes the smallest number m such that
IT™(HI <pllfll, (O<p<1).
Definition 3.5
(315) N(Tapa VN) = Jlub Nf(T7 P, VN) :
fevn

When no confusion will arise we may drop the third argument for N (T, p, V).

Theorem 3.3

. —logp
.16 1 T —2" =1
(3 ) pl—I>r(l) lN( ’p)/—log|)\1|]
Proof: For all p we have
—logp
o (T = T
Nl( p) _10g|A1|

where T'(v1) = A1 v1. Hence

—logp
N(T.p) > 18P
(Top) 2 3o ]

The requirement that || f|| be reduced to a fraction p of itself is equivalent to requiring that
Tm
P 4 0)]
revw|Ifl

Obviously as p — 0, m — oo.
By Theorem 3.2,

A1) +€(m) = {/||T™|]
where

Jim e(m)=0.

The condition ||T™|| = p requires that
[ [Ma] +e(m) [ = IT™]| = p

or

_ —logp
T logl Pl +e(m) ]
m B —log |A\1]
—logp — —log[ [Ai| +e(m) ]
—log |A\1]
By the continuity of the logarithmic function for |[A;| > 0
lim — " —
p—0 —logp
—log | A1
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§4. The Kormes Method

The improvement formula for the Kormes Method of iteration is given by (0.5). Using (1.14) and
(1.15), we have

N

(4.1) u{m™t) = Z ™ ye  (i=1,2,...,N)
or
(41&) u(m+1) = ]C[u(m)] +c
where ¢ denotes the vector (c1,ca,-..,cn). The general element of (X; ;), the matrix of K, is given

g J
by
(4.2) Kij=bi; (i,j=12...,N).
By (1.16) and (1.14),

bi; =0 (1=1,2,...,N)

bij>0 i#j (,5=12,...,N)

and the matrix (b; ;) is irreducible.

By Theorem 3.1, the rate of convergence of the Kormes Method depends on the dominant
eigenvalue of K.

We note that r = (r1.79,...,7ry) is an eigenvector of K with eigenvalue y if and only if

(4.3) Klr] = pr
or, equivalently
N
(4.3&) Zbi,j Ty = UT; (i:1,2,...,N) .
i=1
Theorem 4.1 If (a; ;) is a symmetric N x N matrix satisfying conditions (0.2), then the normal

form of the matrix of K is a real diagonal matrix; if ;1 denotes the largest eigenvalue of K, 1 is
simple (not repeated).

Lemma 4.1 The eigenvalues of K are the same as the eigenvalues of K’ where the general element

of (Kj ;) is

—Q4 5 (Z 7& i
S J)
}ng = b;j = { V@i /G
0 (1 =)
Proof: If
(4.4) K(r) = pr
then
N .
.Elb"ajrj:/“"i (’LZl,Q,...,N)
]:
N .
Zlbi’j‘/ai’i ’I‘j :u,/ai,i T3 (Z: 1,2,...,N) .
]:
Let

(4.5) TP = /i Ti (t=1,2,...,N)




Thus
(4.6) K'lr') = pr'.

Conversely if p is an eigenvalue of K’ we can show that y is an eigenvalue of K. This proves
the lemma.

Q. E.D.

Since (K ;) is symmetric by [3] pages 305-6, there exists an orthonormal basis of eigenvectors

O @ N
such that . _
K'r® = pr®  (=1,2,...,N)
where
(4.7) 1 2 p2 2 Z PN -
We show that the corresponding vectors (%) satisfying (4.4) are linearly independent even if some
i is repeated k times. In this case let r(l)',r@)', . ,r(k)' be the linearly independent eigenvalues

of K' such that for j =1,2,...,k _

K'r0)] = prt)"

Obviously (), (j =1,2,...,k) are also linearly independent where
o_r o fi=12. N
L Jag i=1,2,...,k

and a; > 0.

Hence the normal form of (K; ;) is diagonal.

Lemma 4.2 Let (a; ;) be a real symmetric N x N matrix.
(a) p1 is the largest eigenvalue of (a; ;) if and only if y; is the maximum value of

N

(4.8) Qw] = > a; jww;
ij—1

subject to the condition

N
(49) ol = 3 w? =1

i=1
(b) If ||wD||2 = 1, then w) is an eigenvector associated with p; if and only if

Qlw] = py.

Proof: (a) It is well known that any real symmetric matrix is orthogonally equivalent to a real
diagonal matrix (c; ), the largest of whose elements is the maximum of Q[w] subject to the re-
quirement ||w||> = 1, (see for instance [3] pages 247-250). The maximum clearly exists and is
attained because Q[w] is a continuous function on a compact set. The diagonal elements of (c; ;)
are eigenvalues of (a; ;) and conversely (see [3] page 305). Thus, (a) is proved.
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(b) As in Widder [37] pages 113-115, the maximum problem may be formulated in terms of
Lagrange’s multipliers. We have the conditions

P N N

S Zai,jwiwj—u[Zw?—l] =0 (1=1,2,...,N)
(4.10) " lig=t i=1

N

Zw? =1

i=1

where 4 is a Lagrange’s multiplier. Upon simplification these conditions become

N

Zai,jwj:,uwi (1=1,2,...,N)
(4.11) =
) N
> wi =1
i=1
If w satisfies (4.11), we have
N N N
Qlw] =.Z<%WWU=ZNW{EGMW}
(4 12) 4,j=1 i=1 j=1
) N
= Y wipw; = .
=1
Thus, if w), where [[w()|? = 1, is an eigenvector of (a; ;) with eigenvalue p1, Q] = p;.

Conversely, if Q[w)] = 1 and ||w||> = 1, since p; is the maximum of Q[w] subject to |Jw||® = 1,
by (4.11), w() is an eigenvector of (a; ;) with eigenvalue ;.

Q. E. D.
Lemma 4.3 Let (a; ;) be a real symmetric N x N matrix such that
ai; =0 (i=1,2,...,N)
ai; >0 (i,j =1,2,...,N)

and (a; ;) is irreducible. If y; is the largest eigenvalue of (a;;) and if w(!) is any eigenvector
associated with uq, then either

w >0 (i=1,2,...,N)

or
w® <0 (i=1,2,...,N).

Moreover, u is simple (not repeated).

Proof: By Lemma 4.2, for all w € Vy,
QluwM] > Qfu] .
On the other hand, since a;; >0 (1,5,=1,2,...,N),

Q] < Q@]
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where ) 1 1
(4.13) @ = (i), [wl”],...,lw§]) .

Equality can only occur if, whenever a; ; # 0
(4.14) ww!

By Lemma 4.2, @) is an eigenvalue of (as,;). Suppose that for some i,wgl) = 0. Then @1(1) =0
and

N 1 1
S a0 = i =0
j=1

and since a(; j) > 0 we have 1275-1) = 0 for all j such that a;; # 0. Using the irreducibility of (a; ;)
it can be proved that!
@M =0 (i=1,2,...,N).

This contradicts the condition
w2 = |a® | =1

Therefore, wgl) #0 (:1=1,2,...,N).

Again, by the irreducibility of (a; ;), since w

i

wj(-l) > 0 whenever a; ; # 0 we can show that

or

V<0  (i=1,2,...,N).

(1
w;

To show that ;1 is simple we first note that there exists an orthonormal basis of N eigenvectors
for (a;;). If w1 is repeated k times then there would exist £ linearly independent orthogonal
eigenvectors each associated with p;. But since each is non vanishing and one signed it is impossible
that they should be orthogonal.

Q. E.D.

From Lemma, 4.3, it follows that the largest eigenvalue of X' is simple. The theorem follows at once
by Lemma 4.1.

Q. E. D.
Theorem 4.2 Let (a; ;) be a real symmetric N x N matrix, (N > 1) such that
CI,Z'Z'ZO (i=1,2,...,N)

a;j >0 (1=1,2,...,N)

and (a;;) is irreducible. Let (aj;) be the N’ x N’ matrix obtained from (a;;) by deleting the
elements in (N — N') rows and the corresponding columns, where N’ < N. If y; and p} denote
the largest eigenvalues of (a;,;) and (a; ;) then p1 < pj.

See the proof of Theorem 1.2.
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NI

Proof: Let Q*[w] = Z a;'k,jwiwj
i.j=1

and

N
Q[w] = Z ai,jwiwj .
i,j=1

If w*() where ||w*1)||2 = 1 is an eigenvector of (aj ;) then
i = Q[ ] = Q)

where w;-k ™) in the second expression is taken to be zero if the th row and column have been deleted.
Hence 1 > p}. By Lemma 4.3, Theorem 4.1, w*() is not an eigenvector of (a; ;) associated with
the largest eigenvalue of (a; ;). Therefore, u; > ui.

Q. E. D.

Corollary 4.1 If RS) C R,(LQ) where R;LI) # R,(LQ) and R,(LQ) is connected, and if ,ugl) and p,g2) denote
the largest eigenvalue of K applied to (1.11), for the networks QS) and ng) with interiors Rg) and
Rg) respectively, then

ut) < u®

We have already seen, (Theorem 1.1), that (a; ;) has property (A2). We define the vector v € Vy
such that

m .
v =1 1 € T1, the set where ) pg) is odd
(4.15) k=t
7 =0 1 € Ty, the set where ) p,(:) is even.
k=1

Theorem 4.3 If K[r] = pr and if

(4.16) = (—1)r
then
(4.17) K[r*] = (—p)r* .

(We do not use the fact that (a;;) is symmetric).

Proof:
N N
> bigry =D bij(-1)%r;  (i=12,...,N).
=1 =1

Ifb,; #0, i€Ti,and j€Tr ori€Tyandje€T;. We have

N N
D bigry = —(=1)" Y bigr;
j=1 j=1
= —(=1)%uri=(=p)ri  (i=12,...,N).

Hence, by (4.3a),
K[r*] = pr* .
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Corollary 4.2 The eigenvector r* may be expressed in the form
(4.18) r* = (1—2y)r.

Now let N1, Ny be the number of integers in 77,75 respectively.
Theorem 4.4 Let § be the number of non-zero eigenvalues of K and let
(4.19) s' = min(Ny, No) s" = max(Ny, No) .

If (ai ;) is symmetric, then

(a) There are 5 eigenvectors associated with non-zero eigenvalues where 0 < § < 2¢; and 3 is even.
These associated eigenvalues do not vanish identically on either 77 or 75.

(b) The (N — s) dimensional null space Vj of K can be referred to a basis of (N — s) vectors such
that (N — 5/2) of these vectors vanish identically on 7} and (N7 — §/2) vanish identically on T%.

Proof:

(i) If K[r] = pr, where r is not identically zero but r vanishes identically on either 7% or 73, then
p = 0. For, K[r] vanishes identically everywhere. Thus, if 4 # 0, 7 must not vanish identically
on either 75 or Tj.

