! '
!

1"’.’:3’:‘,\’ sk
P A

ta v IR
,,”'ﬁ port,
1 t l-?'
fl 4

LN ELEKTRONIK-BAUTEILE

~ EschenstraBe 2 - Postfach 1252 - 8028 Taufkirchen bei Miinchen

Telefon (089) 61208-0 - Telex 522106 - Telefax (089) 612 08-2&;

" Table of Contents

| Cﬁépter 1. 2280 Architectural Overview

1.1 Introduction . . e e i e e e e e e Ce e C 11
1.2 MPU Architectural Features . « ¢ o o o e o o e 1=2
1.2.1 System and User Modes . v . . . o o o o e 1-2
1.2.2 Address Spaces .« . o ¢ o o o & « o e e . 1-2-
1.2-3 Data Types e & ¢ ® @& + e o o o0 e & e o o 1"’2
102.& Addl‘&SSlng MOdBS e ® e & o o . ‘o *] 1""3
1.2.5 [nStI‘UCt].Oﬂ Set ¢ ‘¢ & & o o o o * o o 0] 1-3 .-
1.2.6 Exception Conditions « o o e . 1=3
1.2.7 Memory Management « « « « « o & « o o o . 1-3
1.2.8 Cache Memory . c o e e e . e o . . 1-4
* 1.209 Ref[’eSh e e ¢ o -. o-o. . . L Y o. * o s o 'Y 1"’&
102.10 Ol'l-Chlp Pel‘ipherals e« & o o o. L] e & o' * . 1""& .
1.2.11 Multiprocessor Mode c o e e . 14
1.2.12 Extendeg Instruction Facility . c o o o . 1-4
_1.3 Benefits of the Architecture e o o o . 1-5 |
1.4.1 High.Ihroughput . . ; . . ;‘:'. | e v s . 1-5
1.4.2 Integration of System Functions « o o o . 1=5
1.4.3 Operating System Support . . . c o o e W 1-5
10&04 COde Def'ISlty s @ . @ . . @ . o e * @ . * 1"'5 .
1.4.5 Compiler Efficiency « « o o + & c s e o . 1-5
| 1.& Summary. e ¢ @ s o o ® ® o—.t oo oo oo o:o oo .0-0] o‘-o » ‘. ® o'- 1"'6 -"Hh-.-”'
';A) . { - .
. Chapter 2. Address Spaces 'j
201 IntrOdUCtiOﬂ 3 - » » » o []] [] » » - [] [[. 2-1
2.2 CPU Register fFile . . . ¢« o s o o o c o o o . 2-1
2.3 CPU Control Registers . PR e o o e . 2-2
2.4 Memory Address Spaces . e o o s s e o o o o .« 2-3
2.5 1/0 Address Space . . . ¢ o o o o s o o e o o o . 2=4
Chapter 3. CPU Control Registers L
3.1 Intl‘OdUCt.lOﬂ . .‘o . | S [] L T s * » * e ® s @® . @ . .' 3"'1
3.2 System Configuration Registers . . « . « « ¢ « ¢ .+ . .« 3=1
3.2.1 Bus Timing‘and Initialization Register C . 31
3.2.2 Bus Timing and Control Register 3-2
30203 LDCB]. Add[‘eSS RBngtE[‘])] . .) []] []) . 3“"3
3.2.4 Cache Control Register . « ¢ &« ¢ o o« & o o & . 3-3

Table of Contents (Continued)

3.3 System Status Registers . « « « &« o & & & .:. e e s s o s o e o s e 34

3.4

3.3.17 Master Status Register ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o
3.3.2 Intertupt Status Register . « . ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ & o o o 3=4.
"~ 3.3.3 Interrupt/Trap Vector Table Pointer . . . « + « ¢ &« ¢« &+ &« o 3-5
3.3.& 1/0 Page ReQISter e & & & & & & 5 & & * & S 2 & *» *» » 1 2 3""5
3.3.5 Trap Control RegiSter « « ¢« o « o« ¢ o o o o o ¢« o o o o o o 3=5
3.3.6 System Stack Limit Register . . « . . + ¢ ¢« ¢ ¢ ¢ o ¢« ¢ o« + 3-6
Chapter 4. Addressing Modes and Data Types
) a.1 IntrOdUCt ion - - » L & L L] » [- [] L] [2 L L] L L L] L] L] [» [] . L L 4 a-1)
4.2 Addressing Mode DesScTipltions . o ¢ o 4 o ¢ o ¢ o o o o o o o o o o 4-1
- 4.2.1 Rengter (R’ RX) " » '; e @ o e o o e & & ® & & ° e e o o ll»-'l
h: 402.2 Imedlate (IM) & & & & e & P 8 8 ® & ¢ & & 2 » 6 o ¢ » =& o a-1
4.2.3 Indirect Register (IR) . o ¢ ¢ ¢ & ¢ ¢ o 0 o 0o o v o o o o 42
4. 2. 4 Direct Address (DA) []] [] * L J] L .. ® L] L] ® [] L ® *] -‘. 0‘ | a-z
4.2.5 Indexed (X) ® & 8 & & e s s " ° e e+ o ® & & & & 9 e & s o 4"'3
4.2.6 ShOI.‘t Index (SX) ® 5 ® e & B ¢ & & ¢ & » & & ° > =8 2 o 0 4—3
a0207 Relatlve Addl‘BSS (RA) & & 5 8 & & & o ; s & o & e & o ° ° ‘l-ll
4.2.8 Stack Pointer Relative (SR) . . « v o ¢« ¢ o v o ¢ ¢ o o o & 45
a. 2. 9 Base Index (BX) : L L 2] L 4 » » o ® L |] .. L » » [L J L] & L ® L a-s ' ‘
4. 3 Data Iypes [] [J |]] -] ® L] L L - ® L » [] ® L L] |] L . L J ® [] . L L 4 [] [] a-s
Chapter 5. Instruction Set -
5.1 Int rOdUCt ion [] [] L L . L J L L 4 . L [4 L] L [® ®] » L J »]] L] [] L] |] L] 5-1
5.2 Processor Flags [] L J] L - [3 | 3 ® L & L] L] L 4 L L] L L J L] » L [J L L 5-1
502.1 Carry Flag (C) L] L] L L a L] ® ® [] L] ; L] L] L] L] L L - L] L] L] 5-1
50 202 Add/SUth‘GCt Flag (N) ® e @ o P & 8 & 2 S 4 & o » & e o o 5"1
5.2.3 Parity/Overflow Flag (P/V) ¢« ¢ ¢ ¢ ¢« ¢ o o ¢ o o o o o o o 5=2
502-“ Half-cart‘y Flag (H) e & o & & & 0 & 8 ¢ 5 B s 2 8 o » o 5""2
'502.5 ZBPO Flag (Z) ¢ & & & & o o o+ & 9 0 s 2 e e s 0 s o o o 5-2
5.206 Slgn Flag (S) *® & & @& & & @ ® * & » & & e 5 & & > = > » 5"2
5.2.7 Condition Codes .« ¢« ¢ o o o o o ¢ o o 6 o o o o o o o o & 52
5.3 Instruction Execution and Exceptions . ¢« « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o 9=3
5.3.1 Instruction Execution and Inteftupts c o o o o s o o s o & 93
5.3.2 Instruction Execution and Traps .« « ¢ ¢« ¢ ¢ o o o o o o o« 2=3

5.4 Instruction Set Functional Groups « & .

5.4.1
5.4.2
5.4.3
5.4.4

5.4.5
5.4.6

5.4.7
5.4.8
5.4.9

8-bit Load Group ¢ ¢ ¢ o o o &
16-bit Load and Exchange Group .
Block Transfer and Search Group
8-bit Arithmetic and Logic Group
16-bit Arithmetic Group

Bit Manipulation, Rotate and Shift

Program Control Group
Input /Output Instruction Group .
CPU Control Group

L 5.4.10 Extended Instruction Group . . .

5.5 Notation and Binary Encoding
.. 2.6 Instruction Set

Chaptét 6. Interrupts and Traps

6.1
6.2

6.3

. ‘60“

N S 9~o§<h o

]

Int POdUCt ion L L 4 ® [] L] L J » L J ® [] | [] L J
Interrupts .« & ¢ ¢ ¢ o ¢ ¢ o o o o o o
6.2.1 - Interrﬁpt Mode 0 ¢« . &
6.2.2 Interrupt Mode 1 . . ¢« ¢ « « &
6.2.3 Interrupt Mode 2 ¢« ¢ &
6.2.4 interrupt Mode 3 . . . ¢ ¢ o W
]raps » [L] L . [3 L L 3 [] L |] | L L J]

* *
[] L] []

|
N \AN \ﬂ}al W W W W
R~ NN =

Extended Instruction Trap . . .
Privileged Instruction Trap . .
System Call Trap .« & ¢ ¢ « « &
Access Violation Trap « . . .
System Stack Overflow Warning
Division Exception Trap . . . &
Single-Step Trap . « ¢« ¢ o & &
Breakpoint-on-Halt Trap

Interrupt and Trap Handliﬁg c e e o e e

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Interrupt Acknowledge
Status Saving « « « ¢« ¢ ¢ ¢ o .
Loading New Program Status . .
Executing the Service Routine .
Returning from a Service Routine

Interrupt/Trap Vector Table . . « « « « &
The Fatal Condition « ¢« « ¢« ¢ ¢ ¢ o o o &

#

[] ® L ® L 2 L 2

5-4

54 -
55 .
5-5
5-6
5-6
5-7
5-7
5-9
5.9
5-10

5-10
5-13

6-1
6-1

6-2
6-2
6-2
6-3

6~

6-4
6-4
6-5
6-5
6-5
6-5 -
6-5
6-6

6-6
6-7
6-7
6-9
6-9

6-9
6-11

Table of Contents (Continued)

INtroduction .« v ¢ ¢ ¢ o o o o o o o o o o o o o

Memory Management Unit

MMU ArChitect Ure ® L] [] L L L ® [* . ® [] ; [] L . [] o , L 4 [] []

Page Description RegisSters .« « o« o« « ¢ ¢ o o o o o o &
Address Translation « « ¢ ¢« ¢ o ¢ o ¢ o ¢ o o o o o ¢ o o »

MMU Control Registers o o o

/

Address Translation without Program/Data Separat ion
Address Translation with Program/Data Separation .

Accessing Page Descriptor Registers « « « o ¢ ¢ ¢ o ¢ o o o

Chapter 7.
7.1
7.2
7.3
7.4

7401

. 74,2
7.5
7.6

7.6.1

7.6.2

7.6.3
7.7

Instruction Aborts

Descriptor Select POrt o & o o ¢ ¢ o o o o o o o &
BIOCk mve Port] L] |] ® a L 4 L 4 [] [] |] [] ® |] L L L J L 2]
Invalidation Port . « «.¢c ¢ ¢« ¢« ¢ ¢ o & o &,

Chapter 8. On-Chip Memory

8.1
8.2
8.3

Introduction

i

0007"1.

