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A concept – quantum order – is introduced to describe a new kind of orders that generally
appear in quantum states at zero temperature. Quantum orders that characterize universality
classes of quantum states (described by complex ground state wave-functions) is much richer then
classical orders that characterize universality classes of finite temperature classical states (described
by positive probability distribution functions). The Landau’s theory for orders and phase transitions
does not apply to quantum orders since they cannot be described by broken symmetries and the
associated order parameters. We introduced a mathematical object – projective symmetry group –
to characterize quantum orders. With the help of quantum orders and projective symmetry groups,
we construct hundreds of symmetric spin liquids, which have SU(2), U(1) or Z2 gauge structures
at low energies. We found that various spin liquids can be divided into four classes: (a) Rigid
spin liquid – spinons (and all other excitations) are fully gaped and may have bosonic, fermionic,
or fractional statistics. (b) Fermi spin liquid – spinons are gapless and are described by a Fermi
liquid theory. (c) Algebraic spin liquid – spinons are gapless, but they are not described by free
fermionic/bosonic quasiparticles. (d) Bose spin liquid – low lying gapless excitations are described
by a free boson theory. The stability of those spin liquids are discussed in details. We find that stable
2D spin liquids exist in the first three classes (a–c). Those stable spin liquids occupy a finite region
in phase space and represent quantum phases. Remarkably, some of the stable quantum phases
support gapless excitations even without any spontaneous symmetry breaking. In particular, the
gapless excitations in algebraic spin liquids interact down to zero energy and the interaction does
not open any energy gap. We propose that it is the quantum orders (instead of symmetries) that
protect the gapless excitations and make algebraic spin liquids and Fermi spin liquids stable. Since
high Tc superconductors are likely to be described by a gapless spin liquid, the quantum orders and
their projective symmetry group descriptions lay the foundation for spin liquid approach to high Tc

superconductors.
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I. INTRODUCTION

Due to its long length, we would like to first outline
the structure of the paper so readers can choose to read
the parts of interests. The section X summarize the main
results of the paper, which also serves as a guide of the w-
hole paper. The concept of quantum order is introduced
in section I A. A concrete mathematical description of
quantum order is described in section IV A and section
IV B. Readers who are interested in the background and
motivation of quantum orders may choose to read sec-
tion I A. Readers who are familiar with the slave-boson
approach and just want a quick introduction to quantum
orders may choose to read sections IV A and IV B. Read-
ers who are not familiar with the slave-boson approach
may find the review sections II and III useful. Reader-
s who do not care about the slave-boson approach but
are interested in application to high Tc superconductors
and experimental measurements of quantum orders may
choose to read sections I A, I B, VII and Fig. 1 - Fig. 15,
to gain some intuitive picture of spinon dispersion and
neutron scattering behavior of various spin liquids.

A. Topological orders and quantum orders

Matter can have many different states, such as gas,
liquid, and solid. Understanding states of matter is the
first step in understanding matter. Physicists find matter
can have much more different states than just gas, liquid,
and solid. Even solids and liquids can appear in many
different forms and states. With so many different states
of matter, a general theory is needed to gain a deeper
understanding of states of matter.

All the states of matter are distinguished by their in-
ternal structures or orders. The key step in developing
the general theory for states of matter is the realization
that all the orders are associated with symmetries (or
rather, the breaking of symmetries). Based on the rela-
tion between orders and symmetries, Landau developed
a general theory of orders and the transitions between d-
ifferent orders.[1, 2] Landau’s theory is so successful and
one starts to have a feeling that we understand, at in
principle, all kinds of orders that matter can have.

