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Abstract—Collaborative applications for co-located mobile
users can be severely disrupted by a sybil attack to the point of
being unusable. Existing decentralized defences have largely been
designed for peer-to-peer networks but not for mobile networks.
That is why we propose a new decentralized defence for portable
devices and call it MobID. The idea is that a device manages two
small networks in which it stores information about the devices
it meets: its network of friends contains honest devices, and its
network of foes contains suspicious devices. By reasoning on these
two networks, the device is then able to determine whether
an unknown individual is carrying out a sybil attack or not.
We evaluate the extent to which MobID reduces the number
of interactions with sybil attackers and consequently enables
collaborative applications. We do so using real mobility and social
network data. We also assess computational and communication
costs of MobID on mobile phones.

I. INTRODUCTION

Researchers have recently proposed general infrastructures
with which portable devices in proximity of each other op-
portunistically trade various services with in a scalable and
decentralized way [6], [17], [25]. Without going through any
Internet server, collaborating devices are able to: synchronize
their timers for playing multi-player games; run localization
algorithms that increase the precision of street map software
and of location-based services; and cache Web content to avoid
monetary costs of cellular or wireless providers.

The problem is that collaborative applications are easily
disrupted by uncooperative and malicious individuals. Those
individuals profit from services without providing an adequate
return and then make themselves untraceable by creating a
very large number of bogus identities. In literature, those
individuals are called sybil attackers or simply sybils [10].

In the next section, we will show that existing distributed
defences against sybils are largely meant to work in peer-to-
peer networks but not in mobile networks. We set out to fix
this problem by making three main contributions:

o An effective way of identifying sybil attackers for in-
range portable devices (MobID). The key idea is that each
device manages two small networks in which it enlists the
devices it meets: its network of friends contains honest
devices, and its network of foes contains suspicious de-
vices. By reasoning on these two networks, the device is
then able to determine whether an unknown individual is
carrying out a sybil attack or not. MobID guarantees that
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with 20% Community Members Being Attackers.

honest individuals both reject bogus identities and accept
honest identities, and they do so with high probability
(Section III).

o Evaluation of the robustness of MobID on real mobility
and social network data (Section IV).

« Evaluation of its communication and computational over-
head on mobile phones (Section IV).

II. EXISTING SOLUTIONS

One way of limiting the corruptive influences of sybil
attackers is to stop them creating bogus identities. That is
easily done by additional infrastructures that bind identities
and cryptographic keys. The problem is that these infrastruc-
tures, such as admission control and public key servers, are
expensive and difficult to implement in any network, let alone
in a distributed network.

That is why researchers have recently proposed solutions
for distributed networks and, more specifically, for peer-to-
peer networks. Danezis et al. [8] made DHT lookups resilient
to sybil attacks by exploiting the bootstrap tree of the DHT,
where two nodes are linked if one node introduced the other
into the system. The key idea is that sybil nodes will attach
to the rest of the tree only at limited number of nodes.
Similarly, Yu et al. [24] proposed a detection mechanism
(called SybilGuard) that relies on social networks of peer-to-
peer users. To understand how SybilGuard identifies sybils,
imagine that every person exchanges keys with a limited num-
ber of well-known trusted friends. By putting together these



social networks, one observes that an attacker and its sybil
identities have a limited number of friends and, consequently,
are identifiable. Danezis and Mittal [9] recently showed that
SybilGuard suffers from high false negatives - honest individ-
uals are often misclassified and unfairly considered sybils. To
fix this problem, Danezis and Mittal then proposed a Bayesian
model that detects sybils using, again, social networks. The
centralized version of this model (one that runs on a server
that stores the full social network) shows low false negatives.
Also, SybilGuard has been validated in peer-to-peer networks
but it is not meant to work in mobile networks. That is because
it requires that most devices are online, which is difficult to
guarantee for mobile networks - in them, devices are portable
and, as such, are often unavailable.