(ii) If ) and 7 are any two linearly independent eigenvectors of K with non-zero eigenvalues it
is obvious that r*(1(#£ r(1)) and r*®) (£ r®)) are linearly independent. Therefore, 5 is even. Now
consider the sets X1 = {r()) —r*@)} and Xy = {r) 4@} (j =1,2,...,5/2). The vectors in X;
vanish in Ty and those in X5 vanish in T7. On the other hand, the § vectors of X; U X5 are linearly
independent. Hence 5/2 < §'.

(iii) If K[r] = 0 we may write

r=r"4+7"
where 7' vanishes identically on T} and r” vanishes identically on Ty and both 7/, 7" lie in V4. The
set of all vectors obtained in this way span V; and hence there exists a linearly independent subset
spanning Vp. By (ii), (N1 — 5/2) of these vectors vanish identically on 75 and (N2 — 5/2) vanish
identically on T7.

Q. E. D.
Given an arbitrary error vector, e(9) in Vy we may write
N .
(4.20) 0 — ZA].T(J)
j=1
and by Theorem 4.4, we have
5/2 . ' N-3/2 '
(4.21) el0) — ZA].T(J) + A;‘fr*(J) + Y Ajr)
Jj=1 J=5/2+1
where _ .
]C[fr(])] :,Lt]'f'(‘?) (j = 1,2, ,5/2)
i >0 (1=1,2,...,5/2)
T(Ni‘]):'l"*(]) (j:1,2’...,§/2)
A =An—j (1=1,2,...,5/2)
Kir] =0 (j=38/2+1,...,N —3/2)



After m iterations, (m > 1), we have

5/2
(4.22) e™ =3 A @ 4 (—py)m A5
j=1

For those cases where a;; = 1 as in the Dirichlet Problem, the r\9) are orthogonal. If we assume
the 7(9) have been normalized we have

N
(4.23) A =30 (j=1,2,...,N)
=1
and
N
(4.24) 1@ =3 A2
j=1
For the Dirichlet Problem, we will now show that
Z/||2
4.25 2 < M2
(4.29 1 < s
where ¢/ = u'—u, ' is an approximate solution of (1.11), and where || Z’||? is the sum of the squares
of the residuals.! We have already, in Section 2, given a bound for [uh — wl, (1=1,2,...,N)

due to Gerschgorin.
To prove (4.25), we use (4.23) to express ¢’ in terms of the eigenvectors of K. We have

N .
e = Z AjT(J)
j=1

and
N
le')> =" A7 .
j=1
Also
N
j=1
and
N
O—Za”-uj+d, (1—1,2, ,N)
j=1
Hence
N
(e[ul])'t = Z ai,ye; (7’ - 17 23 aN)
Jj=1
But since

aiizl (i:1,2,...,N),

$The sum of the squares of the residuals has been used as a measure of convergence by Bowie [4].
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and bi,j = —0;j (’L 75 ])
(] = e — (K[

Cli = S -p)ar? (=12,

I1Z']* = [(—LuDI? = D_(1 — ) ?A7 > (1 — wm)?[€']1* -

i=1

Hence, (4.25) is proved.

For the Dirichlet Problem with a rectangular region, the eigenvalues and eigenvectors of X can
be expressed explicitly. Let I be the number of intervals on the kth side. We have

() _ L Ty
(4.26) ry = H sin I
k=1
where
E](CJ) ) 4y 7Ik:—1
j = b b - 7N'

The corresponding eigenvalue is

s
(4.27) wi=_ Z cos £ — .

This may be readily verified by (0.5) and (1.10).
In particular

1 s
(4.28) p= Z cos I
k=1
For large I} (k=1,2,...,n)
w2 i 1
(4.29) pp~1-225" 2
4 k=1 I
and
™1
(4.30) )~ — > 7 -
4 k=1 Ik

The rate of convergence is therefore very slow for large I. We remark that p; and hence the rate
of convergence can be estimated for non rectangular regions by using Theorem 4.2, Corollary 4.1.

Number of Iterations

Theorem 4.5 For the Dirichlet Problem

—logp
4.31 N(K,p) =
(4.31) (K,p) = — Tog /11

where N (K, p) is defined by Definition 3.4, (the third argument has been omitted).
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Proof: For all f € Vy by (4.22) and (4.24)

KL< wlF1]
But
urlIF < pllf
provided
m > ﬂ .
— —log
Hence

—1
N(K,p) < ——2P
—log 1

On the other hand, if f = r()

1K™ = et FIl = pall 71 -

Therefore

—1
N(K,p) > —25P
—log 1

and the theorem follows.

Q. E.D.

Theorem 4.6 Let ), enclose a bounded region €2, and let €2 be connected. Let Qj,,Qp,,...
be nets covering €2 and obtained from €2, by subdividing the mesh by a factor of 2!,22,..., then
for the Dirichlet Problem, there exist positive constants mq and M; and a mesh size hy such that
for all h = ho2~% with 0 < h < hg

(4.32) m1 < BN (K, p,V,) < My
where Vy, denotes the vector space of all functions defined on Rj,.

Proof: Let L, and L, be rectangular regions circumscribing and inscribed in Q. Let the sides
of CJ; and T3, be 7,(91) and 7,(62) respectively, (k = 1,2,...,n) and let the 7,(9] ) be chosen so they

are multiples of h. Let Rgl) and R;f) be the set of net points interior to —1; and [, respectively.

If a ugl) (h), u1(h) and u?)(h) denote the largest eigenvalue of K for RS), Ry, and R,(f) respectively
we have by Theorem 4.2, Corollary 4.1,

(4.33) p(h) < pa(h) < u (h).
By (4.28),
w2h? _
p) =1- = S )+ om)
k=1
m2h? & _
—logut" = 1 S ()2 + o(nt)
k=1
w2h? _
—logpt? = 1 S ()72 + o(ht)
k=1



where O(h*) vanishes with h*.
Therefore, by (4.31),

—logp —logp

< N(Kapa VNh) <

27T2 % (1)y—2 4 2”2 . (2)y—2 4
—W2Z Y () + Ot —W*= 3 () + O
k=1 k=1

and the theorem follows.

Q. E. D.

In the above sense we may state that as h — 0 the required number of iterations is asymptotically
proportional to h~2. In symbols

(4.34) N(K,p) =O(h™?) .
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§5. The Liebmann Method with a Consistent Ordering

The improvement formula for the Liebmann Method has been given in (0.7). Using (1.14) and
(1.15), we have

i—1
1) 1)
(5.1) (m+ Z bi ju ]m+ + Z b; ,Ju s
j=i+1
r (5.1a) w(mtl) = [,g[u(m)] +c
where o denotes the ordering of the equations and ¢ denotes the vector (ci,co,...,cn)-

By Theorem 3.1, the rate of convergence of the Liebmann Method depends on the dominant
eigenvalue of £,. The following has been noted by Geiringer [12] and by Stein and Rosenberg [34]

Theorem 5.0
Ly[v] =M if and only if

(5.2) wa)\v]—l— Z bijvoj=Xy;  (i=12,...,N).
Jj=i+1

Moreover, if the matrix (&; ;) is given by

bi’j ] >4
(5.3) fi,j = )\bi,j ] <1
—A j=1i

then |L, — M|, the characteristic determinant of £,, is equal to the determinant of (¢; ;).
Clearly, the determinant of (&; ;) can be obtained from |K — AI| by multiplying the elements of
the latter determinant which are below the main diagonal by .

Consistent Orderings

Because (a; ;) has property (A4,), it is possible to order the equations in such a way that there
is an exact relation between the eigenvalues and eigenvectors of X and L,. Such orderings will be
called consistent orderings. Before defining them, however, we shall first define and show that
there exists an ordering vector.

Theorem 5.1 An N x N matrix (a;;) has property (A,) if and only if there exists a vector v in
Vv with integral coordinates such that a;; # 0 and 4 # j imply |y; —v;| =1, and such that v
assumes ¢ distinct values.

Proof:
q

(a) If (a;,;) has property (Ag), there exist non empty disjoint sets 71, T, ..., Ty such that |J T, =

=1
We assume the sets Ty ordered so that i € Ty and 4 # j implies a;; = 0 or j € Tp—1 UTp41- (As
before, Ty and T, are empty sets). We can define  such that 4,5 € T, implies 7; = 7; and so
that if i € Ty and j € Ty.1 UTp—1, |vi —vj| = 1. v will have the required properties. We note that
v is not uniquely determined.

(b) If y exists, on the other hand, we denote by T3, T, . .. ,T;Iv sets on which +; is a constant arranged
in ascending order, and where ¢ = max; — min-y;. Clearly if a;; # 0, @ € Ty and 7 # j we have
(2 7

|vi —vil =1 and j € Ty_1 UTp41. Hence, if ¢ is the number of distinct values of v, g of the sets
Ty, Ts,...,T; will be non empty. Thus, (a;,;) has property (4,).

Q. E. D.
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Corollary 5.1 If (a; ;) has property (A4y), (¢ > 2), it has property (Ay), where 2 < ¢’ <g.
Proof: If (a;;) has property (4,) we can let

7(T1) =1, ’Y(TZ) =2,..., ’)’(qu) = ql

VTy+1) =¢ =1, ¥(Ty+2) =¢ et

getting only ¢’ distinct values 2 < ¢’ < q. (y(T}) denotes ; for i € Ty). Hence new sets T}, T4, ..., T/,
are obtained as in the Theorem and (a; ;) has property (A ).

Corollary 5.2 If (a; ;) is irreducible and has property (A,), then
¢ = ¢ = max7y; —minvy; .
3 7

Proof: We need only prove that if v; = a, v; = a + 2 then there exists 7’ such that v = a + 1.
Let J; be the set of all 7 such that v; < a, and Jo be the set of all 7 such that v; > a + 2. By the
irreducibility of (a; ;) there exists ¢ € Ji, j € Jy such that a; ; # 0. But this implies |y; — ;| = 1,
which is impossible if J; U Jy =T

Q. E. D.
Definition 5.1 v is called the ordering vector of (a; ;).

Definition 5.2 An ordering o of the rows and columns of a matrix (a; ;) with property (A4,) is
consistent, if for some ordering vector v, v; > ; implies 7 > j under o foralli,jeT.

When we speak of a consistent ordering, it is implied that (a; ;) has property (4,) for some g.
It is obvious that if a matrix (a;;) has property (A4) then at least one consistent ordering of the
rows and columns of (a; ;) exists.

Corollary 5.3 If ¢ is a consistent ordering and if a; ; # 0 and i > j, then ; > ;.

Examples of Orderings
We first define equivalent orderings.

Definition 5.3 Two orderings, o, ¢’ are equivalent if wherever b; ; # 0 and i # j
i > j under o if and only if i > j under o’.

Corollary 5.4 If ¢ is equivalent to o', o is consistent if and only if o’ is consistent.