However, nature never stops to surprise us. In 1982,
Tsui, Stormer, and Gossard[3] discovered a new kind of
state – Fractional Quantum Hall (FQH) liquid.[4] Quan-
tum Hall liquids have many amazing properties. A quan-
tum Hall liquid is more “rigid” than a solid (a crystal),
in the sense that a quantum Hall liquid cannot be com-
pressed. Thus a quantum Hall liquid has a fixed and well-
defined density. When we measure the electron density
in terms of filling factor ν, we found that all discovered
quantum Hall states have such densities that the filling
factors are exactly given by some rational numbers, such
as ν = 1, 1/3, 2/3, 2/5, .... Knowing that FQH liquids
exist only at certain magical filling factors, one cannot
help to guess that FQH liquids should have some inter-
nal orders or “patterns”. Different magical filling fac-
tors should be due to those different internal “patterns”.
However, the hypothesis of internal “patterns” appears
to have one difficulty – FQH states are liquids, and how
can liquids have any internal “patterns”?

In 1989, it was realized that the internal orders in
FQH liquids (as well as the internal orders in chiral spin
liquids[5, 6]) are different from any other known orders
and cannot be observed and characterized in any con-
ventional ways.[7, 8] What is really new (and strange)
about the orders in chiral spin liquids and FQH liquids
is that they are not associated with any symmetries (or
the breaking of symmetries), and cannot be described by
Landau’s theory using physical order parameters.[9] This
kind of order is called topological order. Topological order
is a new concept and a whole new theory was developed
to describe it.[9, 10]

Knowing FQH liquids contain a new kind of order –
topological order, we would like to ask why FQH liquids
are so special. What is missed in Landau’s theory for
states of matter so that the theory fails to capture the
topological order in FQH liquids?

When we talk about orders in FQH liquids, we are
really talking about the internal structure of FQH liq-
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uids at zero temperature. In other words, we are talking
about the internal structure of the quantum ground state
of FQH systems. So the topological order is a property
of ground state wave-function. The Landau’s theory is
developed for system at finite temperatures where quan-
tum effects can be ignored. Thus one should not be sur-
prised that the Landau’s theory does not apply to states
at zero temperature where quantum effects are impor-
tant. The very existence of topological orders suggests
that finite-temperature orders and zero-temperature or-
ders are different, and zero-temperature orders contain
richer structures. We see that what is missed by Lan-
dau’s theory is simply the quantum effect. Thus FQH
liquids are not that special. The Landau’s theory and
symmetry characterization can fail for any quantum s-
tates at zero temperature. As a consequence, new kind
of orders with no broken symmetries and local order pa-
rameters (such as topological orders) can exist for any
quantum states at zero temperature. Because the orders
in quantum states at zero temperature and the orders in
classical states at finite temperatures are very different,
here we would like to introduce two concepts to stress
their differences:[11]
(A) Quantum orders:[92] which describe the universali-
ty classes of quantum ground states (ie the universality
classes of complex ground state wave-functions with in-
finity variables);
(B)Classical orders: which describe the universality
classes of classical statistical states (ie the universality
classes of positive probability distribution functions with
infinity variables).
From the above definition, it is clear that the quantum
orders associated with complex functions are richer than
the classical orders associated with positive function-
s. The Landau’s theory is a theory for classical orders,
which suggests that classical orders may be characterized
by broken symmetries and local order parameters.[93]
The existence of topological order indicates that quan-
tum orders cannot be completely characterized by bro-
ken symmetries and order parameters. Thus we need to
develop a new theory to describe quantum orders.

In a sense, the classical world described by positive
probabilities is a world with only “black and white”. The
Landau’s theory and the symmetry principle for classical
orders are color blind which can only describe different
“shades of grey” in the classical world. The quantum
world described by complex wave functions is a “colorful”
world. We need to use new theories, such as the theory of
topological order and the theory developed in this paper,
to describe the rich “color” of quantum world.

The quantum orders in FQH liquids have a special
property that all excitations above ground state have fi-
nite energy gaps. This kind of quantum orders are called
topological orders. In general, a topological order is de-
fined as a quantum order where all the excitations above
ground state have finite energy gapes.