Fortunately, mobility has recently ceased to be a source
of weakness and has been turned into a source of
strength. Capkun et al. [23] exploited mobility for helping
co-located mobile users to exchange cryptographic material.
That material may be possibly used to limit the number of
identities a single user can posses. The question of how to do
so was not the focus of Capkun ef al.’s work. More recently,
Piro et al. [21] proposed to keep track of how identities move.
By observing that sybil identities are often seen together (as
opposed to honest people’s identities that are free to move
at will), devices are able to identify a single attacker who
keeps on using the same bogus identities. Still, this solution
allows malicious individuals to continuously create disposable
identities and go unnoticed.

From this review of literature, one may well conclude that
combining mobility and social networks help to defend honest
users against sybils. However, in Section IV, we will see that
using social networks alone is not sufficient. We will see
that a real community of one hundred mobile users would
suffer from having 20% of its members sybils - more than
21% of honest members’ interactions (on average) would be
with sybils and, partly, those members would also mistakenly
refuse to interact with each other, resulting in considerable
lost opportunities (Figure 1). The reason for this is that
existing defences assume that social networks are necessarily
fast mixing. Alas, that has not turned to be true for small
social networks. It thus seems that a new way of defending
mobile users against sybil attacks is needed. But what sort
of defence should we use? Ideally, the defence mechanism
should guarantee that only honest identities are accepted and
that only bogus identities are rejected.

IIT. OUR PROPOSAL: MOBID

We design one such mechanism and call it MobID:
What it is: MobID defends in-range portable devices against
sybil attacks in a fully decentralized way. A sybil attack is
one in which a malicious individual has managed to convince
one or more honest people to be their friends, perhaps by
social engineering. The malicious individual then introduces
and controls a very large set of corrupt participants (dubbed
sybils). The presence of such attackers would then make it
impossible for collaborating devices: (1) to run localization

algorithms that increase the precision of location-based ser-
vices (as attackers would inject false information); or (2) to
cache Web content to avoid monetary costs of cellular or
wireless providers (as attackers would discourage any form of
sharing by getting free Internet connection without providing
any return).

Problem Statement: MobID guarantees that an honest
individual accepts, and is accepted by, most other honest
people with high probability. The end result is that
honest people successfully trade services with each other.

Defences against sybils traditionally focus on excluding ma-
licious individuals. To meet this requirement, those defences
pay the price of high false negatives (excluding a considerable
number of honest individuals). However, to defend against
sybils, one does not have to necessarily exclude malicious
individuals but may simply limit their corrupting influence by
excluding the bogus identities that those individuals create.
Consequently, the end goal of MobID is not to filter out ma-
licious individuals but is to limit those individuals’ influence
while minimizing false negatives.

When it works: MobID works under the following assump-
tions (most of which happen to be research findings):

Assumption 1: People have off-line relationships
(have “friends”) with whom they share their iden-
tities (e.g., their public keys). Mobile users may
be willing to do so because, only by sharing their
identities, they would then be able to trade services
with each other.

Assumption 2: People identify themselves using
public keys. A user needs to exchange her key only
with her friends and, consequently, there is no need
for any public key infrastructure: the user exchanges
her key using either Bluetooth (whenever she meets
her friends) or LoKey [20] (which would simply rely
on text messages for the exchange). The user is also
able to revoke her key by simply stopping using it
and sending her friends a new one.

Assumption 3: People do not meet at random. Past
research has extensively showed that people have
few regular encounters [14]. They, for example, meet
their friends and their familiar strangers (i.e., people
who they do not know but meet regularly, say, on the
way to work or at local coffee shops). That is shown
to be true not only for college students [11] (against
whose movements we will run our evaluation) but
also for conference attendees [5], for hundreds of
thousands of mobile users [13], and for a million of
subway travelers [17].

Assumption 4: Honest nodes are well-connected in
social networks while sybil nodes sit in the periphery.
This property is at the heart of effective defences
against sybil attacks [8], [24] and has been found to
hold in various types of social networks [2].