0007"’2
00.7"3

0007"’6
0007""6

0007"‘6

[] | [] []]]] * L 4 L 4] ® ® ® L J [] * []] [] L [] ® [] 7-7

o-ooo\oo.ooooooo,ooooooo000003"‘1

C&Che mmory Mde L L [] ® ’ [] * ® L J ® L L | L] ® L J L L J ® o L ® o L *® ® L 8-1

Fixed-Addrgss Mode

Chapter 9. On-Chip Peripherals

9.1
9.2
9.3
9.4

9.5

* I d

Vi

Introduction . & ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o &
Clock Oscillator . « ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o
Refresh Controller . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
Counter/Timers . « « o o o R I

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

mA Ch anne 1 s L []] L] L] [] | ® [] ® ‘. [[] []

9.5.1

9.5.2
9.5.3

905.&'

9.5.5
9.5.6

9.5.7
9.5.8
9.5.9

Counter/Timer Operating Modes . « « ¢« ¢ &« o & o ‘s &
Gates and Triggers .« « « o« ¢ o o o o s o o o s o
Terminal Count Condition .« & v ¢« o o ¢ o « o o o &
Counter/Timer RegiSters « « o o ¢ ¢ o o o o o o o o
Linking Counter/Timers . « o « o o o o o o ¢ o o &
Counter/Timer Sequence of Events . « ¢« o« ¢ o o o o

lypes of DMA Operations c e e e e e e e e e

DMA T r ans fe r MOdes L 3 [J *» ® » [] . ® [] » [[] [] ®
ENd-0f-Process .« ¢ ¢ o o« o o ¢ o o o o o o

Priority Resolution . . « ¢« « « « & C e e e e
DMA LinkINng . o ¢ o o o« o o ¢ ¢ o o o o o o
DMA Registers . « ¢« « & ¢ ¢ 4 o o o ¢ o &
DMA Sequence of Events .« « ¢ ¢ o « o o ¢ o o o o
DMA Programming: Linked DMAS . . . &« &« « ¢ ¢ o o &
DMA Programming: DMAs Linked to UART

L []] ® L L 4 ® ® L 4 ® ® [] ® *] [g ® L J] ® [] . & .. [] 8-4

0.09""1
00.9"1

e« o o 9-3
¢ o o 9-3
e« o o 9-4
.« o« o 9-4
¢ o o 9-7
e o o 9-7

‘o L . 9-10

e o« » 9-10
« o o 9-11
e o o 9-12
« o o 9-12
e o o 9=13
« o o 9-15
e « o 9-16
« o o 9-17

9.6 UART
 9.6.1 Transmitter Operation .
9.6.2 Receiver Operation . .
9.6.3 UART Registers . . . &
9.6.4

| 9.7 UART Bootstrapping Upt ion . [] [] ® [] L .. ® []] L . .:' .‘ ; [] .. L | [] L [] 9-21 |

UART Operation

L 2 . * L 2] L] ®]] ® [] L L L 9 L] L 2 L L ® [] L * [] L * [] * * *® 9-17 '

9-17

9-18

9-18

9-21 - -

Chapter 10. Multiprocessor Configurations - | lo
10.1 IntrOdUCt idn .. L L J . I. .“ » '.' L ../ ® ® L ® .‘ » L L ® L] L L] ® '.. -.. L . 10-1 . ' .
10.2 S1ave PrOCESSOTS « o o « o o o o o o 6 o o o o o o o o o o o o o o 10-1 " - .
10.3 Tightly Coupled Multiple Processors « . « « o « o o o o o o s o o 10-2
1003.1 The Local Addl“ess Reglstel‘ ¢« & » & ¢ @ * » *» ® e o .o- & o 10"2 . t .
10.3.2 Bus Request Protocols . . o ¢ ¢ ¢ 0 ¢ ¢ ¢ ¢ o o o o ¢ o o 10-2 ", '
10.3.3 Examples of the Use of the Global Bus . « « o o « &« & » « 10-4 -
10.4 Loosely Coupled MUltiple CPUS « o« o« ¢ v o o o o o o o o o o o o« 10-6
10.5 Coprocessors and the Extended Processing Architecture 10-6
- 10.5.1 Extended Instructions : ¢ e e o s s s o o o o o o 10-6: : , 5
10.5.2 Extended Instruction Execution Sequence 10-7
mmter 11. Reset . - L J . [] * . ® .- L] > »] L]] [] ® L] o |] [] L » .. L [4 [] 11-1 . l l
" Chapter 12. 280 Bus External Interface lz
‘) 12.1 IntrOduction .. |] » L J L] ®] .. L |] .‘ L] [] [a [] .. [] [] | L |] ® L [] L] 12-1 |
; 1 2. 2 BUS Ope rat ions L J L ® L] |] ® L | ® ® [] L | J » L3 [3 | - L 4 L] L J ® » L 12-2
12,3 Pin Descriptions « « + ¢ ¢ o o ¢ o o o o o o e e o o o o e o o 12-3
12.4 Bus Configuration and Timing « « &« ¢ 4 o ¢ o ¢ ¢ v o o o o o o o o 12-4
12,5 Transactions . + o « o o o o o ¢ ¢ o o o o o o ¢ o o o s o s o o 12-&;
| 12.5.1 Memory TrénsaCtiohs _.'. e o o o o o o O Iy 28
©12.5.2 RETI Transactions .« i o « o « o o o o o o o o o o o o o & 12-9
‘\” 12.5.3 Halt and Refresh Transactlons e o e o s s o e s s e e s o 1229
12.5.4 1/0 Transactions « ¢« ¢ o o o o o o o o e s o o o o o o o 12-10
12.5.5 Interrupt Acknowledge Transactions . . « . « . . ¢ o . o o 12-12
. 12.5.6 DMA Fley TP&DS&CthﬂS . & e e o o o ® . 9 " o @ e @ ' 12"'13
12.6 Requests L L L] ® ‘. L L L L LJ L] [] |] L @ L ® . L] L] L ® . L] . L] [2 12"1“ -'
‘ 12.6.1 Interrdpt Requests .I .. L] ® [] L] L L J - » * L 4 »] L L 3 L J » | 12""1[‘.
12.6.2 Local Bus RequestS o v v o o o o o ¢ ¢ o o o o o o o o o o 12215 -
.120603 GlObal BUS Requests L I . @ s » e & o] * e) : ® e o 12-15

vii

Table of Contents (Continuéd)

Chapter 13. Z-8BUS External Interface

"13.1 INETOdUCEION « 4 v o « o o o o o o o o o o o o o o s s e o o o oo 131
13,2 Bus Operations o o« « o o o o o ¢ o o o o o o s o o 6 s o o ¢ o o o 13=2
13.3 Pin DeSCTIPtionNS o v o s o o o o o o o o o s o o o o o o o o o o « 13=3
13.4 Bus Configuration and TiMing o « « o o o o o o o o o o o s o o o « 13-4
13.5 Transactions « « o « ¢ o o o o o o o o o o o o s o s o o o o oo o 13-4

13.5.17 Memory Transactions . « v o o« o o o o o o o o o o o o o o 13=5

13.5.2 Halt and Refresh Transactions . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ & o & o« « 13-10
13.5.3 I/0 TransactionS o o « « o o o o « o o o o o o o o o o s o 13-11
13.5.4 Interrupt Acknowledge Transactions . . . « ¢ ¢ ¢ ¢ ¢ o +» « 13-13

. 13.5.5 Extended Processing Unit (EPU) Transactions c e e e e . s 13214
13.5.6 DMA Flyby Transactions . « o o« ¢ o o o o o o ¢ 2 o o o o o 13=17

13.6 ReQUéStS [] |] ; ® L J L L L J L] .. » » » L] ® » ’. [[] ‘. » » » L J . ‘. .‘ L 13-18
15.6.1 Intérrupt Requests . « « « « & C e e e e e e s eae e . 13-19

13.602 Local BLIS RGQUGStS e o o @ o”o°o ® o @ o @ e o o s o s o o 13""19
13.6.3 Global Bus ReqUESES &« ¢ ¢ ¢ ¢ ¢ « « o o o o o o o o o o o« 13-19

13

w . Appendix A. 780/2280 Compatibility . . « . o v o v .o w e o a . o Adl

| ‘Appmdix B. 2280 MPU Instruction Fo,rn‘ats . ‘.. .. c o . .' .. JEEPEE B-1‘
 Aopendix C. .Instr;ctions.in Alphabetic Order . . R
- Wix D:. Instrmtitlwﬁ ‘in heric Order ” « o s ‘. c s o o o .. « « o » D-1
. Wix E. Instru:ti}on.‘lining c e e .. E-1.

.. Appendix F. Compatible Peripheral Famili€S . . . « o o o o o o o o o o F=1

. - . * . * B
- . . - -
- . + . . . e - . s .
. - . . * + " L] * Y .)
N . . L . . - . .
. * .. -
s . . . - . . *
- - » . - . . - - - * . .
. L] - * . - A +
> . . . n . .
* .
. . . .
. + . " * - . - . . .
. . -)
. . . N e . . . : . . .
* - - “ B ' . .
- . . - . N '_ . - T .
. N - .
. . - . .
. - . . + . . *
. - * - . " * . B
- - 3 - - ot . R . . ’ ~
- - + - .
. . : ‘
. * - -
. . . .
. . - . . A .
[. . - .
. T b
N N) - h - * . ' . "
. . . R
L - -
k] . - * -
. f . . - .
. " - - * . . L3 L - * k] .
- * . - .o N
. * . - . ‘ N Ll .
. - - . - * - * '
. : H ¥ M - -
-, . N t . .., . . +
3 * * .
+ . - - . "
. -
P . . R T .
. " . .
- W
. . - - .
* . M . . . - > . *
1
. . T !
. M . - -
N B . - v + B
. . . : . . [
. . N
.
. L] . - . - . . - N .
~ . .. i
’ - b - - B *
L . . - .
. .]
. . . . \
- * : - * + *
* 4
. ﬁ . * " A -
. . . -
- 1
. ., - . . .
[o A
. .
" *
o- B -
. .) i
. " . . -) ! +
. . . * . e 4
- - N oo e
v . * . " . [l -

viii

. - .
PR .

LIST OF ILLUSTRATIONS AND TABLES

Figure
Number

1-1.
2-1.
2-2.
2-3,
2-4.
3-1,
3-2.
3-3,
3-4.
3-5,
3-6.,
3-7,
3-8,
3-9,

3""10.

5-1.
6-1.
6-2.
6-3.