Topological orders and quantum orders are general
properties of any states at zero temperature. Non trivial

topological orders not only appear in FQH liquids, they
also appear in spin liquids at zero temperature. In fact,
the concept of topological order was first introduced in a
study of spin liquids.[9] FQH liquid is not even the first
experimentally observed state with non trivial topolog-
ical orders. That honor goes to superconducting state
discovered in 1911.[12] In contrast to a common point
of view, a superconducting state cannot be characterized
by broken symmetries. It contains non trivial topological
orders,[13] and is fundamentally different from a super-
fluid state.

After a long introduction, now we can state the main
subject of this paper. In this paper, we will study a new
class of quantum orders where the excitations above the
ground state are gapless. We believe that the gapless
quantum orders are important in understanding high Tc

superconductors. To connect to high Tc superconduc-
tors, we will study quantum orders in quantum spin liq-
uids on a 2D square lattice. We will concentrate on how
to characterize and classify quantum spin liquids with
different quantum orders. We introduce projective sym-
metry groups to help us to achieve this goal. The projec-
tive symmetry group can be viewed as a generalization
of symmetry group that characterize different classical
orders.

B. Spin-liquid approach to high Tc superconductors

There are many different approaches to the high Tc

superconductors. Different people have different points
of view on what are the key experimental facts for the
high Tc superconductors. The different choice of the key
experimental facts lead to many different approaches and
theories. The spin liquid approach is based on a point of
view that the high Tc superconductors are doped Mot-
t insulators.[14–16] (Here by Mott insulator we mean a
insulator with an odd number of electron per unit cel-
l.) We believe that the most important properties of
the high Tc superconductors is that the materials are in-
sulators when the conduction band is half filled. The
charge gap obtained by the optical conductance experi-
ments is about 2eV , which is much larger than the anti-
ferromagnetic (AF) transition temperature TAF ∼ 250K,
the superconducting transition temperature Tc ∼ 100K,
and the spin pseudo-gap scale ∆ ∼ 40meV.[17–19] The
insulating property is completely due to the strong corre-
lations present in the high Tc materials. Thus the strong
correlations are expect to play very important role in un-
derstanding high Tc superconductors. Many importan-
t properties of high Tc superconductors can be directly
linked to the Mott insulator at half filling, such as (a)
the low charge density[20] and superfluid density,[21] (b)
Tc being proportional to doping Tc ∝ x,[22–24] (c) the
positive charge carried by the charge carrier,[20] etc .

In the spin liquid approach, the strategy is to try to
understand the properties of the high Tc superconduc-
tors from the low doping limit. We first study the spin
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liquid state at half filling and try to understand the par-
ent Mott insulator. (In this paper, by spin liquid, we
mean a spin state with translation and spin rotation
symmetry.) At half filling, the charge excitations can
be ignored due to the huge charge gap. Thus we can
use a pure spin model to describe the half filled system.
After understand the spin liquid, we try to understand
the dynamics of a few doped holes in the spin liquid s-
tates and to obtain the properties of the high Tc super-
conductors at low doping. One advantage of the spin
liquid approach is that experiments (such as angle re-
solved photo-emission,[17, 18, 25, 26] NMR,[27], neutron
scattering,[28–30] etc ) suggest that underdoped cuper-
ates have many striking and qualitatively new properties
which are very different from the well known Fermi liq-
uids. It is thus easier to approve or disapprove a new
theory in the underdoped regime by studying those qual-
itatively new properties.

Since the properties of the doped holes (such as their
statistics, spin, effective mass, etc ) are completely de-
termined by the spin correlation in the parent spin liq-
uids, thus in the spin liquid approach, each possible spin
liquid leads to a possible theory for high Tc supercon-
ductors. Using the concept of quantum orders, we can
say that possible theories for high Tc superconductors in
the low doping limits are classified by possible quantum
orders in spin liquids on 2D square lattice. Thus one
way to study high Tc superconductors is to construct all
the possible spin liquids that have the same symmetries
as those observed in high Tc superconductors. Then an-
alyze the physical properties of those spin liquids with
dopings to see which one actually describes the high Tc