Clearly, if o is consistent one may interchange the ith and the jth row of (a;;), where v; = v,
and the new ordering obtained will be consistent.

For Ry, we need only define the ordering relation for adjacent net points by (1.16e). We now
define some typical orderings.

T4 > j under 0” means that under the ordering the ith row follows the jth row of (a; ;).
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Definition 5.4

Pn > ph, Or
! if Pn = pln7 and Pn—1 > p;;,—l or

Pn =Dp,---,P2 = Db, p1 > P}

(a) o9 x>

n n
(b) oo x>z if Elpi > El Pl
1= 1=

n n
() oo x>z ifY piisoddand Y p.iseven
i—1 i=1

(3

(d) o3 z>a

(n=2)

) P2is even and ph is odd, or
p2 = pa and p1 > py

P2 > ph
() oa x>z’ if< pyisoddand plp|
(n=2) po is even and py < pf .

It is evident that og is equivalent to o1 . og is the most common ordering although oo has
certain advantages.

Theorem 5.2 The orderings og, 01,02 and g3 are consistent. The ordering o4 is not consistent for
all networks.

Proof: (a) We have already noted that og is equivalent to o1. We define the ordering vector by
)

(5.4) Y=Y Dy (i=1,2,...,N).
k=1

Clearly a;; # 0 and ¢ # j implies |y; — 7;| = 1. Hence by Theorem (5.1), (a;;) has property (Ag)
where ¢ is the number of distinct values of ;.
o1 is consistent since «y; > y; implies (D > z0) under 0.
n .
(b) We have already seen that (a; ;) has property (Az) where T, T are the sets where )7 p,(:) is

k=1
odd or even, respectively.

The ordering vector is given by

e o () .
1 if > p;’ is odd
(5.5) 7 = L
0 if > p,(:) is even .
k=1

Clearly a; j # 0, i # j implies |y; — ;| = 1. Also y; > +y; implies (M > £0) under o5. Hence o5 is
consistent.
(c) For o3, we let the ordering vector be given by

ptY if p{?) is odd
(5.6) Vi = , .
pz@ -1 if pg) is even .
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Again a; ; # 0 and i # j imply |y; — ;| = 1, and ; > -y; implies @ > £U) under o3. Thus, o3 is
consistent. We note that (a; ;) has property (Az) where ¢ is the number of distinct values of .
(d) Let Ry, consist of the vertices of a square

a b
Under o4 the ordering is

d ¢ a,b,c,d.

If o4 were consistent we could define an ordering vector v such that v(a) = 1. By the required
properties of v we would have

vb)=2  ()=3 d) =4
Therefore, |y(d) — y(a)| > 1, a contradiction.

Q. E. D.

Theorem 5.3 Let (a;;) be an N x N matrix with property (4,) and where the ordering of the
rows and columns of (a; ;) is consistent. Let the general element of (a; ;) be given by

CI,;J = G (’L =7 or 1< ])
a%yj = )\ai,j (’L > j) .

Then, the determinant |(a; ;)| equals |(a; ;)| where the general element of (a; ;) is given by

where j(i7) is a permutation of the first N integers.

N N N
tG@) = II @ije Moy 11 aie) -
=1 =1

il)=i il<i i(0)

:1
1) >1
!

But since (a;,;) and hence (a; ;) has property (A,) if a;,; # 0, ¢ < j implies v;;) — v = 1, and
i > j(i) implies v; —7;(;) = 1, where the ordering vector -y exists by Theorem (5.1). We have

N N N
tG@) = II ajo II 2ese II e -
gzz:)iz ’Yiz>:7]1'(i) 7iZ<?Y}(i)

Let 81 be the number of factors with «; > 7;(;) and (2 be the number of factors with v; < ;).
N
Bi= D -7
i=1
'Yiz>'7j(i)
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Z i@ —

Yi <7j(z)

Z Y — Y =0

Vi ?é')’] (i)

Therefore

=2

N
= II e II VAaie

i=1
i)

J

—~

_1
i(i)=i
which is a general term of |(a7 ;|-

Q. E. D.

Theorem 5.4 If y is a k-fold non-zero eigenvalue of K and if ¢ is a consistent ordering, then
A = p? is a k-fold eigenvalue of £,. If 5 is the number of non-zero eigenvalues of K, then zero is an
(N — 5/2)-fold eigenvalue of L.

Proof: By Theorem 5.0 and Theorem 5.3 the characteristic determinant of £, equals
|Lo — M| = [VAK = M| = AN2|K — VL.
By Theorem 4.3,
KK — VM| = [T - uH VNN

hence

Lo — M| = AN~ S/QHA #7)
i=1

Q. E.D.

Corollary 5.5 If ¢ is consistent, then the rate of convergence of L, is exactly twice the rate of
convergence of K.

Corollary 5.6 If (a; ;) is symmetric and if o is consistent, then the eigenvalues of £, are real and
non negative.

Theorem 5.5 If ¢ is a consistent ordering and if K[r] = yr and if

(5.7) A= p?
(5.8) v=\"%r
then

(5.9) Ls[v] =M.
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Proof: By Theorem 5.4, A = p? is an eigenvalue of £,. We have

i—1 N i—1 N
S haA vt 3 gy = S A 3 g
j=1 j=i+1 j=1 j=it+1

But for bz’,j #0

) v+l J>t
T -1 j<i

since the ordering is consistent, by Definition 5.2, Corollary 5.3. The last expression becomes

N
)\(7i+1)/2 Z bz,j’rj — A(’7i+1)/2url~ = ()‘1/2/"')/02' = A’UZ' .
i
By Theorem 5.0, Lov]=Av.

Q. E. D.

Theorem 5.6 If (a;;) is symmetric and if o is consistent, the normal form of the matrix of £, is
diagonal except possibly for the submatrix associated with the eigenvalue zero.

Proof: If A # 0 is a k-fold root of |L, — M| = 0, u = VX is a k-fold root of |[K — AI| = 0 by
Theorem 5.4. Since (a; ;) is symmetric, the normal form of the matrix of K is diagonal by Theorem
4.1 and hence there exist k linearly independent eigenvectors of K

r0) (G=1,2...,k).
The eigenvectors .
o) G=1,2...,k)

of L, given by (5.8), are also linearly independent. Otherwise there would exist constants

vy, Vo, ...,V not all zero such that
k

Z vj ) = 0.

j=1
Forall:i=1,2,...,N

Since A; # 0 this implies

or

Z vj ) = 0.

Jj=1

This contradicts the fact that the 7(9) are linearly independent.
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Theorem 5.7 If (a; ;) is symmetric, the normal form of £, is diagonal.

Proof: By Theorems 5.4 and 5.6, we need only show that there exist N —5/2 linearly independent
vectors in the null space of £L,,. There are Ny linearly independent vectors in the null space of
L,, whose components are zero except for one 7 € T5 as may be seen easily. By Theorem 4.4,
there are N1 — 5/2 linearly independent vectors in the null space of K which vanish identically on
T». Obviously, these vectors are also in the null space of £,,. Thus, the total number of linearly
independent vectors in the null space of £, is

N2+(N1—%):N—

NNV

Q. E. D.

That Theorem 5.7 cannot be extended to all consistent orderings can be shown easily. Thus,
consider a region with four points z(!) = (1,1), z® =(1,2), z® = (2,1) and z® = (2,2)
with the ordering o : (1), 2 2(3) £(*) We have for the Dirichlet Problem

['Uo (Oa 27 Za _1) = (1a 07 Oa 0)

where £,,(1,0,0,0) = 0 . Thus, a nilpotent vector exists. It can be easily shown [30] that the
normal form of the matrix of L, is

1/4 0 0 0

0 00O

0 1 00

0 00O

with corresponding basis

(4, 2, 2, 1)
(L, 0, 0, 0)
(07 25 27 _1)
(O, 17 _15 0)

(5.10) e =40 —y

we can expand (%) in eigenvectors and nilpotent vectors of £, (o consistent), by Theorem 5.6. We

have
5/2

(5.11) e® =3 B; w0 1
j=1

where _ _
L[] = Aj )

I have not yet been able to prove the following conjectures which are suggested by numerical results with square
regions with 3, 4 and 5 intervals on a scale.

(a) For the Dirichlet Problem and for a square region with I intervals on a side, there are (I — t) nilpotent vectors
of degree t (I —1 >t > 1), for the ordering og.

(b) For any region, the highest degree of nilpotency does not exceed the number of distinct values of v, for gg.
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and where 7 is a suitable linear combination of nilpotent vectors. After m iterations, the error
vector becomes
5/2
(5.12) el™ =3 APB; o) + L1
Jj=1
where for some M < N, m > M implies L]'[n] = 0.
If the coefficients (A;) of (4.23) for the expansion of ¢(?) in eigenvectors of K are known, the B;
of (5.11) may be computed easily for the ordering oo. We have by (5.8 and 5.9)

o) — \7/2 () (j=1,2,...,5/2)

where ' _
KlrD) = p; 0 5 py >0 (1=1,2,...,5/2)

and where _ . _
Lo, [0 = A, v = u? o) (1=1,2,...,8/2).

From (5.5), we have, since

NP = -+ Ay G=1,2,...,5/2)
(5.13) oD = (A= +y N (=12,...,5/2).
If we set _ .
(5.14) v =(1-9)rP  (j=1,2,...,5/2)

it can be easily verified that

By (4.18), we have

vl = % [r() — 7*0)]
(5.15) (j=12...,5/2)
(1—n) r0) = % ) )]
therefore 12 /2
o) = L +2’\j 0 4 AT L)
(5.16) 1 1 G=1,2,...,8/2).
() — L () 1 x0)
v 2 T + 2 T

Solving these equations for r(9) and r*0) we get

r@) = 27P0) 4 (1 - AP0t 0) = AT 00) gy
(5.17) (j:1,2,...,§/2)
where
£U2 [771] = ['02 [772] = 0.
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By (4.21), an arbitrary error vector (%) can be written in the form

5/2 ' . N-3/2 '
0 — Z Ajr,«(J) + A;f,r-*(]) + Z Aj,r(J)_
j=1 j=5/2+1

Using (5.17) and the fact that

Kr@] =0 implies Lo,[rP]=0,

we have )
5/2

(5.18) @ =% /\;1/2 (4; — A3) o) 4
j=1

where L;,[n] =0 . In Section 7, we shall use this expansion to get an upper bound for the number
of iterations required to solve the finite difference analogue of the Dirichlet Problem using £, .

For a general consistent ordering, o, however, even if the A; and () of (4.20) are known, the
determination of the B; of (5.11) could only be done by solving a set of linear equations. This is
true even though the eigenvectors, v\9) of L, are known explicitly in terms of the r().
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§6. Other Orderings

We have seen that the rate of convergence of the Liebmann Method with a consistent ordering is
exactly twice the rate of convergence of the Kormes Method. It is logical to ask whether the rate
of convergence of the Liebmann Method could not be increased by using orderings which are not
consistent.