N\ . . L e
BlOCk Dlagramlo.lCl....l....l..‘.........l...l...........

Register File OrganizatioN.cececcecsceccecsososcscscosscnccscs
CPU Control RegisterS.e.cceccceccccssccoscscossssccccscscscccccse

Bus Timing and Initialization Register..cceceecccccccccce
Bus Timing and Control Register.c.cccecececccoscecscscscscccncese
Local Address Register..c.ceeecceccecsescsccccocssccscscscccsss

Cache CoNtrol RegiSter.cscecescssesccscccscsasascacssssasecsse
Master Status Register.cceceecececceccccccccccncsccasccccess

Interrupt Status Register.......'........C.O..............

Interrupt/Trap Vector Table PoOiNtereeceeeeececoscscscscoocscacosaes

I/O Page Register......—..........................0.......

Trap ContrOI RegiSterocoooooooo.oooooooooooioo‘oooooooo.oooooo

System Stack Limit Register..cceccececccscccssccsncconcccocsocs
Flag REQiSLersesssesseesoeasooassssosesncasosassscncensess
Mode 2 Interrupt ProcessSinNge.ecececcccssccccccscsccccssscsasce
Instruction Execution Sequence...........................
Format of Saved Status on System Stack . |

Due to a Mode 3 Interrupt..ceeeccecceccsconsocconsoscsscssoo
Page Descriptor Register.ccceececececscccoscccocscscccccccos
Address Translation Without Program/Data Separation......
Address Translation With Program/Data SeparationN.c.ceccecesse
MMU Master Control Registereeeeecesececcvcecoscocoscscccaos
Cache OrganizatioN.cecescscscsoscosssossssscscsscscssscscsscs
Refresh Rate Register..............;.....................
MPU Counter/Timer Block DiAGTAM. e eoroososeosssossonsosess
Counter 0perat1on With Gate Only.oeceecceecccsccocsccoscccse
Counter Operation With Trigger ONly.eeeeeeececesoccesesss

Page
Number By

00001 1
....2 1
00002"‘3

" Numbering of Bits Within a Byte.secceeecoecceosecscocococcooaosel=3
Formats, Multiple-Byte Data Elements 1in Memory..,..f.........Z-a j

N
A Y-
ceeeld=3
cesel3=3

WO\W W \W W
|
A\ IRV IR Y Y

* & & @

* & 9 8

ooo.3""6

00005-1.
ceeseb=3

0..06"'6
R 4

]

00006"8

00007"'2"

00007-3

....7—& .

cesel=5
ceesB=1
cees9-1
ceee9=2
cees9=3
N

Counter Operation With Gate and Trigger.cececeeceececsececess¥d=-4

Counter/Timer Configuration Reglster.....................

....95

Counter/Timer Command/Status Reglster........................9 6

9-10.
9-11.
9-12.
9-13.
9-14,
9-15.
Y-16.
10-1.
' 10-2.
10-3.
10-4.
10-5.
10-6.

Modes of Operation.ccccceccecccoscscsossecsoscssvssscssososssossccscesdm 11
DMA Master Control RegisSterleeeeceecceococcessoscasosncsssssessad=l3
Transaction Descriptor Register.cecceeeccecececscscsccocssccossd=13
Source & Destination Address Registers Format.cceeccococoesoe
e e9-17
Byte Assembled by Receiver for 5-bit Character with Parity..
«e9-18
Transmitter Control/Status RegisStereeeeeeeceosscoacooeacoccssosse

General Format, Asynchronous TransSmiSsSioN.cscececsoccccccscos

UART Configuration Register.ccccececececccrecscsococcccssos

Receiver Control/Status RegisSter..ccecececsceccsccscsascess
Multiprocessor ConfigurationsS..ceeceececsecscececensocococssos
Local Address Register..ceeesenseseceonesceneasrsonoscsnnsnns
State Diagram for CPU Bus Request Protocol....ceeeeeeoccocns
Tightly Coupled Processors With Shared Global Memory.......
Tightly Coupled Processors Without Global MEMOLY.ooeooeoenn

9-15

09-18

e 9-19
.9-20
.10-1
.10-2

10-3

0010"’4
0010-5
2280 MPU as an I/U P[‘OCBSSDI‘.................................10-5

1X

Table of Contents (Continu'ed)

10""70
10"80
12-1,

12-2.
12‘-3.

. 12-4.

12-5.
12-6.
12-7.
12-8.

. 12"‘90

12"100.
12-11.

12-12,
12"’130

12"‘1"’.

) 12"150

13-10

13-2.
13-3.
13-4,
13-5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12.
13-13,
13-14.
13-15,
13-16.
13-17.
13-18.

EPU COﬁnection ln 2280 MPU System.......ﬁ........‘..‘....0000001.0-6.
CPU-EPU Instruction Execution SequeENnCe..cecoccsccsocsccccsccsell=?

280 Bus Configuration (Input OPT tied to GND) | '

a) Pin FUunNnClioNS.eeeeeeeacoccscscssoscacsscscscsssssscsacsoasll=1
"b) Pin Assignments...eeeeecotroscecrscoccccccccosccsccnsnsescsl2=1
Memory Read Timing.eecceceeoccesasccessocsoososcnossascsosssccnacssl2=5
Memory Write Timing...ceceececcesccococcsscsosssscccconssconcssoel2=6
Memory Read Timing W/One External Wait State......c.cecseceesl2-6
Memory Write Timing W/0One External Wait State..eeeeeccecesee 12=7
Memory Read Timing W/0One Internal Wait State..ceccececcecccecesl2=7

.RETI Read Timing...........‘...0.......IC.I......I............12-8

Halt Timing.........................IQI.OOI....O..O........00012-9
Memory RefreSh Timing...............l........................12-10

I/O Read Timing...‘.O.......;.............l.00000000000000000012-11
I/D wrlte Timing.’..............I.....O........................12-11

Interrupt Acknowledge Seqdence........................,.,....12-12
On-Chip DMA Channel Flyby Memory Read TransactioN..ececececeessl12-13

On-Chip DMA Channel Flyby Memory Write Transaction...........12-14

MUltiprocessor MOde Timing.........OO.......O..l.l..l........1z-1‘5..'

Z-BUS Configuration (Input OPT tied to +5V or not connected)

a) Pin FUNCLioNS..cceeeesossseecosscssscccssccssossssscsssseeld=~?

b) Pin ASsSignmentS.ceceeceeccseesoscscccssccsosscnssosassaslild=l’
Memory Read TImMiNg.eeeeeeeeeesoocscesscossasssnssocascocnsasnanaelld=b"
Memory Write TiminNgGeeceseeeocecseoossoscossosssscscssoscscassssssid=T
Memory Read Timing With External Wait Cycle...coeeeseocoocsesld=7
Memory Write Timing With External Wait Cycle...ecoeeccsoceceesl3-8
Memory Read Timing With Internal Wait Cycle..ccceeecceccccccesl3-8
Burst Memory Read TiminNg.eecesececeosocscccsnssososccsssscssscseslil=9y
Halt Timing...;..;.......................,...................13-10
Memory Refresh Timing..eecececevosoovsoccsncscsssossassossvconsoesld=1
I/0 Read TiminNGeeececoceooeoooscsesossssassscssssosossoccsocssesascsessl3d=12
I/0 Write Timingeeeoeeeeeeoosseeeoosososasecsosssasassscesesnesl3=12
Interrupt Acknowledge Timinge.eceeeooescecosooosesescacsecnesell=13
Memory to EPU Timingeeeecoeeeecoceosscosscsssccsccsscssncscsccasslild=14
EPU WEite TO MEMOCYeeooeeoooeooeooososeanososesssessoassasssal3=15
EPU To CPU Timingeeeceeceesesesessascassccscnsososscesssasosscssacaeslild=1b
PAUSE TiMingeeeooeoeoococacosossecossesasssescsscsesecoscsscceessl3=16
On-Chip DMA Channel Flyby Memory Read TransactiON.eeesocsccecl13-17
On-Chip DMA Channel Flyby Memory Write TransactioN.c.sseoceceesol13-18
Multiprocessor Mode TimingG.ecececceosccecoscoscoososcssscccscsnsoocalld=19

. &

PRI
* *

.
. .

Table
Number

3"1 °
-3"20
3"3.

'
v &
* o

!
.

|
N e VWN =2\ VWN o = d\C O~ OV B W N -

|
N o O e

®

®

WO ~NSNSONONONONON VOV VY VU VNNV W
'

\C \C € @
}

|
W N 2\
°

Page

Number

CS fField, Bus Timing & Inltlallzatlon Registercececececccccscesd~1

LM Field, Bus Timing & Initialization Register....cccceccccescs3-1
I/0 Field of Bus Timing and Control Register..ccececvseccccccceed=2
HM Field of Bus Timing and Control Register.cccecceccececcccceel=2
DC Field of Bus Timing and Control RegiSter.ceeececocccsccsoccsed=2

Conditlon COdeSOOC..0.0.0......IOO.........‘..0..-..0....O.....'...S-}

B-Blt Load GI‘OUp InStrUCtiOHS.-...............................5-‘!»'

16-Bit Load and Exchange Group InstructionS..cccececeecsccccoceced=b
BIOCk TranSFer and SearCh GrOUP........I....................'.5-5

B-Bit Arithmetic and Logic Group...........‘......‘.............5-6.

16-Bit Arithmetic Operation InstructionsS..ciccececscececsccose 5=7

Bit Manipulation, Rotate and Shift GroUPecccecosscscsccosveessd=8 "

Program Control Group INStructionNS...cecessocevrcccocecsoscceccssd=8
Input/Output Instruction Group InstructionNS.ceceecceeccecscsscsseed=Y
CPU Control GroUPececcececsscecsscocsscecosscscscoscccssosssscscsscosssead=10
Extended INStrUCLiIONS .t eeeeeoececssoscscscsccscscsncscscsscscasesd=10
Encoding of 8-Bit Registers in Instruction Opcodes..ceecceceee5=-11
Grouping of Maskable Interrupt RequestsS...ccecececcececossccnceb-1
INterruUpt MOdeS.ueeseecscoosecccoesosccocosocoosooosccsssscssesbolh

Trap Types...l...............I.......O..............00000000006-7

Interrupt Acknowledge Encoding for 780 Bus PartS..cceceecoccececeoeb=7 -

Interrupt/Trap Vector Table Format..ceecececervsccecscccccossacb=-10
Page Descriptor Register AdAreSSeS..eeeeesoceecoceeessascnsessl=5

MMU Invalidation Port.cceccececscsoencecsccesccscscscccsosscsossocscel=b

I/0 Port Addresses for MMU Control RegiSterS..ceceecscscccecsscel=6

CPU Accesses to On-Chip Memory as CAChE . ereeeseeecacesasnnaneaBa2
On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect

0N ON-Chip Memory 88 CAChE..veeseesooocoosoecssososesssssosesseeB=3

DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location...B8-4

Encoding, IPA Field in C/T Configuration Register.ceeesceecessd=5

I/0 Addresses of Counter/Timer RegiStersS..ceeeecececcsoncocces9=T

Configuration and Command/Status Registers

for Linked Counter/Tlmers............................;........9 8

Encoding of DAD & SAD Fields in DMA Transaction

Descriptor Reglster...9-13
Encoding of Type Field in Transaction Descriptor Register.....9-14
Encoding of BRP Field in Transaction Descriptor Register......9-14
Encoding of ST Field in Transaction Descriptor Register.......9-14
I/0 Addresses of DMA Reglsters................................9 15
CR Field of UART Configuration Register...ccceeeccccoccccscscccsed=19
BC Field of UART. Control RegiSter.ceseeeeeecencenncocncassneead=19

I/0 Addresses of UART RegiSterS...eeeceecscecscocecscooccasoccocesed=20

Reset Value of UART and DMA Registers
When Bootstrap Mpde Is Selected...icieerecdeccetrocococccscnococcseeld=21

i

X 1

[A

Table of Contents (Continued) °

10"10

10-2

11-1.,
11"'2.