superconductor. Although we cannot say that we have
constructed all the symmetric spin liquids, in this paper
we have found a way to construct a large class of sym-
metric spin liquids. (Here by symmetric spin liquids we
mean spin liquids with all the lattice symmetries: transla-
tion, rotation, parity, and the time reversal symmetries.)
We also find a way to characterize the quantum order-
s in those spin liquids via projective symmetry groups.
This gives us a global picture of possible high Tc the-
ories. We would like to mention that a particular spin
liquid – the staggered-flux/d-wave state[31, 32] – may be
important for high Tc superconductors. Such a state can
explain[33, 34] the highly unusual pseudo-gap metallic
state found in underdoped cuperates,[17, 18, 25, 26] as
well as the d-wave superconducting state[32].

The spin liquids constructed in this paper can be divid-
ed into four class: (a) Rigid spin liquid – spinons are fully
gaped and may have bosonic, fermionic, or fractional s-
tatistics, (b) Fermi spin liquid – spinons are gapless and
are described by a Fermi liquid theory, (c) Algebraic spin
liquid – spinons are gapless, but they are not described
by free fermionic/bosonic quasiparticles. (d) Bose spin
liquid – low lying gapless excitations are described by a
free boson theory. We find some of the constructed spin
liquids are stable and represent stable quantum phas-
es, while others are unstable at low energies due to long

range interactions caused by gauge fluctuations. The al-
gebraic spin liquids and Fermi spin liquids are interesting
since they can be stable despite their gapless excitations.
Those gapless excitations are not protected by symme-
tries. This is particularly striking for algebraic spin liq-
uids since their gapless excitations interact down to zero
energy and the states are still stable. We propose that
it is the quantum orders that protect the gapless excita-
tions and ensure the stability of the algebraic spin liquids
and Fermi spin liquids.

We would like to point out that both stable and unsta-
ble spin liquids may be important for understanding high
Tc superconductors. Although at zero temperature high
Tc superconductors are always described stable quantum
states, some important states of high Tc superconduc-
tors, such as the pseudo-gap metallic state for underdope-
d samples, are observed only at finite temperatures. Such
finite temperature states may correspond to (doped) un-
stable spin liquids, such as staggered flux state. Thus
even unstable spin liquids can be useful in understand-
ing finite temperature metallic states.

There are many different approach to spin liquid-
s. In addition to the slave-boson approach,[6, 15,
16, 31–33, 35–40] spin liquids has been studied using
slave-fermion/σ-model approach,[41–46] quantum dimer
model,[47–51] and various numerical methods.[52–55] In
particular, the numerical results and recent experimen-
tal results[56] strongly support the existence of quantum
spin liquids in some frustrated systems. A 3D quantum
orbital liquid was also proposed to exist in LaTiO3.[57]

However, I must point out that there is no generally
accepted numerical results yet that prove the existence
of spin liquids with odd number of electron per unit cel-
l for spin-1/2 systems, despite intensive search in last
ten years. But it is my faith that spin liquids (with odd
number of electron per unit cell) exist in spin-1/2 system-
s. For more general systems, spin liquids do exist. Read
and Sachdev[43] found stable spin liquids in a Sp(N)
model in large N limit. The spin-1/2 model studied in
this paper can be easily generalized to SU(N) model with
N/2 fermions per site.[31, 58] In the large N limit, one
can easily construct various Hamiltonians whose ground
states realize various U(1) and Z2 spin liquids construct-
ed in this paper.[59] The quantum orders in those large-N
spin liquids can be described by the methods introduced
in this paper. Thus, despite the uncertainty about the
existence of spin-1/2 spin liquids, the methods and the
results presented in this paper are not about (possibly)
non-existing “ghost states”. Those methods and result-
s apply, at least, to certain large-N systems. In short,
non-trivial quantum orders exist in theory. We just need
to find them in nature. (In fact, our vacuum is likely to
be a state with a non-trivial quantum order, due to the
fact that light exists.[58]) Knowing the existence of spin
liquids in large-N systems, it is not such a big leap to go
one step further to speculate that spin liquids exist for
spin-1/2 systems.