Shortley and Weller [30] state that, except for small N, the rate of convergence of the Liebmann
Method applied to the Dirichlet Problem is practically independent of the order in which the points
are traversed. Numerical evidence, given in Table 6.1, indicates that the effect of the ordering on
the rate of convergence is small, not exceeding 12% in the most extreme case treated, and decreases
rapidly as N increases. Furthermore, in these cases, the consistent orderings were found to give the
best convergence. It is my conjecture that the consistent orderings always give the best convergence.
I have not found a proof of this except for one special case. If the ordering relationship between any
one given point and one or more adjacent points is changed, a consistent ordering will in general be
made non consistent; it is proved for the self adjoint case that in any case the rate of convergence
is not increased.

Before giving the proof of this fact, we shall first give an example to show that the results of
Section 5 are not valid for all orderings.

6A. An Ordering for Which the Results of Theorem 5.4 Are Not Valid
Consider the Dirichlet Problem for a square region with four interior points. If the order of
d1 2

3 4 ] the characteristic equation for the Liebmann Method is

improvement is oy l
1

(6.1) 556

[256A% — 64A3) = 0

and the eigenvalues are A =0,0,0,1/4 .
For the Kormes Method the eigenvalues are

p=0,0,1/2,-1/2 .

This agrees with Theorem 5.4. On the other hand, with the ordering o4 [ i g ] the char-
acteristic equation for the Liebmann Method is

1
256
and the eigenvalues are A =0, —.0115+ .1185:, —.0115—.1185:, .277.

Since .277 > 1/4, the rate of convergence of L, is less than the rate of convergence of L, for
this region.

We observe that the rate of convergence is independent of a cyclic permutation of the ordering.
Hence, the essentially different orderings are

(6.2) [256A% — 6503 4+ 207 — )] = 0,

1 .2 1 3] P
0 4 72 2 72 2
(1 2] , [1 3] , 1 4]
o4 3 0 4 74 3
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The orderings oy, 0, 02 and o, are consistent. By symmetry, it is evident that o4 is equivalent to
o). Thus for this region, we have shown that for no ordering can the rate of convergence of the
Liebmann Method exceed that for a consistent ordering.

6B. The Effect of Changing the Relative Position of One Equation in a Consistent
Ordering

We now prove a special case of the conjecture that for (a; ;) symmetric, the rate of convergence
of the Liebmann Method for any ordering does not exceed that for a consistent ordering.

Theorem 6.1 Let o be a consistent ordering of the rows and columns of the symmetric N x N
matrix (a; ;) satisfying (0.2). If o’ is a new ordering obtained by changing the relative position of
any single row and the corresponding column under o, then the rate of convergence of L, does not
exceed the rate of convergence of L.

Proof: By Theorem 5.0

1Ly — M| = [(&i,5)]
where o
bi,j (] > ’L)
§ij =4 Abij (4 <1)
2 G=d)
and where, by (1.4)
0 (i =17)
b, = a . .
& (i)
Qi

It is easily verified that

where '
i (j >1)
&ij =9 Abiy (4 <)
'\ j=1)
and where .
0 (i =J)
/
R (i #4) -

vV @ijin/Aj,j
We note that ; ; is symmetric.

Lemma 6.1 Let N be even and let A1 be the largest eigenvalue of £,. Then all subdeterminants,
obtained from the matrix ({Z(, j) by deleting an even number of rows and the corresponding columns
are positive, when \ = \q.

Proof: We first remark that, since o is consistent for (bg,j), it is also consistent for any submatrix
of the above type. By Theorem 4.2, the largest eigenvalue of the Kormes Method for the submatrix
is smaller than for the entire matrix. But by Theorem 5.4, the same is true for £,. Since N is even,
|Ls — AI| > 0 for the submatrix and hence the matrix is positive for sufficiently large A; therefore
|Ls — A1I| > 0 for the submatrix.

Q. E. D.
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Now let the rows and columus of L, — AI| = |(§~£’ ;)| be arranged so that they are in the order o',
If the ip-th equation was originally displaced we have

b ; (j >1)
(6.3) &i=14 A, (G < 1)
—A (j =1)

except that for some k we may have

( E;m.o = b;c,io and
{gk:Abl'k ("0<k)
10, %0,
(6.4) or
EL,Z- = b, and
{ o (io > k) -
L ik = bigk

If no such k exists
|Lo — M| = |Ly — M|

and the theorem follows at once.

By (6.3) and (6.4), the determinants |(¢] ;)| and |(§;,j)| can differ only in terms containing the
factors (&, j, &j,) where ig # j, k and k # j.

Typical sets of such terms for |(&] ;)| are

T(5(0)) = —€igin & sin i io @I (4))

and the complementary set

T(]*(Z)) = _ggl,iogz{g,il T féo,zsa(.](z))
where 1,1, ..., 145,90 are distinct integers, and @(j(¢)) is the subdeterminant obtained from (; ;)
by removing the rows and columns containing ig,41,...,is. Such subdeterminants are positive for

A = A1 by Lemma 6.1. Similar formulas can be given for the corresponding sets of terms 7(;())
and 7(5*(i)) for |(& ;)I-

We note that since (a; ;) has property Ag, s must be odd. Moreover for each set of terms, the set
of second subscripts is obtained from the set of first subscripts by an odd number of transpositions,
hence we have a negative sign.

By Theorem 5.3,

Also for A = A1, we have

On the other hand, by (6.4)

for some integer 7. Therefore

[FG6) +7(6@) =20 GO | = [\ = X2 7((3))] G
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Summing over all such sets of terms, we get
Lot — MI| <Ly —MI|=0.
Since N is even, |L, — M| is positive for sufficiently large A. Therefore, for some A > \;, we have
|Lo — N I|=0.
A similar argument can be used when N is odd.

Q. E.D.

The author has so far not been able to extend the proof to the case where more than one change
is made in the ordering.

The following numerical results for the Dirichlet Problem are given to show that the effect of
a change of ordering is small, in all probability. Except for Examples 1, 2 and 3, the eigenvalues
for the non consistent orderings were obtained experimentally, [30]. We note that for any region
with no more than three points every ordering is consistent. Hence, on the plausible assumption
that the effect of different orderings decreases as N increases, it would appear that it is largest in
Example 1.
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Table 6.1

Region and Ordering A1 At
(consistent ordering)
1. 2.
.l.
1. i 3 277 .250
1. 2. 3.
T
2. 54 307 .285
1. 2. 3.
1.
3. 6. 5 A 393 .363
1. 2. 3.
4. 6. 5. 4. .519 4+ .003 .500
7. 8 9
1. 2. 3.
5. 8 9. 4 .20 £ .001 .000
7. 6. 5
1. 2.
4. 3.
6. 5 6. 445 + .004 428
8. T.
1. 2. 3.
6. 5. 4.
7. 78 9 .587 £+ .005 .5745
12. 11. 10.
1. 2 3. 4
8 7. 6. 5.
8. 9. 10. 11. 12. .664 £ .007 .655
16. 15. 14. 13.

TExact values to number of decimals given.
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§7. The Use of Large Automatic Computing Machines

One might suppose that, if a large automatic computing machine can be used with the Liebmann
Method, the slow rate of convergence would be compensated by the speed of the machine. A more
careful analysis reveals however that the number of iterations required may be so large that even
with a fast machine the time is prohibitive.

For example, in [31], F. Snyder and H. Livingston propose a set of coding instructions for solving
a “Laplace Boundary Value Problem” for a plane region by means of the UNIVAC,! and using the
Liebmann Method.} The authors state that problems for a square region with 300 intervals on a
side, and, of course, smaller regions, are easily programmed. On the other hand, the authors make
no estimate of the number of iterations required. As we shall see, for the Dirichlet Problem for
a 300 x 300 interval square, the UNIVAC would require about 2 years to reduce the error of the
original estimated solution by a factor of 1000.

For the number of iterations required to reduce |[e(?)|| to a definite fraction p of its original
value, we have by Definition 3.5 and Theorem 3.3.

(7.1) Jim [N(La,p) / Lgpl] 1.

p—0 — log |/\1

By Theorem 4.6 and Theorem 5.4, Corollary 5.5, we have
(7.2) N(Ly,p) = O0(h?)

provided o is consistent. By the considerations of Section 6, this is almost certainly true for any
ordering.

For the ordering oy,} we can make a more exact statement about the required number of
iterations.

Theorem 7.1 Forallp (0<p<1)

—log p/2
. ‘ <——+1.
(73) N(£0’2?p)— _logAl +
Proof: By (5.18), we have
2 0A;—Ar| .
=LA
where L,;,[n] = 0. Then for m > 1
— J J
elm) — Z NE AT o)
j=1 j
By (5.16)
1/2 1/2
o0 _HENT G 1A )
2 2 2 2 2

tWhen the paper [31] was written, the construction of the UNIVAC had not yet been completed.

tThe Liebmann Method is clearly preferable to the Kormes Method. Not only is the rate of convergence twice as
large, but the storage problem is simplified.

$The ordering oo was used for the coding for the UNIVAC given in [31]. The coding for the ordering o> would be
only slightly more difficult and approximately half as many storage registers would be required. This is due to the

2 .
fact that the values of pgm) where ) pg) is odd completely determine M§m+1), (1=1,2,...,N).
k=1
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Hence

5/2 A A\ 14\
m, 072 _ om | 44 + A
||£a2[e( )] I© = Z)‘j ( )\;/2 ]) ( 92 ]>

=1

N
AT Y A2 = A2

<
7j=1

m—L
(7.4) Lo < V2AT 7 9.
Therefore ) /2

—logp

) < —="1_ 1 1.

(75) N(ﬁozap)— _logAl +

Q. E. D.

No matter what ordering is used, the rate of convergence of the Liebmann Method is very slow.
For n = 2 the time per iteration, as well as the number of iterations is of the order of h~2. Hence,
the total time is of the order of h™%.

Consider, for example, the unit square with A= = 300. We have by (4.30)

7'('2

p~ = o (300)~2

A ~1—72(300)72.
Setting p = 1073, we have by (7.1)

—31log 10

1073) ~
N(£Lg,107) 723002

= 63, 000 iterations.

For the UNIVAC, the estimate of the time required (in seconds) per iteration given in [31] is
I1,/100 where Iy, I are the number of intervals on the sides of a plane rectangle. In our case, 900
seconds are required per iteration.

The total time required is

63, 300 x 900 seconds ~ 15,800 hours ~ 660 days.

Numerical estimates for other mesh sizes will be given in Section 9.

