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Generalized dyadic spaces
by

Murray G. Bell* (Winnipeg, Man.)

Abstract. We consider a generalization of dyadic spaces, We show that many dyadic theorems
hold for this class of spaces. We study the clopen algebras of the 0-dimensional ones. These al-
gebras are the union of countably many antichains. We show that there is a largest, purely com=
binatorial, subalgebra of 2(w)/fin. Examples, that the author has previously constructed, are
shown to belong to this class of spaces. - !

1. Introduction. Dyadic spaces, i.e., Hausdorff continuous images of some
power of 2, were defined by Alexandroff [1]. His amazing result that every compact
metric space is the continuous image of the Cantor set was the genesis behind the
notion. To quote Alexandroff [2]: “I became acquainted with the Cantor perfect
set, which T immediately saw and still see to this day as one of the greatest wonders
(and I mean a wonder, nothing less) discovered by the human mind.”

The m-adic or polyadic spaces, i.e., Hausdorff continuous images of some
power of the Alexandroff compactification of a discrete space, were defined by
Mréwka [19] as a good generalization of the dyadic spaces. Many of the dyadic
theorems held in this class of spaces and a chief benefit was that spaces of un-
countable cellularity were now admitted into the study.

There have been further generalizations to important classes of spaces in their
own right. We take the point of view that any generalization that admits the ordinat
space @,+1 is decidedly non-dyadic.

The clopen algebras of our 0-dimensional ,generalized dyadic” spaces, spaces
that we call centered spaces, will manifest all possible combinatorial (i.e., disjointness)
behaviour; while at the same time minimizing the order (i.e., inclusion) behaviour.
We will show that many dyadic theorems remain true. A chief benefit of the
generalizatioﬁ lies in the wealth of the examples. Loosely speaking, dyadic spaces
are to centered collections as polyadic spaces are to disjoint collections as centered
spaces are to all collections.

* This research was supported by Grant No. U0070 from the Natural Sciences and Engine-
ering Research Council of Canada. .
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2. Notation and definitions. Our set theory notation is standard. Cardinals
are initial ordinals. The first infinite ordinal is @ and ¢ represents the continuum.
P(X) represents the set of all subsets of X" and X' A Y is the symmetric difference
X—T)u (Y=X). If & is a collection of sets, then &" is the set of all [} & such
that Z<= . A collection of sets & is centered if | F # @ for all finite subsets %
of ¥ If 9: X Y, AcX and Be Y, then ¢[4] = {p(a): ae 4} and ¢~![B]
={xeX: p(x)eB}. If RcX Y, then we can write @[R], ¢ '[R] and even
9*[R] = ¢[p[R] ~ R] etc.

If B is a boolean algebra and G is a set of generators of B, then we write B
= [G]. The space of all ultrafilters of B is denoted by stB and is given the Stone
topology. ‘An antichain of B is a subset of B in which no two elements are compar-
able. If X is compact and 0-dimensional, then we will write B(X) for the boolean
algebra of clopen sets of X.

N denotes the discrete space of natural numbers and R denotes the space of
real numbers. A mapping is a continuous function. The Stone-Cech compactification
of X is denoted by BX. The hyperspace ot closed subsets of X, with the Vietoris
topology, is denoted by ExpX.

A collection of sets is n-linked if every n of the sets have a non-empty inter-

section. A space X has a o-n-linked base, if X has an open base # = |J &, where
i<
each &, is n-linked. A space X has compactness number at most n if X possesses

a closed subbase & such that every n-linked subcollection of & has a non-empty
intersection. If m is the least such », then we say that cmpn(X) = m. If no such
n<o exists and X is compact then X has infinite compactness number. Spaces of
cmpn 2 are called supercompact spaces, De Groot [16].

) We use the following cardinal functions and refer the reader to Juhasz [17]
for definitions. Weight, n-weight, character, n-character, cellularity, tightness and
spread. A space of countable cellularity is said to be ccc. A space is Fréchet-Urysohn

if whenever a point p is in the closure of a set K, then there is a sequence of points
of K converging to p.