5

C. Spin-charge separation in (doped) spin liquids

Spin-charge separation and the associated gauge theo-
ry in spin liquids (and in doped spin liquids) are very im-
portant concepts in our attempt to understand the prop-
erties of high Tc superconductors.[14–16, 39, 60] However,
the exact meaning of spin-charge separation is different
for different researchers. The term “spin-charge separa-
tion” has at lease in two different interpretations. In the
first interpretation, the term means that it is better to in-
troduce separate spinons (a neutral spin-1/2 excitation)
and holons (a spinless excitation with unit charge) to un-
derstand the dynamical properties of high Tc supercon-
ductors, instead of using the original electrons. However,
there may be long range interaction (possibly, even con-
fining interactions at long distance) between the spinons
and holons, and the spinons and holons may not be well
defined quasiparticles. We will call this interpretation
pseudo spin-charge separation. The algebraic spin liquids
have the pseudo spin-charge separation. The essence of
the pseudo spin-charge separation is not that spin and
charge separate. The pseudo spin-charge separation is
simply another way to say that the gapless excitations
cannot be described by free fermions or bosons. In the
second interpretation, the term “spin-charge separation”
means that there are only short ranged interactions be-
tween the spinons and holons. The spinons and holons
are well defined quasiparticles at least in the dilute limit
or at low energies. We will call the second interpretation
the true spin-charge separation. The rigid spin liquid-
s and the Fermi spin liquids have the true spin-charge
separation.

Electron operator is not a good starting point to de-
scribe states with pseudo spin-charge separation or true
spin-charge separation. To study those states, we usual-
ly rewrite the electron operator as a product of several
other operators. Those operators are called parton oper-
ators. (The spinon operator and the holon operator are
examples of parton operators). We then construct mean-
field state in the enlarged Hilbert space of partons. The
gauge structure can be determined as the most general
transformations between the partons that leave the elec-
tron operator unchanged.[61] After identifying the gauge
structure, we can project the mean-field state onto the
physical (ie the gauge invariant) Hilbert space and obtain
a strongly correlated electron state. This procedure in its
general form is called projective construction. It is a gen-
eralization of the slave-boson approach.[15, 16, 33, 36–
38, 40] The general projective construction and the relat-
ed gauge structure has been discussed in detail for quan-
tum Hall states.[61] Now we see a third (but technical)
meaning of spin-charge separation: to construct a strong-
ly correlated electron state, we need to use partons and
projective construction. The resulting effective theory
naturally contains a gauge structure.

Although, it is not clear which interpretation of spin-
charge separation actually applies to high Tc supercon-
ductors, the possibility of true spin-charge separation in

an electron system is very interesting. The first con-
crete example of true spin-charge separation in 2D is
given by the chiral spin liquid state,[5, 6] where the
gauge interaction between the spinons and holons be-
comes short-ranged due to a Chern-Simons term. The
Chern-Simons term breaks time reversal symmetry and
gives the spinons and holons a fractional statistics. Lat-
er in 1991, it was realized that there is another way
to make the gauge interaction short-ranged through the
Anderson-Higgs mechanism.[38, 43] This led to a mean-
field theory[38, 40] of the short-ranged Resonating Va-
lence Bound (RVB) state[47, 48] conjectured earlier. We
will call such a state Z2 spin liquid state, to stress the
unconfined Z2 gauge field that appears in the low energy
effective theory of those spin liquids. (See remarks at the
end of this section. We also note that the Z2 spin liquids
studied in Ref. [43] all break the 90◦ rotation symmetry
and are different from the short-ranged RVB state stud-
ied Ref. [38, 40, 47, 48].) Since the Z2 gauge fluctuations
are weak and are not confining, the spinons and holons
have only short ranged interactions in the Z2 spin liquid
state. The Z2 spin liquid state also contains a Z2 vortex-
like excitation.[38, 62] The spinons and holons can be
bosons or fermions depending on if they are bound with
the Z2 vortex.