Obviously, for large N, a more rapidly converging method is needed. In the next chapter, it
is shown that the Liebmann Method can be modified in such a way that the number of iterations
required is proportional to h~! instead of h~2.
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Chapter III

The Successive Overrelaxation Method

L. F. Richardson’s method of systematic overrelaxation has already been described in the Intro-
duction. Using a fixed relaxation factor w, the rate of convergence cannot in general be appreciably
increased. Cousider the Dirichlet Problem for example. In the notation of (1.14) and (1.15), the
improvement formula (0.13) becomes, (if we replace wa;; by w),

N
(I11.0.1) ugmﬂ) =wy, bi,jug-m) + we; — (w — 1)u§m) (t=1,2,...,N)
=1

or
(II1.0.1a) ™) = R, [u™] + we.

We observe that a vector 7 is an eigenvector of R, with eigenvalue z if and only if
N

(I11.0.2) Bri=wy b — (w—1)7 (t1=1,2,...,N).
j=1

But if
Klr] = pr

(I11.0.3) wjgjl bijri — (w—1)r; = wpr; — (w —1)r;

=riwp — (w—1)] =71 —w(l — )] (t=1,2,...,N).
Therefore
(I11.0.4) Rolr] =1 —w( —p)lr

and
(1 —w(l—p)]

is an eigenvalue of R,,.
By Theorem 3.1, Corollary 2, R, will converge if and only if

(111.0.5) 1—w(l—p) <1

for all eigenvalues p of K.
For the Dirichlet Problem, all p are real. Moreover, if 1 is the largest eigenvalue of K, (—u1)
is the smallest by Theorem 4.3 and the above requirement is equivalent to the condition

(II1.0.6) O<w<

1+pr
Therefore, the rate of convergence cannot be increased by a factor of more than 2/(1 + p1) which
is very slightly greater than one, since p is in general very nearly one.

As stated previously, Richardson varied w on each iteration. For the Dirichlet Problem, the
improvement formula may be written

7

N
ML0.7)  wl™ = w3 bigul™ 4 wimci — (wm — Du(™  (i=1,2,...,N)
j=1
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or
(I11.0.7a) umt) = Ry, [ul™)] + wpe.
If

N
(I11.0.8) e =40 — 4y = 5 Apr®)
k=1

where {r(¥)} is the orthonormal set of eigenvectors of K, then it can be easily verified that

N m
(I11.0.9) e =y —yu = 5 Apr®) T (1 — wy (1 — ug))
k::l ’y:l

and
(IL0.10) et = 2A2 ﬁ1<1—w7<1—uk)>

Thus, the effect of using w > 2/(1 + p1) on one iteration is compensated by using w < 1 on other
iterations. By (I11.0.9), we note that if an eigenvalue py is known exactly the coefficient Ay of the
corresponding eigenvector can be removed on one iteration by setting w = 1/(1 — uy) . In fact, if
all pg, (k=1,2,...,N), were known, the error could be reduced to zero after N iterations.

In practice however, all the uj are seldom known and even if they were, the number of iterations
would be prohibitive by the above method. Richardson chose values of w approximately evenly
spaced in the range

I<w<

I—m
in an attempt to reduce

m
H (1 = wy(1 — pug))
y=1

as uniformly as possible for all p.

However, from numerical studies for a square region with 20 intervals on a side (where all py
are known), it appears doubtful that the gain in convergence rate could be made to exceed a factor
of five, except by a very fortunate choice of the w,.

As stated in the Introduction, one can by successively modifying the values of ugm) and using
new values as soon as they are available, use just one fixed relaxation factor, and yet obtain a large
increase in the rate of convergence. The improvement formula for the Successive Overrelaxation

Method is, in the notation of (1.14) and (1.15), by (0.15)

(I11.0.11) (m+1) =w Z b; ,]u(mﬂ) + Z b; ,ju( ™ (w— 1)u§m) + we;
j=i+1

or

([L0.11a) ™™ = Lo, [u™] + we .

52



§8. Eigenvalues and Eigenvectors

In order to study the rate of convergence of the Successive Overrelaxation Method, we shall analyze
the eigenvalues and eigenvectors of L, ,,. We restrict ourselves to the case where (a; ;) has property
(Aq) and where the ordering o is consistent.

Theorem 8.1 R
(8.1) Lou[0] = A0

’

if and only if

(8.2) {Zbu,\vfer,Jug} (=18 =A% (i=12,...,N).

j=i+1

The proof is immediate by (II1.0.11).

Theorem 8.2 If K[r] = pur

(8.3) At (w—1) = wur/?
(8.4) 5= N7
then R

(8.5) Lsu,[0] = A7,

where +y is the ordering vector, (see Section 5).

Proof: If % = A%/2r;  (i=1,2,...,N) andif

A+ (w—1) = wprl/?

then

j=i+1

{wamﬁ > b”v]} (w—1);

i—1 N
=w {Z bi,jx NV 2 4 Z bi,jX”/Qﬁj} — (w — D)X/ ?p;

j=1 j=it+1

But for b; ; = 0, we have

i = Y+ 1 (7 >1)
’ Y — 1 (4 <)

Hence, we have for the last expression

N
wA(it1)/2 > bigry o — (w— DAY/ 2r; = [wpA'/? — (w — 1)]X/?r; | by (4.3a), and
iz
=A% (i=1,2,...,N),

by (8.3). Hence, ¥ is an eigenvector and X is an eigenvalue of L, ,, by Theorem 8.1.
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Theorem 8.3 If K[r]=pur and

(8.6) pPw? —4w—-1) = 0
Low[®] = b
At (w—1) = wpr?
7 o= N/
o d_ v (v/2)—
! _ Zo5=(L v/2)—1
(8.7) 0] d/\'u (2 1A T
then R
(8.8) L, ,[0] =27 +7.

We call 9’ an invariant vector of L, .

Proof: R
Lemma 8.1 If £, ,[0] = A then
Low@ =20 +70

if and only if

The proof is immediate from (II1.0.11).
We have for all: =1,2,...,N

i—1 N
w {Z bi,j()\ ’l/)\; + ’l/)\j) + Z b@jﬁé} — (w — 1)’[7;

j=1 j=i+1

i1 _ N _ R 4 R
=w {Z bi,jX,Yj/Q (’;—J) rit+ > bij (f;—J - ) /\(71/2)_17"]-} —(w—1) (722 — 1) A2 =1
j=1 j=it+1

Since

) vtl J >
Vi ’)’i—l j<Z

the last expression becomes
N
wh(i/2)-1 (71__1) Zbi i — (w— 1)A/2-1 (ﬁ — 1) ;.
9 e 700 2

By (4.3a), we have

~ 1 ~ )
Rt f (B2 w3 — =) (E 1) e

Setting  wpA/2=(w—1)4+ A and p2w?—4(w—-1)=0 we get

A= (w—1) and pw = 2A/2.
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Hence, we have

{27\(%/2)—1 _ 3 (75 _ 1) } A/D-1,. {; 75 _ 1) n ;} R(i/2)-1,,.
= Aol 47, (i=1,2,...,N)

The theorem follows by Lemma 8.1.
Q. E. D.

Corollary 8.1 If (a;,) is symmetric and if p is a k-fold root of | — puI| = 0 and satisfies (8.6),
then there exist k£ linearly independent eigenvectors and k linearly independent invariant vectors
of L4, associated with the eigenvalue X given by (8.3).

Theorem 8.4 If y;, ¢ =1,2,..., N, are the eigenvalues of K and if w > 1, then all the eigenvalues
of L, are given by
(8.10) A+ (w—1) = wuAl/?

Multiplicities of the eigenvalues are preserved.

Proof: Let L, — | = |Ei,j| , where by Theorem 8.1,

—(w—1)—A i=j
Ez{,j = u)bm' 1< g
XWbi,j 1>
By Theorem 5.3, |(€] ;)| = |(€}';)], where
o _ —(w—1)—A (i=j) (i=1,2,...,N)
" A/2p; ; (i£j) (=12,...,N)
Therefore
371 _ . N3N/2 _(w—l)‘*‘j\
Lo — M| = WVAN2|K =51
_ wN’XN/21]_V[ u._(W—l)ﬂLX
- itz
i=1 wAl/2
N ~ ~
= [Twmd? = [(w —1) +X).
=1

Therefore, [Ly,, — M| vanishes if and only if

wpA? = (w—1)+ X,

with multiplicities preserved.

55



Theorem 8.5 For w > 1, if (a; ;) is symmetric, the normal form of the matrix of L, is diagonal
except for the submatrix associated with A(u) defined by (8.3) where pw? — 4(w — 1) = 0. In the
latter case, if p is a k-fold root of |KX — uI| = 0 in the normal form, the associated submatrix has
2k diagonal elements equal to X(u) and has alternating zeros and ones in the diagonal immediately
below the main diagonal.

Proof: Solving (8.3) for X1/2, we get

~ wi; £ /w?p? — 4(w — 1)
(8.11) S22V 3 -

If w > 1 and if w?p? — 4(w — 1) # 0, we get two distinct solutions

1y WHi T \/wQM% —4(w—1)

(8.12) X (i) :

(8.13) A (i

~n )1/2 Wi — \/‘*’21“12 —4(w—1)
= 5 .

By Theorem (4.3), the non-zero eigenvalues of K occur in pairs. We note that
~! ~n
(8.14) X (pi)' 2 = =X (—pa)/?

~I ~/
(8.15) X ()% = =X (=)'
There are three cases to consider

(a) If w?p?—4(w—-1)>0:

We get two distinct, real positive values Xl(ui) and X”(ui) and two distinct eigenvectors defined
by (8.4). The pair of eigenvectors associated with p; are clearly identical with the pair associated
with those associated with —u; by (8.4), (4.16) and (8.11). Thus, for each pair (u;, —u;) satisfying
(4.3), we get two linearly independent eigenvectors of L, ,. Of course, if w > 1,u; # 0 since
wu? > 4(w —1).

) If w?u?—4(w-1)<0:

In this case, we get two distinct complex eigenvalues X and X unless i = 0. If y; =0 1is a
fold eigenvalue of K we get by (8.4), k linearly independent eigenvectors of L, with eigenvalue

k-
A=—(w—1). Ifp; #0
~ w +'l . —~ w —'l .
R () 12 = IR = S

where (2 = 4(w — 1) — w?u? > 0.

As in (a), we obtain exactly two distinct complex eigenvectors of L, for each pair of eigenvalues
(i, —p;) of K. If p; is a k-fold eigenvalue, we obtain k such pairs.

() If w?p?—4(w—-1)=0:

We obtain in this case invariant vectors by Theorem 8.3. If u; is repeated k times, there are k
linearly independent eigenvalues associated with X(uz) and k invariant vectors by Corollary 8.1 of
Theorem 8.3. Q. E. D.
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~1/2
Let us replace A / of equation (8.3) by z and p by w. We obtain the Joukowski transformation
(8.16) 2+ w—1z ' =ww.