3. Definition of the spaces Cen(S). Let S be any infinite collection of sets.
Put Cen(S) = {T: Tis a centered subcollection of S}. The @ is included in Cen(S)
and plays a crucial role. Put Fin(S) = {F: Fis a finite centered subcollection of S1.
For each FeFin(S) put F* = {T'e Cen(S): FeT} and F~ = {T'e Cen(S):
FnT =0} 1If sesS, we will write s* and s~ instead of {s}" and {s}~. Use
ags {s*,57} as a closed (also open) subbase for a topology on Cen(S). If we

identify Cen(S) with {f: fis a characteristic function of a centered subcollection
of S} then Cen(S) has the subspace topology inherited from the. Tychonoff
product 2°. Being closed in 2%, Cen (8) is a compact Hausdorff 0-dimensional space.
Cen(S) has as a clopen base {F* n G™: F and G are finite subsets of S}

_ Since {s*: se S} are distinct clopen sets, the weight of Cen(S) is exactly |S].
For each n<w, put Fin(S, n) = {FeFin(S): |F| <n}. It is seen that each Fin(S, n)
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is a closed subspace of Cen(S), that each Fin(S, n+1)—Fin(S, ) is discrete and
that Fin(S) is dense in Cen(S).

If S is a centered collection, then Cen(S) is homeomorphic to 2° and if S is
a disjoint collection, then Cen(S) is homeomorphic to the Alexandroff compactifi-
cation of the discrete space of size |S). All other Cen(S) are between these two
extremes.

TIf X is a compact 0-dimensional space, then we will write Cen(X) for Cen (B(X)).

Remark. Many times, when we define a natural map between two spaces,
we leave it to the reader to check continuity. There will be canonical subbases
present and the reader need only check that preimages of their members are open
or closed. ‘

Remark. Another natural object of study is the subspace Max(S) of Cen(S)
consisting of all maximal centered subcollections of S. Properties of Max(S)
where S is a collection related to graphs or posets are investigated in Bell and
Ginsburg [7]. In particular, the questions of when is Max(S) compact and which
spaces are of this form are addressed.

4. Elementary properties of Cen(S). It is immediate that the spaces Cen(S)

*are determined by the disjointness properties of the collection S and not by the

nature of the sets in S. Two collections S and T are said to be combinatorially
similar if there exists a bijection ¢: S — T such that for every finite F<=.S, _ﬂ F# Q3
iff () @[F] # @. In this case, we write S = T. So, if § = T, then Cen(S) is homeo-
morphic to Cen(T).

I’)I‘he interseciio)n map proves, useful. If ST, then Cen(S) is a retract qf ?en(T)
by the mapping sending a centered subcollection T” of TtoT' n S. Als.o, it is seen
that each Cen(S) is a retract of its own hyperspace by the mapping .sendmg a closed’
subset K of Cen(S) to K. Let & = US{S+,S‘} be the canonical subbase for

Cen(S). Each member K of $7 is of the form Cen(P) for some collection P. To
see this, let K == [} s* n () s~ where 4 and B are subsets of S. Put @ = S—(4 U B).

sed 8seB .

For each g e Q, put S, = {F: F is a finite subset of Q, 4q¢ Fand Fu dis centcrcfi}.
Put P = {S,: g€ 0}. It is seen that K is homeomorphic to Cen(P) by the mapping
sending a centered subcollection T in X to {S,: ge T n @} .

Let S,, for each « in an index set 4, be given. Form t}.xe Tychonoff pro _uct
[T Cen(s,). Put § = {p;'(s*): €4 and s&S,} where p, is the ath projection.
ag A

Define a mapping @ from Cen(S) onto [] Cen(S,) as follows: If T is a centered

g Ll
subcollection of §, define a function p(T) by ¢(I)(®) = {seS;:p. (G ():e T;) I:
is seen that ¢ is a one-to-one map of Cen(S) ontolIE'L Cen(S,). Hence, Cen(S) i

homeomorphic to [] Cen(s,). Thus, the spaces Cen(S) are closed under arbitrary
agd .
products.

The author had earlier [5] used graph spaces to solve a problem. These spaces
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were defined similarly to the.Cen(S)’s. For a graph G, one considers the space (@)
of all complete subgraphs of G using the v*’s and v™’s, where v € G, as a subbase.
It is seen that Cen({v*: » € G}) is homeomorphic to C(G) and thus the graph
spaces are included among the Cen(S)’s. However, there are spaces Cen(S) that
are not graph spaces, since all graph spaces are supercompact but not all Cen(S)’s
are, see Section 6. Using analogous proofs to [5], one shows that Cen(S) is Fré-
chet-Urysohn iff all centered subcollections of §' are countable and that Cen(S)
is cce iff Fin(S), partially ordered by F<G iff GcF, is a ccc poset.

