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ABSTRACT

Computer representations of real numbers are necessarily discrete, with some

finite resolution, discreteness, quantization, or minimum representable difference.

We perform astrometric and photometric measurements on stars and co-add mul-

tiple observations of faint sources to demonstrate that essentially all of the scien-

tific information in an optical astronomical image can be preserved or transmitted

when the minimum representable difference is a factor of two finer than the root-

variance of the per-pixel noise. Adopting a representation this coarse reduces

bandwidth for data acquisition, transmission, or storage, or permits better use of

the system dynamic range, without sacrificing any information for down-stream

data analysis, including information on sources fainter than the minimum repre-

sentable difference itself.

Subject headings: astrometry — instrumentation: detectors — methods: mis-

cellaneous — techniques: image processing — telescopes

1. Introduction

Computers operate on bits and collections of bits; the numbers stored by a computer are

necessarily discrete; finite in both range and resolution. Computer-mediated measurements

or quantitative observations of the world are therefore only approximately real-valued. This

means that choices must be made, in the design of a computer instrument or a computational

representation of data, about the range and resolution of represented numbers.

In astronomy this limitation is keenly felt at the present day in optical imaging systems,

where the analog-to-digital conversion of CCD or equivalent detector read-out happens in

real time and is severely limited in bandwidth; often there are only eight bits per readout

pixel. This is even more constrained in space missions, where it is not just the bandwidth
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of real-time electronics but the bandwidth of telemetry of data from space to ground that is

limited. If the “gain” of the system is set too far in one direction, too much of the dynamic

range is spent on noise, and bright sources saturate the representation too frequently. If the

gain is set too far in the other direction, information is lost about faint sources.

Fortunately, the information content of any astronomical image is limited naturally by

the fact that the image contains noise. That is, tiny differences between pixel values—

differences much smaller than the amplitude of any additive noise—do not carry very much

astronomical information. For this reason, the discreteness of computer representations of

pixel values do not have to limit the scientific information content in a computer-recorded

image. All that is required is that the noise in the image be resolved by the representation.

What this means, quantitatively, for the design of imaging systems is the subject of this

Article; we are asking this question: “What bandwidth is required to deliver the scientific

information content of a computer-recorded image?”

This question has been asked before, using information theory, in the context of teleme-

try (Gaztañaga et al. 2001) or image compression (Watson 2002), treating the pixels (or

linear combinations of them) as independent. Here we ask this question, in some sense, ex-

perimentally, and for the properties of imaging on which optical astronomy depends, where

groups of contiguous pixels are used in concert to detect and centroid faint sources. We

perform experiments with artificial data, varying the bandwidth of the representation—the

size of the smallest representable difference ∆ in pixel values—and measuring properties of

scientific interest in the image. We go beyond previous experiments of this kind (White &

Greenfield 1999, and W.D. Pence 2010) by measuring the centroids and brightnesses of com-

pact sources, and sources fainter than the detection limit. The higher the bandwidth, the

better these measurements become, in precision and in accuracy. We find, in agreement with

previous experiments and information-theory-based results, that the smallest representable

difference ∆ should be on the order of the root-variance σ of the noise in the image. More

specifically, we find that the minimum representable difference should be about half the per-

pixel noise sigma or that about two bits should span the FWHM of the noise distribution if

the computer representation is to deliver the information content of the image.

Of course, tiny mean differences in pixel values, even differences much smaller than the

noise amplitude, do contain extremely valuable information, as is clear when many short

exposures (for example) of one patch of the sky are co-added or analyzed simultaneously.

“Blank” or noise-dominated parts of the individual images become signal-dominated in the

co-added image. In what follows, we explicitly include this “below-the-noise” information as

part of the information content of the image. Perhaps surprisingly, all of the information can

be preserved, even about sources fainter than the discreteness of the computer representation,
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provided that the discreteness is finer than the amplitude of the noise. This result has

important implications for image compression, but our main interest here is in the design

and configuration of systems that efficiently take or store raw data, using as much of the

necessarily limited dynamic range on signal as possible.