Recently, the true spin-charge separation, the Z2 gauge
structure and the Z2 vortex excitations were also pro-
posed in a study of quantum disordered superconduct-
ing state in a continuum model[63] and in a Z2 slave-
boson approach[64]. The resulting liquid state (which
was named nodal liquid) has all the novel properties of Z2

spin liquid state such as the Z2 gauge structure and the
Z2 vortex excitation (which was named vison). From the
point of view of universality class, the nodal liquid is one
kind of Z2 spin liquids. However, the particular Z2 spin
liquid studied in Ref. [38, 40] and the nodal liquid are two
different Z2 spin liquids, despite they have the same sym-
metry. The spinons in the first Z2 spin liquid have a finite
energy gap while the spinons in the nodal liquid are gap-
less and have a Dirac-like dispersion. In this paper, we
will use the projective construction to obtain more gener-
al spin liquids. We find that one can construct hundreds
of different Z2 spin liquids. Some Z2 spin liquids have fi-
nite energy gaps, while others are gapless. Among those
gapless Z2 spin liquids, some have finite Fermi surfaces
while others have only Fermi points. The spinons near
the Fermi points can have linear E(k) ∝ |k| or quadratic
E(k) ∝ k2 dispersions. We find there are more than one
Z2 spin liquids whose spinons have a massless Dirac-like
dispersion. Those Z2 spin liquids have the same symme-
try but different quantum orders. Their ansatz are give
by Eq. (42), Eq. (39), Eq. (88), etc .

Both chiral spin liquid and Z2 spin liquid states are
Mott insulators with one electron per unit cell if not
doped. Their internal structures are characterized by a
new kind of order – topological order, if they are gapped
or if the gapless sector decouples. Topological order is
not related to any symmetries and has no (local) or-
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der parameters. Thus, the topological order is robust
against all perturbations that can break any symmetries
(including random perturbations that break translation
symmetry).[9, 10] (This point was also emphasized in
Ref. [65] recently.) Even though there are no order pa-
rameters to characterize them, the topological orders can
be characterized by other measurable quantum number-
s, such as ground state degeneracy in compact space as
proposed in Ref. [9, 10]. Recently, Ref. [65] introduced
a very clever experiment to test the ground state degen-
eracy associated with the non-trivial topological orders.
In addition to ground state degeneracy, there are other
practical ways to detect topological orders. For example,
the excitations on top of a topologically ordered state
can be defects of the under lying topological order, which
usually leads to unusual statistics for those excitations.
Measuring the statistics of those excitations also allow us
to measure topological orders.

The concept of topological order and quantum order
are very important in understanding quantum spin liq-
uids (or any other strongly correlated quantum liquids).
In this paper we are going to construct hundreds of dif-
ferent spin liquids. Those spin liquids all have the same
symmetry. To understand those spin liquids, we need to
first learn how to characterize those spin liquids. Those
states break no symmetries and hence have no order pa-
rameters. One would get into a wrong track if trying to
find an order parameter to characterize the spin liquids.
We need to use a completely new way, such as topological
orders and quantum orders, to characterize those states.

In addition to the above Z2 spin liquids, in this paper
we will also study many other spin liquids with differen-
t low energy gauge structures, such as U(1) and SU(2)
gauge structures. We will use the terms Z2 spin liquid-
s, U(1) spin liquids, and SU(2) spin liquids to describe
them. We would like to stress that Z2, U(1), and SU(2)
here are gauge groups that appear in the low energy ef-
fective theories of those spin liquids. They should not be
confused with the Z2, U(1), and SU(2) gauge group in
slave-boson approach or other theories of the projective
construction. The latter are high energy gauge groups.
The high energy gauge groups have nothing to do with
the low energy gauge groups. A high energy Z2 gauge
theory (or a Z2 slave-boson approach) can have a low
energy effective theory that contains SU(2), U(1) or Z2

