MATLAB-ITK Interface for Medical Image Filtering,
Segmentation, and Registration

Vincent Chu, Ghassan Hamarneh

School of Computing Science, Simon Fraser University,

Burnaby, BC, V5A 156, Canada

ABSTRACT

To facilitate high level analysis of medical image data in research and clinical environments, a wrapper for the
ITK toolkit is developed to allow ITK algorithms to be called in MATLAB. ITK is a powerful open-source
toolkit implementing state-of-the-art algorithms in medical image processing and analysis. However, although
ITK is rapidly gaining popularity, its user base is mostly restricted to technically savvy developers with expert
knowledge of C++ and advanced programming concepts. MATLAB, on the other hand, is well-known for its
easy-to-use, powerful prototyping capabilities that significantly improve productivity. Unfortunately, the 3D
image processing capabilities of MATLAB are very limited and slow to execute. With the help of the wrapper
we introduce in this paper, biomedical computing researchers familiar with MATLAB can harness the power
of ITK while avoiding learning C++ and dealing with low-level programming issues. We strongly believe this
functionality will be of considerable interest to the medical image computing community. In this paper we provide
details about the design and usage of this interface in medical image filtering, segmentation, and registration.

Keywords: ITK, MATLAB, Medical image analysis, filtering, segmentation, registration, MATITK

1. INTRODUCTION

MATLAB,! short for MATrix LABoratory, is an environment developed by the Mathworks, Inc. that facilitates
matrix computations, numerical analysis and graphics viewing. MATLAB is often used by scientific researchers
and biomedical engineers as it provides a high-level programming language that alleviates the users from low-
level programming details such as memory management and pointer handling. Complicated peripheral tasks,
such as GUI creation, graph plotting, statistical analysis, and 2D image acquisition, can be readily handled by
the wide variety of toolboxes available. ITK,? short for the Insight ToolKit, originally developed to support
the Visible Human project,® is a free, open-source toolkit written and used in a C+4 environment. The
toolkit contains various filtering, segmentation and registration algorithms designed for medical image analysis.
While many researchers and engineers are comfortable with the one dimensional biomedical signal processing
capabilities of MATLAB, as the dimensionality of the data increases (to two and three dimensional images) both
the unavailability of advanced algorithms and slow processing speed quickly become a bottleneck. The latter
mainly attributed to the interpreted nature of the MATLAB programming language. It is therefore desirable to
facilitate the use of the state-of-the-art, compiled, fast, 3D (and higher) medical image processing capabilities of
ITK while working in the fast-prototyping, high-level, environment of MATLAB that doesn’t require intimate
knowledge of C++4, generic programming, and other advanced ITK programming concepts.

MATLAB has the functionality to access dynamically linked libraries compiled in another language such as C
and Fortran, given that it conforms to certain criteria. Such a library, also referred to as MEX file (for MATLAB
EXecutables), can be run from the MATLAB environment like MATLAB M-functions or built-in functions.*
With MATLAB’s large user-base in the medical image analysis community, it is therefore desirable to allow
researchers to employ external medical image processing libraries in the MATLAB environment. Common
tasks in medical image computing are already simplified in MATLAB by existing libraries such as MATLAB’s
own image processing toolbox and DICOM readers, in addition to other third party toolboxes including the
Statistical Parametric Mapping (SPM),® the Extensible MATLAB Medical Analysis (EMMA),® Scientific
Image Processing Toolbox (DIPimage),” the Image Fusion Toolbox,® the Computer Vision and Image Analysis
libraries,” Geometric modeling toolboxes (e.g. NURBS!?), Pattern Recognition Toolbox (PRTools),!* and SDC
Morphological Image Processing Toolbox.!?

Medical Imaging 2006: Image Processing, edited by Joseph M. Reinhardt, Josien P. W. Pluim,
Proc. of SPIE Vol. 6144, 61443T, (2006) - 0277-786X/06/$15 - doi: 10.1117/12.652628

Proc. of SPIE Vol. 6144 61443T-1

The work presented is a MEX that serves as a wrapper, or an interface between MATLAB computation
environment and ITK, hereafter referred to as MATITK. Because image data is represented differently, the
wrapper provides the necessary translations in an efficient manner. Notably, because medical image data volumes
are often huge, it is impractical to write the image volumes to disk in a suitable format and read the volumes
back with pre-compiled ITK algorithms. The wrapper allows the translation to be done in memory, which often
provides an order of magnitude increase in speed. As an alternative, we considered using CableSwig to serve
our purpose. CableSwig is a tool that specifically designed for generating interfaces for interpreted languages
with the current support limited to Tcl and Python. However, extending CableSwig to support MATLAB is not
straightforward and our simpler approach achieves the desired goal within the appropriate time frame.