Our results have some relationship to the study of stochastic resonance, where it has

been shown that signals of low dynamic range can be better detected in the presence of

noise than in the absence of noise (see Gammaitoni et al. 1998 for a review). These studies

show that if a signal is below the minimum representable difference ∆, it is visible in the

data only when the digitization of the signal is noisy. A crude summary of this literature is

that the optimal noise amplitude is comparable to the minimum representable difference ∆.

We turn the stochastic resonance problem on its head: The counterintuitive result (in the

stochastic resonance context) that weak signals become detectable only when the digitization

is noisy becomes the relatively obvious result (in our context) that so long as the minimum

representable difference ∆ is comparable to or smaller than the noise, signals are transmitted

at the maximum fidelity possible in the data set.

What we call here the “minimum representable difference” has also been called by other

authors the “discretization” (Gaztañaga et al. 2001) or “quantization” (Watson 2002; White

& Greenfield 1999; Pence et al. 2009).

2. Method

The artificial images we use for the experiments that follow are all made with the same

basic parameters and processes. The images are square 16 × 16 pixel images, to which we

have added Gaussian noise to simulate sky (plus read) noise. A random number generator

chooses a mean sky level ν for this Gaussian noise within the range 0 to 100 but the variance

σ2 is fixed for all experiments at σ2 = 1. For most experiments we also add a randomly placed

“star” with a Gaussian point-spread function at a location (x0, y0) within a few pixel radius

of the center of the image. The intensity of the star is given by a circular 2-dimensional

Gaussian function. The FWHM of the star point-spread function is set to 2.35 pix for

convenience, and the total flux of the star—total counts above background after integration

over the array—is a variable. In the experiments to follow we set this total flux S to 2.0,

64.0, and 2048.0. Given the FWHM setting of 2.35 pix and the sky noise setting of σ2 = 1,

the peak intensities corresponding to these fluxes are 0.32 σ, 10 σ, and 320 σ.

When we add the star, we do not add any Poisson or star-induced noise contribution to

the images. That is, the images are “sky-dominated” in the sense that the per-pixel noise
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is the same in the center of the star as it is far from the star. In the context of setting

the minimum representable difference, this choice is conservative, but it is also slightly

unrealistic.

The method for setting the minimum representable difference ∆ for the artificial images

is used extensively in the experiments to follow. We define an array of factors ∆ ranging

from 24 σ to 2−8 σ, which we use to scale the data. We divide the image data by each value

of ∆, round all pixels to their nearest-integer values, and then multiply back in by ∆. For

convenience, we will call this “scale, snap to integer, un-scale” procedure “SNIP”. Figure 1

shows identical images SNIPped at different multiplicative factors; each panel shows the

same original image data but with a different minimum representable difference ∆.

In the first experiments we determine the effect of the minimum representable difference

on the measurement of the variance of the noise in the image, which we generated as pure

Gaussian noise. For this experiment we created empty images, added Gaussian noise with

mean ν (a real value selected in the range 0 to 100) and variance σ2 = 1, and applied the

SNIP procedure. Figure 2 shows the dependance of the measured variance on the minimum

representable difference [∆/σ]. As expected, the measured variance increases in accuracy as

the minimum representable difference decreases; the accuracy is good when ∆ < 0.5 σ.

