
Review of Bruno de Finetti’s

‘Philosophical Lectures on

Probability’

(Springer 2008)

Jon Williamson

Draft of October 1, 2009
for Philosophia Mathematica

This posthumous work was produced by transcribing audio recordings of
lectures that Bruno de Finetti gave at the National Institute for Advanced
Mathematics in Rome in 1979. Alberto Mura attended the course, recorded the
lectures, took notes and edited the resulting volume, which was first published
in Italian in 1995. Hykel Hosni translated the lectures for this English edition,
which appears in the Synthese Library series of volumes on epistemology, logic,
methodology and philosophy of science. The book contains an introductory
essay about de Finetti by Maria Carla Galavotti. Three of the twenty-two
lectures and part of a fourth are lost, but the remaining lectures have many
useful editorial comments. Moreover, interesting discussion between de Finetti
and those attending the course is also included. So we have many people to
thank for this important text.

De Finetti wrote the following notice to advertise the course at the Institute:

The course, with a deliberately generic title [‘On Probability’] will
deal with the conceptual and controversial questions on the subject
of probability: questions which it is necessary to resolve, one way
or another, so that the development of reasoning is not reduced to
a mere formalistic game of mathematical expressions or to vacuous
and simplistic pseudophilosophical statements or allegedly practical
claims.

Since de Finetti was a key figure in the development of the conceptual foun-
dations of probability, these lectures will be of great interest to philosophers of
probability in particular, and to epistemologists and philosophers of mathemat-
ics and science in general. This new English edition is very welcome indeed.

De Finetti is known as a champion of the strictly subjective interpretation of
probability. According to this view, probabilities are to be construed as degrees
of belief, and are thus defined in relation to an agent holding those beliefs. These
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degrees of belief are subject to a rather weak normative constraint—coherence,
which merely demands that degrees of belief satisfy the axioms of probability—
but otherwise it is left up to the agent as to how to apportion her degrees of
belief. According to de Finetti there is no viable non-epistemic notion of single-
case probability: ‘it is senseless to speak of the probability of an event unless we
do so in relation to the body of knowledge possessed by a given person’ (p.3).

De Finetti’s subjective interpretation—often called subjective Bayesianism—
is typically contrasted with objective Bayesianism (see, e.g., Rosenkrantz, 1977;
Jaynes, 2003; Williamson, 2010). Objective Bayesians are also concerned with
degrees of belief and also hold that these degrees of belief should satisfy the
axioms of probability and are relative to the knowledge or evidence of a given
agent. But objective Bayesians go further by arguing that the agent’s degrees
of belief should also satisfy constraints imposed by evidence—for example they
should be set to known frequencies in certain situations—and that, where evi-
dence fails to fully determine degrees of belief, an agent should equivocate as far
as possible between the basic possibilities under consideration; hence she should
not adopt extreme degrees of belief unless forced to by her evidence.

Here we shall briefly examine the volume with regard to the distinction
between subjective and objective Bayesianism.

That de Finetti is firmly in the subjectivist camp is witnessed by the follow-
ing colourful expression of his views:

Even if an individual were self-coherent, I might still find his opinions
absurd and I might say: “Is he crazy?” Likewise he might say that I
am crazy because my evaluations differ from his own. Of course, a
third person might have reasons, on the grounds of what happened
subsequently, to judge either my evaluations or the other person’s
ones more reasonable. But this is the sort of “hindsight” of which we
are told “ditches are full.” I have never seen ditches full of hindsight,
yet there is probably a rough kernel of truth in this sentence. (p.18)

Objectivists hold that it is not just in hindsight that we can judge an agent’s
degrees of belief to be unreasonable. For de Finetti, if one has no evidence
that bears on an elementary proposition A then one is reasonable to believe it
to any degree at all (as long as one remains coherent, setting P (¬A) = 1 −
P (A) for example). But objectivists would—in advance—judge an agent to be
unreasonable if she were to strongly believe A or its negation in this absence
of evidence. According to objectivists, the agent should equivocate between A
and ¬A, awarding each of these propositions degree of belief 1

2 or thereabouts.
The main point of departure of this later work of de Finetti’s from his earlier

work on probability is at the level of foundations. Formerly he based his view
of probability on betting considerations: these betting considerations lead to
the so-called Dutch book or Ramsey–de Finetti theorem which is used to argue
that an agent’s assignment of degrees of belief are coherent (i.e., not exploitable
to yield sure loss in a betting situation) if and only if they satisfy the axioms
of probability. In this work, de Finetti rejects that line of argument on the
grounds that it presumes that anyone out to exploit the agent’s bets must have
the same degrees of belief as the agent herself (p.29). Instead, de Finetti bases his
interpretation of probability on scoring rules. A scoring rule is a particular kind
of loss function. The loss one makes when one chooses course of action a if state
ω of the world is the case can be denoted by L(ω, a); here L is a loss function
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and we may identify ω with an atomic state ±A1 ∧ · · · ∧ ±An of the elementary
propositions A1, . . . , An expressible in the agent’s language. In our context the
agent must choose a probability function Q on which to base her predictions,
in which case the loss is written L(ω,Q) and L is called a scoring rule. De
Finetti maintains that minimising expected loss is a decisive desideratum and,
given this desideratum, one should choose a probability function that accurately
represents one’s degrees of belief (p.18 and Chapter 3).

I will argue here that by basing his approach on scoring rules, de Finetti
shoots himself in the foot: minimising expected loss with respect to a scoring rule
leads more naturally to objective Bayesianism than to subjective Bayesianism.