The remainder of the paper describes in detail the setup of the MATLAB environment (section 2.1), the
architectural design of MATITK (section 2.2), how calls to filtering, segmentation, and registration methods are
enabled (section 2.3) and how their creation is automated (section 2.4). The simple procedure for using MATITK

is described (section 2.5) and demonstrated with examples (section 3), and finally conclusions are drawn (section
4).

2. METHODS
2.1. MATLAB Setup for Building MEX

We used MATLAB 7.0 on MS Windows as our testing environment. The first step for creating the interface
is to configure a MATLAB compatible compiler.'®> We use MS Visual Studio 2003 C++ compiler. This step
is accomplished via the MATLAB command mex — setup. Automatically-generated options file mexopts.bat is
replaced with mexopts.bat provided with MATITK package containing the ITK header and library paths*. The
ITK toolkit v1.80 is used and the wrapper code is written in C++.

matitk(’filtername’,[parameters],[input volume A],[input volume B]);

Translate image volumes, seeds,
into ITK-compatible format.
Includes basic error checking.

Based on the filter invoked, dispatch
the call into one of the 3 files

matitk.cpp 4 itkcore.cpp
etc
>

‘—_-M

itkfiltercore.cpp itksegmentationcore.cpp| itkregistrationcore.cpp
Handles filtering methods. Handles registration methods. Handles segmentation methods. They
They usually take only one They usually take only one image usually take only one image volume as
image volume as input, and as a moving image, and another main input, another as image feature
produce one image volume as a fixed image. It produces one input and some seed points. They
output. image volume output. usually produce one image volume
output.

Figure 1. MATITK Execution Flowchart.

Can be obtained by building a C++ ITK project file with CMake' and noting these paths as viewed from project
properties in Visual Studio.

Proc. of SPIE Vol. 6144 61443T-2

2.2. Architectural Design

When MATITK command is issued in MATLAB the code compiled from matitk.cpp is executed. matitk.cpp
handles error handling and translation of image data passed from MATLAB into ITK-compatible format. This
includes dealing with indexing differences between MATLAB and C++ arrays (ordering of dimensions and zero-
vs. one-based array indexing). The resulting image will be stored in an ITK Image container accessible by
other parts of the pipeline. Based on the MATITK command invoked, itkcore.cpp calls one of three procedures:
itk filtercore.cpp, itksegementationcore.cpp or itkregistrationcore.cpp, depending on whether the command
invoked is a medical image filtering, segmentation, or registration command, respectively (Figure 1). Helper
classes seedcontainer.cpp and parametercontainer.cpp contain the user-supplied seeds and parameters respec-
tively. ITK methods can access the necessary seed points and parameters in the three ITK core files.

2.3. Addition of New ITK Methods

In the following we summarize the procedure for adding ITK filtering, segmentation and registration methods
to MATITK. Readers interested in using MATITK only can skip this section.

2.3.1. Filtering

The following is a typical filtering code derived from ITK-provided example. ITK filtering code usually takes
one input image volume and a few parameters. When a new I'TK method is added, its respective #include must
be added to the beginning of itk filtercore.cpp.

#include "itkDiscreteGaussianImageFilter.h"

0 void filterGaussian(){

1 const char* PARAM[]={"gaussianVariance","maxKernelWidth"};

2 const char* SUGGESTVALUE[]={"",""};

3 const int nParam = sizeof (PARAM)/sizeof (*PARAM) ;

4 ParameterContainer paramIterator (PARAM,SUGGESTVALUE,nParam) ;

5 double gaussianVariance=paramIterator.getCurrentParam(0);

6 unsigned int maxKernelWidth=(unsigned int)paramIterator.getCurrentParam(1);
7 typedef itk::DiscreteGaussianImageFilter<InternallmageType,InternalImageType> FilterType;
8 FilterType::Pointer filter = FilterType::New();

9 filter->SetInput(importFilter [IMPORTFILTERA]->GetOutput());

10 filter->SetVariance(gaussianVariance)

11 filter->SetMaximumKernelWidth(maxKernelWidth);

12 filter->Update();