gauge fluctuations. Even the t-J model, which has no
gauge structure at lattice scale, can have a low energy
effective theory that contains SU(2), U(1) or Z2 gauge
fluctuations. The spin liquids studied in this paper all
contain some kind of low energy gauge fluctuations. De-
spite their different low energy gauge groups, all those
spin liquids can be constructed from any one of SU(2),
U(1), or Z2 slave-boson approaches. After all, all those
slave-boson approaches describe the same t-J model and
are equivalent to each other. In short, the high ener-
gy gauge group is related to the way in which we write
down the Hamiltonian, while the low energy gauge group
is a property of ground state. Thus we should not re-

gard Z2 spin liquids as the spin liquids constructed using
Z2 slave-boson approach. A Z2 spin liquid can be con-
structed from the U(1) or SU(2) slave-boson approaches
as well. A precise mathematical definition of the low
energy gauge group will be given in section IVA.

D. Organization

In this paper we will use the method outlined in Re-
f. [38, 40] to study gauge structures in various spin liquid
states. In section II we review SU(2) mean-field theory
of spin liquids. In section III, we construct simple sym-
metric spin liquids using translationally invariant ansatz.
In section IV, projective symmetry group is introduced
to characterize quantum orders in spin liquids. In section
V, we study the transition between different symmetric
spin liquids, using the results obtained in appendix B,
where we find a way to construct all the symmetric spin
liquids in the neighborhood of some well known spin liq-
uids. We also study the spinon spectrum to gain some
intuitive understanding on the properties of the spin liq-
uids. Using the relation between two-spinon spectrum
and quantum order, we propose, in section VII, a prac-
tical way to use neutron scattering to measure quantum
orders. We study the stability of Fermi spin liquids and
algebraic spin liquids in section VIII. We find that both
Fermi spin liquids and algebraic spin liquids can exist
as zero temperature phases. This is particularly striking
for algebraic spin liquids since their gapless excitations
interacts even at lowest energies and there are no free
fermionic/bosonic quasiparticle excitations at low ener-
gies. We show how quantum order can protect gapless
excitations. Appendix A contains a more detailed discus-
sion on projective symmetry group, and a classification
of Z2, U(1) and SU(2) spin liquids using the projective
symmetry group. Section X summarizes the main results
of the paper.

II. PROJECTIVE CONSTRUCTION OF 2D
SPIN LIQUIDS – A REVIEW OF SU(2)

SLAVE-BOSON APPROACH

In this section, we are going to use projective construc-
tion to construct 2D spin liquids. We are going to review
a particular projective construction, namely the SU(2)
slave-boson approach.[15, 16, 33, 36–38, 40] The gauge
structure discovered by Baskaran and Anderson[16] in
the slave-boson approach plays a crucial role in our un-
derstanding of strongly correlated spin liquids.

We will concentrate on the spin liquid states of a pure
spin-1/2 model on a 2D square lattice

Hspin =
∑

<ij>

JijSi · Sj + ... (1)

where the summation is over different links (ie 〈ij〉 and
〈ji〉 are regarded as the same) and ... represents possi-
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ble terms which contain three or more spin operators.
Those terms are needed in order for many exotic spin
liquid states introduced in this paper to become the
ground state. To obtain the mean-field ground state of
the spin liquids, we introduce fermionic parton operators
fiα, α = 1, 2 which carries spin 1/2 and no charge. The
spin operator Si is represented as

Si =
1
2
f†iασαβfiβ (2)

In terms of the fermion operators the Hamiltonian Eq. (1)
can be rewritten as

H =
∑

〈ij〉
−1

2
Jij

(
f†iαfjαf†jβfiβ +

1
2
f†iαfiαf†jβfjβ

)
(3)

Here we have used σαβ · σα′β′ = 2δαβ′δα′β − δαβδα′β′ .
We also added proper constant terms

∑
i f

†
iαfiα and∑

〈ij〉 f
†
iαfiαf†jβfjβ to get the above form. Notice that

the Hilbert space of Eq. (3) is generated by the parton
operators fα and is larger than that of Eq. (1). The e-
quivalence between Eq. (1) and Eq. (3) is valid only in
the subspace where there is exactly one fermion per site.
Therefore to use Eq. (3) to describe the spin state we
need to impose the constraint[15, 16]

f†iαfiα = 1, fiαfiβεαβ = 0 (4)

The second constraint is actually a consequence of the
first one.