5. The clopen algebra of Cen (S)

THEOREM 5.1. 4 compact 0-dimensional space X is homeomorphic to a Cen(S)
iff B(X) is generated (as a boolean algebra) by & subset G with the following property:

For each pair of finite subsets F and H of G, NF-UH # @ if NF# & and
FnH=@.

" Proof. The clopen algebra of Cen(S) is generated by G = {s
G has the property.

Assume that X is compact 0-dimensional and that B(X) = [G] where G has
the property. X is homeomorphic to st([G]). Define a mapping ¢ from st([G])
to Cen(G) by ¢ (p) = p n G. It is seen that ¢ is continuous. Also, ¢ is one-to-one
since any ultrafilter of [G] is determined by which generators are in it. If T'e Ceri(G),
then T'v {st([G]))—b: be G—T} is centered, by the property, and generates an
ultrafilter on [G'] which maps by ¢ onto T. Thus, ¢ is a homeomorphism. B

We now prove an algebraic property -about the clopen algebra of Cen(S).
Namely, that it is the union of countably many antichains. This generalizes the
fact that the clopen algebra of 2%, i.e., the free boolean algebra on generators,
has this property. Galvin and Jonsson [13] have proven that the free lattice on x
generators has this property and Galvin points out that their proof easily handles
the free boolean algebra case. However, in the absence of freeness, certain im-
pediments present themselves.

We point out that we do this for all cloPeu sets and not for just a subbase,
base or m-base.

If F and G are finite subsets of S and & and ¢ are subsets of Cen (F) and
Cen(G) respectively, then we say that (F, %) is equivalent to (G, 9) if there exists
a bijection ¢: F - G such that

(a) He 7 iff p[H]e %,

(b) He Cen(F) iff ¢[H]e Cen(R).

This is indeed an équivalence relation.

For each finite FcS and for each & r:Cen(F) put b(F, F) =

s€S8} and

UH+

N (F—H)‘ We say that b(F, #) is an 1rreducnb1e representatxon for the clopcn
set b if b = b(F, #) and b # b(G, &) for any G with |G| <|F|. Every clopen set b
has an irreducible representation b(F, #) for some F and &,

icm°®
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THEOREM 5.2. For any collection S of sets, the clopen. algebra of Cen(S) is the
union of countably many. antichains.

Proof. Define an equivalence relation ~ on the clopen algebra of Cen(S)
as follows: b~ ¢ iff there exist equivalent (F, #) and (G, %) such that b(F, %)
resp. b(G, %) are irreducible representations of b resp. ¢. There are.only countably
many equivalence classes of ~. We show that each class is an antichain.

Assume that (F, #) and (G, %) are equivalent via a bjjection ¢: F— G,
b(F,#) and b(G, %) are irreducible, and b(F, F)c=b(G, ¥). We must show that
b(F, F) = b(G,¥). Put R = F n G. We will rule out the case that |R|<|G|. Then,
we will have F = G. Take He #. Then Heb(F, #) so Heb(G, %) so there
exists K e ¥ such that He K™ n (G—K)~ so KcH and H n (G—K) = &. Since
F=Gweget H=Kso He%. Since F % and since |#| = |9 we get & = ¥.
Hence b(F, F) = b(G, D).

Continuing, we assume that |[R] <|G]|. We now show that 5(G,9) = b(R,4NnR)
where 4 N R = {Kn R: Ke ¥} contradicting irreducibility of b(G, ). Clearly,
b(G, 9 cb(R, % 0 R), so it remains to prove that b(R, ¥ n R)cb(G, 9. If we
can show that for each K€ %, K n Re &, then we will be done. For, if He P* n
A(R—P)” where P=Kn R for some Ke¥% then HAGe(Kn R)* n
A [F=(K n R)]". Hence, Hn GeM™* n(G-M)™ for some Me%. Therefore,
HeM* n(G-M)" as well and we have proven that b(R, % n R)cb(G, 9.