13-1

'B""‘lo

B"Zo
B-3.
B“'ao

|)
. Q)
. ®

TTTTMTTmMMmMMmM™m MM
'

N wm O~y O
L J

Bus Transactions Involved in fFetch of

Extended Instruction Template.....;.....;...;..........;......10-8
Sequence of Transactions for Data Transfers

Between an EPU and MemOrYeeeeoecocooscsceososooscsoscscoscocsscsesll=9
Effect of a Reset on 2280 CPU & MMU Registers.ceescececcssccseell=2

Effect of a Reset on Z280 On-Chip Peripheral Registers..seees.11-3
ST Status Line DeCOode.ceereerssevscosscccecsocasesesssssesssessll=bi

Format 1 Instruction EncodingSecececescoscccosccsccscnsoscsscssseB=2
Format 2 Instruction ENCOdiNgS.ececccosceessccoccsscsccscsccsossso

B-
Format 3 Instruction EncodinNgS..ceesoeesccosccsasscscssccsocssoscsecosB-
Format a I‘nst’ruction EﬂCOdlngSooooooooooooo.ooooo.ooooooooooooB-

Instruction Execution TimesS.cceeeseocscscocosccocssocccscscscssscb=2
Extended Instrugtion Execution TimeS.iseeesceococccocococsscocsceob=11

Interrupt, Trap, and Special Condition Execution Times...eece.E-12
Instruction Fetch and Decode TimMiNge.ceoeeesoossossccossccscessE=13

Data Read Timing.....Q‘...............O.......................E-14

N NN

Data write Timing.oooooooooooooooooo.oooooooooooooooooocoooo.oE"'1a'

I/0 Read and Write Timing.eccceseovsosocsoccoscsscscsoscocsssscssceseb=1>
EPU Read and Write Timing..ceeceeecenssceccocccccscscscscscssssssb=15
Interrupt Acknowledge TiminQ..ececeeoscecosccscsssscsscsccsccsessseb=15
Miscellaneous Transaction TimMiNgeccecseceeccsccsssescsccccccaccscecssb-16
28400 Peripheral Family.eeceeeceoecosescscososcesssoscnsscossasef=1
Z8000/28500 Peripheral Family.c.tceeeeceossoosoceoccoccscascessf=1

/

x1il

{ P .

Chapter 1 | |
Z280 Archltectural Overwew

1.1 INTRODUCTION

The Z280™ microprocessor unit (MPU) features an |

~advanced 16-bit CPU that is object-code compatible
with the Z80® CPU. The 2280 microprocessor unit
includes memory management, peripherals, memory
refresh logic, cache
‘generators, and a clock oscillator on the same
integrated circuit as the CPU. = The on-chip
peripheral devices include 4 DMA (Direct Memory

Access) channels, 3 counter/timers, and a UART
(Universal Asynchronous Receiver/Transmitter). A"

block diagram of the Z280 MPU is shown in Figure
1-1. This chapter presents some of the features

of the 7280 MPU family, with detailed descriptions |

‘memory, wait state -

GENERAL-
PURPOSE
REGISTER
FILE

" of the various aspects of the processor prov1ded

in succeeding chapters.

‘The 2280 MPU has a multlplexed address/data bus

for communication with external memory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that

uses 280 Bus control signals, and a 16-bit data

bus that uses Z-BUS® bus control signals. Zilog's
280 and 78500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's Z8000® family
of peripherals are easily interfaced to the 7-BUS.

L ‘ . i‘g
| RD/OS -
INTERNAL BUS) *HALT/B/W
‘WR/A/W
'WISTQ :
*JORG/ST,
*MiI’ST
“MREG Q/STs
XTALI | N
. FOUR 16-BIT INTERRUPT
DMA CHANNELS CONTROL Y W
XTALO 4
290 BUS
(o-8iT OR oPT
24-8B17T SOURCE (16-8IT)
45V et 24-BIT OESTINATION BUS SCALE CLK
| 18-81T COUNTER wm?.;?me WAIT
GND IR CONTROL GENERATOR - PAUSE

Figure 11

ROY DMASTE EOP 'RxD ™0

RESET ! OF [BUSREQ| GREQ
] BUSACK GACK Ag-A23] ADg-AD,

Ag-As
ADg-AD: g

¢ Signal definition depends on OPT.
+ Eﬁmwdﬁn

+ WMWICT'"Q
+Gﬁ!‘0mmmcnoo

Block Diagram

1-1

[P,

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the 7280 MPU is a
binary-compatible extension of the 280 CPU
architecture. High throughput rates for the 7280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to

provide for slower speed bus transaction timing.

A programmable refresh mechanism for dynamic RAMs

and a clock oscillator are provided on-chip.
/

"~ 1.2.1 System and User Modes

Two modes of CPU operation, sysfem and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be

executed and all of the CPU registers can be

accessed, = This mode is intended for use by
programs performing operating system functions.

In user mode, certain instructions that affect the
state of the machine cannot be executed and the

control registers in the CPU are inaccessible. In
general, wuser mode is intended for wuse by

- applications programs. This separation of CPU'.

resources promotes the integrity of the system,
since programs executing in user mode cannot

access those aspects of the CPU that deal with
. time-dependent or system-interface events. |

h

The register = structure has been extended to

" include separate Stack Pointer registers, one for

@ system-mode stack and one for a user-mode

. stack. The system-mode stack is used for saving
- program status on the occurrence of an interrupt

or trap condition, thereby ensuring that the user
stack 1is free of system information. The

' isolation of the system stack from user-mode
_programs further promotes system inteqrity.

- 1.2.2 Addpgss ébaces

Addressing spaces in the Z280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/0 address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.

-The A register acts as an B8-bit accumulator; the

HL register is the 16-bit accumulator. These are

suppleménted by four other 8-bit registers (B, C,
D, E) and two other 16-bit registers (IX, 1Y);
the 8-bit registers can be paired for 16-bit

" operation, and each 16-bit register can be treated

as two B-bit registers. The Flag register (F)

contains information about the result of the last

operation. The A, f, B, C, D, E, H, and L

-registers are replicated in an auxiliary bank of

registers. These auxiliary registers can be
exchanged with the primary register bank for fast

context switching.

Several CPU control registers determine the

-operation of the 27280 MPU, For example, the

contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers

-are accessible in system-mode operation only.

The 2280 CPU's logical memory address space is the
gsame as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the 2280 CPU can have up to Gpur
memory address gpaces: .= system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The 2280 CPU architecture also disiinguishes“
between the memory and I/0 address spaces and,

therefore, requires specific I/0 instructions. ,"

I/0 addresses in the 2280 CPU are 24 bits long,
with the upper 8 bits provided by an 1/0 page
register in the CPU. SRR o

' 1.2.3 Data Types N

| Hany data typés are supported by the 7280 CPU
. architecture. The basic data type is the 8-bit

byte, which is also the basic addressable memory

. element. The architecture alsc supports opera-

tions on bits, BCD digits, 2-byte words, and byte
strings. | | ‘ ‘ 3

" g-bit shift,

" 1.2.5 Instruction Set

"

W

1.2.4 Addressing Modes

" The operand addressing mode is the method by which
a data operand's location is specified.

CPU supports nine addressing modes, including the

five modes available on the 1Z80 CPU The ‘"

address1ng modes of the 7280 CPU are:

Register

Immediate .

Indirect Register

Direct Address . -

Indexed (with a 16-bit dlsplacement)

Short Index (with an B-bit dlsplacement)
Program Counter (PC) Relative

Stack Pointer (SP) Relative

Base Index :

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
rotate, and bit manipulation
instructions are limited to the Register, Indirect

Register, and Short Index addressing modes. The .

16-bit loads on the addressing registers support

all addressing modes except Short Index, while
other 16-bit operations are limited to the
-~ Register, Immediate, Indirect Register, Index,
fii Direct Address, and PC Relative addressing modes.

. -

. The 2280 CPU instruction set is an expansion of

the 280 instruction set; the enhancements include

~ support for additional addressing modes for the

280 instructions as well as the addition of new

5;instructions. The 2Z280 CPU instruction set

provides a full complement of 8- and 16-bit

" .arithmetic operations, including signed and
* unsigned multiplication and division. Additional
> B8=-bit computational instructions support logical
and decimal operations. Bit manipulation, rotate,
"~ and shift instructions round out the data

manipulation capabilities of the 2280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative

addressing is provided for the Jump and Call

instructions to support position-independent
programs. - - Block move, search, and I/0
instructions provide powerful data movement
capabilities.
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions. | C

In addition, special instructions

%

“' 1.2.6 Exception Conditions - |

The 2280

The 7280 MPU suppsrts three types of exceptions |
(conditions that alter the normal flow of program
execution): ~interrupts, traps, and resets.

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
2280 MPU interrupt structure has been signi-
ficantly enhanced by increasing the number of

~ interrupt request lines and by adding an efficient
- means for handling nested interrupts. There are

four modes for handling interrupts: -

@. 8080 compatible, in which the interrupting

'5 Vectorsd

device provides the flrst instruction of the
1nterrupt routine..

o 0'-Dedicated interrupts, in which the CPU jumps to

a dedicated address when an interrupt occurs.

interrupt mode, in which the
. interrupting peripheral provides a vector 1nto
- a table of jump addresses. | ‘

o .Enhanced vectored interrupt mode, wherein the

- CPU handles traps and multiple interrupt
 sources, saving control information as well as
the Program Counter when an interrupt occurs. -
The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts
and a sophisticated vectoring scheme. -

Traps are synchronous events that trigger a
special CPU response when certain conditions occur -
during instruction execution. The 27280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps. |

Hardware resets occur when the RESET line is
activated and override all other conditions. A
reset causes certain CPU control reglsters to be
initialized.