Solving for z, we have

w w % Jww? — 4(w — 1)

(8.17) z=zw(w) = 5
Let
, L ww+ Vww? — 4w —1)
(8.17a) 2 (w) = 2
o () = w— \/w2u2)2 —4(w—1)
(8.17b) aw (w) = max( |z, (w)], |2g (w)] )-

We note that ay(w) = aw(—w).

Theorem 8.6 If A is a positive real constant and if

2
1—+v1-— A?

(8.18) oy =14 |V ]

A
then
(8.18a) |2, ()]? = |wp — 1 for all real w, (jw| < A)
and
(8.18b) faw) = lub law(w)P? > |wy — 1]

—A<w<A
w real
if w # wy.
Proof: We assume throughout that w is real.
4 w—1

Lemma 8.2 If w? < %
2 (w) is complex and |zy (w)|? = |w — 1].
Proof: The proof follows from (8.17). Q.E.D.

4w—1
Lemma 8.3 If w? > w3 > LQ)

w

then

aw(wi) > aw(we) .
Proof: By (8.17a) and (8.17b), we may assume wy, w9 positive, if we take the sign of the radical
as plus.

w(wy — ws) +\/w2w —4(w—1) \/w2w —4(w—1)
2
w?(wf — w3)

\/wa% —4(w—-1)+ \/wa% —4(w—1)

aw(w1) —aw(we) =
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Lemma 8.4 If 2 > w; > wy > 0, then

4(w1 ; 1) > 4(LU2 ; 1) )

w1 w2
Proof:
4((4)1 - 1) . 4((4)2 - 1)
w12 w22
4 w1 w2
= — — —(2 — —2(2 —
% (w1 —w2) 5 ( wa) + 2 ( wi)| >0
4((4}1 — 1)

Lemma 8.5 If 2 > w; > wy > 0 and if w? > s—, then

w1

aw; (W) < awy(w) .

4wy —1
Proof: By Lemma 8.4, w? > 221 Noy,
w2
— 2w? —4 —1)— 202 — 4 1
awy (W) — awy (w) = o 2 2w + Vwiw (w1 —1) B Vw?w (we — 1)
Wi T W w?(wi? — wo?) + 4(we — w
:(12 2)w_|_ (21 2?) + 4(wa — w1)
E\/Wf'wZ—él(wz—l)
i=1
_ (w1 —w) (w1 — wa) {w’ (w1 + wa) — 4}
2

2
> \/w?wQ —4(w; — 1)
i=1

2
o1 — ) | 2V = 07w = 1) + (P =2
1=

2

2
> \/w%uﬂ —4w; — 1)
i=1

But {\/cu?w‘L —4dw?(w; — 1) }2 = (2 — wiw?)? + 4(w? — 1) (1=1,2).

Since 2 — w;w? > 0, we have

\/w2w4 — 42 (w; — 1) — (2 — waw?) <0 (1=1,2)

7

and ay, (w) — awy(w) < 0. This proves the lemma.

The theorem now follows from the lemmas.
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Theorem 8.7 If (a; ;) is symmetric, and if the relaxation factor w = wy is used, where

1\/1;&]2

(8.19) wp =1+
M1

then the rate of convergence of L, is maximized. The rate of convergence of L, ), is

(8.20) $(Low,) = —log(wp —1) .

Moreover, for all 7,
(8.20a) M) | = wp — 1.

Proof: The proof follows from Theorem 3.1, Corollary 3.1, and Theorem 8.6, and the fact that
because (a; ;) is symmetric the eigenvalues of K are real.

Corollary 8.2 1<wy <2,

Proof: Since 0 < p1 < 1, we can let

U1 = cos @ , where O<9§g
[1—sin0]2

wp=14+ |———

cos 0
1 —sin@ T 0
Th i 27y
e cos 0 tan(4 2)

Therefore 0< 1_781119 <l1.
cos 0

Q. E. D.

Theorem 8.8 If (a; ;) is symmetric, with the value wy given by (8.19), then the normal form of
Ly w, contains precisely one non diagonal element associated with the repeated eigenvalue (wp — 1).
The submatrix is of the form

wp — 1 0
(8.21) ( ”1 wb—1> .

Proof: The proof follows from Theorem 8.4, Theorem 8.5 and Theorem 4.1.

Q. E.D
Theorem 8.9 If (a; ;) is symmetric, then for all w > wy
Ap)l = (w=1)  (=1,2...,N)
for all 4, and the normal form of the matrix of £, is diagonal.
Proof: The proof follows from Theorem 8.5 and Lemma 8.2 of Theorem 8.6.
Q. E. D.

Thus, for (a;;) symmetric, the operator L, has been analyzed completely. Even if (a; ;) is not
symmetric we have shown, Theorem 8.4, how the eigenvalues of L, can be determined from the
eigenvalues of K when these are known.

We shall now show that for properly chosen w the rate of convergence of L, is of the order of
the square root of the rate of convergence of the Liebmann Method, for (a; ;) symmetric.
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§9. The Superiority Over the Liebmann Method

A. Rates of Convergence
If N is large, p1 is very nearly one. We have

Theorem 9.1

(9.1) lim %\/1 —m=V2,

pi—1 ¢

where ¢ is the rate of convergence defined in Definition 3.2, and where wy, is given by (8.19).

Proof: By (8.20a), using wj the optimum value of w, the dominant eigenvalue of L, is given by

2
- 1—4/1—p?
(9.2 Al = wp—1= [7 Vﬂ“]
But
—log(1—/1-m?) = V20 —p)+ (1 —p) + O1((1—pwm)*?)
—log p1 = (1—m) + O2((1 - N1)3/2)
1,2
—log [%l =/2(1— ) + O((1 — p)*?).

Therefore, by (3.3) and (5.7),

¢(Eo—,wb)_—log|X(m)|_ V2 e
¢(Ls)  —2logu _m"'o((l p1)7)

and the theorem follows.

Q.E.D
Corollary 9.1
(9.3) $(Low,) ~ 2 [$(L)]T? .
Proof: This follows since
$(Lo) = —2log p1 = —2(1 — p1) — 2 Oz((1 — p1)*?) .
Q. E. D.

B. Number of Iterations Necessary to Reduce the Error by a Specified Amount
If the best overrelaxation factor, wy is used, the number of iterations necessary to reduce the
error to a specified fraction of itself is, by Theorem 3.3, approximately for small p

—logp

(9.4) N (Lo, p) ~ m .

For py nearly equal to one, we have

—log (wp —1) ~2vV2\/T — i1 .
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Therefore

—logp
9.5 N ‘Cawba S —
(9.5a) (Low,»P) NN

and for the Liebmann Method

—logp
9.5b L ~
Hence, as already stated in the Introduction, if the required number of iterations is of the

order of h=* by the Liebmann Method, that number is of the order of A=%/2 by the Successive
Overrelaxation Method. For the Dirichlet Problem, by (7.2), k = 2.
For the Dirichlet Problem and for the ordering o2, we can derive an upper bound for N'(Lg, ., p) -

Theorem 9.2 For the Dirichlet Problem, if |X1| = w — 1, where
2
1—/1- u%]

w>wp =1+
B

then N (Ly, 0, p) is not greater than the largest solution m of
(9.6) m|™ ! =p/5 .

Proof: By (4.21) and (4.24), we have for any f € Vy

5/2 N-5/2
f= ZAJ'TU) + A;fr*(j) + Z Ajr(j)
Jj=1 5/2+1
N
and 17112 = 3 42
j=1

By (8.4), since Xz/z =(1-9)+ X;/ny , we have
o 59 = [(1—n)+ X;/% ] )

70 = [(1-9)+ X;.”% ] 70)
where

S1/2 wpj + \/‘UZM? —4(w—1)
(9.7a) i 2

~*1/2 Wi — \/‘UZM? —4(w—1)

Aj =

2

and
(9.7b) Loaoo) = A0

Loyo[t*@] = X;’\*(J)
Since ' '
(9.8) ) =1 =29 (=1,2,...,5/2)



we have

o) = 1 Z % G) 4 1 40
(9.9) , . (j=1,2,...,5/2)
. +a; . a} .
50 — 7 .(4) g ()
v 2 r + 2
where, for convenience, we let
XI/Q
J = A _ _
(9:10) L (G=120.,5/2)
aj = Aj
Conversely, we have
A0 = 1T 60 1A )
R @ = : _
(9.11) I (G=1,2,...,5/2) .
p) = %0 1 )
aj - aj a/j - a/j

r0) =) and  %0) and 5*)  are linearly independent.

NNV

oS
Moreover, 1f - <j<N-—-

For N = 523 LK) =0, and L9 =—(w-1)0).
Thus, we may let B -
50 = 50 = ) =2 il
v v T (j 5 +1,...,N 2).
We have
5/2
12 1—a;*) + A%(—1—a;*) } 50
(9.12) f= 2%_% {Ai0 =0 + 45(-1 - 0"} 0
N-3/2
A1) + A0+ a) ]+ Y 40
i=(5/2+1
and ~
5/2 a:2m _ g .x2m
Lo ulfl =2 l ;(a. _aj_*) {45(=1- 0" (1 + ) + 4;(1 — aja;") }
a_2m + a_*2m ) a/,2m _ a_*2m . . .
a?m 4 apm ] N-5/2 - _
‘f‘%flj ] ) + Z aj2 Aj’l“(J)
i=(3/2)+1
5/2 N-5/2
— ZAj(m)r(j) + Aj*(m),r*(j) + X aj2mA§_m)T(j)
3=1 §=(8/2)+1
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By (8.11) and (9.10), either a; and a;* are each real and positive or else they are complex conjugates,
with positive real parts. Moreover, |a;| < 1 and |a;*| < 1. Thus, we have

( 2m *2m,
a; — Q; _ _
J J S 2m|aj|2m 1

P Lk
aj — aj

1 —-aja;" <1

(- a))(1 - a")| <2

( [(T+a;")(1 +ay)| <4

where
|a;| = max(|a|, [a;"]).
Therefore,
(9.12a) { A< omlag P ALA] A + a2 A,
45 < mla Pt 21A4y] + A + a4

By the same method, it can be shown that the above inequality holds even if a; = a;* which is
possible for w = wy. In this case, a; = a} and 7*(1) is replaced by the invariant vector (see Theorem
8.3)

where
o) = (1) — ).
Thus, the inequality (9.12a) is valid for all w > wy.
We now have
5/2
Im WL I12 < Y {ma P47 + 514,
j=1

N-5/2
124501457+ ™42+ A+ Y AP ePm
j=(8/2)+1
Therefore R
1£5, L[] 17 < 20[ 2P0 Dm?| £
(9.13) or

1252 U] 1< Bmf X ™ £

Hence, if N is the largest solution of
m[M[™ = p/5

forall m>N
125, oIl < pll fII -
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The reduction of the number of iterations required using the Successive Overrelaxation Method
is seen by (9.6) to be in general not as large as the gain in the rate of convergence. However, when
p is very small the gains in each case are approximately equal. For small p and for y; nearly one

—logp
N(Lss, p) ~ Tlog

and by Theorem 9.1
—logp
N (Leswy:p) ~ JTog n

For the Dirichlet Problem, for unit square with h = 1/I we have by (4.30) and Theorem 5.4

2 2

™ ™
)\1’\-’1—? N _]OgAlNﬁ

By Theorem 8.7

~ 27
—log )\1|w:wb ~ T
—log Xl‘w:wb 21
—log Ay T
Thus, the gain in the rate of convergence by using the Successive Overrelaxation Method is of the
order of I.