To this end, put Ry.= R and R,.; = ¢[R,])n R. The R,’s form a decreasing
sequence of finite sets, hence there exists N such that for all n>N R = Ry. It
is seen that ¢ } Ry is a bijection from Ry onto Ry. :

Cram. If Ke9, then Kn Re #.

Proof. Put B, = KN R and B,,; = ¢[B]n R. Since BycKe¥ and &
and ¢ are equivalent via @, we get that all the B,’s are centered Assume that‘ for
some n, B,.q€%. Well, ¢[B,] is centered and ¢[B,] € B,y ‘A (F—B,,,)~ since
¢[B] A Fe@[B]n R = B,,,. Therefore, there exists M €% such that ¢[B,]
eM™* n(G—M)". Since ¢[B,]=G, Mcog[B,] and ¢[B,]n (G- M)= 0, we get
¢[B,] = M. Thus, ¢[B,)€ ¥ and so B, € &. Hence, it suffices to find an n such
that B,e #.

Well, BycR o @[R] ... n @Rl =
show that @"[K n Ryl #. . T

Set Ao = @ *[K] and A4y = ¢ [4, N Rl 4,eF by equivalence of &
and ¥. Assume that 4,€ #. We prove that A, € &. Suffices to show that 4, 0
N Re¥. Since 4,€b(F, F), there exists M e ¥ such that 4, eM* n(G-M)".
Therefore, Mcd, and A, n (G—M)'= @. Hence, Mcd, G =4, " RcG
NM=M. So 4,nR= M, thus 4,nRe¥. By induction on #; it follows -that
A,e F tor all n20. Now

~ ¢—(N‘+1)[R] —

Ay1c@ R 0 @7 [R] ..

Ry ‘and By = ¢"[En RN}. We now

(P—l_[RN] =
and ’
Kn o[Ryl= K Ry

¢V [Ays1] = K 0 @[R] .. 0 ¢V R] =

4%
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Thus, Ay = ¢~ V*P[K ~ Ry). Since ¢ } Ry is a bijection of Ry onto Ry, there
exists an i>0 such that ¢ '[4y.q] = @ [K A Ry]. Hence, ¢"[K N Ry] = Ay,q 4,
€ #. This completes the proof. B

6. The largest combinatorial remainder of N. Which of the spaces Cen(S) are
remainders of N, i.e., which are continuous images of SN—N? Equivalently, as
the spaces Cen(S) are 0-dimensional, which have clopen algebras embeddable in
B(N—N) = Z(w)/fin? Clearly, we must have |S|<¢. Assuming CH, Parovi-
cenko {20], this is sufficient. Otherwise, it is not sufficient. By adding w, Cohen
reals to any countable transitive set model of ZFC, the author [5] has constructed
a Fréchet-Urysohn, ccc graph space C(G) with |G| < ¢ which is not a remainder of N,

We now show that there is a largest such remainder of N. To do this, we use
a result in [6]. Let H'be the subalgebra of the power set algebra 2 (0®) generated
by the rectangles [] 4, where for each i<w, 4,—4,,, is finite. The result is that

i<o
H is embeddable in B(BN—N). For each dco, put R(4) = [] (4d—{j: j<i}).
i<o

Note the following fact: () R(4;)— U R(B) # @ iff () 4, is infinite and for
i<n ji<m i<nm
every j<m, (V. 4;¢B;. Put K = {(I, F, ¢): I'is a finite subset of o, F={0,...max/}
i<n

and <=2 ({0, ..., max7})}. Enumerate K as {k,: i<w}. We will identify the algebra
2 () with 2 (K®) for the purposes of realizing H. We redefine our function R
above as follows: For each 4K put R(4) = [](4d—{k;: j<i}). Then R satisfies
i<o
the above fact as well.
THEOREM 6.1. Cen(SN—N) is a remainder of N.

