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Abstract. Due to the complex noise structure of functional magnetic resonance 
imaging (fMRI) data, methods that rely on information within a single subject 
often results in unsatisfactory functional segmentation. We thus propose a new 
graph-theoretic method, “Group Random Walker” (GRW), that integrates group 
information in detecting single-subject activation. Specifically, we extend each 
subject’s neighborhood system in such a way that enables the states of both 
intra- and inter-subject neighbors to be regularized without having to establish a 
one-to-one voxel correspondence as required in standard fMRI group analysis. 
Also, the GRW formulation provides an exact, unique closed-form solution for 
jointly estimating the probabilistic activation maps of all subjects with global 
optimality guaranteed. Validation is performed on synthetic and real data to 
demonstrate GRW’s superior detection power over standard analysis methods. 
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1   Introduction 

Functional magnetic resonance imaging (fMRI) has become one of the most widely-
used modality for studying human brain activity. The standard approach for analyzing 
fMRI data involves separately comparing each voxel’s intensity time course against 
an expected response to generate statistics that reflect the likelihood of activation [1]. 
The drawback to this univariate approach is that voxel interactions are ignored despite 
that each voxel is unlikely to function in isolation. To remedy this limitation, methods 
based on Markov random fields (MRF) [2] and Bayesian statistics [3] have been 
proposed to incorporate voxel interactions in the form of neighborhood information. 
These methods help suppress false declaration of isolated voxels as being active. 
However, the inherently low signal-to-noise (SNR) of fMRI data limits the reliability 
of the neighbors, which reduces the effectiveness of the currently-used regularization 
methods. The core of the problem is that there may just be insufficient information 
within a single subject’s data to obtain satisfactory functional segmentation. 
Additional information is thus needed to disambiguate the state of noisy voxels. 

Most fMRI studies focus on identifying common patterns across subjects, and thus 
exploiting the group dimension presents a direct, intuitive means of enhancing single-
subject segmentations [4]. In standard fMRI group analysis, brain images of all 



subjects are first warped onto a common template to create a voxel correspondence 
[1]. Activation statistics are then compared across subjects to generate a group map. 
The underlying assumption is that a perfect one-to-one voxel correspondence is 
established after whole-brain warping. However, the vast anatomical variability 
renders this assumption questionable. In fact, even if perfect anatomical alignment is 
achieved, whether a one-to-one functional correspondence exists between voxels is 
debatable. Past studies have shown considerable functional inter-subject variability 
[5], which suggests that such one-to-one voxel correspondence is rather unlikely. 
However, active voxels are typically observed within the same anatomical regions 
across subjects [5]. Thus, integrating inter-subject neighborhood evidence is likely to 
help regularize single-subject segmentations and better distinguish signal from noise. 

In this paper, we propose a new graph-theoretic method, “Group Random Walker” 
(GRW) that extends our previous work [6] on RW for estimating single-subject 
probabilistic activation maps. Treating each voxel as a graph vertex, we extend edges 
to inter-subject in addition to intra-subject neighboring voxels to jointly exploit group 
information and voxel interactions. Integrating group information into each subject’s 
activation map, as opposed to estimating a group map, also facilitates inter-subject 
commonalities as well as differences to be modeled. Moreover, GRW draws upon a 
RW formulation [7] that provides an exact, unique closed-form solution for 
computing probabilistic activation maps with global optimality guaranteed. 

2   Proposed Method 

We propose extending the single-subject neighborhood system to other subjects 
within a group to disambiguate the state of noisy voxels. The intuition behind this 
approach is that true brain activation should appear in similar proximal locations 
across subjects [5], whereas false positives are more randomly scattered across the 
brain. Hence, regularizing inter-subject neighbors reinforces brain areas that are 
consistently recruited across subjects, while suppressing the false positives. Since 
only voxels that are spatially-proximal to each other are encouraged to be in similar 
state in our framework, the stringent one-to-one voxel correspondence requirement in 
standard fMRI group analysis is mitigated. Establishing an inter-subject neighborhood 
system requires first aligning the brain structures of all subjects. However, the vast 
anatomical variability renders accurate whole-brain warping difficult, especially for 
diseased subjects. Therefore, we instead employ a region-based approach, where we 
extract anatomical regions of interest (ROIs) and perform alignment at the regional 
level. This approach ensures that no brain structures will be mistakenly taken as part 
of another structure which has shown to improve activation localization [8]. 