- 1.2.7 Memory Hanageleﬁt :

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

1-3

Proper memory management can provide a logircal
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to

memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulated by the pro-

grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from

specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the.

MMU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
- areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can

inhibit copies of data from being retained in the
on-chip cache.

When a memory access violation is detected by the-

MMU, a trap condition is generated in the CPU and

execution of the current instruction 1is auto-.

matically aborted. This mechanism facilitates the

easy implementation of virtual memory systems
based on the 7280 MPU. a

1.2.8 Cache Memory .

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache.
is made to the high-speed cache;
access is made to main memory,
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

if not, the

The 72280 MPU includes on-chip memory that can be

ugsed as a cache for programs,
Cache operations, including

data, or both,
updating, are

per formed automatically and are completely trans-

parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified wunder program
control, instead of being used as a cache,

included on-chip in the 2280 MPUs:

If so, the access -

and the cache .

by the EPU.

- 1.2.9 Refresh

The 2280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation,

. 1.2.10 On-Chip Peripherals

devices are
four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
2280 MPU's memory after a reset.

Severai- programmable peripherél

-

1.2.11 Multiprocessor Mode

| A“special mode of obérétion allows the 2280 MPU to

operate in environments that have a global bus,
wherein the 72280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the 2280 MPU, and
another set of addresses is used for the global
bus. The 72280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 7280 MPU in multiple-processor configura-
tions. For example, a 2280 MPU could be used as
an I/0 processor in a Z80000-, Z8000-, or
2280-based system. | e | |

1.2.12 Extended Instruction Facility

The 7280 MPU architecture has a mechanism for
extending the basic instruction set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set' aside
to implement this feature. When the 2280 MPU
encounters an instruction with one of these
opcodes, it performs any indicated address calcu-
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed

>~

'f an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is

encountered so that system software can emulate
the EPU's activity. '

Lo

1.3 BENEFITS OF THE ARCHITECTURE

The features of the 7280 MPU architecture provide

several significant benefits, including increased
program throughput, increased integration of

system functions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput

Very high tﬁroughput rates can be achieved with

~ the 7280 MPU, due to the cache memory, instruction

pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled

down to provide the bus clock rate, allowing the

designer to use slower, less-expensive memory and
I1/0 devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the 2280 CPU's expanded instruction set also
contributes to program throughput, since fewer

instructions are needed to accomplish a given
task. - | - |

1.3.2 Integration of System Functions

" Besides a powerful CPU, the Z280 MPU includes

many on-chip devices that previously had to be
implemented in logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom-
panied by a resulting reduction in design and
debug time, power requirements, and printed
circuit board space, This increased level of
integration also contributes to system throughput,
gsince the on-chip devices can be accessed quickly
without the need of an external bus transaction.

'1.3.3 Operating System Support

Several of the 7280 MPU's architectural features
facilitate the implementation of multitasking
operating systems for Z280-based systems.

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-

. mode memory can be separated from user-mode memory

and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

ingtruction and the trap mechanism provide a-
controlled means of accessing operating system
functions during user-mode execution. -

The interrupt- and trap-handling mechanisms are "
well suited for operating system implementations.
Several 1levels of interrupts are provided,

allowing for separate control of various peripher- .
al devices (both on and off the chip). A new

interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved

- on the stack and new program status information

for the service routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. . In both
cases, status is always saved on the system stack,

- leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid

in task switching and other operating system
chores.

The bn-cﬁip MMU supports a multitasking environ-

ment by providing both a means of quickly

allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage. t

1.3.4 Code Density

Code density affects both probessor speed and

- memory utilization. Code compaction saves memory

gpace and improves processor speed by reducing the
number of instructions that must be fetched and

decoded. The largest reduction in program size

results from the powerful instruction set, where
instructions such as Multiply and Divide help -
substantially reduce the number of instructions |
required to complete a task. - |

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical
instructions. | o |

1.3.5 Compiler Efficienéy

For microbrocessor users, the transition From‘
assembly lanquage to high-level languages allows

- greater freedom from architectural dependency and

improves ease of programming. For the 72280 MPUs, -
high-level language support is provided through ‘
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the 7280 instruction set, allowing the 7280 CPU
to easily handle a large amount and variety of
data types. The 2280 CPU's ability to manipulate
many different data types aids 1in compiler
efficiency; since data structures are high-level
constructs frequently wused in
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the 2280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing mode is

programming,

especially useful for accessing parameters and

local variables stored on the stack.

1.4 SUMMARY -

The 72280 MPU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,

. the 7280 MPU architecture has been expanded to

include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for

multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache

memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency--
greatly enhance the power and versatility of the
2280 MPU. Thus, the 72280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance - processor for future
applications. |

[P8

| Chaptér 2.

Address Spaces

2.1 INTRODUCTION

The 7280 MPU supports four address spaces corre-
- sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-
nisms used to map the logical address into
physical locations.
are:

e CPU redister space. This consists of the
.addresses of all registers in the CPU register
file. |

® CPU control register space. This consists of
- the addresses of all registers in the CPU
control register file.

® Memory address gpace. This consists of the
addresses of all locations in the main memory.

§

@ I/0 address space. This consists of the

- addresses of all 1I/0 ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers.

PRIMARY FILE

A ACCUMULATOR

F FLAG REGISTER

. -

These four address spaces

2.2 CPU REGISTER SPACE

The 2280 CPU register file is illustrated in

Figure 2-1., The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers. - = - o : |

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register

in the auxiliary file):

@ Flag and accunulator registers (F, A, F'; A')

@ Byte/word registers (8, C, D, E, H, L, B', C',

Dl’EI’ H', L') . .
® Index registers (IX, IY) . .

. Stack Pointers (SSP, USP)
e Program Counter, Interrupt

Refresh register (PC, I, R)

4

L

register,‘ and

~ AUXILIARY FILE

A’ ACCUMULATOR . F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE

8’ GENERAL PURPOSE x C’ GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

D’ GENERAL PURPOSE E' GENERAL PURPOSE

'H GENERAL PURPOSE 'L GENERAL PURPOSE

| - 8 BITS >

IX INDEX REGISTER

*

IY INDEX REGISTER
]

PC PROGRAM COUNTER

SP STACK POINTER

USER (USP) !

j 16 BITS

" H’ GENERAL PURPOSE " L' GENERAL PURPOSE

NOTE: A is the 8-bit accumulator.
HL is the 16-bit accumulator.

]

Figure 211. Register File Organization

2-1

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction. '

The flag registers (F, F') contain eight status
flags.
of program branching, two are used to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the Z280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag reqgister and accumulator.

The byte/word registers can be accessed either as

8-bit byte registers or 16-bit word registers, -

Bits within these registers can also be accessed
individually. For 16-hit accesses, the registers
are paired B with C, D with E, and H with L. Two

sets of byte/word registers exist in the 7280 CPU,

although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange ingtruction.

The index registers IX and IY can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed.

The Z280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode, The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter-
rupt register 1is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the 280 CPU to indicate the current refresh
address, but does not perform this function in the

2280 CPU; instead, it is another 8-hit register
available for the programmer.

Four can be individually used for control-

" respectively.

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag

register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the 8, C, D, E, H, L registers or the 8', C', D',
£E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
At any time the program can sense
the state of these control bits by special jump
instructions. The third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
gspecifies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
gspecial Load Control instruction. |

2.3 CPU CONTROL REGISTER SPACE

The 2280 CPU status and control registers govern
the operation of the CPU. They are accessible

only by the privileged Load Control (LDCTL)
instruction, - | :

Control register addresses are specified by the
contents of the C register. No translation .is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization regqister, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the 1/0 Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status

" register, the Cache Control register, and the

Local Address register (Figure 2-2). The CPU

control registers are described in detail 1in
Chapter 3.

CONTROL
REGISTERS

SYSTEM STATUS
REGISTERS

Figure 2.2. CPU Control Registers

2.4 MEMORY ADDRESS SPACES

Two memory address spaces, one for system and one
for user Tode operation, are supported by the z280
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the 7280 MPU memory address spaces.
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands. -

The size of the data element being addressed
depends on the instruction being executed. A bit

- can be addressed by specifying a byte and a bit -

within that byte. Bits are numbered from right to
left, with the least significant bit being bit O,
as illustrated in Figure 2-3, |

Figure 2.3. Numbering of Bits within a Byte

L)
.
.
. .
.
|

- BUS TIMING AND CONTROL

BUS TIMING AND INITIALIZATION

LOCAL ADDRESS

CACHE CONTROL

.
| | | I .
-
-
.
-

MASTER STATUS

INTERRUPT STATUS

INTERRUPT/TRAP VECTOR TABLE POINTER

TRAP CONTROL

SYSTEM STACK LIMIT

-

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4, '

Note that when a word is stored in memory, the
least significant byte precedes the most

‘significant byte of the word, as in the Z80 CPU

architecture.

.The 16-bit 1logical addresses generated by a

program can be translated into 24-bit physical
addresses by the on-chip MMU. When the
translation mechanism is disabled, the 24-bit
physical address consists of the logical address
for bits Ag-Aq5 and zeros for Aq4-A23.)

60-bit floating-point (EPU instruction only) at address n:

sign,E10-4 address n
E3-0, F51-48 address n+1
F47-40 address n+2
F39-32 address n+3
F31-24 address n+4
F23-16 address n+5
F15-8 address n+6
F7-0 - addressn+7
<--1byte -> ‘

80-bit floating-point (EPU instructions only) at address n:

sign,E14-8 address n

E7-0 | address n+1
F63-56 | i address n+2
F55-48 | addressn+3
F47-40 address n+4
F39-32 address n+5
F31-24 address n+6
F23-16 | addressn+7
F15-8 . | addressn+8
F7-0 address n+9

~ BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the
maximum length string) | |

sign,D18 - l addressn
D17,D16 ~ address n+1
D15,D14 - . address n+2
D13,012 i ' address n+3
D11,010 address n+4
D9,08 address n+5
D7,06 address n+6
D5,04 1 addressn+7
D3,02 addressn+8
D1,00

~ address n+9

16-bit word at address n:

address n
address n+ 1

least significant byte
most significant byte

32-bit integer (EPU instruction only) at address n:

B31-24 (most significant byte) address n
B23-16 address n+1
B15-8 ‘ I address n+ 2
B7-0 (least significant byte) address n+3
< 1 byte -—---eeceeeee- >

64-bit integer (EPU instruction only) at address n:

B63-56 (most significant byte) | addressn

B55-48 c | addressn+1
B47-40 address n+2
B39-32 address n+3
B31-24 . . addressn+4
B23-16 address n+5
B15-8 address n+6
B7-0 (least significant byte) “address n+7

! < 1 byte >

32-bit floating-point (EPU instruction only) at address n:

sign,BE7-1 address n
E0,F22-16 address n+1 -
F15-8 addressn+2 -,
F7-0 - addressn+3 * -

| <-1 byte > j -

Figure 244, Formats of Multiple-Byte Data Elements in Memory |

2.5 1/0 ADDRESS SPACE

1/0 addresses are gqenerated only by 1/0
instructions. The B8-bit 1logical port address
specified in the instruction appears on ADp-ADv;
this is concatenated with the contents of the A

register on lines Ag-Ayg for Direct addressing.

mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. The contents of the 1/0 Page
register are appended to this address on lines
A1g-A23. Thus, the 24-bit 1/0 port address

external bus.

consists of the B8-bit address specified in the

instruction, the contents of the A or B register,

and the contents of the 1/0 Page register.