' Proof. We will embed the clopen algebra of Cen(8N —N) into H as realized
in #(K®). For each Acw put 4* = {(I, F,¢): I is a finite subset of A, F
<{0, ..., max7}, 9<=?({0,...,max]}) and Fn Adey}. The clopen algebra of
Cen(BN—N) is generated by G= {b*: beB(IN-N )}. Using choice, let
_h: B(BN—N) — 2(N) such that for all b, b = Clyyh(b) n BN—N. Then, Nb; # D
iff () A(b) is infinite and, also, a 5 b implies h(a) A h(b) # 0. t<n

i<n
No?v,‘deﬁne a function y: G — H by y(b") = R(h(b)*). To extend ¥ to an
embedding of the clopen algebra of Cen (SN —N) it suffices to prove the following:

CLAM. For each pair of finite subsets A and B of B(BN—N),
Na*'—Ub" %@ if Ny@H-Uye) 0.
aed baB

agd beB
Proof. (‘)Aa"“——bUB b* £ @ iff P: () h(@) is infinitt and A~ B = @.
ae € agA
HAW("JF)—"LJJ Yot # G iff Q: N h(a)* is infinite and for each b e B, N h(a)*
ae € aed

uad

¢h(b)*. This follows from the aforementioned fact. We show that P iff Q holds.
Assume P. Since ﬂA h(a) is infinite it follows that () h(a)* is infinite. Since 4 N B
ae agA

= @, choose for each ae 4 and be B, p(a, bye h(a) A h(b). Put F = {p(a,b):

i::m©
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aed and be B}. Put ¢ = {Fnh(a): aeA}. Choose any ne () h(a) such that
acd

maxF<n. Then, (nt, F o) e ﬂAli(a)*— U k(b)*. This is because F h(b) is not
ae beB

equal to any F n Ai(a). Thus Q holds. Assume Q. Clearly 4 N B = @. If N k(a)
' aed

was finite, then () h(a)* = ( ) h(a))* would be finite. Hence [)/(q) is infinite
agd aed

acd
and P holds. B

THEOREM 6.2. If Cen(S) is a remainder of N, then Cen(S) is homeomorphic to
a retract of Cen(BN—N).

Proof. Embed the clopen algebra of Cen(S) into B(BN —N). Thus, we consider
{s*: seS} as a subset of B(BN—N). By the second paragraph of Section 4,
Cen({s*: s&S}) is a retract of Cen(BN—N). Since § = {s*: s& S}, we get that
Cen(S) is homeomorphic to a retract of Cen(SN—N). H

This theorem essentially says that the clopen algebra of Cen(SN—N) is the
largest purely combinatorial subalgebra of B(fN—N).

In response to a question of van Douwen [8], the author [6] has constructed,
for each' n>2, compact spaces X, which are remainders of N, have ¢-n-linked
bases but are not separable. In Section 4, part A of [6], it is shown that these spaces
satisfy the condition of Theorem 5.1. Hence, the spaces X, are homeomorphic
to spaces Cen(S,).

In response to another question of van Douwen in the same paper, van Mill
(unpublished result) has proven if X is a Hausdorff continuous image of a space
of cnpn » and X has a o-n-linked base, then X is separable. We mention that van
Douwen had proven this if cmpn(X) = n.

This allows us to prove:

COROLLARY 6.3. Cen(BN—N) has infinite compactness number.

Proof. By Theorem 6.2 the spaces X, = Cen(S,) are retracts of Cen(BN—N).
If cmpn (Cen(N—N)) = n, then by van Mill’s result, the space X, would be
separable but it isn’t. B

So, not all centered spaces are supercompact. It is an unsolved problem of
whether all dyadic spaces are supercompact.

7. Centered spaces. We say that X is a centered space if Xis a Hausdorff continu-
ous image of some Cen(S). From Section 4, it follows that every product of
centered spaces is again a centered space. Thus every polyadic space is a centered
space.

The following is analogous to a dyadic theorem of Sanin [21]. ]

Turorem 7.1 (An image property). If X is a centered space of n-weight x, then
there exists a collection of sets T with |T| < such that Cen(T) maps onto X, Hence,
the m-weight of a centered space equals the weight of the space. ‘

Proof. Let ¢ map Cen(S) onto X. Let {U,: a<x} be a m-base for X where
% is the n-weight of X. For each a<x choose finite subsets F, and G, of S:such
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that @ # F‘v“ NG, ce ' U] Put T = U (F U.G,). The range of ¢|Cen(T) is

dense in-X and thus X is an image of Cen(T) Since Cen(T) is compact and of
wc1ght<y, so is X. @

COROLLARY 7.2. Every centered compactification of a discrete space of size % has
weight . In-particular, every centered compactification of N is metrizable.

So, BN is mot centered.

The followmg generalizes a dyadic theorem of Engelkmg and Pelczyﬁskl [11].