How it works: Every mobile user who runs MobID exchanges
keys with her friends. MobID then places the identities of the



devices it encounters into two networks whose nodes are the
encounters’ identities (keys) and whose links are their strong
social connections (e.g., their close friends). More specifically,
MobID places honest people in a “network of friends” and
suspicious people in a “network of foes”. The problem is that
if devices were to meet randomly, then their networks would
be sparse. To see why, say that A meets C at first, and it
then meets D. In its networks, A can create a link C — D
only if C' and D are friends. If encounters were random, then
the probability that two (random) people (in this case C and
D) may share encounters and are friends would be very low.
However, according to recent studies on human mobility [17],
[14], [5], [13], encounters are not random but are biased. The
bias is introduced by people who, instead of moving randomly,
move in groups (e.g., they move within their communities).
Consequently, in our example, C' and D may share encounters
and are more likely than a pair of random individuals to be
friends; that is, the link C'— D is likely to exist. Since links are
not random but preferentially exist among honest individuals,
those individuals end up to be well-connected in the social
network (Assumption 4). Then, the theory goes, by measuring
the network centrality of a stranger, one is able to determine
whether the stranger is a sybil or not [9], [24].

MobID does so on a network of friends and on a network of
foes. The problem is that sybils can artificially lower their rank
on the network of foes by, for example, declaring to befriend
only honest people. However, if they do so, they compromise
their position in the network of friends and consequently lower
their rank in it. Indeed, in Section IV, we will show that
camouflaging the affiliation with bogus identities has little
success.

More specifically, MobID ensures that sybil attackers are
detected with high probability by:

A. Recording human-established relationships.

B. & C. Reasoning not only on a network of friends
but also on a network of foes.

D. Deciding whether to accept or reject.

E. Updating those two networks.

A. Recording Human-established Trust Relations

Say that A has to decide whether to accept or reject B.
To do so, A needs B’s list of friends. So, to begin with, B
sends its list of friends to A. To prevent B from lying, B’s list
needs to be of special form, one in which B’s friends certify
their relations using their private keys (known only to them).
Each friend F' does so by concatenating its identifier (public
key) and B’s identifier (e.g., PKr||PKp) and by then signing
the result with its private key (e.g., Sp(PKp||PKp)). If B’s
friends are F', H, and I, then B’s list takes this form:

PKr , Sp(PKp||PKp)
PKy , Sp(PKy||PKg)
PK; , S;(PK;||PKp)

: A's network of friends

(@)
|A's network of friends

Fig. 2. (a) Network of Friends; (b) Network of Friends Updated.

B. Reasoning on a Network of Friends

Upon B’s list of friends (which could be obfuscated or made
anonymous as we shall discuss in Section V), A then decides
whether to accept or reject B in three steps:

Step 1. A incorporates B’s list into its network
of friends. A updates its network of friends whose
nodes are the identities of A’s friends, A’s en-
counters, and encounters’ friends, and whose links
represent the strong social connections among those
identities. A connection exists between pair of indi-
viduals who trust each other not to launch a sybil
attack (e.g., two friends). So links are bidirectional -
they exist only between pair identities who trust each
other. More concretely, consider that F and C' are
both friends of A, that A meets D, and that D claims
to befriend F, C, and M. This situation produces
the network in Figure 2(a). Then, if B’s friends are
F, H, and I, then A’s updated network is that in
Figure 2(b).

Step 2. A ranks B on its network. B’s rank reflects
B’s importance in the network. The more central
B’s role in the network, the higher its rank. One
common way of measuring centrality is to measure
the network betweenness of B. Vertices that lie on
many shortest paths between other vertices have
higher betweenness that those that do not. However,
such a definition assumes that information flows
along shortest (ideal) paths in a network. In reality,
information wanders around more randomly. That
is why researchers have been introduced random-
walk betweenness and have found that it performs
best for several types of network (e.g., networks
of Florentine families [19], of co-authorship [16],
of sexual contacts [7]). Importantly, to measure the
betweenness of B, A starts its random walks from
itself, and it does so to break symmetry. If that would
not be the case, then B could boost its rank by having
its bogus identities (e.g., F', H, and [ in Figure 2(b))
mirror the honest topology (e.g., that of A, E, C, D,
and M in the same figure).
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Definition: The random-walk betweenness of B
with prior A is equal to the number of times a
random walk starting at A and ending at any
node X passes through B, averaged over all X.