An 1/0 read or write is always one transaction,
regardless of the bus size and the type of 1/0

instruction, On-chip peripherals with word
reqgisters are always accessed with word
instructions,

regardless of the size of the -

Chapter 3.

CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers ..spei:ify'

the operating mode of the 2280 MPU. There are two
types of CPU control registers: system
~configuration registers and system status regis-
ters. The system configuration registers contain

information about the physical configuration of

the Z280-based system, such as bus timing infor-
~mation. Typically, -the system configuration
registers are loaded once during system initial-
ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current I/0 page. Access

to the CPU control registers is restricted to

system mode operation only, using the privileged
Load Control (LDCTL) instruction. Resets ini-
tialize the control registers so that a Z80 object
program will execute successfully on the 7280
MPU. (280 programs do not affect these registers,
since the Load Control instruction is not part of
the 780 CPU's instruction set.) Unused bits in

these registers should always be loaded with
zeros. |

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.

3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap

modes. Figure 3-1 illustrates the bit fields in
this register. |

7 0

Figure 31. Bus Timing and Initialization Register

o

Clock Scaling (CS) Field. This 2-bit field
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, as

described below, and cannot be modified
software.

via

1t

/

Table 3-1. CS Fleld of Bus Timing and Initialization Register

CS Fleld Bus Clock Frequency
00 . Busclock frequency equals 2 CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)
01 Busclock frequency equals CPU clock frequency

(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals /a4 CPU clock frequency
| ~ (one bus clock cycle for every four CPU clock .
cycles) | | . S

1. Reserved = - .. .7

~
v

Low Memory Wait Insertion (LM) Field. This 2-bit
field specifies the number of automatic wait

" gtates to insert in memory transactions to the

lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2, Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

Table 3-2. LM Field of Bus Timing and Initialization Register

Number of Walit States for
LM Field Lower 8M Bytes of Memory
00 0
01 o - -1
10 . -2
1 - o g

\ .

Multiprocessor Configuration Enable (MP) Bit.
This 1-bit field enables the multiprocessor mode

of operation, wherein the 7280 MPU is connected to
both a local and a global bus. Transactions to

321

M bl o TamE Rt Ak A e

m mmrrm A b T T —————— e P

(PO USRS ———— R

e eemert s wma s ar

addresses on the global bus require a special bus
request and acknowledgement before the bus trans-
action can occur., (See Chapter 10 for details

 concerning this mode of operation.) Setting this

bit to 1 enables the multiprocessor mode, and

" clearing this bit to 0 disables this mode.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location 0. (See Chapter

9 for further details.) Setting this bit to 1

enables the bootstrap mode and clearing this bit
to 0 disables this mode. The BS bit can be set to

-1 only during a reset operation, as described

below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this

- register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

The Bus Timing and Initialization register can be

initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto-
matically initialized to all zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the 1lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. If the WAIT input is asserted
during reset, the Bus Timing and Initialization
register is set to the contents of the ADg-ADy bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCTL instruction,

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

Figure 3-2. Bus Timing and Control Register

3-2

-

I/0 Wait Insertion (I1/0) Field. This 2-bit field

~gpecifies the number of automatic wait states (in

addition to the one wait state always present
during I/0 transactions) to be inserted during
each 1/0 read or write transaction, as per Table
3-3. The specified number of wait states is also

‘&dded to the vector read portion of an interrupt

acknowledge cycle.

Table 3-3. 1/0 Field of Bus Timing and Control Register

. Number of Wait States
1/0 Field forl/O
00 - 0
A E R I
11 | 3

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait

' states to be inserted during memory transactions

to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Field of Bus Timing and Control Register

L Number of Walit States for
HM Field Upper 8M Bytes of Memory
o0 . 0
01 o) x L 1
10 . | 2
11 ‘ ' 3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be ingerted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of MT and the assertion

of TORQ (for the Z80 Bus). The value of the DC
field determines if any additional clocks are to

be added between the Address Strobe and Data
Strobe (or M1 and TORQ) assertions.

Table 3-5. DC Fleld of Bus Timing and Control Register

Number of Wait States for
DC Field Interrupt Acknowledge
00 , ' -0
oo - . 1
10 L2
1 3

The contents of the Bus

Timing and Control

register govern the number of automatic wait-

states to be inserted during various bus trans-

actions. Additional wait states can be added to
any bus transaction via control of the WAT]
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits &4 and 5 should always be written with O,

When this register is read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register S

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the
Local Address register have no effect on MPU
operation,

If multiprocessor mode is enabled, the MPU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
physical memory address during memory trans-
actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in
the match field, if all the corresponding address
bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus 1is requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

The format of the Local Address register is
illustrated in Figure 3-3.

7 ' ()}

Figure 3-3. Local Address Register

Base bit (B,): For each ME, that is set to 1, the
corresponding value of B, must match the value of
address bit A, in order for the local bus to be

used; otherwise, the transaction requires the use
of the global bus.

Match Enable bit (ME,): If ME_, is set to 1, then
the corresponding physical address bit A, is
compared to base bit B, to determine if the
address requires the use of the global bus. If
ME,, is a zero, then any values for A, and B,
produce a match, signifying a local bus access.
If every ME, is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.4 Cache Controloﬂbgister

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contaiﬁs five control

bits, as described below. The format for this
register is shown in Figure 3-4, '

7 0

| 1] o fmapwel o o] o

Figure 3-4. Cache Control Register

.
-
L}

Memory/Cache (M/T) Bit. While this bit is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) Bit. While this bit
and the M/C bit are cleared to 0, the on-chip
memory 1s used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Cache Data Disable (D) Bit. While this bit and
the M/C bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
1 and D bits.) If the M/C bit is a 1, the state
of this bit is ignored. -

Low Memory Burst Capability (LMB) Bit. This 1-bit

field specifies whether burst-mode memory
transactions will occur during memory transactions
to the lower B8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to O
disables burst mode transactions.

High Memory Burst Capability (HMB) 8it. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the wupper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables

| burst-mode transactions; clearing this bit to 0 -

disables bupst-mode transactions.

The Cache Control register is set to a 204
{hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches

only and disabling burst mode transactions. Bits

0, 1, and 2 of this register are not used.

3.3 SYSTEM STATUS REGISTERS

There are six system status registers in the 7280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/0
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register o o

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program, lypically, the MSR changes when a new
programming task is dispatched; - it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figure 3-5. .

Figure 35. Master Status Register

- gperation;

~ the single-step operating mode.

. . ' ' ¥ ') ' . .
. . .) * .
15 0
1

User/System (U/5) Bit. While this bit is cleared .
to 0, the 2280 MPU is in the system mode of
while set to 1, the MPU is in the user
mode of operation, The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged

instructions can be executed only while in system
mode. |

Breakpoint-on-Halt Enable (BH) B8it. While this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;

while cleared to 0, the Halt instruction is
executed normally. '

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access: Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.) - : | o

Single-Step (SS) Bit. This bit is the enable for
While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled. S o a
Interrupt Request Enable (E,) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The 7280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit E, is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while E, is cleared to O,

interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register

\

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

- described in Chapter 6.
~ of the 24-bit physical address are assumed to be

enable bits are writeable; all other bits in this
register are read-only status bits.

the Interrupt Status register are shown in Figure
3-60 . ‘

15 | o | 0

Figure 3-6. Interrupt Status Register

-™

Interrupt Vector Enable (I,) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While I, is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while I, is
cleared to 0, that interrupt is not vectored.

These bits are ignored when not in interrupt mode
3.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field' denoting interrupt

mode n. This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IP,) Bits. When bit
IP, is a 1, an interrupt request from a source at
level n is pending. |

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. B8its 7, 10, and
11 of this register are not used.

S

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the

physical memory address of the start of the |
The Interrupt/Trap .

Interrupt/Trap Vector Table.
Vector Table is a memory area that holds the

values that are 1loaded into the Master Status . .

register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
The twelve low-order bits

all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7). '

mmmmmmmmmmmnnnn

Flgure 3-7 InterruptlTrap Vector Table Pointer

The fields in -

~ 3-8).

The contents of the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1. |

3. 3 4 1/0 Page Reglster R ey

The 8-b1t 1/0 Page register determlnee the upper
eight bits of the 24-bit peripheral address output
during execution of an I/0 transaction (Figure

1/0 pages FEH and FFH are reserved for
on-chip perlpherel addresses. ‘

* . - *
[. "
7 0 T
.
e
" -
* *
Ly

Figure 3-8 : /O Page Register

The contents of the 1/0 Page.
cleared to all zeros by a reset..

register are

3.3.5 Trap Control Register

The 8-bit Trap Control register contains the
enables for the maskable traps. =~ Figure 3-9
illustrates the format of this register.

? | | 0 o
" Figure 3.9. Trap Control Register |
. | RONEE
Inhibit User I/0 (I) Bit. This bit determines
whether or not 1/0 instructions are privileged

instructions. While this bit is set to 1, all I/0
instructions are treated as privileged
instructions, and an attempt to execute an 1/0

instruction while in wuser mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, 1/0 instructions can be successfully
executed in user mode. I/0 instructions can

always be executed in system mode, regardless of
the state of this bit.