2.1   Group Random Walker  

In the original RW framework, each voxel is represented as a graph vertex with 
weighted edges added between spatial neighbors to bias the paths for which a random 
walker may transverse. Voxels are labeled (e.g. active or non-active) based on the 
probability that a random walker starting at each voxel location will first reach a pre-



labeled seed. This framework, however, not only requires specifying seed voxels but 
also does not model unary voxel information, such as activation effects in the context 
of fMRI. Therefore, we adopt an augmented RW formulation [7] that facilitates 
incorporation of unary information as label priors. This formulation is equivalent to 
adding an artificial seed vertex for each label and connecting these seeds to every 
vertex in the original graph with label priors being the edge weights [7]. The 
corresponding energy functional is as follows: 
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where xs are the unknown posterior probabilities of the voxels belonging to label class 
s, K is the number of labels, Λs is a diagonal matrix containing prior probabilities of 
the voxels belonging to label class s (Section 2.2), and L is a weighted graph 
Laplacian matrix (Section 2.3). This construction is analogous to graph cuts, where 
the first term in (1) models voxel interactions, while the second term models unary 
voxel information. The main difference is that RW minimizes (1) over real-valued 
probabilities instead of binary numbers, which has an exact, unique closed-form 
solution with global optimality guaranteed for an arbitrary number of labels [7]. 
Specifically, xs can be estimated by solving [7]: 
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where λs are the diagonal elements of Λs. To incorporate group information, we 
extend the augmented RW graph structure by inserting edges between each subject’s 
voxels and their inter-subject neighbors. By treating all subjects’ voxels as a single set 
and adding edges in the manner described later in Section 2.3, (2) can be directly 
applied to jointly estimate probabilistic activation maps of all subjects. GRW hence 
inherits all desired properties of the RW formulation. Globally optimal labeling can 
be obtained by assigning voxels to the labels associated with the highest probability. 

2.2   Label Priors 

To compute label priors λs, we first estimate the ROI activation statistics tj of each 
subject using the standard general linear model (GLM) [1]: 
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where yj is the time course of voxel j, ωj is assumed to be white Gaussian noise after 
preprocessing, βj are the estimated activation effects, and se(βj) is the standard error of 
βj. X is a design matrix with boxcar functions (time-locked to stimulus) convolved 
with the hemodynamic response (HDR) as regressors [1]. We model tj using a 
constrained Gaussian mixture model (CGMM) [9]. Specifically, tj is assumed to be 
generated from a mixture of K Gaussian distributions with mixing coefficients πk, 
means µk, and variance σk

2. Conjugate priors are used to constrain these parameters: 
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where IG(a,b) and Dir(α) denote inverse Gamma and Dirichlet distributions. Adding 
priors enables us to integrate our knowledge into the model. In particular, we know 
that tj of non-active voxels should theoretically be 0 and t-threshold for active voxels 
is typically set between 3 and 4 based on Gaussian Random Field (GRF) theory [1]. 
We thus encode this prior knowledge on t-values of active and non-active voxels 
through η with τ2 set to 1 to model uncertainty in η. We set K to 2 to classify voxels as 
active or non-active [9]. As for σk

2, we use an uninformative prior by setting a and b 
to 0.5 [9], since little is known about σk

2. α is set to 1/K assuming equal prior class 
probabilities. Gibbs sampling is employed to estimate the probability of voxel j 
belonging to each of the K labels [9], which we use as label priors λs. 

2.3   Weighted Graph Laplacian 

Treating voxels of all subjects as a single set, we define the weighted graph Laplacian 
L based on functional connectivity fij = correlation(Yi,Yj) and spatial distance dij: 
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where wij = fij+exp(-dij), Yj is the magnitude spectrum of the Fourier transform of 
voxel j’s time course yj, eij denote a graph edge between voxels i and j, and Eintra and 
Einter denote the sets of intra- and inter-subject edges. This choice of wij is motivated 
by the well-known bilateral filtering technique, which enables closer spatial neighbors 
with higher functional connectivity to exert greater influence on each voxel, thus de-
weighting contributions from outliers. Edges are added between every given voxel of 
subject p and its 6-connected intra-subject spatial neighbors and c closest inter-subject 
spatial neighbors for every subject pairs (p,q), p≠q. c is empirically set to 3. Note that 
voxel interactions are modeled using correlation(Yi,Yj), instead of temporal 
correlations, since the temporal profile of HDR is known to vary across subjects [9]. 
In contrast, magnitude spectrums, Yi, of active voxels would likely display higher 
similarity across subjects since all subjects are guided by the same stimulus.  