COROLLARY 7.3. If BX is centered, then X is pseudocompact

Proof. If X is non-pseudocompact, then by a Lemma in [11], there exists
a mapping ¢: X = R such that ¢ [X] is a dense subspace of R. Therefore, BX maps
onto BR. If BXis centered theén so also is SR. But SR has countable n-weight and
uncountable weight, contradicting Theorem 7.1. B

The following, in the absence of ccc, is an analogue to a dyadic theorem of
Sanin [21] on calibres. It is similar to the property B(n) that Gerlits [14] proved
all {-adic spaces satlsfy, for all cardinals 7.

THEOREM 7.4 (A clustering property). For every uncountable regular cardinal x
and for every collectmn {V,: a<u} of non-empty open sets of a centered space X,
there exists Acx with |A| = %, points p, € V, for each o<, and a point p € X such
that every neighbourhood of p contains all but finitely many Do

Proof. Since the clustering property is preserved under continuous 1mages
it suffices to show that Cen(S) has the clustering property. Moreover, it suffices
to prove it for Vs coming from the canonical open base of Cen(S). So, let
{Fn G+ a<x}, where % is uncountable and regular, be non-empty basic clopen
sets of Cen(S). Note that some of the F,’s or G,’s may be the @. By Sanin’s theorem,
there exists 4= with |4] = % and an Fe Fin(S) such that for each « 9é ﬁ in 4,
F,nFy=F. The points p.’s are the F,’s and the point p s F. B

The ‘Alexandroff double of the closed unit interval is not centered since it does
not have the clustering property for a set of isolated points.

A space has countable depth if there does not exist a properly decreasing ,-se-

quence of open sets ¥, such that «<p implies V; < V,. The followmg generahzes
a polyadic theorem of Gerlits [15].

Taeorem 7.5 (An order property). Every centered space X has countable depth.
Moreover, X contains no uncountable chain (of any order type) of clopen sets,

Proof. Let ¢ map Cen(S) onto X. If X had a properly decreasing o;-sequence
of open sets contradicting countable depth, then the inverse images would be such
a sequence in Cen(S). Since Cen(S) is 0-dimensional we could produce 4 properly
decreasing o, -sequence of clopen sets in Cen(S). But this contradicts Theorem 5.2
which implies that there ate no uncountable chains (of any- order type) of clopen
sets of Cen(S). &

Since .the ,,Two arrows” space of Alexandroff has an uncountable chain of
clopen sets of order type the real, we see that this space is not centered. Also, ordinal
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space wy+1 is not centered. Since w;+1 is a retract of Exp(w; +1), Exp(w,+1)
also is not centered. We will use this fact in Theorem 7.11.

A space is d-separable, Arhangelskii [3] if it has a dense o-discrete subspace.
The following generalizes a dyadic theorem of Arhangelskii [3].

THEOREM 7.6 (A density property). Every centered space X has a dense sub-
space which is the union of countably many compact spaces each of which is the union
of finitely many discrete spaces.

Proof. Let @ map Cen(S) onto X. Each Fin(S, ) is a compact space that is
the union of n-+1 discrete subspaces. It is a topological exercise to prove that any
continuous image of such a space is also the union of at most n+1 discrete sub-
spaces. Thus ¢ [Fin(S)] = U @[Fin(S, n)] is the required dense subspace. B

The following generahzes a dyadic theorem of Engelkmg [10] and is his method
of proof.

TurOREM 7.7 (A discrete property). For every point p of character x in a centered
space X, X contains a discrete subspace 4 of size » such that A L {p} is homeomorphic
to the Alexandroff compactification of A.

Proof. Let ¢ map Cen(S) onto X. For each p € X, say that p depends on s,
where s S, if there exists centered subsets S, and S, of S such that §;—{s}
= S,~{s} and (S;) = p # @(S;). Assume that p has character x». Let S,
= {se S: p depends on s}. For each s € S, choose T'(s") and R(s") centered sub-
sets of S such that ¢(7(s") = p # @(R(s") and T(s)—{s'} = R(s)—{s'}.