C. The Use of Large Automatic Computing Machines.

The large reduction in the required number of iterations makes the Successive Overrelaxation
Method much more practical for use with large automatic computing machines. A study of the
coding for the UNIVAC for a Dirichlet Problem to be solved by means of the Liebmann Method
[31] (see also Section I1.4) reveals that only two additional memory locations would be required to
use the Successive Overrelaxation Method and that the time per iteration would not be increased
by more than 10%. For both methods, the stored values which are used on each operation are the
values of u at the same set of net points.

The following table gives a comparison of the estimated number of iterations required using the
Liebmann Method and the Successive Overrelaxation Method for the Dirichlet Problem with the
unit square with I intervals on a side. Time estimates for the UNIVAC are also given. [See Table
next page.]
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Table 9.1

THE LIEBMANN METHOD THE SUCCESSIVE OVERRELAXATION METHOD
I A1 N(Ls,p)  Timet wp A N(Low,,p)t Timet
20 || .9754 280 31 1.755 .755 45 .05
50 || .99605 1750 12.15 | 1.882 .882 106 .74
100 || .999015 7010 195.0 | 1.940 .940 227 7.95
300 || 999890 63300 15,750 | 1.980 .980 750 186.5

In the above estimates p was assumed to be 1073. For smaller p, the advantage of the Successive
Overrelaxation Method would be greater.

Since p; = /A1 is known exactly for a square or rectangular region, the determination of wy
was easy in the above examples. In the next section, we discuss methods for choosing wp for more
general regions.

t N(Low,,p) is the solution of mlwy — 1™~ ! = p/5 .
N (L, p) is the solution of A" =p .

!The estimated time is in hours computing time for the UNIVAC. The number of seconds per iteration was
assumed to be I°/100 , [31].
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§10. The Determination of the Optimum Relaxation Factor

2
1—4/1—p?
S S ] where p4 is the

By (8.19), the optimum relaxation factor wy is given by wp = 1+
M1

largest eigenvalue of the Kormes Method.
For the Dirichlet Problem, 1 can be expressed in terms of uf, the smallest eigenvalue of the
finite difference analogue of

n 9%u(x)
= —A
(101) k=1 B.T% U(.’E) ve R
u(z) = 0 z€eS
which is given by
n .
(10.2) ([ Z Ey +E 4 — 2n] u) = —uTu () € Ry)
k=1 i
w = 0 (2 € Sp)
By (10.2) and (4.3a), we have
(10.3) on(l— ) =pf.
Also, by [8]
uT
(10.4) lim =% = A;.

h—0 h2

where A; is the smallest eigenvalue of (10.1).

The relation between u7 /h? and A; has been investigated by Collatz ([7], pages 280-297) and
the agreement has been shown to be remarkably close for some regions even with coarse meshes.
Ay can be computed exactly for some regions including the circle ([9] page 260), and the ellipse
[15]. Of course, p1 itself can be computed exactly for square or rectangular regions, (4.28).

For the case of a rectangular region with side lengths

Ikh:Tk (k:1,2,...,n),

we have
(10.5) A ”22n:1 Qil
' 1=352. 2~ 7 i
b= I k=1 Tk

By (10.3) and (4.28),

ui 1{ i }
— = —<K2n-2 COS —
h2 h2 =
7'('2{” 1 1&1 6
= > =152 1 T OR)
R\ \ZR 1221;
T n 2 n
M1 L h 1 6
(10.6) —:w{ - —}+o(h).
A PO A PP I



Hence, the convergence of uf /h? to A, is, in this case very rapid.

In any case, for the Dirichlet Problem, a lower bound to uf can be found by computing u? for
a circumscribing rectangular region, because of the Theorem 4.2, Corollary.

We now show that for the general self adjoint case, if (1 — u1) is not overestimated, the relative
decrease in the rate of convergence is, asymptotically, for small errors in (1 — ;) and for small
(1 — p1), equal to one half the relative error in the estimation of (1 — u1).

Definition 10.1 The relative change, or error, of 3y with respect to y is

{\y’—yl} (y £0) .

ly|

Theorem 10.1 Let ;1 be the dominant eigenvalue of K and let ) be the estimated value of y;
such that

p < py <1
Then
‘ (Lo )ﬁ_ $(Low) ‘ .
(10.7) lim { lim o) — -
pi—=1 gl -

A —pH-A —p1) ‘ 2
I—m
where w, w' are determined from (8.19) based on p; and ) respectively, and where ¢(L, ) and

#(Lyr) are the rates of convergence of L, and L, respectively.
Proof: The left member of (10.7) equals

d
——— [log #(Low)]
(10.8) lim —21
pu1—1 d

iy los(l = )]

provided the derivatives exist. Now let y; = cos6; by (8.19)

1—sin6 T 0
2270 r_Z
(w=1) cos 6 an(4 2)
LI V- S S YL
g~ = mgse(z =)
0 og #(Low)] =~ [log(~log(w — 1))
m 0og ow = din 0g ogl\w
d d
2 (“log(w—1 9 % (w12
I
—log(w —1) —log(w —1) - (w —1)1/2
de
9 T (- 2
_ u1(w dp
—log(w —1) - (w — 1)1/2
T 0
_ SeCZ(Z—i) do
“logtan?(" — %) - tan(® — &) dm
logtan(4 2) n(4 2)



d 1 do
H —logtan(~ — =) - cosf M
4 2
Also
d 1 du db 0 do
10.9 ——log(1 — = — — =cot - — .
(10.9a) dp og(1 =) = d9 dp 2 dm
The left member of (10.7) equals
tan — 1
(10.10) lim 2 ==
=0 tan(% — g) - cos 6
by I'Hépital’s Rule.
Theorem 10.2 HLor)
10.11 I o)
( ) /J'llgl ¢(£U,w) \/E
where
(1—p1)=C(1—m) (0<¢<1,

and where w,w’ are determined from (8.19) using p; and i} respectively.

Proof: w > ', hence all eigenvalues of £, have absolute value |w' — 1|

¢(£a,w’) _Z log(w, - 1)
A(Low) —log(w —1) °

Let p1 =cos@, pf =cosé where 6' <46

1—cosf' = ((1—cosb)

o' 0
sin’ 7= ¢sin® = .

2
But, as in Theorem 10.1,
1—sinf T 0
10.12 B Y e e A N A
1 —siné’ T 6
10.1 oy 7 7y,
(10.13) (W' =1) g~ tan(y = 5)
Neglecting terms in 6 and 6’ of degree higher than the first we have
(10.14) 0 = /(0 +0(0)

and
—2log(w — 1)'/% = 20 + o(0)

—2log(w’ —1)/2 = 26 + 0(0)

where 0(f) vanishes with 6. Hence, the theorem follows.
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From this, it can be seen that even if (1 — u1) is underestimated by as much as 50% the rate
of convergence will be decreased by less than 30%. Since the gain in the rate of convergence of
the Successive Overrelaxation Method is of an order of magnitude, however, such an increase is
relatively unimportant.

On the other hand, if ( > 1 we have

_ W'y \/WIQN% —4(w' - 1)
¢(£a,w’) = - log{ 9 + 9

where wp? —4(w' —1) =0 by (8.19). Therefore

¢(Low) = —log {%I [m +/uf - u’f] } -

If uf =cosé, by (10.13),

1—sin@ T ¢
I 1 1/2 - "7 o=
(w ) cos 0’ ta,n(4 2)
0/
W' = secQ(% — 5) .

Neglecting terms in 6’ higher than the first and setting 6’ = /{0 + 0(0) as in (10.14)

¢(£a,w’) =0 [\/Z — V(- 1] + 0(9)

Since ¢(Ly) =0+ 0(0) , we have

¢(['a,w’) _
(10.15) [m] =VE—VC—1+0(0).

Because of the presence of the term +/( — 1 , the derivative of the above ratio with respect to
¢ becomes large as ( approaches one. Thus, it is always better to underestimate (1 — u1), i.e.
be sure ( < 1.

As stated in the Introduction, the fact that the gain in rate of convergence is not very sensitive
to relative changes in (1 — u1) (aslong as (1 — p1) is not overestimated), suggests that not only
for the Dirichlet Problem but for other self adjoint equations the relaxation factor can be chosen so
that the problems can be solved much more rapidly. For equations of the type (1.11) where (a; ;)
is not symmetric, however, the eigenvalues of K are not in general real and the gain in convergence
which could be obtained, even with the best relaxation factor, is much less. Nevertheless the
relation between the eigenvalues of K, £, and L,, are valid. The study of the convergence of
L, and L, is therefore simplified.

69



References

1]
2]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

S. Bergmann, Partial Differential Equations, Advanced Topics, Brown University, (1941).

W. G. Bickley, “Finite Difference Formulae for the Square Lattice,” Quar. J. Mech. and App.
Math. 1, 253-279, (1948).

G. Birkhoff and S. MacLane, A Survey of Modern Algebra, New York, Macmillan, (1946).

O. Bowie, “A Least-Square Application to Relaxation Methods,” J. App. Phys., 18, 830-837,
(1947).

O. L. Bowie, Electrical Computing Board for the Numerical Solution of Partial Differential
Equations, Watertown Arsenal Laboratory Report, WAL 790/22

L. Collatz, “Bemerkungen zur Fehlerabschitzung fiir das Differenzenverfahren bei partiellen
Differentialgleichungen,” Zeits. . Angew. Math. u. Mech., 13, 56-57, (1933)

L. Collatz, Eigenwertprobleme und Ihre Numerische Behandlung, New York, Chelsea Publish-
ing Co., (1948).

R. Courant, K. Friedrichs and H. Lewy, “Uber die Partiellen Differenzengleichungen der Math-
ematischen Physik,” Math. Ann. 100, 32-74, (1928).

R. Courant and D. Hilbert, Methoden der Mathematischen Physik, I, Berlin, Julius Springer,
(1931).

A. Dresden, “On the Iteration of Linear Homogeneous Transformations,” Bull. Amer. Math.
Soc., 48, 577-579, (1942).

H. Emmons, “Numerical Solution of Partial Differential Equations,” Quar. App. Math. 2,
173-195, (1945).

H. Geiringer, On the Solution of Systems of Linear Equations by Certain Iteration Methods,
Ann Arbor, Michigan, Reissner Anniversary Volume, 365-393, (1949).