2.4   Empirical Evaluation 

500 synthetic datasets were generated to validate our proposed method. Each dataset 
consisted of 10 subjects with artificial activation injected within real, manually-
segmented anatomical ROIs (Section 3). Voxels within a radius of 8 mm from the 
anatomical centroid were defined as active (circled in red in Fig. 1(b)-(f)). Synthetic 
time courses of the active voxels were generated by convolving a box-car function, 
having the same stimulus timing as our experiment (Section 3), with a canonical HDR 
[1] and adding low frequency drifts and Gaussian noise. To simulate functional inter-
subject variability, signal intensity of the active voxels was set to decrease 
exponentially as a function of distance from the activation centroid, whose location 
was randomly varied across subjects (Fig. 1(a)). This emulates the situation where 



true active regions highly overlap across subjects, but the apparent overlap appears 
much less due to variation in location at which the fMRI signal concentrates. 
Maximal SNR was set as 0.5 in Fig. 1(a). For comparison, we also tested (i) GLM 
with spatial smoothing using a 8 mm FWHM Gaussian kernel and a threshold based 
on GRF theory for a p-value of 0.05 [1], (ii) CGMM, (iii) RW, and (iv) second level 
GLM, which involved taking the union of all subjects’ ROI point sets to generate an 
ROI template, interpolating spatially smoothed βj onto the template, applying GLM 
on the resulting βj, thresholding based on GRF theory [1], and interpolating the 
thresholded group map back onto the subjects’ native ROI space for comparison 
purposes. We refer to methods (i), (ii), (iii), and (iv) as individual GLM (iGLM), 
individual CGMM (iCGMM), individual RW (iRW), and group GLM (gGLM). 
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Fig. 1. Synthetic data results. (a) t-maps. (b) iGLM, (c) iCGMM, (d) iRW, (e) gGLM, and (f) 
GRW results shown. Blue dots = detected active voxels. Red circles = ground truth. For all 
SNR, (g) GRW achieved the highest DSC. Note iGLM resulted in a DSC of 0 at a SNR of 0.25. 
(h) GRW’s DSC increased with number of subjects.  

Qualitative results for the various contrasted methods are shown in Fig. 1(b)-(f). Only 
half of the subjects for one of the synthetic datasets are displayed due to space 
limitation. iGLM detected only a few active voxels, whereas iCGMM detected 
majority of the active voxels but also declared many false positives. Imposing intra-
subject regularization using iRW reduced the number of false positives, but an ample 
amount remained due to lack of reliable intra-subject neighbors. Using gGLM 
detected all the active voxels, but also falsely declared many nearby voxels as active. 
Using GRW detected almost all the active voxels, while exerting much stricter control 
on false positives than gGLM. To quantify the performance, we computed the average 
Dice similarity coefficient (DSC) over the 500 synthetic datasets for a range of SNR. 
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where TP, FP, and FN denote the number of true positives, false positives, and false 
negatives, respectively. As evident from Fig. 1(g), the poor DSC for iGLM, iCGMM, 
and iRW again illustrates that solely relying on single-subject information may be 
inadequate to obtain satisfactory segmentation at low SNR. However, naively 
incorporating group information can also be problematic as apparent from the gGLM 
results, where increasing SNR reduced DSC. This counter-intuitive result arose from 
the increase in signals leaking into the non-active voxels as a consequence of spatial 
smoothing, as required in gGLM for employing GRF theory and increasing functional 
overlap across subjects. In contrast, increasing SNR resulted in higher DSC for GRW, 
since GRW does not blindly smooth the data. Instead, intra- and inter-subject 
neighborhood information is adaptively controlled based on functional connectivity 
with contributions from dissimilar voxels de-weighted. As a result, GRW achieved 
the highest DSC for all SNR compared to the other examined methods. Also, adding 
group information improved performance over using iGLM, iCGMM, and iRW even 
at higher SNR, where reliable intra-subject information is available. Furthermore, 
increasing the number of subjects increased DSC as shown in Fig. 1(h).  