To compute B’s rank and normalize it within [0, 1], we
divide B’s betweenness by the maximum of possible paths
(i.e., by (% -n-(n—1))), where n is the total number of nodes
in the corresponding network.

Step 3. Depending on B’s rank, A decides whether
to accept or reject B. The higher B’s rank, the
likelier B is honest. Since sybils do not have many
real friends (they are not connected to many central
nodes), they sit in the periphery of the network and
are rarely traversed by a random walk (they rank
poorly).

That, at least, is what would happen in a large network of
friends. However, portable devices store only tiny portions of
the network, and B can easily boost its rank in a tiny network.
To see how, take again the network in Figure 2(b). B may have
fooled E into believing that they are friend, and it may have
then fabricated the public keys F', H and I, and pretended that
those keys belong to multiple individuals when, in reality, are
sybils under its control. In a large network, if limited, B’s
list of bogus identities does not have any impact [9], [24]. By
contrast, in a small network, B’s rank is boosted to the point
of mistakenly accepting B. To fix this problem, we next let A
reason not only on a network of friends but also on a network
of suspicious individuals (which we call foes).

C. Reasoning Also on a Network of Foes

In this case, to decide whether to accept or reject B, A
carries three steps again:

Step 1. A incorporates B’s list of friends in both of
its networks. If, for example, A’s two networks are
those in Figure 3(a) and B’s friends are F', H, and I,
then A’s updated networks are those in Figure 3(b).
Step 2. A ranks B on its two networks. Again, the
rank is the number of times B is traversed by a
random walk between A and any other node. The
only difference is that now A produces two ranks:
B’s rank on the network of friends (which we call

(b)

(a) Networks; (b) Updated Networks; (c¢) Realistic Updated Networks.

GoodRank) and B’s rank on the network of foes
(which we call BadRank).

Step 3. Depending on both of B’s ranks, A decides
whether to accept or reject B. We will see next
that A takes this decision in two different ways -
A either compares the two ranks in a linear way
(GoodRank > [ - BadRank) or clusters them with
the ranks of previously encountered nodes (and, upon
that comparison, it then decides whether to accept or
reject B).

Again, to make the two rankings comparable, we normalize
them to lie between 0 and 1, that is, we divide them by the
maximum number of possible paths (i.e., ( % ‘n-(n—1)), where
n is the number of nodes in the corresponding network).

D. Deciding Whether to Accept or Reject

Comparing Ranks Linearly. The simplest way to compare
B’s ranks is to see whether GoodRank > |- BadRank. If
that is the case, then A accepts B; otherwise, it rejects B.
For example, if [ = 1, the dividing line is straight and defines
two areas (Figure 4(a)): one above the line in which nodes
are rejected, and the other below the line in which nodes are
accepted. If B is below the line (which means GoodRank >
BadRank), then B is accepted (Figure 4(b)).

However, linear comparison poses two problems: (1) one
needs to arbitrarily set /; and (2) deciding who is sybil is
not always clear cut. To understand the latter point, consider
Figure 4(d): the dark circles correspond to five sybils and the
light circles to six honest individuals. The problem is that, by
using linear comparison, one misclassifies two sybils and two
honest individuals (circled in Figure 4(e)).

Clustering Ranks. To fix that problem, one should be able
to group (cluster) the circles of Figure 4(d) into two sets -
“sybil set” and “honest set”. The simplest and fastest clustering
algorithm is K-means clustering. This algorithm generates k
clusters and determines which circles belong to which cluster
depending on the structure of the data. In our case, since k = 2
(we have two sets to cluster - “sybil set” and “honest set”), K-
means clustering begins with two randomly placed centroids -
circles representing the centers of the clusters (dashed empty
circles of Figure 5(a)). The clustering then assigns every circle
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to the nearest centroid - in the case of Figure 5(b), C, B, and G
are assigned to the top centroid and M and NN are assigned to
the bottom centroid. After the assignment, the two centroids
are moved to the average location of all nodes assigned to
them, and the assignments are redone (Figure 5(c)) - it now
turns out that also O is close to the bottom centroid, and
F to the top one - so the two centroids accordingly move
(Figure 5(d)). This process repeats until the assignments stop
changing. Figure 5(f) shows the final result for which L, M,
N, O and P are in one cluster (sybil), and B, C, D, E, F', and

G in the other (honest). A cluster is considered sybil (honest)
if the majority of its circles are sybil (honest). The clustering
for B is done only if B’s GoodRank and BadRank are both
defined (are different than zero). Otherwise, B is considered:

sybil, if BadRank > 0 and GoodRank = 0,
or if BadRank = 0 and GoodRank = 0;
honest, if GoodRank > 0 and BadRank = 0.