Put B = {T'e Cen(S): there exists Re ¢~'(p) such that T n S, = R So}.
Clearly ¢~ *(p)<B. Conversely, take T'€ B. Choose Re ¢~ *(p) such that T S
= R n S,. For each finite subset F of S—S;, R—Fe Cen(S) and R—Fe ¢ ~Y(p).
Since @~ (p) is closed, we get that R n S; & ¢~ '(p). For each finite subset F of
T—8,, (RN Sy)u FeCen(S) and (RN Sp) L Fe ¢~ 1(p). Since ¢~ *(p) is closed,
we get that T'e ¢~ %(p). Hence, ¢~ '(p) = B. Since B is the intersection of ||
open sets and p has character x we deduce that |Sy|>x. Put R = {R(s'): s'€ So}
and T = {T(s'): 5’ € Sp}. Assume that there exists-an infinite S'=So such thi.t
for all s'e ', R(s") = R, for a fixed R. Put T' = {T(s) eSS} Let F*nG™,
be an arbitrary neighbourhood of Ry Choose s'€S'—(Fu G). Since R(s')
= R,eF* ~ G, we get that T(s) e F* n G™. Hence, R, € T", therefore ¢(R,)
= p which is a contradiction. Therefore, the association s’ — R(s") has finite
preimages and so |R| = [Sol=%.

All cluster points of R are in ¢ *(p). For, let Q be a cluster point of R. Le,t
F* A G~ be a neighbourhood of Q. Choose s’ € Sy—(F u @) such that R(s")
eF* A G~. Thus, T(s)eF* ~G™.-So QeT, therefore ¢(Q)=p. Now let
A= ¢@[R]. ®

The following generalizes a dyadic theorem of Efimov [9].

COROLLARY.7.8. Every non-isolated point in a centered space is the limit of a non-
trivial convergent sequence.
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The following generalizes a ‘dyadic theorem of Esenin-Vol'pin [12]. We use
Marty’s [18] method of proof.

THEOREM 7.9 (A character property). The character of a centered space equals
the weight of the space.

Proof. Let ¢ map Cen(S) onto X and let » be the character of X. We must
show that the weight of X is . A subset T'of S'is a support of a point x in Cen($)
if whenever y e Cen(S) and y n T = x n T then ¢(y) = ¢(x).

CLAM. For each x € Cen(S) there exists Sy=S with |S<» such that S, is
a support of x. 1

Proof. Let {¥,: a<ux} be a neighborhood base of ¢(x) in X, For each a<x
choose finite subsets F, and G, of S such that xe Fy n G; =¢™*[V,]. Put S,
= {F, v G,: a<n}.

Now, choose Sy<=S with |Sy|<x such that S, is a support. of &.

For each x e Fin(S,) choose S, with |S,|<x such that S, is a support of x.
Put S, = So u U {S,: x & Fin(S,)}.

For each x e Fin(S;) choose S, with |S,| < such that S, is a support of x.
Put S, = S; U U {S,: x e Fin(Sy)}.

And so on..

Now put S, =i9 S;. Note that |S,|<x. We claim that ¢ } Cen(S,,) maps

w

Cen(S,,) onto X. Since Cen(S,,) has weight equal to |S,,|<x, we would get that
the weight of X is at most . To prove this claim, choose x € X and T'e Cen(S)
such that ¢(T) = x. For each FeFin(T n S,), Fu (T-S,)eCen(S). T is in
the closure of {Fu (T'~S,): Fe Fin(T n S,)}. For each FeFin(T n S,,), there
exists i< such that Fe Fin(S)). But at the ith stage of our procedure we included
a support of F in S,. Since [FU(T-S)lnS, =Fn S, we get that
o(Fu (T—S,)) = @(F). By continuity of ¢, we get that x = @(T) is in the X
closure of {p(F): FeFin(T n §,)}, thus x € ¢[Cen(S,)]. B

COROLLARY 7.10. The spread of a centered space equals the weight of the space.

_ Proof. Use Theorem 7.9 followed by Theorem 7.7. B

Exampie. Let S = {{F}: F is a finite subset of R} U {{F: F is a finite sub-
set of R a13d reF}:reR}. It is seen that Cen(S) is a compactification of a discrete
space of size ¢ whose non-isolated points are homeomorphic to -2°. So, thete are
non-trivial centeredv compactifications of uncountable discrete spaces.