EPU Enable (E) Bit. This bit indicates whether or .
not an Extended Processor Unit (EPU) is available
in the system for execution of extended in-
structions. If this bit is cleared to O,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in-
struction opcode, and assumes that the EPU is
present to execute the instruction. |

3-5

m e e L i e ——— 1

i System Stack Overflow Warning (S) Bit. This is 3.3.6 System Stack Limit Register
'&ﬁﬁ the enable bit for the System Stack Overflow .
iﬁ- Warning trap. While it is set to 1, Stack The 16-bit System Stack Limit register determines
sqg Overflow Warning traps can occur during a stack when a System Stack Overflow Warning trap is to be
fﬁ%i access while in system mode, as determined by the generated. Pushes onto the system-mode stack
;ﬁ%ﬁ contents of the Stack Limit register. While this cause the 12 most significant bits of the logical
iﬂ; bit is cleared to 0, Stack Overflow Warning traps address of the System Stack Pointer to be compared
33 are disabled. This bit is automatically cleared @ to the 12 most significant bits of this register;
:; when a System Stack Overflow Warning trap is a System Stack Overflow Warning trap is generated
; generated. - | . if they match. The low-order four bits of this
; -) o ' register must be zeros (Figure 3-10). This
| The Trap Control register is cleared to all zeros- register has no effect on MPU operation if the
by a reset, indicating that 1/0 instructions are System Stack Overflow Warning enable bit in the
not privileged, EPUs are not present in the Trap Control register is cleared to 0.

system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are

: 15 ' ' 0 :
not used. oA saa|aci[ao] Ao s ar{measiael 11]|t

b

: : Figure 3-10. Systerﬁ Stack Limit Register "

t

. C . The contents of the System'Stack Limit register
| are cleared to zeros by a reset.

[
-

3 6 * -
¥
LY
Y
- L)

4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon, For 2280 CPU instructions,
operands can reside in CPU registers, memory
locations, or 1/0 ports.
designate the location of the operands for an
instruction are called addressing modes. The 72280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.

A wide variety of data types can be accessed using
these addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS .

The following pages contain descriptions of the
addressing modes for the 72280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing mode, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples wusing
memory addresses use logical memory addresses; if
the MMU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction
processes data taken from one of the B8-bit
registers A, B, C, DO, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, 1X, 1Y,
SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

The methods used to

4.2.2 Immediate (IM)

Chapter4 D R
Addressing Modes and Data Types

INSTRUCTION REGISTER

OPERATION | REGISTER OPERAND

- THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte or word) is
specified by the 1nstruct10n opcode.

Exanple of R mode:

LD BC,HL sload the contents of HL into BC

Before instruction execution: After instruction execution:

BC: |A688J . BC:

9 A2 0
s A 2 0 HL:

9 A2 0

A

When the Immediate addressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode 1s the only mode

that does not
address as the source operand.

INSTRUCTION

OPERATION
'OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

.
b T

Because an immediate operand is part of the
instruction, it is always located in the program

memory address space. Immediate mode is often
used to initialize registers. = |

Example of IM mode:

LD A,55H s load hex 55 into the accumulator

indicate a register or memory

Before instruction execution: After instruction execution:

A: 67| A s 5| ,

Yo,

e,

HLN

il

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C register for I/0 and
control register space accesses. For the Load
Byte instruction, BC and DE can also be used in
addition to HL.

\ B DATA MEMORY,

: /0 PORT, OR
INSTRUCTION REGISTER CONTROL REGISTER

OPERATION | REGISTER m OPERAND

THE OPERAND VALUE 1S THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending on the instruction, the operand
specified by IR mode is located in either the 1/0
address space (I/0 instructions), control register
space (Load Control instruction), or data memory

- address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed. |

Example of IR mode:

LD A,(HL)
- . saddressed by the contents of HL

Before instruction execution: After instruction execution:

4-2

sload the accumulator with the data

4.2.4 Direct Address (DA)

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or 1/0 port address is in the instruction.

INSTRUCTION
DATA MEMORY
OR 1/0 PORT

OPERATION
ADDRESS OPERAND
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Depending on the instruction, the operand
specified by DA mode is either in the 1/0 address
space (1/0 instructions) or in the data memory
address space (all other instructions). |

This mode is also wused by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Prugram Counter.)

Example of DA mode:

sload BC with the data in

LD BC,(5SE22H)
' saddress 5t22

Before instruction execution: After instruction execution:

sc: [6 7 8 o] sc: [0 3 0 1

Data memory:

L]

5E22: S

A: 0 F T .. A: 0 B sE23:

HL |1 70cCc] -~ - Hu |1 700C |

Data memory: . ,
‘{...

.

m

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
IY.

The indexed address is computed by adding the

twos-complement "index" contained in the H., IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the

particular element index must be computed by the
program. |

address specified in the instruction to a
INSTRUCTION REGISTER
. DATA ~
OPERATION ! REGISTER . MEMORY

ADDRESS

OPERAND “..'

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS ISTHE ~ ~ "

Operands specified by X mode are always in the
data memory address space.

Ekanple of X mode:
LD A,(IX + 231AH) sload into the accumulator
sthe contents of the memory

s location whose address
sis 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is

the contents of IX or 1Y offset by an 8-bit signed .

displacement in the instruction. (Note that this
addressing mode was called "Indexed" in the Z80
CPU literature.) '

-

INSTRUCTION

OPERATION REGISTER
DISPLACEMENT

REGISTER

~ e }—C

ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Before instruction execution: After instruction execution:

A |2 3 | A

’
IX: 0 1 F E ' IX: |0 1 F E
Data memory:

2518; 3 D]

The short indexed address is computed by adding
the 8-bit twos-complement signed displacement

gspecified in the instruction to the contents of

the IX or 1Y register,
instruction,

also specified by the
Short Index addressing allows random

access to tables or other complex data structures .

where the address of the base of the table is
known, but the particular element index must be
computed by the program,

DATA :
MEMORY L v

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION, :
OFFSET BY THE CONTENTS OF THE REGISTER. , ‘ ¥

Operands specified by SX mode are always in the
data memory address space,

Example of SX mode:

¢+load into the accumulator the
scontents of the memory location
swhose address is one less than
sthe contents of IX

LD A,(IX - 1)

Before instruc_tion execution: After instruction execution:

" A 0 1 ' A: 3 Dl

X |2 0 3 Al X |2 0o 3 A
i

Data memory:

2039: |3 D

4-3

'

- St Ay ik . AR o = n 1 v 4

: OPERATION
DISPLACEMENT

Address calculation: FF encoding in the instruc-
tion is sign-extended before
the address calculation.

203A
+FFFF
2039

4.2.7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an

8- or 16-bit displacement given in the
instruction,

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction. For extended
instructions, the address used to calculate the
displacement is the address of the template.

INSTRUCTION | PC
PROGRAM
ADDRESS MEMORY

. THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
- WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

 An opefand specified by RA mode is always in the

program memory address space.

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and

for lLoads that access constants in the program .

address space.
Exaﬁple of RA mode: S ’

LD A,<LABEL> = ;load the accumulator with the
scontents of the memory location
swhose address is LABEL

LD A,<$ + 6>

OPERAND

This format implies that the assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this
example can also be written in the following
manner :

sload the accumulator with the
scontents of the memory location
_ swhose address is six more than
sthe address of the start of this
;LD instruction

t

or

LD A,(PC + 2) ;load the accumulator with the
scontents of the memory location
swhose address is two more than
sthe current PC, which now points
sto the next instruction

Because the Program Counter is advanced to point
to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction is +2, ‘

]
H

Before instruction execution; After instruction execution:

v 3l A [

PC: |0 2 0 2 - PC: |0 2 ()'E]
Program memory: ;
N
0202 F D
0203: 7 8 g
‘ P instruction
0204. 0 2 .
0205: l 0O 0
0206: 1 8
0207 0 1
- LABEL: 0208: | 7 6)
‘.Address calculation: | | |
0206
+ 2
0208

PR ¥ S

P

gy Wl T)
L‘mw‘

m

4.2.8 Stack Pointer Relative (SR) S Example of SR mode: = . SR

For the Stack Pointer Relative addressing mode, LD A,(SP +2) "~ 3load into the accumulator
the data processed is at the 1location whose T : sthe contents of the memory
address is the contents of the Stack Pointer » : o ' s location whose address is
offset by a 16-bit displacement in the R stwo more than the contents
instruction. - - ' S I sof SP .

The instruction specifies a twos-complement Before instruction execution: After instruction execution:
displacement that is added to the contents of the ey

Stack Pointer register to form the address. An A m : | | A IF 3

operand specified by SR mode is always in the data s ls 2 0 ol " i SP" 812 0 OJ R
memory address space. e < —_
* Data memory: R
* " INSTRUCTION Sp . S
INSTRUCTION P M
MEMORY Top of stack . 8200: " 1A Bl
201 fo o1 ‘ |
. T | | | 8202: |F 3
The SR addressing mode is used to specify data | | | 8203 2 8
items to be found in the stack such as parameters : | o1
passed to subroutines. The System Stack Pointer o g
or User Stack Pointer is selected depending on the Address calculation:
state of the User/System bit in the Master Status - - B
register. - | . - | - . 8200
, 8202 =
- 8.2.9 Base Index (BX)
For the Base Index addressing ’mo'de‘, ‘the data .-‘contents of HL, IX, or 1Y, offset by the contents
processed is at the location whose address is the of another of these three registers. . SR |
Kl
INSTRUCTION | " REGISTERS o MEMORY

ADDRESS
DISPLACEMENT

THE OPERAND VALVE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

OPERAND

OPERATION] REGISTER 1 | REGISTER2

This mode allows access to memory locations whose - Before instruction execution: After instruction execution:

physical addresses are computed at run time and ‘ _ . v o R . i
are not fully known at assembly time. An operand A B C | A JA 2 o o |
gspecified by BX mode is always in the data memory HL: |1 5 o0 2 | ‘HL: |1 5 o0 2 '
address space. I X: |F F FE X iF FF FI | o g
. - 4
Example of BX mode:
| - , Data memory:
LD A,(HL + IX) ;load into the accumulator the
' scontents of the memory location 1500:
swhose address is the sum of the
scontents of the HL and IX " Address calculation:
sregister '
1502
+FFFE ' : ‘
1500 - | ‘

4-5

o rm e ————— e il

R, P e
- Mt bkt oy g et
- W AR TR e

,,,,

1o,

[H
*
HERNS
HER
;;!’l':
i’,;lsl.
LFRN S
1 :_:!:=
s
ot
IR
-':-!:l
e
I
e s
LR
i
.;|t y
R E T
;:‘;;:-‘!
. 1.
ri:
;fi_.'r
et}
R
S,
[P
gt
r-':I:!.
LT PR
ENEE
Pd -
b I
Sy
. -
'10
.
:.‘.;
i

R e - —— i =
e e mey me Ptk S
S e e ek i e e

'~ operate on words in registers or memory;

4.3 DATA TYPES

Many data types are supported by the 7280 MPU
architecture; that is, many data types have a
hardware representation in a 7280 MPU system and
instructions that directly apply to them. The
2280 MPU supports operations on bytes, words,
bits, BCD diqits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and 1/0 address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values. |

Operations on l:wo;-byte words are also supported.
Sixteen-bit load and arithmetic instructions
words
can be treated as signed or unsigned numeric
values. I/0 reads and writes can be B8-bit or
16-bit operations. Sixteen-bit logical memory

addresses can be held and manipulated in 16-bit -

registers,

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte

‘registers or byte memory locations can be tested,

set, or cleared.