Importantly, for either way of comparing ranks, by creating
bogus identities, B does not gain anything. That is because if



B creates bogus identities, then it would artificially boost not
only its Good Rank but also its BadRank.

However, one may rightly say that, even if B is honest, it
would be rejected if it is unknown to either A, A’s friends, or
A’s encounters. In Section IV, we will see that the extent to
which honest people are mistakenly rejected is very limited.
That is because honest people tend to have social connections
with other honest people. So, if B’s friend H is honest, then
it would likely link to at least one of the node in A’s network;
for example, to D. The result would be that A adds D — H in
its network of friends (Figure 3(c)) and, because of that, B’s
GoodRank increases - B will be traversed by random walks
more often.

Also, networks of foes help to detect colluding attackers. To
see why, consider that F' and X (B’s and Y’s sybil identities)
collude and claim to befriend each other. That results into an
additional link X — F' in the network of foes of Figure 3(b), and
that link increases the probability that B and Y are traversed
by random walks - that is, it increases both B’s and Y’s
BadRanks.

E. Updating the Two Networks

At this point, B and its friends are still stored in A’s
networks, but that network needs to be updated depending
on whether B has been accepted or rejected. A does so by
removing B and its friends from its network of foes, if A
accepts B; or from its network of friends, if A rejects B. This
results into a network of friends that contains people who
have been accepted (plus their friends) and into a network of
foes that contains people who have been rejected (plus their
friends).

This way of updating the two networks is reasonable but
may fail at times. More specifically, it may:

o Enlist honest people in the network of foes, and it may
do so in two occasions:

— A sybil lies and says it befriends a set of (real)
honest people. However, to be believable, the sybil
needs to produce relationships that are certified using
its friends’ private keys. But the sybil cannot do so
simply because those keys, being private, are known
only to their owners.

— Device A mistakenly rejects honest device B simply
because B is unknown. In that case, B is in the
network of foes and will removed only if A meets
and accepts at least one of B’s friends. To see why,
take one of B’s friends C. If A accepts C, then,
A deletes C' and its friends (including B) from the
network of foes.

o Enlist sybils in the network of friends, and it may do so
in two occasions:

— A sybil may fool honest people into believing they
are her friends. Realistically, only few people may
fall victims of the sybil. Consequently, the sybil’s
identity would not rank as honest identities do largely
because of its marginal position in the network.

— A sybil is mistakenly accepted. That would happen
only if the sybil ranks well in the network of friends.
In our evaluation, we will see that this is very
unlikely.

IV. EVALUATION

The goal of MoblID is to both reject sybils and accept honest
people. To ascertain the effectiveness of MobID at meeting this
goal, our evaluation ought to answer two questions:

« Robustness: How effectively does MobID protect against
sybils? More specifically, does MobID fail to detect some
sybils (does it suffer from false negatives)? What is the
fraction of honest individuals (mistakenly) considered
sybils (fraction of false positives)? (Section IV-A)

e Overhead: What time, storage, and communication
overhead does MobID impose on a mobile phone?
(Section IV-B)

A. Robustness

We set up simulations driven by real data (empirical
observations) about how individuals move and when they
interact. Then, while running our simulations, we evaluate the
robustness of MobID by keeping track of:

1) The fraction f of fulfilled sybil interactions (i.e., in-
teractions that have been fulfilled by Sybils over those
attempted);

2) The fraction m of missed interactions (i.e., interactions
mistakenly refused over those attempted by honest peo-
ple).

By doing so, we assess to what extent MobID reduces both f
and m.