13 pixelContainer=filter->GetOutput()->GetPixelContainer(); }

The beginning of the function defines the parameters required by the filter. Line 1 and line 2 define the human-
readable names of the parameters, and the corresponding suggested values of the parameters respectively. The
suggested values will be listed along with the human-readable names to the users when the wrapper is invoked
without supplying the required parameters. Currently 3D double image type is the only supported input/output
data volume format. Line 9 exhibits how the input image volume passed from MATLAB can be accessed by the
filter being added. Parameters required by the filter can be accessed by paramlIterator.getCurrentParam(i);.
The output of the filter will be passed back to MATLAB environment via the exit statement as on line 13.
Hence, every ITK code in itk filtercore.cpp should end with the same exit statement. To allow the newly added
filter to be called, the following additional step has to be taken:

const char* OPCODE[]={"FGA"};
const char* OPNAME[]={"filterGaussian"};
pt2Function OPFCNARRAY[]={&filterGaussian};

A meaningful opcode should be invented for the newly added ITK method and inserted at the end of the
opcode array. All filtering opcodes must begin with the character ‘f’. The opcode will be entered by the user
to invoke this added ITK method. opname array stores the human-readable name that will be listed when the
help mode is invoked. opfcnarray stores the function pointer of C++ method.

Proc. of SPIE Vol. 6144 61443T-3

2.3.2. Segmentation

The following is a typical segmentation code (edited for brevity) derived from ITK-provided example. ITK
segmentation code usually takes two input image volume, a few parameters and an array of seed points.

void segmentationGeodesicActiveContourLevelSet(){
const char* PARAM[]={"propagationScaling", .../*some more parameters*/};
const char* SUGGESTVALUE[]={"","1.0","1.0","0.02","800"};
const int nParam = sizeof (PARAM)/sizeof (xPARAM) ;
ParameterContainer paramIterator (PARAM,SUGGESTVALUE,nParam);
if (emptyImportFilter [IMPORTFILTERB]){mexErrMsgTxt("...")}
mexPrintf ("\nThis method requires two image volumes....\n");
/1///11//71/17/7////1////Begin Core Filter Code////////////////1//////
double propagationScaling=paramIterator.getCurrentParam(0);
//... edited for brevity. The other 4 parameters can be accessed in a similar fashion
typedef itk::GeodesicActiveContourLevelSetImageFilter<InputImageType,OutputImageType>...
GeodesicActiveContourFilterType: :Pointer filter = GeodesicActiveContourFilterType: :New();
filter->SetPropagationScaling(propagationScaling);
//... edited for brevity. The other 4 parameters are set in a similar fashion as the line above.
filter->SetInput (importFilter [IMPORTFILTERB] ->GetOutput());
filter->SetFeatureImage(importFilter [IMPORTFILTERA]->GetOutput());
filter->Update() ;
//...omitted code for setting up and connecting additional filters ..
pixelContainer = thresholder->GetQOutput()->GetPixelContainer();
///171171/7/7//7///End Core Filter Code///////////1//11111/111]/

Lines that also appear in the filtering code excerpt serve identical purposes in the segmentation code. If the
segmentation method requires more than one input image volume, the second input image volume can be ac-
cess with importFilter[IM PORTFILTERB|. Before the use of IMPORTFILTERB, it is important to check
whether a second input volume has been specified in the method using emptyImport Filter[IM PORTFILTERB].
This is designed because not all segmentation methods require a second input volume. Every ITK code in
itksegmentationcore.cpp should end with an exit statement similar to the one in itk filtercore.cpp to pass the
result back to MATLAB. Currently, only segmentation methods that produce one output image volume are
supported. All segmentation opcodes must start with character ‘s’.

2.3.3. Registration Methods

The procedure for addition of registration methods is similar to that of segmentation methods. Refer to section
2.3.2 for details. All registration opcodes must start with character ‘r’.

2.4. Automatic Generation of Filtering Code

Although this version of MATITK includes over 30 ITK methods, it is desirable to add filters with relative ease
as new ITK filter come out. Due to the highly structured nature of most ITK filtering code, an automation
perl script,'® matitkcode.pl, is created to facilitate the conversion of ITK example files into MATITK methods
with little human intervention. Upon successful execution of the script, an output file is created containing the
generated code for every example file in a folder. The generated code below is an excerpt from a sample output.
The script derives this section of code based on the example file, DiscreteGaussianImageFilter.cxx.

void DiscreteGaussianImageFilter O{
const char* PARAM[]={"gaussianVariance","maxKernelWidth"};
const char* SUGGESTVALUE[]={"",""};
const int nParam = sizeof (PARAM)/sizeof (*PARAM);
ParameterContainer paramIterator (PARAM,SUGGESTVALUE,nParam) ;
////111111/1/7//vegin core filter code///////////1///11/1////
typedef itk::DiscreteGaussianImageFilter<InputImageType, OutputImageType> FilterType;
FilterType: :Pointer filter = FilterType::New();
filter->SetInput(importFilter [IMPORTFILTERA]->GetOutput());
filter->SetVariance(gaussianVariance);
filter->SetMaximumKernelWidth(maxKernelWidth);
filter->Update();
rescaler->SetInput(filter->GetOutput());
pixelContainer = rescaler->GetOutput()->GetPixelContainer();

////11/171/7////end core filter code/////////////11//11////

Proc. of SPIE Vol. 6144 61443T-4

Unfortunately, as for any code generation application, it is not perfect. Hence, it is important to proof read
the code. The required #include directives can be found in the beginning of the code generation output file.
Recommended opcodes, opnames, and function pointer entries can be located at the end of file and can be
inserted readily to itk filtercore.cpp.

