
Bezout matrices, Subresultants and Parameters

Jounaidi Abdeljaoued, Gema M. Diaz–Toca and Laureano
Gonzalez–Vega

Keywords. Subresultants, Bezoutians.

1. Introduction

The problem of computing the greatest common divisor of two univariate polyno-
mials in D[x], with D a field or an integral domain, is one of the cornerstones in
Computer Algebra. When D is an integral domain we shall talk about a greatest
common divisor as a polynomial in D[x] which is a greatest common divisor of the
considered polynomials in F[x] with F the quotient field of D.

There exist several algorithms for solving this problem. The oldest one uses
the Euclidean algorithm which solves the problem when D is a field but, when
dealing with one of the easiest examples of integral domains D = Z, Euclidean
Algorithm produces problems with the size of intermediary computations. More-
over, in this case, the computations providing the greatest common divisor in D[x]
need to be made in F and usually it is harder to work in F than in D. Possibly one
of the best known algorithms for dealing with this problem is the one using sub-
resultants. In this case the greatest common divisor is obtained performing only
operations in D and, in the case of integer coefficients, the size of intermediary
computations is well bounded (see [3], [4], [7], [10] or [11]).

Here we address the problem of computing the subresultant sequence of two
polynomials P (x) and Q(x) in D[T1, . . . , Tr][x] with D an integral domain and
T1, . . . , Tr parameters taking values in the algebraic closure of D, through the
subresultant sequence. Our goal is to compare some algorithms which compute
this sequence.

On the one hand, we consider algorithms which compute the subresultant se-
quence through determinants. In [9], the author introduces a new matrix whose de-
terminant directly defines the subresultant polynomial of index j. Here we present
analogous matrices derived from the Bezout and the Hybrid Bezout matrices whose
determinants also define the subresultant polynomial of index j.
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On the other hand, we consider algorithms derived from the classical Sub-
resultant Algorithm. For instance, the Improved Subresultant algorithm and the
Flipflop algorithm, which involve exact divisions by minors extracted from Sylvester
matrices. In this case, when the coefficients of the given polynomials depend on pa-
rameters, the computation of the subresultant sequence may be expensive because
of the required divisions.

It’s well known that when coefficients do not depend on parameters, the use
of determinants is not advisable to obtain subresultants. However, we are to show
that this is no more true when parameters appear.

2. Subresultant sequence

Let D be an integral domain and P (x), Q(x) ∈ D[x], with n = deg(P ) ≥ m =
deg(Q), P =

∑n
k=0 pkxn−k and Q =

∑m
k=0 qkxm−k. The concept of polynomial

determinant associated to a matrix with entries in D provides the classical way to
define subresultant polynomials.

Definition 2.1. Let ∆ be a m×n matrix with m ≤ n. The determinant polynomial
of ∆, detpol(∆), is defined as:

detpol(∆) =
n−m∑
k=0

det(∆k)xn−m−k

where ∆k is the square submatrix of ∆ consisting of the first m− 1 columns and
the (k + m)−th column.

Definition 2.2. If i ∈ {0, . . . , inf(n, m) − 1} then the Sylvester matrix of index i
associated to P and Q is defined as:

Sylvi(P,Q) =

n+m−i︷ ︸︸ ︷

p0 . . . pn

. . . . . .
p0 . . . pn

q0 . . . qm

. . . . . .
q0 . . . qm



 m− i n− i

In these conditions the Subresultant polynomial of index i (or i–th subresultant
polynomial) is defined as:

Sresi(P,Q) = detpol(Sylvi(P,Q)).

The following theorem, see [1], introduces an algorithm for computing Subre-
sultants (up to signs) that improves the well known Subresultant Algorithm in the
defective case (see [10]). This improvement consists in avoiding the swell up of size
of intermediate coefficients which occurs in the classical Subresultant Algorithm
in the defective case.
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Theorem 2.3 (Structure Theorem). Let 0 ≤ j < i ≤ n. Suppose that Sresi−1(P,Q)
is non-zero and of degree j. Let

Sh = (−1)(n−h)(n−h−1)/2 Sresh(P,Q) Rh = (−1)(n−h)(n−h−1)/2 psch(P,Q) (h ∈ {0, . . . , j}).
1. If Sj−1 is zero, then Si−1 = gcd(P,Q) and Sl = 0, l ≤ j − 1.
2. If Sj−1 6= 0 has degree k then

Rj lcoef(Si−1) Sk−1 = −Rem(Rk lcoef(Sj−1) Si−1, Sj−1).