Simulation Setup. The setup of our simulations is based on
observations about:

e How individuals move. We need to know how people
move and their social networks. Mobility traces do not
come with corresponding social networks - one usually
has the mobility traces of some people and the social
network of others. The only exception is the Reality
Mining project at MIT [11], which offers data about how
96 people moved while carrying their mobile phones for
9 months and about who those people befriend. We use
this project’s mobility traces and social network (largest
connected component) for our evaluation. While focusing
on these mobility traces, we expect the results obtained to
equally hold in other human mobility scenarios; in fact,
as existing analysis demonstrates, such traces share many
unifying features (e.g., node inter-contact time, formation
of cliques) with other mobility traces (e.g., Cambridge
and Dartmouth traces ).

o When they interact. We consider that mobile users run an
application for sharing digital content (e.g., podcasts). To
model when they interact (i.e., exchange digital content),
we consider that two individuals interact if they come
into range and have interest in common. We choose

Uhttp://crawdad.cs.dartmouth.edu/
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this simple interaction model to better interpret the cor-
responding results. Our mobility traces tell those who
come into range, so we simply need to model those
who have interests in common. To do so, we model
interests as categories of digital content (e.g., music
genres) and distribute those categories across individuals.
We do so by assigning categories at random. However,
that does not reflect reality on two counts. The first
is that some categories are more popular than others.
More specifically, category popularity often follows a
Zipf distribution. For example, that is true for videos [4]
and music files [17]. The second count is that one may
well befriend similar people since homophily (i.e., love
of “similar others”) has been found to play a starring
role in human society. Therefore, to assign categories,
we need to account for those two aspects. We can do
so because the Reality Mining project not only tracked
how individuals moved but also recorded their social
network (“who knows whom”). We have exploited this
added knowledge to realistically distribute interests so
that: (1) friends share more categories than unknown
individuals do; (2) category popularity follows a Zipf
distribution. In short, any two individuals interact if they
share content categories. We assign content categories to
individuals in two ways: random and realistic. Below we
will show the results for the realistic distribution. For the
random distribution, the results are slightly better but the
difference is negligible.

o Who is sybil. Finally, we need to determine which in-
dividuals are sybils. Similarly to Danezis ef al.’s eval-
uation [8], we introduce 100 new people (sybils) who
infiltrate 1%, 20%, 30%, ...,90% of the Reality Mining
social network. By infiltrating, we mean the ability of
attackers to have real social connections in the social
network. So “100 sybils infiltrate 20% of the network”
means that “19 real individuals (20% of the network)
turn to be attackers and control the remaining 81 sybil
identities”. Each sybil uses any of its bogus identity with
equal probability.

Reducing (vulnerability) f. One would expect that the frac-
tion of interactions that sybils fulfill (f) mainly depends on
how diffusively sybils infiltrate the social network. Figure 6(a)
plots f against sybils’ infiltration rate for three situations:

e Network of friends. Attackers declare only their affiliation
with the honest people they have managed to fool. They
do so in the attempt to camouflage affiliation with any
bogus identity. On the other hand, to defend themselves,
mobile users employ only networks of friends (no net-
work of foes). This setting shows how well existing
solutions based on social networks would do in the best
case.

e MobID linear. Attackers infiltrate the community as we
have just described under the item “Who is sybil”. To
defend themselves, mobile users compare two rankings
(one from the network of friends, and the other from the
network of foes), and they do so linearly using the three
coefficients [ = {3,1,2}.

e MobID clustering. This situation is as the last one except
for the comparison of the two rankings, which is now
done by K-means clustering.

As one expects, Figure 6(a) shows that f increases with the
attackers’ infiltration rate for the three strategies. For MobID
linear, the best linear coefficient [ is 2. That is because, by
increasing [, one conservatively reduces the acceptance area
(the dividing line goes down) and consequently is less exposed
to attackers (lower f). Overall, MobID clustering performs
best. For example, if 20% of people in the community turn
to be attackers, against MobID clustering, those attackers only
manage to fulfill less than 1% of the interactions that would
have happened if no protection had been in place. Also, the
way the two remaining strategies perform suggests that it
pays to reason not only on a network of friends but also
on a network of foes - all the more so if one uses K-means
clustering instead of linear comparison.