In the second experiments we add a star to each image and ask how well we can measure

its centroid. We added the randomly placed “star” before applying the SNIP procedure. The

star is given a set integrated flux, a FWHM of 2.35 pix, and a randomly selected true centroid

(x0, y0) within the central few pixels of the image. Our technique for measuring the centroid

of the star involves fitting a quadratic surface to a 3× 3 section of the image data with the

center of this array set on a first-guess value for the star position. It re-centers the 3×3 array

around the highest-value pixel in the neighborhood of the first-guess value. We perform a

simple least-squares fit to these data, using I(x, y) = a + bx + cy + dx2 + exy + fy2 as our

surface model, where x and y are pixel coordinates in the 3 × 3 grid, and a, b, c, d, e, and

f are parameters. Our centroid measurement (xs, ys) is then computed from the best-fit

parameters by

(xs, ys) =

(
ce− bf

2df − 2e2
,

be− cd

2df − 2e2

)
The offset of this measurement from the true value (in pix) is then

√
(xs − x0)2 + (ys − y0)2.

For sources strongly affected by noise, this fitting method sometimes returns large offsets;

we artificially cap all offsets at 2 pix.

In the third experiments we consider the effect of quantization on the photometric

properties of the star. We have now centroided the star, and so we use the position of the

star as found in the above paragraph along with the known variance σ2 to do a Gaussian fit
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to the point spread function of the star. We only allow the height A to vary for fitting the

star, which is related to the total flux S of the star by S = A × 2πσ2. The fit is therefore

really just a linear fit which is represented by the model Ae
−(x−xs)2−(y−ys)2

2σ2 + µsky, where µsky

is the “sky level.”

Figure 3 shows the dependence of the measured centroids and brightnesses of the stars

relative to the known values as a function of minimum representable difference ∆. We

find (not surprisingly) that the accuracy by which we measure the centroid and brightness

increases as ∆ decreases; the accuracy saturates at ∆ < 0.5 σ. The expectation is that a

star of high flux compared to the noise level will be very accurately measured, even at the

highest minimum representable difference ∆ = 16 σ. At lower fluxes the offset is expected to

be larger. Figures 3 and 4 confirm these intuitions. In each of these Figures, the experiment

is performed on 1024 independent trials—each trial image has a unique sky level, noise

sample, and star position—and each trial image has been SNIPped at each value of ∆.

Tiny variations in mean pixel values, even those smaller than the noise amplitude,

do contain valuable information. In the fourth experiments we investigate this by coadding

noise-dominated images of the same region of the sky to reveal sources too faint to be detected

in any individual image. The test we perform is—for each trial—to take 1024 images, add a

faint source (fainter than any detection limit) to each image at a common location (x0, y0),

generate independent sky level ν and sky noise for each image, apply the SNIP method for

the same range of minimum representable differences ∆, coadd the images and measure the

star offsets in the SNIPped, coadded images. The star position remains constant, but each

image has independent sky properties. Just to reiterate, we coadd after applying the SNIP

procedure, but given enough images we can measure astrometric and photometric properties

of the extremely faint star with good accuracy. The coadding procedure is illustrated in

Figure 5.

Figure 6 shows that for a total star flux of 2.0, if we coadd 1024 images with independent

sky properties, we can centroid and photometer the source with similar quality to the “single

exposure” Figure 3 with a total star flux of 64.0. This is expected when the minimum

representable difference ∆ is small. What may not be expected is that even sources for

which every pixel is fainter than the minimum representable difference ∆ in any individual

image pixel, we are able to detect, centroid, and photometer accurately by coadding images

together; that is, the imposition of a large individual-image minimum representable difference

does not distort information about exceedingly faint sources. Figure 7 shows the same for

total flux 64.0; the trend is similar to that in Figure 4.

In the coadd experiments, we have made the optimistic assumption that the sky level will

be independent in every image that contributes to each coadd trial. To test the importance
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of varying the sky among the coadded exposures, we made a version in which we did not

vary the sky. That is, we made each individual image not just with a fixed star flux and

location but also a fixed sky level—different for each trial, but the same for each coadded

exposure within each trial. The differences between Figures 6 and 8 are substantial when

the minimum representable difference ∆ is significantly larger than the per-pixel noise level

σ.