In fact, the quotient is in D[x].
Moreover if j ≤ m, k < j − 1, Sk is proportional to Sj−1.

(a) Sj−2 = · · · = Sk+1 = 0

(b) Rk = (−1)(j−k)(j−k−1)/2 (lcoef(Sj−1))j−k

Rj−k−1
j

,

(c) lcoef(Sj−1)Sk = Rk Sj−1

In [11], H. Lombardi et al describe an algorithm which improves the sub-
resultant algorithm in the non–defective case. Such algorithm is called Flipflop
Algorithm and is based on the relations between the successive Sylvester matrix
of P (x) and Q(x) on the one hand, and of P (x) and xQ(x) on the other hand.
In the non–defective case, its main advantage is that it only requires to compute
remainders of polynomials of same degree to obtain the Subresultant polynomials,
in exchange for computing two principal subresultant sequences instead of one.

Another way to define the i–th subresultant polynomial is given by only one
determinant ( see [9] ).

Theorem 2.4. The i–th subresultant polynomial of P and Q with respect to the
variable x is determined by the determinant of the following (m+n−j)×(m+n−j)
matrix:

Sresi(P,Q; y) = (−1)i(n−i+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p0 p1 p2 . . . . . . pn

. . . . . . . . . . . .
p0 p1 p2 . . . . . . pn

1 −x
. . . . . .

1 −x
q0 q1 q2 . . . . . . . . . qm

. . . . . . . . . . . .
q0 q1 q2 . . . . . . . . . qm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 m− i

 i n− i

.

3. Bezout matrices and Subresultants

Next the definitions of the Bezout matrix and Hybrid Bezout matrix are intro-
duced. The most general definition of the Bezout matrix of two polynomials is
presented following [2].
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Definition 3.1. The Bezout matrix associated to P (x) and Q(x) is the symmetric
matrix:

Bez(P,Q) =

 c0,0 . . . c0,n−1

...
...

cn−1,0 . . . cn−1,n−1


where the ci,j are defined by the formula:

P (x)Q(y)− P (y)Q(x)
x− y

=
n−1∑
i,j=0

ci,jx
iyj .

Next we introduce the definition of the Hybrid Bezout matrix.

Definition 3.2. Given P (x) and Q(x), deg(P ) = n ≥ deg(B) = m, the Hybrid
Bezout matrix associated to P (x) and Q(x), denoted by Hbez(P,Q), is a square
matrix of size n whose entries are defined by:

• for 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (i, j)–entry is the coefficient of xn−j in the
polynomial

Km−i+1 = (p0x
m−i + . . . + pm−i)(qm−i+1x

n−m+i−1 + . . . + qmxn−m)

−(pm−i+1x
n−m+i−1 + . . . + pn)(q0x

m−i + . . . + qm−i);

• for m + 1 ≤ i ≤ n, 1 ≤ j ≤ n, the (i, j)–entry is the coefficient of xn−j in the
polynomial xn−iQ(x).

Both the Bezout and Hybrid Bezout matrix can also provide Subresultant
polynomials by the following results.

Theorem 3.3. Then Subresultant polynomials of P (x) and Q(x) can be obtained
as follows (for n−m ≤ k ≤ n):

• (−1)k(k−1)/2pn−m
0 Sresn−k(P,Q) = Bk,0x

n−k + Bk,1x
n−k−1 + . . . + Bk,n−k,

where Bk,t (for 0 ≤ t ≤ n− k) denotes the k × k minor extracted from
the last k columns, the last k−1 rows and the n−k−t+1–th row of Bez(P,Q).

• Sresn−k(P,Q) = Hbk,0x
n−k + Hbk,1x

n−k−1 + . . . + Hbk,n−k,
where Hbk,t denotes the k×k minor extracted from the first k columns,

the last k − 1 rows and the n− k − t + 1–th row of Hbez(P,Q).

For proof, see [6]. This theorem leads us to other definitions of subresultants.
Let Jn denote the backward identity matrix of order n and so

JnBez(P,Q)Jn =

 cn−1,n−1 . . . cn−1,0

...
...

c0,n−1 . . . c0,0

 .
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Polynomials

SUB sequence

Bez. matrix
Theorem 3.4

SUB sequence

Hybrid Bez. matrix
Theorem 3.4

SUB sequence

Theorem 2.4

SUB sequence

Flipflop Alg.

SUB sequence

Subres. Alg.