Reducing (lost opportunities) m. Since they are unable
to distinguish between completely unknown individuals and
sybils, defence strategies may mistakenly reject honest people.
Now the question is to which extent they do so. By plotting
the fraction of missed interactions with honest people in



Figure 6(b), we observe that, up to a 60% infiltration rate,
each of the three strategies shows a flat fraction of missed
interactions: MobID clustering approximately is flat at 30%
of missed interactions, network of friends at 35%, and MobID
linear at 40% (with | = %). Predictably, for MobID linear,
the best coefficient is [ = % That is because, by decreasing
l, one increases the acceptance area (the dividing line goes
up), openly accepts more people, and consequently suffers
little from lost opportunities (lower m). If attackers manage
to diffusely infiltrate the community (more than 70% of its
members), most honest people are abruptly excluded from
the system. That is because their networks become extremely
sparse and they are unable to identify sybils. These results
are in line with research on complex systems, which shows
that phase transitions tend to describe the robustness of social
networks, in that, after a critical point, networks abruptly
break [1]. Once again, MobID clustering proves to be the
most effective strategy - for high attacker infiltration rate (up
to 60%), it rejects 35% of the interactions, which happen to
come from 17% of community members. This result improves
on existing approaches. However, to avoid the social exclusion
of that 17% of the community, one should integrate MobID
with other mechanisms, some of which are listed in Section V
under “Social Exclusion”.

B. Overhead

Communication Overhead. MobID requires devices to ex-
change their lists of trusted friends. Each item in this list
consists of an identity (public key of 1024 bytes) and a signed
relationship (128 bytes). A list of ¢ trusted friends requires
to transmit (¢ - 1.12Kb) (e.g., 112Kb for 100 trusted friends,
which is pessimistically high). In theory, using Bluetooth
version 1.2, devices can transfer 434 kb/s. In practice, en-
vironmental conditions (e.g., human bodies that interfere with
Bluetooth’s frequencies) lower that speed. Still, at a speed as
low as 112 kb/s, a mobile phone can transmit that list in one
second.

Computational Overhead. MobID should perform random
walks on small networks. The complexity of performing ran-
dom walks depends on the size of the network and on the type
of algorithm used. The running time for Newman’s centrality
measure [19] is O((m + n)n) and that for Brandes’s [3] is
O(mn) (where n is the number of nodes, and m is the number
of links). So, if one uses the latter, the computational overhead
on each device is acceptable and is limited by the fact that
networks are relatively small - a device’s networks contain
only the people the device has encountered.

Also, in addition to random walks, each device should run
K-means clustering (which is the fastest clustering algorithm),
and it should create a list of friends, and that requires public
key encryptions. For each friend, a device concatenates and
encrypts a pair of identifiers. To attain a minimum level
of security, America’s National Institute of Standards and
Technology (NIST) recently suggested RSA (for public key
encryption) with a key of at least 1024 bytes. However,
the use of RSA may slow down current models of mobile

phones. So, we consider a second public key encryption
algorithm - ECDSA [15]. We do so because, security level
being equal, compared to RSA, ECDSA uses smaller keys
and, consequently, signs messages faster. To encrypt, a J2ME
implementation of RSA takes 4.07 seconds (on Nokia 6600)
or 2.72 seconds (on Ericsson P900). As one expects, ECDSA
takes much less: 0.76 seconds (on Nokia 6600) or 0.42
seconds (on Ericsson P900). This overhead is acceptable and
may be significantly reduced: public-key encryptions are well-
established operations, and one may consequently imagine a
(near) future in which those operations will be partially or
fully implemented in hardware for higher performance.
Storage Overhead. MobID stores two networks whose nodes
are identities (public keys) and whose links are social relations.
Identities are stored as a list of public keys and links as a
connectivity matrix. If n is the maximum between the sizes
of the two networks, then the connectivity matrix requires n?
bits (e.g., 1.22Kb for n = 100), and storing n public keys
requires (n - 1024) bytes (e.g., 100Kb for n = 100). Overall,
to store two networks of 100 nodes, a device needs 103Kb
(2-1.22 4 100KD). This is negligible, mostly because phones
come with GBs of storage nowadays.