3. Discussion

Because of finite noise, the information content in astronomical images is finite, and

can be captured by a finite numerical resolution. In the above, we scaled and snapped-

to-integer real-valued images by a SNIP procedure such that in the SNIPped image, the

minimum representable difference ∆ between pixel values was set to a definite fraction of

the Gaussian noise root-variance (sigma) σ. We found with direct numerical experiments

that the SNIP procedure introduces essentially no significant error in estimating the variance

of the image, or in centroiding or photometering stars in the image, when the minimum

representable difference is set to any value ∆ ≤ 0.5 σ. In addition, we showed that all

the information about sources fainter than the per-pixel noise level is preserved by the

quantization (SNIP) procedure, again provided that ∆ ≤ 0.5 σ. This is somewhat remarkable

because at ∆ = 0.5 σ the faintest sources in our experiments were fainter than the minimum

representable difference.

Although it is somewhat counterintuitive that integer quantization of the data does

not remove information about sources fainter than the quantization level, it is perhaps even

more counterintuitive how well photometric measurements perform in our coadd tests. For

example, in Figures 6 and 7, the photometric measurements are relatively accurate even

when the data are quantized at minimum representable difference ∆ = 16 σ! The quality of

the measurements can be understood in part by noting that the coadded images have a per-

pixel noise σ =
√

1024 σ = 32 σ, which is once again larger than the minimum representable

difference, and in part by noting that each image has a different sky level, so each individual

image is differently “wrong” in its photometry; many of these differences average out in the

coadd. When the sky level is held fixed across coadded images, photometric measurements

become inaccurate again—as seen in Figure 8—because individual-image biases caused by

the coarse quantization no longer “average out”.

Our fundamental conclusion is that all of the scientifically relevant information in an

astronomical image is preserved as long as the minimum representable difference ∆ in pixel

values is smaller than or equal to half the per-pixel root-variance (sigma) σ in the image
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noise. This confirms previous results based on information-theory arguments (for exam-

ple, Gaztañaga et al. 2001), and extends previous experiments on bright-source photometry

(White & Greenfield 1999; W.D. Pence 2010) to astrometry and to sources fainter than the

noise.

Our experiments were performed on images with pure Gaussian noise; of course many

images contain significant non-Gaussianity in their per-pixel noise so the empirical variance

will depart significantly from the true noise variance (White & Greenfield 1999). The conser-

vative approach for such images is to take not the true variance for σ2 but rather use for σ2

something like the minimum of the straightforwardly measured variance and a central vari-

ance estimate, such as a sigma-clipped variance estimate, an estimate based on the curvature

of the central part of the noise value frequency distribution function, or the median absolute

difference of nearby pixels (Pence et al. 2009). With this re-definition of the root variance

σ, the condition ∆ ≤ 0.5 σ represents a conservative setting of the minimum representable

difference.

The fact that a ∆ = 0.5 σ representation preserves information on the faint sources—

even those fainter than ∆ itself—has implications for the design of data-taking systems, which

are necessarily limited in bandwidth. If the system is set with ∆ substantially smaller than

0.5 σ, then bright sources will saturate the representation more frequently than necessary,

while no additional information is being carried about the faintest sources. Any increase in

∆ pays off directly in putting more of the necessarily limited system dynamic range onto

bright sources, so it behooves system designers to push as close to the ∆ = 0.5 σ limit as

possible.

To put this in the context of a real data system, we looked at a “DARK” calibration

image from the Hubble Space Telescope Advanced Camera for Surveys (ACS). The dark

image should have the lowest per-pixel noise of any ACS image, because it has only dark

and read noise. We chose image set jbanbea2q, and measured the median noise level in the

raw DARK image with the median absolute difference between values of nearby pixels (for

robustness). The ACS data system is operating with a minimum representable difference

0.25 σ < ∆ < 0.33 σ, comfortably within the information-preserving range and close to the

minimum-bandwidth limit of ∆ = 0.5 σ. Of course this is for a dark frame; sky exposures

(especially long ones) could have been profitably taken with a larger ∆ (because σ will be

greater); this would have preserved more of the system dynamic range for bright sources. If

the ACS took almost exclusively long exposures, the output would contain more scientific

information with a larger setting of the minimum representable difference.