(P1, 12, 9, 2, 6) 2’, 15” 3’, 11” 1’, 31” 1’, 45” 3’, 5”

(P2, 11, 7, 2, 6) 13’,21” 9’ , 58” 6’,6” 7’, 46” 9’, 29”

(P3, 7, 5, 3, 4) 18’, 8” 14’, 49” 5’, 55” 42’, 34” 1h, 39’, 36’

(P4, 7, 6, 3, 5) 11’, 24” 10’, 55” 19’, 6” 1h, 12’, 46” 2h, 12’, 46”

Table 1. Experimental Analysis

Theorem 3.4. The i–th subresultant polynomial of P and Q with respect to the
variable x is given by the determinant of the n× n following matrices:

(−1)(n−i)(n−i−1)/2pn−m
0 Sresi(P,Q; y) = (−1)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cn−1,n−1 cn−1,n−2 . . . . . . . . . cn−1,0

...
... . . . . . . . . .

...
cj,n−1 cj,n−2 . . . . . . . . . cj,0

1 −x
. . . . . .

1 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 n− i

 i

,

Sresi(P,Q; y) = (−1)i+i(i−1)/2

n−i︷ ︸︸ ︷ i︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h0,0 · · · h0,n−i−1

...
...

...
...

...
...

hn−1,0 · · · hn−1,n−i−1

−x
. . . 1

−x
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Remark that the order of these matrices is equal to n, while the order of

matrices introduced in Theorem 2.4 varies in accordance with the index of the
considered subresultant polynomial, from m + n to n.

Experimental Results

Then the presented algorithms have been tested with pairs of polynomials in x,
randomly generated, whose coefficients are in Z[L], being L the list of parameters.
All the computations have been done with the Computer Algebra System Maple
11. These experimental results show us that, in order to compute the subresultant
sequence, the computation of determinants is generally faster than the methods
derived from the classical Subresultant Algorithm when the coefficients of the
polynomials depend on parameters. Next we present some of these results in Table
1.
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P1 :
p1 = x12 + (1056a2b2 − 780a2b)x5 − 912a2b3x3 + (−408a4b2 − 504a)x + 372b4

q1 = x9 − 594ax6 − 288bx5 + 351a4x3 + 612b5x + 702ab2 + 846b5

P2 :
p2 = x11 − 220ax7 + 506a2x6 + 660ab2x4 + 1045a2b4x2 + 1045a2b3x− 198b3

q2 = x7 + (−56ab2 − 83a3 − 91b2 + 92b4 − 93b3 + 91a3b)x6+
(37b3 − 46− 68a− 42b− 47a2 − 32b2)x5 + (−67 + 68b + 45ab2 + 76
+a3 + 6a4 + 72a2b2)x4 + (43ab2 − 4a3 − 50ab + 50a4 + 67ab3 − 39a3b)x3

+(58b− 94b4 − 68a4 + 14ab3 − 35a3b− 14a2b2)x2 + (88 + a + 30a3

+81b4 − 5a4 − 28a3b)x− 88a− 43ab2 − 73a3 + 25ab + 4b4 − 59a4

P3 :
p3 = x7 + (−84c + 8a2b− 10ab2 + 63abc2 − 39ac2 − 48ab)x6 + (32a2c2 + 5b2c2

+8a2bc + 63b4 − 80a2b2)x5 + (−65a + 52a2c2 + 99b3c− 39ac + 49b2c
−76c4)x4 + (64abc− 34a + 60bc + 99c3 + 48a4 + 36c4)x3 + (63a3c− 85b2

−36bc3 − 35ab3 + 11b3 + 90a2b2)x2 + (−19− 4b + 38a2c2 − 61a3 − 58b2

−91abc2)x + 76a3c− 68a3 + 67b2c− 38bc2 + 23a4 + 14a2c
q3 = x5 + (67− 79c + 53ab2 + 63a3 − 24bc− 29c2)x4 + (74− 60b + 19c− 68a3

+78bc2 + 34b3)x3 + (32abc + 65ab2 − 26bc + 87ac2 + 33a2c + 76c2)x2

+(−81− 47a2b + 28bc + 73ab− 24a2c + 8c2)x + 45− 12ab2 + 28a3

+3b2 + 13bc2 − 5b3

P4 :
p4 = x7 + (5abc2 + 9a3b− 6bc2 − 12c3a)x5 − (7a2b2 + 7c3)x4 + 3cb3x2 − b4c + 3cb3,
q4 = x6 + (a2c2 − 2a4c− 47b2c3 − 3a3bc + 7a4 − 3a5)x4 + (−3b4 − 82a3b + 16bc2

−40a4c + 21a2c− 94c2)x2 + 1
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