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accumulator
and Rotate Digit instructions. BCD digits are -
gstored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to shift BCD digit strings
in memory.

Strings of up to 65,536 bytes can be manipulated
by the 2280 CPU's block move, block search, and
block I/0 instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings
of bytes in memory to locate a particdlap value.

The block I/0 instructions allow strings of bytes -
or words to be transferred between memory and a
peripheral device. R

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Retufn, Push, and Pop.
A special stack write warning feature aids in the

~allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

e

.
.'. .". . .’. . .-.

7280 CPUs.
- discussed in relation to the instruction set.

- operations (Figure 5-1).

5.1 INTRODUCTION

The 2280 CPU's instruction set is a superset of
the 280's; the 2280 CPU is opcode compatible with
the Z80 CPU. Thus, a Z80 program can be executed
on a 2280 MPU without modification. The
instruction set is divided into ten groups by
function:

8-bit load
16-bit load and exchange
Block transfer and search
8-bit arithmetic and logical
16-bit arithmetic |
Rotate, shift, and bit manipulation
Program control
Input/Output
- CPU control
~Extended instructions

This chapter describes the instruction set of the
First, flags and condition codes are

Then, interruptibility of instructions is

. discussed and traps are described. The last part
" of this chapter is a detailed description of each

instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as

a reference for 72280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction, including

- addressing modes, assembly language mnemonics,

instruction opcode formats, and simple examples
illustrating the use of the instruction,

5.2 PROCESSOR FLAGS

The Flag register contains six bité of stétus'

information that are set or cleared by CPU

Four of these bits are
testable (C, P/V, Z, and S) for wuse with
conditional jump, call, or return instructions.

.. Two flags are not testable (H, N) and are used for

binary-coded decimal (BCD) arithmetic.

7 N B
o lzlefr]ofevn]c

Figure 5-1. Flag Register

correctly,
“struction for further information.

Chapter 5.

- Instruction Set:

The flags provide a 1link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and

subroutine Return instructions; these instructions -

are referred to as conditional instructions.

5.2.1 Carry Flag (C)

The Carry flag is.set or cleared depending on the |

operation being performed. For add instructions

that generate a carry and subtract instructions

that generate a borrow, the Carry flag is set to

1. The Carry flag is cleared to 0 by an add that

does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for = extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the

precision of the result, Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set .

to 1 if a carry occurs when adding BCD quantities.

For the rotate instructions, the Carry flag is

~used as a link between the least significant and

most significant bits for any register or memory
location., During shift instructions, the Carry

- flag contains the last value shifted out of any

register or memory location.
structions the Carry flag is cleared. The Carry

flag can also be set and complemented with
explicit instructions.

' 5.2.2 Add/Subtract Flag (N)

" The Add/Subtract flag is used for BCD arithmetic.

Since the algorithm for correcting BCD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract

-was last executed, allowing a subsequent Decimal

Adjust Accumulator instruction to perform

See the discussion of the DAA in-

o=1

For logical in- N

pLrert ey vl ey gt [

o -
- " A

i

ERE A

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending
on the operation being performed. '

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on

. twos-complement numbers has exceeded the largest

number, or is less than the smallest number, that
can be represented using twos-complement
notation, This overflow condition can be
determined by examining the sign bits of the
operands and the result.

~The P/V flag is also used with logical operations

and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (P =
0) is flagged. If the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing

- the byte counter results in a zero value, the flag

is cleared to 0, otherwise the flag is set to 1.

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the

- contents of the Interrupt A enable bit in the

Master Status register.

When iﬁputting a byte to a register from an I/0
device addressed by the C register, the flag is

- adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to

0 depending on the carry and borrow status between
. bits 3 and 4 of an 8-bit arithmetic operation and

between bits 11 and 12 of a 16-bit arithmetic
operation, This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data. LT |

5.2.5 Zero Flag (Z) ’

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions
is a zero.

For arithmetic and logical operatibns, the Zero

flag is set to 1 if the result is zero. If the
result is not zero, the Zero flag is cleared to 0.

" most significant bit.

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location

pointed to by the contents of the register pair
HL.

When testing a bit in a registerr or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit is a 0, and
vice-versa). - '

- For the block 1/0 instructions, if the result of

decrementing B is zero, the Zero flag is set to 13
otherwise, it is cleared to 0. Also for byte

~inputs to registers from I/0 devices addressed by

the C regqister, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the Z280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is wused to
represent and process numeric information. A
positive number is identified by a zero in the
A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an I/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either positive (S = 0) or negative (S =

1) data.

For the Test and Set instruction, the Sign bit is"
set to 1 if the tested bit is 1, otherwise it is

cleared to 0.

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

Jewe o

- execut ion,

- particular

- ‘ation.

Table 5-1. Condition Codes

Flag Binary

Mnemonic Meaning Setting Code

Condition Codes for Jump, Call, and Return Instructions

NZ Not Zero Z=0 | 000
Z Zero Z=1 001
NC No Carry C=0 010
C | Carry C=1 . 011
NV No Overflow V=20 100
. PO Parity Odd V=0 100
v Overfow V=1 101
PE Parity Even V=1 101
NS No Sign S=0 110
P Plus S=0 110
S Sign S=1 111
M Minus S =1 111

Condition Codes for Jump Relative Instruction

NZ ~ Not Zero Z=0 - 100
2 . Zero | Z=1 101
NC ~ No Carry C=0 110

C =1 111

c Carry

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

" Two types of exception conditions, interrupts and

traps, can alter the normal flow of program
Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by
conditions that occur during
instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and

the exception conditions.
i

" 5.3.1 Instruction Execution and Interrupts

" When the CPU receives an interrupt request, and it

is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter-
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an

= interrupt request is received during a block move,
~ block search, or block I/0 instruction, the in-

struction is suspended after the current iter-
The address of the instruction itself,
rather than the address of the following in-

- struction, is saved on the system stack, so that
| the same instruction is executed again when the
' interrupt handler executes an interrupt return

L~ "t

N
]

-

1/0 instructions to

instruction,
counter and the registers that index into the
block operands are such that, after each iter-
ation, when the 1instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers. |

5.3.2 Instruction Execution and Traps -

Traps are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Ingstruction, System Stack Overflow Warning,

Single Step and Breakpoint-on-Halt are nonmask-
able.

The 2280 MPU supports eight kinds of traps:

Division Exception

- Extended Instruction
Privileged Instruction
System Call . .
Access Violation (page fault and write protect)
System Stack Overflow Warning - - % ..

" Single Step . ' L
Breakpoint-on-Halt

The Division Exception trap occurs when executing

- a divide instruction if either the divisor is zero
represented in the

or the result cannot be
destination (overflow).

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture 1is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the Z280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
2280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions

can be emulated by software that is invoked by the

Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
access the EPU. The
information saved on the system stack during this

trap is designed to facilitate the 8-bit I1/0
. interface to an

EPU by providing address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an 1/0
interface trap handler.

The contents of the repetition

i ot RTINS R AR

-y

- e Y N o T

-1 P
r AL e i) i
LAYl i RTINS NSRS A

N
e
'if;,-_:
RN RN
prichos
vl
; H 4
R
1t
p1aal
] I
Yigeme
RN
'f;fl
:il-':

1

it The Privileged Instruction trap' serves to protect = The Breakpoint-on-Halt trap occurs whenever the
; - the integrity of a system from erroneous or Halt instruction is encountered and the
r | unauthorized actions of wuser mode processes, = Breakpoint-on-Halt control bit in the Master
Certain - instructions, - called privileged = Status reqister is set to 1. This facilitates
* ~ instructions, can be executed only in system software debugging of programs. o

* " mode, - An attempt to execute one of these |

¥ - instructions in user mode causes a Privileged | - :

Al Instruction trap. - - S.4 INSTRUCTION SET FUNCTIONAL GROUPS

Hie | The System Call instruction always causes a trap. This section presents an overview of the 2280
| - This instruction is used to transfer control to instruction set, arranged by functional groups.
I*i | - system mode software in a controlled way, (See Section 5.5 for an explanation of the

ﬁ §: typically to request operating system services, - notation used in Tables 5-2 through 5-11,)

gﬁjif D The Access Violation trap occurs whenever the Z280 ' - o L
i?ﬁﬁf . ~ MPU's on-chip MMU detects an illegal memory . 5.4.1 8-Bit Load Growp ~ -~ ~ -~ - i
g’ - access. Access Violation traps cause instructions | S

(i © to be aborted. When Access Violation traps occur, ~ This group of instructions (Table 5-2) includes
| | the logical address of the instruction is pushed load instructions for transferring data between
onto the system stack along with the Master Status = byte registers, transferring data between a byte

*;, | register; part of the logical address that caused register and memory, and loading immediate data
i '~ the page fault is latched in the MMU to indicate into byte registers or memory. All addressing
u | which page frame caused the fault; and the CPU ~modes are supported for loading between the
: | registers are unmodified, i.e., their contents are accumulator and memory or for loading immediate
,{ “ L | the same as just before the instruction execution - values into memory. Loads between other registers
At - began, (For block move, block search, or block and memory use the IR and SX addressing modes. An
. b 1/0 instructions, the registers are the same as exchange instruction is available for swapping the

{
:ffﬁ; L just before the iteration in which the page fault . contents of the accumulator with another register
gg o - . occurred.) o o S - - or with memory. - | | |

i " The System Stack Overflow Warning trap arises The LDUD and LDUP instructions are available for
J T - when pushing information onto the system stack 1loading to or from the user-mode memory address

1;1' ~causes the Stack Pointer to reference a specified space while executing in system mode. The CPU
HJ‘ 16-byte area of memory. Use of this facility = flags are used to indicate if the transfer was -
l', | protects the system from system stack overflow - successfully completed. LDUD and LDUP are
”l‘ii | . errors. - o L R privileged instructions. The other instructions
iii:l' | | : o ' | - in this group do not affect the flags_, nor can
i | The Single Step trap occurs with the execution of their execution cause exception conditions. |
Eﬁﬁ? | -~ each instruction, provided the Single-Step control 5 SRR C ' . .

}'s,' | ' bit in the Master Status register is set to 1. VR

1‘!,‘ This facilitates software debugging of programs.

ll:) . | ~ Table 5-2. 8-Bit Load Group Instructions

it | | - Addressing Modes Available -

.i.;="-"1

' Ins<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>