In some sense, the results of this paper recommend a “lossy” image compression tech-

nique, in which data are scaled by a factor and snapped to integer values such that the
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minimum representable difference ∆ is made equal to or smaller than 0.5 σ. Indeed, when

typical real-valued astronomical images are converted to integers at this resolution, the inte-

ger versions compress far better with subsequent standard file compression techniques (such

as gzip) than do the floating-point originals (Gaztañaga et al. 2001; Watson 2002; White &

Greenfield 1999; Pence et al. 2009; Bernstein et al. 2009). In the ∆ = 0.5 σ representation,

after lossless compression, storage and transmission of the image “costs” only a few bits

per noise-dominated pixel. Because the snap-to-integer step changes the data, this overall

procedure is technically lossy, but we have shown here that none of the scientific information

in the image has been lost.
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Fig. 1.— Starting from top left and moving to bottom right we show 16 × 16 images of

increasing bit depth. The original images are identical but snapped to integer as described

in the text. The images are labeled by the ratio [σ/∆] of noise root-variance σ to the

minimum representable difference ∆. At ratios [σ/∆] > 20, the images become virtually

indistinguishable from the high bandwidth images.
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Fig. 2.— Measurement of image noise variance as a function of bit depth or minimum

representable difference [∆/σ] for images with a randomly chosen mean level and gaussian

noise with true variance σ2 = 1.0. Each data point has been dithered a small amount

horizontally to make the distribution visible. Black circles show medians (of samples of

1024) for each value of the multiplicative factor. The variance is well measured as long as

the noise root-variance σ is twice the minimum representable difference ∆.
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Fig. 3.— For both plots, the black circles show the median values. The points are generated

by generating 1024 images with noise variance σ2 = 1.0 and a gaussian star randomly placed

with a total flux of 64.0 and a FWHM of 2.35 pix. The peak per-pixel intensity of the star

is 10 σ. Top: Plot of measured star offset (astrometric error in pixels; see text for centroid-

ing procedure and offset calculation) as a function of bit depth or minimum representable

difference [∆/σ]. Bottom: Plot of log2 of the absolute value of the difference between mea-

sured magnitude and the true magnitude of the star (photometric error; logarithm of the

logarithm!) as a function of bit depth or minimum representable difference [∆/σ].
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Fig. 4.— Same as Figure 3 except the total flux of the star was set to 2048.0. The peak

per-pixel intensity of the star is now 320 σ.
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Fig. 5.— Four 16× 16 pixel images that demonstrate the coadding procedure. The top left

image shows a single image with noise variance σ2 = 1.0 and an (extremely faint) Gaussian

star with a total flux of 2.0 and FWHM of 2.35 pix. The top right image is the same as

the top left, but with the pixel values snapped to finite resolution [σ/∆] = 2 or minimum

representable difference ∆ = 0.5 σ. The bottom left image shows the result of coadding

1024 images without snapping to finite resolution. The bottom right image is the same but

coadding after snapping each individual image data to [σ/∆] = 2. The similarities of the

images indicates that information has been preserved. The peak per-pixel intensity of the

star is 0.32 σ; this star is not visible in any of the individual images, but appears in the

coadded images.
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Fig. 6.— Same as Figure 3 except with a star of total flux 2.0, and coadding sets of 1024

exposures after snap-to-integer to make the extremely faint source detectable. In this exper-

iment we give each of the coadded images a different sky level (see text).
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Fig. 7.— Same as Figure 6 except with a star of total flux 64.0.
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Fig. 8.— Same as Figure 6 except that in this experiment we give each of the coadded

images the same sky level; the sky level is different for each of the coadd trials, but the same

for all the images within each coadd trial.


