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Abstract.

The invention and inception of so-called “parabolic skis” has led to what has
been called a revitalization of the ski industry in the face of increasing interest in
snowboards. Here, the effect of the inner curvature (side-cut) on the ability to make
shorter carved turns is tested. The outcome at this point is inconclusive, due mainly
to the difficulty of performing a purely carved turn.
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1. Introduction

The “parabolic” ski, perhaps more aptly named the side-cut ski, as
will be used for the rest of this work, is defined by a thinner middle
(waist), than tip (shovel) or tail. The magnitude of this thinning can
be several centimeters or more, and is thus easily visible when viewing
the footprint of a the ski.

The first side-cut ski was introduced by Elan in 1993, just over a
decade ago. To alpine skiers this fact can seem surprising as, since then,
the market for recreational alpine skiing has been completely taken over
by this variety of ski. It has reached the point where most major ski
manufacturers no longer even make straight skis, and those that are
still floating around the market often sell for under $20 Canadian.

There is little question, as a skier, that there is a marked improve-
ment in the ability to make turns with a side-cut ski over a straight ski.
This applies to both the effort needed to get the skis to change direction
and the facilitating of many higher-end techniques. But, while many ski
companies will boast the research put into their particular footprint,
there is surprisingly little research into the actual mechanics of how
it is a skier interacts with the slope. That having been said, there are
certainly some sources available. In particular, the book “The Physics
of Skiing” provides some excellent insight (Lind and Sanders, 2004).

In particular, within “Technote #5,” the possible radius of a purely
carved turn is determined using several simplifying approximations. As
one might suppose, this radius is largely dependent upon the radius of
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side-cut of the ski, as it is that edge that pulls one around the curve.
This paper will put these predictions to experimental tests using skis
of several side-cut radii.

2. Computational Model

Before describing the forces present on skis during a carved turn, it is
first necessary to describe the geometry of the ski itself. Please refer to
Figure 1 for the definition of variables that will be necessary hereafter.

sidecut SC

side radius Rsc

tiptail

tail width T
waist width W shovel width S

Figure 1. A top view of a typical side-cut ski.

There is one length, other than those defined in the figure, that will be
of importance. Contact length, C, refers to the amount of ski that will
be in contact with the hill during normal performance. For a typical
ski this will be close to the total length, as typically the only part of a
ski that does not come in contact with the slope is the tip.

For the present analysis, the most important property that affects
ski performance is the side geometry of the ski. The side-cut radius,
Rsc, that can be defined by the shovel, waist point, and tail of the ski.
It can be given by the following relationship,

Rsc =
C2

8SC
, (1)

where the side-cut SC can be given by the relation SC = 1
4
(S−2W +T ),

and is the physical indent of the ski from widest to thinnest.
The carved turn itself simply consists of generating the force nec-

essary to change the direction of the skier’s momentum. This force
is typically generated by simply pressing the ski’s edge into the snow
and letting the friction present pull the skier around a curved arc by
slowing the inner edge of the ski. In true skiing situations this arc is
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nearly never a circle, due to purposeful skidding that occurs during the
course of the turn. It is, however, much simpler to examine the turn
formed by a turn made up entirely of carving, as will be performed
here.

There are a number of forces to consider for the carving of a turn by
a skier. First and foremost there are the forces pertaining to the weight
of the skier on the slope. These will be referred to as W , for the weight
straight down, FN as the component perpendicular to the hill, and Fload

as the force passing through the skis onto the snow itself. The reason
that both Fload and FN are necessary is due to the fact that a skier
can, and will, move their center of mass away from directly above their
skis, a technique known as “angulation.” Next, the transverse forces,
those in the plane of the slope, are Flat, the component of weight along
the hill, and FC , the centrifugal force. The total transverse force can
be written as Ftl = FC − Flat.

Finally, it is necessary to define several angles. It is possible to define
all directions using two angular coordinates, α and β. The first of these
α is simply the angle between the slope and the horizontal. The second,
β, is the angle formed between the skier’s direction and an equipotential
line. It is simplest to imagine this on a uniform slope, where β will be
the angle downslope from a horizontal line drawn across the slope, see
Figure 2.

Equipotential Line

α

βSkier

Figure 2. Definition of the angles α and β. During a turn on a uniform slope α will
stay constant while β changes.