V. DISCUSSION

Based on the previous results, we now discuss some open
questions.
Bootstrapping. To join a community, new MobID users
should be introduced by current members. To do so, new users
may identify the members they know by scanning their contact
lists, and they may then ask those members for an introduction.
Social exclusion. For those who do not have friends, MobID
and, for that matter, any sybil prevention mechanism based
on social networks would not work. Indeed, such mechanisms
translate into social exclusion: mobile users with no friends are
excluded from the system and cannot trade services. So, for
those individuals, real systems should also deploy alternative
mechanisms. One such mechanism is frust negotiation - to
gradually establish trust, strangers iteratively exchange digital
credentials [12]. For example, a mobile user might receive
a credential from her university that certifies that she is a
student. Then, to access her mobile e-learning repository, the
user could employ that credential rather than proving her
identity. Another alternative mechanism is to adapt a point-
based system called Thawte. In it, people have their identities
certified by meeting one or more notaries. Those notaries
check identification and assign points based on their experi-
ence. After collecting a certain number of points, people obtain
certification of their identities; after a higher number of points,
they can also become notaries themselves. Currently, Internet
servers collect and store user points in a “Web of Trust”.
However, that process could be made fully decentralized by
having mobile users run existing distributed algorithms for
reasoning on a “Web of Trust” [22].
Privacy Concerns. By exchanging their networks, users reveal
people with whom they have interacted, and some users may
not feel comfortable doing so for privacy concerns. Our design



partially alleviates these concerns because it uses anonymous
public keys for identifying users and only friends can associate
keys with real-life identities. However, profiling people based
on the use of their anonymous identities is still possible.
That is why recent research has been focusing on how to
verify social ties while exposing minimal information about
them [18].

Deployability. MobID is easily deployable largely because
it does not require any infrastructure or any specialized
hardware, and it taps into the well-understood concept of
friendship.

Real-life friends versus virtual friends. MobID requires
that users have and specify real-life connections. In virtual
communities (e.g., social network websites), people do not
specify only their real-life social connections but often tend
to connect to hundreds of virtual identities. The question of
whether MobID users will be able to differentiate between
their real-life friends and virtual ones needs further research
- it should be treated as a testable hypothesis rather than an
established fact.

Key revocation and making new friends. Whenever a user
makes new friends, she enlists them (and their public keys)
in her list of friends. To revoke her key, a user simply stops
using it, creates a new key, and sends her friends the new key.
Attacking MobID. The effectiveness of MobID relies on
sybil attackers having a very limited number of real-life social
connections. However, there are several ways an attacker might
acquire connections:

o The attacker convinces honest users in the system to “be
her friends” in real life. But that is difficult to do with
a significant number of users. Still, MobID clustering
proved to be resilient to a large fraction of community
members who exploited their real-life connections to
launch sybil attacks.

o Worryingly, if the attacker manages to convince an honest
user to be her friend, then she can create bogus identities
at will. However, those identities would sit “behind” the
attacker and, as such, they would be rejected because they
rank poorly on a network of friends.

o More worryingly, multiple attackers may collude to in-
crease their chance of being considered honest. However,
collusion not only results in increasing the colluders’
GoodRank but also their BadRank, and, consequently,
the colluders will be aptly rejected.

VI. CONCLUSION

MobID is a protection mechanism that makes in-range
portable devices resilient to sybil attackers with high prob-
ability. These attackers disrupt sharing communities and then
make themselves untraceable by producing bogus identities.
MoblID relies on the fact that attackers may create many bogus
identities but few real-life relationships. Using real mobility
and social network data, we have validated that the version
of MobID that uses K-means clustering performs best - for
example, it protects against attackers who infiltrate 20% of a

real mobile community without causing any disruption. Mo-
bID also scales - it entails reasonable storage, communication,
and computational overhead. To further evaluate MoblID, we
are studying how underground passengers (of the order of
1 million) happen to be co-located and how their mobility
patterns can be overlayed with synthetic social networks.
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