3   Materials 

After obtaining informed consent, fMRI data were collected from 10 Parkinson’s 
disease (PD) patients off and on medication (4 men, 6 women, mean age 66 ± 8 years) 
and 10 healthy controls (3 men, 7 women, mean age 57.4 ± 14 years). Each subject 
used their right hand to squeeze a bulb with sufficient pressure to maintain a bar 
shown on a screen within an undulating pathway. The pathway remained straight 
during baseline periods and became sinusoidal at a frequency of 0.25 Hz (slow), 0.5 
Hz (medium) or 0.75 Hz (fast) during time of stimulus. Each session lasted 260 s, 
alternating between baseline and stimulus of 20 s duration. Functional MRI was 
performed on a Philips Gyroscan Intera 3.0 T scanner (Philips, Best, Netherlands) 
equipped with a head-coil. T2*-weighted images with BOLD contrast were acquired 
using an echo-planar (EPI) sequence with an echo time of 3.7 ms, a repetition time of 
1985 ms, a flip angle of 90°, an in plane resolution of 128×128 pixels, and a pixel size 
of 1.9×1.9 mm. Each volume consisted of 36 axial slices of 3 mm thickness with a 1 
mm gap. A T1-weighted image consisting of 170 axial slices was also acquired. For 
each subject’s data, slice timing and motion correction were performed using Brain 
Voyager’s (Brain Innovation B.V.). Further motion correction was then applied using 
motion corrected independent component analysis (MCICA) [10]. The voxel time 
courses were high-pass filtered to account for temporal drifts and temporally whitened 
using an autoregressive AR(1) model. No whole-brain warping or spatial smoothing 
was performed. For testing our proposed method, we selected the left primary motor 
cortex (LM1), which is known to activate during right-hand movements. Delineation 
of LM1 was performed by an expert based on anatomical landmarks and guided by a 
neurological atlas. The segmented ROIs were resliced at fMRI resolution for 
extracting preprocessed voxel time courses within each ROI and non-rigidly aligned 
using “Coherent Point Drift”, which has shown greater robustness to noise and 
outliers than conventional techniques such as iterative closest point [11]. 
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Fig. 2. Real data results for 5 PD subjects pre- and post-medication and 5 controls. Blue in (b), 
(d) & (e) indicates detected active voxels. (a) t-maps. (b) iGLM detected only a few active 
voxels in the (c) hand region, whereas (d) gGLM detected the hand region but falsely included 
the hip and leg areas for PDpre. (e) GRW correctly identified the hand region in all subjects. 

4   Results and Discussion 

Results obtained with iGLM, gGLM, and GRW on real data are shown in Fig. 2. 
iCGMM and iRW results were similar to the synthetic case with many isolated false 
positives detected, and were thus excluded. Also, only results for 5 controls and 5 PD 
subjects during the fast condition are displayed due to space limitation, but consistent 
results were observed across all subjects. iGLM detected few active voxels in the 
hand region, whereas gGLM detected the hand region, but mistakenly included the 
hip and leg areas for PD pre-medication. In contrast, GRW correctly identified the 
hand region in all subjects without falsely declaring the hip and leg areas as active. In 
addition, the GRW results suggest a very interesting trend across subject groups. 
Specifically, PD pre-medication seemed to require recruiting a wider area of LM1, 
which normalized back to an extent similar to the controls upon medication. Such 
spatial focusing effect of levo-dopa medication has been observed in past studies [12], 
thus further confirming the validity of our results. This trend is also noticeable in the 
gGLM results, but whether levo-dopa truly over-normalized the extent of activation in 
PD is unclear, since the wider active region in control subjects could have simply 
arisen from gGLM’s weak control over false positives (Fig. 1(e) and Fig. 2(d) PD pre-
medication). In contrast, the stronger control GRW has on false positives provides us 
more confidence with our findings, which greatly eases result interpretation. 



5   Conclusion 

We proposed a novel graph-theoretic method for enhancing single-subject fMRI 
activation detection. GRW expands the single-subject graph structure to include inter-
subject neighbours, which enables group information to propagate into each subject’s 
activation map without having to establish a one-to-one voxel correspondence. Also, 
the proposed GRW formulation permits joint estimation of all subjects’ probabilistic 
activation maps with global optimality guaranteed. Superior detection power over 
standard techniques was shown on synthetic data for a range of SNR. When applied to 
real data, GRW consistently detected activation in regions implicated with the 
experimental task employed, whereas methods based on single-subject information 
failed. Our results thus demonstrate the effectiveness of incorporating group 
information for dealing with noisy fMRI data in single-subject analysis.  
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