Given a loss function L,

L(P, a) df= EP L(Ω, a) =
∑
ω∈Ω

P (ω)L(ω, a)

is the expected loss for P . Here interpret P as a probability function that is a
reasonable choice of belief function for the agent, and suppose that the agent
only knows that P ∈ E, where E, the set of belief functions compatible with
the agent’s evidence, is some (not necessarily proper) subset of the set P of
probability functions. Ω = {±A1 ∧ · · · ∧ ±An} is the set of all atomic states.
Define

H(P ) df= inf
a∈A

L(P, a),

the Bayes loss or generalised entropy of P . In our case L is a scoring rule and
the agent must choose some Q ∈ P as a basis for prediction. We shall assume,
as de Finetti did, that the scoring rule L is proper : for all P , the choice Q = P
minimises L(P,Q). (Such a choice Q is sometimes called a Bayes act .) Then
H(P ) = L(P, P ) for P ∈ E. Next let

d(P,Q) df= L(P,Q)−H(P ),

which we shall call the divergence of P from Q. A divergence function is inter-
preted as a measure of the distance of P from Q, but it need not be a distance
function in the strict mathematical sense, since it may be asymmetric or may
not satisfy the triangle inequality. The equivocator , P= is a probability function
defined by

P=(ω) df=
1

2|Ω|

for all ω ∈ Ω. This function equivocates between the basic possibilities ω ∈ Ω
expressible in the agent’s language. We shall assume that the scoring rule L
is equivocator-neutral : i.e., L(P, P=) = k, a constant, for all P . This holds
for many common scoring rules including Brier score L(ω,Q) = (1 −Q(ω))2 +∑

ω′ 6=ω P (ω′)2 (which was the scoring rule advocated by de Finetti), logarith-
mic loss L(ω,Q) = − log Q(ω), and zero-one loss L(ω,Q) = 1 − Q(ω). (This
assumption is not essential for the main point developed here; it merely allows
us to talk in terms of divergence rather than entropy.) As Grünwald and Dawid
(2004) show, under natural conditions

arg inf
Q∈P

sup
P∈E

L(P,Q) = arg inf
P∈E

d(P, P=).
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In particular if E is convex and under certain closure conditions, the functions
in P minimising worst-case expected loss are those in E closest to the equiv-
ocator. But minimising worst-case expected loss is rather natural given de
Finetti’s desideratum of minimising expected loss. And choosing a function in
E that is closest to the equivocator is exactly the recipe of objective Bayesianism
(Williamson, 2010). So de Finetti’s advocacy of the desideratum leads one to
objective, rather than subjective, Bayesianism.

Note here that the geometry of the space of probability functions depends
on the loss function, in the sense that the notion of distance varies according to
the loss function. As a default loss function, de Finetti considered Brier score.
This was apparently on the grounds of a mechanical analogy: it permits one to
think of probabilities P (A) and P (¬A) as masses hung at the ends of a uniformly
dense bar (p.5). But it is more typical to take logarithmic loss as the default loss
function. This policy can be justified on the basis of considerations to do with
information theory, information geometry, gambling (in particular a gambling
set-up called Kelly gambling), game theory where penalties are proportional to
code lengths, or the following axiomatic approach (Williamson, 2010, §3.4): for-
malise the agent’s language as a finite propositional language L = {A1, . . . , An}
on propositional variables A1, . . . , An, and assume the following of the default
loss function L:

L1: By default, L(ω, Q) = 0 if Q(ω) = 1.

L2: By default, loss strictly increases as Q(ω) decreases from 1 towards 0.

L3: By default, loss L(ω,Q) depends only on Q(ω), not on Q(ω′) for ω′ 6= ω.

L4: By default, losses are presumed additive when the language is composed
of independent sublanguages: if L = L1 ∪ L2 and L1⊥⊥QL2 then LL(ω1 ∧
ω2, Q) = LL1(ω1, Q�L1) + LL2(ω2, Q�L2). (Here ω1 and ω2 are atomic
states of L1 and L2 respectively.)

If these conditions are to hold for any finite predicate language L and any
probability function Q defined on this language, then the default loss function
L must be logarithmic loss, L(ω,Q) = − logb Q(ω) to some base b > 1.

Taking loss as logarithmic by default, the divergence function is just the
well-known Kullback-Leibler divergence

d(P,Q) =
∑
ω∈Ω

P (ω) log
P (ω)
Q(ω)

,

and minimising divergence from the equivocator is equivalent to maximising
entropy in the information-theoretic sense, H = −

∑
ω∈Ω P (ω) log P (ω). Ap-

plying the desideratum of minimising worst-case expected loss, we are led to
the maximum entropy principle of Jaynes (1957): one’s degrees of belief should
be representable by a function in E that has maximum entropy. This is the
classic formulation of objective Bayesianism.

In Williamson (1999) I pointed out that, somewhat ironically, de Finetti’s
rejection of the axiom of countable additivity makes subjectivism more elusive.
Here we see that the irony extends to his adoption of scoring rules as a foun-
dation for subjectivism. In my view de Finetti was right to take minimising
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expected loss as a desideratum and right to pay attention to scoring rules; but
in hindsight—of which ditches may well be full—these moves do not sit well
with subjectivism.

I have only dwelt on one aspect of de Finetti’s lectures but the book touches
on almost all the major concerns of his theory of probability. It is full of fasci-
nating material and all involved have done a great job in bringing it to a wider
audience.
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