2.5. Using the wrapper

Installing and using MATITK is extremely simple. matitk.dll is available for download.'® Simply copy matitk.dll
to the desired location and the wrapper is ready to be used. For convenience, the location should be added to
MATLAB’s search path (or change the current working directory). MATITK commands can then be invoked in
MATLAB environment by simply typing matitk; which writes the following to MATLABs window:

matitk (operationName, [parameters], [inputArrayl], [inputArray2]
, [seed(s)Array], [Image (s)Spacing])

This help information states that the first argument to matitk, operationName, specifies the opcode of the
ITK method to be invoked. To list out implemented methods, type matitk(’'?");. To list out only methods
belonging to filtering, segmentation or registration, type matitk(' f');, matitk('s');, and matitk('r'); respectively.
The following are the currently supported MATITK methods.

The second argument to matitk, parameters, specifies the required parameters of the ITK method to be
invoked (specified by operationName). To find out what parameters are required for a particular method, type
matitk(operationName); For example to perform anisotropic diffusion filtering on a 3D image, the user types
matitk('FCA’) and the following will be written to MATLAB’s window that lists the required parameters:

FCA is being executed... You must supply parameters for this
function in an array, with the elements in this order:
numberOfIterations, timeStep (which usually has value equal to
0.0625), conductance (which usually has value equal to 3.0) 3
parameters must be supplied. You supplied O.

The third and fourth arguments to matitk, inputArrayl and inputArray2, specify the input image volumes.
They must be three dimensional and contain double data type elements. In the case where a second image volume
is not required for the method being invoked, provide [| (open and close square brackets) as the fourth argument.
The fifth argument, seedsArray, specifies the seed points (in MATLAB coordinate system) in the following order:
[X1, Y1, Z1, - -+ Xn, Yn, Zn). Because it is three dimensional, the number of elements in seedsArray should be
a multiple of three. In the case where seeding is not required for the method, provide [| as the fifth argument.
The last optional argument specifies the spacing of the supplied image volume. The performance of certain ITK
methods may be affected by the spacing. If this argument is omitted, an isotropic spacing of [1, 1, 1] is assumed.

3. RESULTS

Filtering, segmentation and registration methods in MATITK are included in table 1. Figures 2a-c present the
result of applying anisotropic diffusion (F'CA) filtering followed by confidence connected segmentation (SCC)
to a sample image by issuing the following commands in MATLAB:

>> load mri; D=squeeze(D);

>> b=matitk(‘FCA’,[5 0.0625 3] ,double(D));

FCA is being executed... FCA has completed.

>> c=matitk(‘SCC’,[1.4 10 255],double(b),[1,[102 82 25]);
SCC is being executed... SCC has completed.

Figures 2d-f present the result of another example. The purpose here, of course, is not to optimally analyze
medical images but rather to demonstrate the use of MATITK.

Proc. of SPIE Vol. 6144 61443T-5

Opcode

Corresponding filter name

FGA filterGaussian

FCA filterCurvatureAnsio

FCF filterCurvatureFlow

FMMCF filterMinMaxCurvatureFlow

FGM filterGradientMagnitude

FGMS filterGradientMagnitude WithSmoothing
FSN filterSigmoidNonlinearMapping

FBD filterDilate

FBE filterErode

FDM filterDanielssonDistanceMapImageFilter
FDMV filterDanielssonDistanceMapImageFilter Get VoronoiMap
FBL filterBilateral

FBT BinaryThresholdImageFilter

FBB BinomialBlurImageFilter

FD DerivativelmageF'ilter

FDG DiscreteGaussianImageFilter

FF FlipImageFilter

FGAD Gradient AnisotropicDiffusionlmageFilter
FGMRG GradientMagnitudeRecursiveGaussianlmageFilter
FLS LaplacianRecursiveGaussianImageFilter
FMEANF MeanImageFilter

FMEDIANF | MedianImageFilter

SCC segmentationConfidenceConnected

SIC segmentationlsolatedConnected

SNC segmentationNeighbourhoodConnected
SCT segmentationConnected Threshold

SFM segmentationFastMarch

SOT segmentationOtsuThreshold

SGAC segmentationGeodesicActiveContourLevelSet
SLLS segmentationLaplacianLevelSetLevelSet
RTPS registerThinPlateSpline

RD registerDemon

Table 1. MATITK available opcodes and the corresponding opnames.