S. Gerschgorin, “Fehlerabschitzung fiir das Differenzenverfahren zur Losung Partieller Differ-
entialgleichungen,” Zeits. f. Angew. Math. u. Mech., 10, 373-382, (1930).

D. Hartree, Calculating Instruments and Machines, Urbana, Univ. of Illinois Press, (1949).

J. Herriot, The Principal Frequency of an Elliptic Membrane, Technical Report No. 3, Navy
Contract N6-ORT-106, Task Order 5, California, Stanford University, August, (1949).

T. J. Higgens, “A Survey of the Approximate Solution of Two Dimensional Physical Problems
by Variational Methods and Finite Difference Procedures,” Chapter 10 of Numerical Methods
of Analysis in Engineering, New York, Macmillan, (1949).

D. Jackson, Fourier Series and Orthogonal Polynomials, No. 6, Carus Mathematical Mono-
graphs, Mathematical Association of America, (1941).

O. D. Kellogg, Foundations of Potential Theory, Murray Printing Co., (1929).

M. Kormes, “Numerical Solution of the Boundary Value Problem for the Potential Equation
by Means of Punched Cards,” Rev. Sci. Inst. 14, 248-250, (1943).

70



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

L. Lichtenstein, “Neuere Entwickelungen der Potentialtheorie, Konforme Abbildung,” Encyk-
lopadie der Mathematischen Wissenschaften, I11. C. 3, 177-377.

H. Liebmann, “Die Angendhrte Ermittelung harmonischer Functionen und Konformer Abbil-
dungen,” Sitz-Bayer. Akad. Wiss. Math.—Phys. Klasse, 385-416 (1918).

C. MacDuffee, Introduction to Abstract Algebra, New York, New York, John Wiley and Sons,
Inc., (1940).

W. E. Milne, “Numerical Methods Associated with Laplace’s Equation,” to be published in
the Proceedings of the Symposium on Large-Scale Digital Calculating Machinery, Cambridge,
Harvard University, September, (1949).

D. Moscovitz, “The Numerical Solution of Laplace’s and Poisson’s Equations,” Quar. App.
Math. 2, 148-163 (1944).

H. B. Phillips and N. Wiener, “Nets and the Dirichlet Problem,” J. Math. and Phys., 28,
105-124 (1923).

L. F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical
Problems Involving Differential Equations With an Application to the Stresses in a Masonry
Dam,” Phil. Trans., 210 A 307-357 (1910).

C. Runge, “Uber eine Methode die partielle Differentialgleichungen Au = constans numerisch
zu integrieren,” Zeits. f. Math. u. Phys. 56, 225-232, (1908-09).

Ludwig Seidel, Miinchener Akademische Abhandlungen, 2 Abhandlungen, 81-108, (1874).

D. Shanks, An Analogy between Transients and Mathematical Sequences and Some Nonlinear
Sequence-to-Sequence Transformations Suggested by It, Naval Ordnance Laboratory Memo-
randum 9994, White Oak, Maryland, 26 July, (1949).

G. H. Shortley and R. Weller, “The Numerical Solution of Laplace’s Equation,” J. App. Phys.
9, 334-344 (1938).

F. Snyder and H. Livingston, “Coding of a Laplace Boundary Value Problem for the UNIVAC,”
Math. Table and other Aids to Computation, IT1, 341-350, (1949).

R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford University Press, (1946).
J. F. Steffensen, Interpolation, Baltimore, Williams and Wilkins, (1927).

Stein and Rosenberg, “On the Solution of Systems of Simultaneous Equations by Iteration,”
Jour. London Math. Soc., 23, 111-118, (1946).

G. Temple, “The General Theory of Relaxation Methods Applied to Linear Systems,” Proc.
Roy, Soc. A 169, 476-500 (1938-39).

H. Thomas, “Elliptic Problems in Linear Difference Equations over a Network,” Lecture notes,
Watson Scientific Laboratory, New York, 1-7.

D. Widder, Advanced Calculus, New York, Prentice Hall, Inc., (1947).

71



Summary

Iterative Methods for Solving Partial Difference
Equations of Elliptic Type
David M. Young, Jr.

The finite difference analogue of a boundary value problem involving a linear, second order
partial differential equation of elliptic type can be reduced to a system of linear equations of the
form

N
(1) > aiguj+di =0 (i=1,2,..,N)
j=1

where the coefficients a; ; satisfy the conditions

([ (a) ai; >0 (i=1,2,...,N)
N .
(©) aii> Y laigl (1=12,...,N)
j=1
#i
2) 4 and for some %
N
ai; > 3 lai
i=1
J#t
(d) The N x N matrix (a; ;) is irreducible, that is, given any two
non empty complementary subsets, Sg and S, of the set of the first
{ N integers there exists a; j # 0 such that ¢« € Sg and j € Sp.

For the self adjoint case,
(3) a;j = aj; (1,7 =1,2,...,N).

Geiringer [12] has shown that if (a; ;) satisfies (2), then (1) has a unique solution. Actually obtaining
the solution may be very laborious. In this thesis the practicability of various methods for solving
(1) is considered, with special emphasis on those adapted to large automatic computing machines.
Particular attention is given to the finite difference analogue of the Dirichlet Problem.

Direct methods such as the use of determinants and elimination do not appear practical for
large N, and various methods of successive approximation are usually employed, including iterative
methods and relaxation methods. For successive approximation methods, an arbitrary initial ap-
proximation () = (u§°), ug)), . ,us\?)) is chosen and successively improved. In Chapter I known
proofs are given for the convergence of u(™ to the solution of (1) as m — oo.

Iterative methods appear to be most suited for large automatic computing machines. The usual
methods are the Kormes Method and the Liebmann Method. The sequences {u(™} are defined as

follows

(a) The Kormes Method

N

(4) u™ = 3By lm S =12, N)
- Qi Qg
J#i
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or

(4a) ™) = K [u(™)] + ¢,
where p J p
(5) C:(__la__Qa"'a_ N
ail’ a2 aNnN
(b) The Liebmann Method
1 =l ) N og d:
X S @i @i
or
(6a) uw™tD) = £, [w™] + ¢

where o denotes the ordering of the equations.

The rates of convergence of these methods depend on the dominant eigenvalues of the linear
operators K and L,, which are linear operators on the vector space Vi of N-tuples of complex
numbers. For the study of these, we use the fact that (a; ;) has property (A4,) for some integer q.
Definition: (a;;) has property (Aq) if there exist non empty disjoint subsets 71,75, ..., T, of T,
the set of the first N integers, such that LqJ Ty = T, and such that the Ty can be labeled so that

=1
a;j=0unlessi=j or i €Ty and j € Ty—1 UTp41. (To and Ty denote the empty set.)

Using this property, we show that the eigenvalues u of K occur in pairs (u, —p). There exist
certain orderings! of the equations such that to each such pair there corresponds an eigenvalue
X = u? of L,; hence, the rate of convergence of £, is exactly twice that of K. An explicit expression
of the eigenvectors of L, in terms of the eigenvectors of K is also given. For the symmetric case,
all eigenvalues of I and £, are real and the Jordan normal form of the corresponding matrices
are diagonal with the possible exception of the subspace asssociated with A = 0 for £,. If, also,
a;; = constant, as for the Dirichlet Problem, the eigenvectors of I are orthogonal. For the Dirichlet
Problem the eigenvalues and eigenvectors of K and L, can be computed exactly for a rectangular
region. For one ordering, o9, the normal form of the matrix of L, is diagonal and if the coordinates
of an arbitrary vector in Vi referred to the basis of eigenvectors of X are known, the coordinates
of that same vector referred to the basis of eigenvectors of £,, can be computed at once.

For the symmetric case, a conjecture that by the Liebmann Method the rate of convergence can
not be increased by using an ordering which is not consistent, is proved in one special case. Some
numerical studies bear out a conjecture by Shortley and Weller, [30], that for large N the rate of
convergence of L, is nearly independent of o.

The number of iterations required to reduce the norm of the initial error function

N 1/2
[u® —uf| = [Z(«é‘” —un?]

=1

to a definite fraction of itself is asymptotically for small h proportional to =2 (h is the mesh
size). For some problems where a very small mesh size must be used, the time required to obtain
an acceptable degree of accuracy, even with a fast computing machine such as the UNIVAC, is
prohibitive.

tSuch orderings are called “consistent” orderings.
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In Chapter III, it is shown that the required number of iterations can be greatly reduced by
using the Successive Overrelaxation Method, where the idea of systematic overrelaxation, first used
by L. F. Richardson, [26], is combined with the Liebmann Method. For the Dirichlet Problem, the
reduction is of the order of h~!, and for the general self adjoint case, if the required number of
iterations with the Liebmann Method is of the order of A~*, the reduction is of the order of h=*/2,
if the Successive Overrelaxation Method is used with the proper relaxation factor w. Moreover,
this new improved method can be used with any large automatic computing machine for which the
Liebmann Method can be used; the machine time per iteration would not be increased by more
than 10%.

The improvement formula is

-1 N _
(7 ugmH)Zw _Z%_,]u§m+1)_ Z az—’]ugm)—ﬂ —(w—l)ugm) (t=1,2,...,N)
i1 G ot @isi @i
or
(0.72) WD = £, ™) + we

where the subscripts o and w of L, denote the ordering, (assumed consistent), of the equations,
and the relaxation factor respectively. L, is a linear operator on Vy, and if w = 1, we have the
Liebmann Method.

If 14 is an eigenvalue of K, there exists an eigenvalue X of Lo, such that

(8) uleQ:jd—(w—l)

and conversely every eigenvalue of £,,, can be determined by (8), for some p. The eigenvectors
of L, can be expressed explicitly in terms of the eigenvectors of K. If (a; ;) is symmetric, then
the optimum relaxation factor, wy, is given by

(9) i wp = 4ws — 1)

where p; is the largest eigenvalue of K. For all w = wy, every eigenvalue of L, ,, has absolute value
(w—1), and the Jordan normal form of the matrix of £, is diagonal unless w = wjp. In this case,
the normal matrix form contains precisely one non diagonal element.

For the Dirichlet Problem, if A is small, p1 is very nearly one. 1 can be calculated exactly for a
rectangular region and for other regions can be estimated by comparison theorems. For the general
self adjoint case, provided pu; is not underestimated, (for the Dirichlet Problem a non trivial upper
bound for p; can always be found), the relative decrease in the rate of convergence, if W' > wy
is used, is approximately ¢71/2 — 1, where (1 — p}) = ¢(1 —p1) (0 < ¢ < 1) and where ' is
determined from (9), but with p; replaced by u}. Thus a relatively large error in the estimation of
(1 — p1) can be allowed and the improvement over the Liebmann Method will not suffer appreciably.
This suggests that the Successive Overrelaxation Method can be applied successfully to self adjoint
equations other than Laplace’s Equation.
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