EXAMP‘LE.. With a little effort, it can be shown that Cen(BN) is separable.
Howe\fr, it is not polyadic. A reason is the following: For each eN, put ¥,
= {n}*.. Choose pe fN—N and consider the centered collection T'= {U: U is
clopen in fN and pe U}. Then T e () ¥, butno sequence from U ¥, converges

v .

) ne . ne N
to T. Whereas, Mrowka [19] has shown that in a polyadic space tllfe closure of an

open set is its sequential closure, Thus, separable centered spaces need not be
polyadic. ' ' ’

i::m©
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ExameLe. Gerlits’ theorem [15] for polyadic spaces that weight equals cell~
ularity times tightness doesn’t generalize to centered spaces. At least we have
a consistent counterexample. The graph space C(G) alluded to previously has
countable cellularity and countable tightness but is of uncountable weight. Whether
there is a ,real” example we do not know.

The following is a generalization-of a dyadic theorem of Sapiro [22].
THEOREM 7.11. Exp(2®%) is not centered,

Proof. Assume not, i.e., let ¢ map Cen(S) onto Exp(2°%). We will use the
following result proved in [4]. Let & = &" be a closed subbase for a compact
space X and let X map onto Exp(2*). If Y is a compact 0-dimensional space of
weight at most x, then there exists an §e.% such that S maps onto Exp Y.

Let # = Us {s*, 57} be the canonical closed subbase for Cen(S). Put & = 2",

. s .

. € .
Then & = 7. Referring to the second paragraph of Section 4, we see that every
member-of & is of the form Cen(P) for some collection P, The above result implies
that Bxp Y is centered for every compact 0-dimensional space ¥ of weight ;.
This is not true. Exp(w,+1) is not centered. M

We point out that Sirota [23] has proven that Exp(2*) is homeomorphic
to 2",

Some particularly interesting dyadic theorems that we have been unable to
decide for centered spaces are: Is a closed G; of a centered space again centered ?
If a centered space has a point of m-character s, does it contain a copy of 2*?

Another intriguing question is: Is Cen(SN—N) homogeneous or not? We
mention that one can show that every point of Cen(BN —N) has n-character c.
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On the transformers of the Zahorski
classes of functions

by

Grzegorz Krzykowski (Gdansk)

Abstract. Let. i (i = 1, ..., 5) denote the Zahorski classes of functions defined on interval
I = (0, 1). By H.4, we denote the set of all increasing homeomorphism # of interval I onto itself
which leaves # invariant, i.e., such that for every f& i fo he ;. In this paper it is shown that
there are proper inclusion H.g 2 Hoyy,, for i = 1,2, 3. We give a characterization 'of the class
H_4, and the examples of homeomorphisms showing that classes H.uys\Hu, and HuN\Huys are
nonempty. We also establish the inclusion Hoa, D Hp4 where Hpgis the class of homeomorphisms
preserving bounded derivatives. '

Let g be a homeomorphism of (0, 1) onto itself, g0 =0,g)=1LHKFis
an arbitrary family of real functions defined on (0, 1) then g is said to be a trans-
former on & if fo g € & holds for every fe #. Let Hy denote the class of trans-
formers of #. .

M. Laczkovich and G. Petruska in [7] have given a necessary and sufficient
condition for g to be a transformer on a class of derivatives. ;

In 1950, Z. Zahorski [9] considered a hierarchy of classes of functions, 4,
k=0,..,5 The largest class, .#,, turned out to be Darboux. and first class. of
functions: the smallest, .45, turned out to be class of approximately continuous
functions. He showed how the classes of derivatives and bounded derivatives, fit

into the scheme. .
In the present paper we study a hierarchy of classes H; k= 0, ..., 5 (for

the sake of simplicity we use the notation Hy, k=0, ..., 5) and consider a number
of related properties.

Throughout this paper the word “set” means a Lebesgue measurable subset
of open interval (0, 1), the word “homeomorphism” means an increasing homeo-
morphism of (0, 1) onto itself. By a «function” we means a real function on (0, 1).
A" = (0, 1)\4, |d] being the Lebesgue measure of the set 4 and d(4, a) being
the density of the set 4 in the point 4. As usual, d*(d, a) and d™ (4, 4) denote the -
righthand side and lefthand side densities and 4(A4, &) the upper density.

We begin with the definition of the Zahorski classes of sets.

DernTION 1. Let E be.a nonempty set of type F,. We say E belongs to class:
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