Proc. of SPIE Vol. 6144 61443T-6

K

20 4U B0 SU WUU 120 20 40 B0 B0 100 120

! L1
20 40 EIJ 80 100 120 20 40 B0 B0 100 120

Figure 2. Example MATITK results. Left to right, top row: Original 3D image, anisotropic smoothing, connected
component segmentation. Bottom row: original image, gradient magnitude, thresholding. Images are visualized using
Orthoview (View3D)"

4. CONCLUSIONS

We presented MATITK, an easy to install, use, and extend, MATLAB-ITK interface. MATITK enables re-
searchers and scientists to easily and efficiently access advanced medical image processing and analysis methods
of ITK from MATLAB. Previously, users needed to become familiar with advanced C++ programming concepts
to use ITKs methods, build customized MEX files for each method, or save an image volume from MATLAB to
disk and open it up in ITK. With the framework architecture of this wrapper, additional filters can be added
without worrying about the cumbersome data passing and translation from MATLAB to C++. ITK methods
with structure similar to existing ones can be added without changes to the data passing mechanism, and can
be directly inserted into the appropriate core files without affecting other modules. For this purpose, a script file
written in Perl can be employed to translate a highly structured filtering example file into code segments that can
be readily inserted into this wrapper framework. Possible future work includes developing a more comprehen-
sive list of ITK methods, extending the current framework to accommodate ITK methods with different calling
sequences or architecture, and dealing with meta image data such as origin, voxel size, and direction cosines.

REFERENCES

1. M. Natick, MATLAB Reference Guide, MathWorks, 1992.

2. L. Obez and W. Shchroeder, ITK software guide : ITK 1.4 : the Insight segmentation and registration
toolkit, Kitware Inc., 2003.

3. M. J. Ackerman, “Accessing the visible human project,” D-Lib Magazine , 1995.

4. “Mex-files guide,” Mathworks support 1605. http://www.mathworks.com/support /tech-
notes/1600/1605.html [Accessed Nov. 20, 2005].

5. K. Friston, R. Dolan, and R. Frackowiak, Statistical parametric mapping, Functional Neuroimaging: Tech-
nical Foundations, 1994.

6. M. Wolforth, G. Ward, and S. Marrett, EMMA: Extensible MATLAB Medical Analysis, 1995.

7. C. Hendriks, L. van Vliet, B. Rieger, and M. van Ginkel, DIPimage: a scientific image processing toolbox
for MATLAB, Pattern Recognition Group, TU Delft, 2001.

Proc. of SPIE Vol. 6144 61443T-7

10.
11.

12.
13.
14.
15.
16.

17.

Rockinger, “Image fusion toolbox.” http://www.metapix.de/toolbox.htm [Accessed Nov 20, 2005].

. P. D. Kovesi, “MATLAB and Octave functions for computer vision and image processing.”

School of Computer Science & Software FEngineering, The University of Western Australia.
http://www.csse.uwa.edu.au/~pk/research/matlabfns/ [Accessed Nov 20, 2005].

M. Spink, “The matlab nurbs toolbox.” http://www.aria.uklinux.net/nurbs.php3 [Accessed Nov 20, 2005].
F. van der Heijden, R. P. Duin, D. de Ridder, and D. M. Tax, Classification, parameter estimation and state
estimation - an engineering approach using Matlab, John Wiley & Sons, 2004.

E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image Processing, SPIE Tutorial Texts in
Optical Engineering Vol. TT59, 2003.

“Matlab supported compilers,” Mathworks support 1601. http://www.mathworks.com/support/tech-
notes/1600/1601.html [Accessed Nov. 20, 2005].

K. Martin and B. Hoffman, Mastering CMake, Kitware Inc., 2003.

L. Wall, The PERL Programming Language, O’Reilly & Associates, 1990.

V. Chu and G. Hamarneh, “MATITK.” School of Computer Science, Simon Fraser University. Available
from: http://www.cs.sfu.ca/~hamarneh/software/matitk/.

G. Hamarneh, “Orthoview.” School of Computer Science, Simon Fraser University. Available from:
http://www.cs.sfu.ca/~hamarneh /software/orthoview/.

Proc. of SPIE Vol. 6144 61443T-8