With all of these definitions in place the remaining forces can be
written

FC = Wv2/gRT (2)

Flat = W sin α cos β (3)

FN = W cos α (4)

F 2
load = (FC − Flat)

2 + F 2
N (5)

from the geometry of the situation. For a more detailed derivation of
these, see Technote #5, and Chapter 4 of Lind (Lind and Sanders,
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2004). If we assume the skier is in dynamic equilibrium such that the
radius of contact of the turn can be defined as,

Rcon = RSC cos Ω, (6)

with Ω taken to be formed between the ski and the slope, see Figure 3.

Ski Slope

Ω

Figure 3. As a ski is placed at some angle to the slope an angle Ω forms between
the ski and the slope. In reality, the edge of the ski would press into the snow but
this does not alter the definition of Ω.

Furthermore, recalling that FN is the force normal to the slope and
Fload is equal and opposite to the snow reaction force (Freac) then the
relation RT Freac = RSCFN follows directly. Squaring both sides and
subtracting one from the other yields the relation,

F 2
loadR

2
T − F 2

NR2
SC = 0 (7)

By substituting in the above expressions for forces this becomes a
quadratic expression for RT as follows,

aR2
T + bRT + c = 0 (8)

where the coefficients are,

a = (sin α cos β)2 + cos2 α (9)

b = (−2v2/g) sin α cos β (10)

c = (v2/g)2 − R2
SC cos2 α (11)

and the solutions will be the positive solutions of the quadratic formula,

RT =
−b ±

√
b2 − 4ac

2a
. (12)

3. Experiment and Data

To test equation 12, it was decided that it should be possible to isolate
two of the four variables, α and β, simply by examining the tracks left
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behind an actual carved turn. The velocity v was taken by measuring
the time taken and distance covered, and RSC was easy to calculate if
one measures the dimensions of the ski.

The first measurement performed was that of the slope of the hill, to
determine alpha. The results of four measurements at different locations
around the slope are as follows,

α (radians)

0.297

0.384

0.305

0.262

The average is α = 0.312 ± 0.05.
Next three points on the curve were chosen, and at each the angle

from the fall line, β, was measured. Finally, a line was drawn into the
center of the circle from each of these points. Of course, originally there
was no determined center of the circle so the first line was simply drawn
long enough that it would be certain to intersect with another later.
The second line was drawn back until it intersected the first and the
third was drawn straight back and found to intersect simultaneously
with the other two. The intersection point was taken to be the center
of the circle, which allowed the radii to each point to be measured.

Having all of this data it was possible to predict the radius that a
turn should have, using (12), and compare it to Rmeas, the radius actu-
ally measured using the method mentioned in the previous paragraph.
These measurements were performed on two pairs of skis with different
side-cuts, the values are given below.

Less Side-Cut Skis RSC = 14.8m

Rmeas (m) δRmeas (m) RT (m) δRT (m)

7.92 2 14.6 0.5

7.87 2 14.8 0.5

7.67 2 14.7 0.5
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More Side-Cut Skis RSC = 13.32m

Rmeas (m) δRmeas (m) RT (m) δRT (m)

16.1 2 13.29 0.5

16.5 2 13.17 0.5

16.17 2 13.00 0.5

4. Discussion

By comparing the actual radius of turn performed, Rmeas, and the cal-
culated turn radius, RT , one can see that the measurements performed
on the less side-cut (LSC) skis, do not agree with the predictions of
equation 12 at all. The disagreement is on the order of a factor of
two. The second set, however, while not in perfect agreement, are near
experimental error, although it must be admitted that the error is fairly
significant.

The only notable difference between these two runs, other than the
different RSC is that the skier was changed due to equipment difficul-
ties. It is suspected that the skier for the second set of runs, being
the more experienced of the two, was better able to perform a good
approximation to a purely carved turn. As mentioned earlier, a typical
ski turn is made up of a good deal of control skidding, and is not nearly
as easy to predict as the model given here.

The experimental error present in the Rmeas of the data was actu-
ally very difficult to determine. The method of drawing perpendicular
lines from several points on the curve seems simple enough in one’s
mind; however, to keep the velocity somewhat constant throughout the
section of curve examined, it was best to choose a somewhat short
region. This implies that if the curves are drawn incorrectly in any way
the point of intersection could vary greatly, and is the reason for the
reported ±2 m error.

These results indicate that that it is, indeed, extremely difficult to
perform a purely carved turn. It does appear, however, that it appears
that a properly performed (purely carved) turn will be reasonably pre-
dicted by the above equations. Little can be said about the effect of the
side-cut radius, due to the difficulty in performing a repeatable turn.
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