A mean-field ground state at “zeroth” order is obtained
by making the following approximations. First we replace
constraint Eq. (4) by its ground-state average

〈f†iαfiα〉 = 1, 〈fiαfiβεαβ〉 = 0 (5)

Such a constraint can be enforced by including a site
dependent and time independent Lagrangian multiplier:
al
0(i)(f

†
iαfiα − 1), l = 1, 2, 3, in the Hamiltonian. At the

zeroth order we ignore the fluctuations (ie the time de-
pendence) of al

0. If we included the fluctuations of al
0, the

constraint Eq. (5) would become the original constraint
Eq. (4).[15, 16, 36, 37] Second we replace the operators
f†iαfjβ and fiαfiβ by their ground-state expectations val-
ue

ηijεαβ =− 2〈fiα fjβ〉, ηij =ηji

χijδαβ =2〈f†iαfjβ〉, χij =χ†ji (6)

again ignoring their fluctuations. In this way we obtain
the zeroth order mean-field Hamiltonian:

Hmean

=
∑

〈ij〉
−3

8
Jij

[
(χjif

†
iαfjα + ηijf

†
iαf†jβ εαβ + h.c)

−|χij |2 − |ηij |2
]

(7)

+
∑

i

[
a3
0(f

†
iαfiα − 1) + [(a1

0 + ia2
0)fiαfiβεαβ + h.c.]

]

χij and ηij in Eq. (7) must satisfy the self consistency
condition Eq. (6) and the site dependent fields al

0(i) are
chosen such that Eq. (5) is satisfied by the mean-field
ground state. Such χij , ηij and al

0 give us a mean-field
solution. The fluctuations in χij , ηij and al

0(i) describe
the collective excitations above the mean-field ground s-
tate.

The Hamiltonian Eq. (7) and the constraints Eq. (4)
have a local SU(2) symmetry.[36, 37] The local SU(2)
symmetry becomes explicit if we introduce doublet

ψ =
(

ψ1

ψ2

)
=

(
f↑
f†↓

)
(8)

and matrix

Uij =

(
χ†ij ηij

η†ij −χij

)
= U†

ji (9)

Using Eq. (8) and Eq. (9) we can rewrite Eq. (5) and
Eq. (7) as:

〈
ψ†iτ

lψi

〉
= 0 (10)

Hmean =
∑

〈ij〉

3
8
Jij

[
1
2
Tr(U†

ij Uij)− (ψ†i Uijψj + h.c.)
]

+
∑

i

al
0ψ

†
iτ

lψi (11)

where τ l, l = 1, 2, 3 are the Pauli matrices. From Eq. (11)
we can see clearly that the Hamiltonian is invariant under
a local SU(2) transformation W (i):

ψi → W (i) ψi

Uij → W (i) Uij W †(j) (12)

The SU(2) gauge structure is originated from Eq. (2).
The SU(2) is the most general transformation between
the partons that leave the physical spin operator un-
changed. Thus once we write down the parton expres-
sion of the spin operator Eq. (2), the gauge structure of
the theory is determined.[61] (The SU(2) gauge structure
discussed here is a high energy gauge structure.)

We note that both components of ψ carry spin-up.
Thus the spin-rotation symmetry is not explicit in our
formalism and it is hard to tell if Eq. (11) describes a
spin-rotation invariant state or not. In fact, for a general
Uij satisfying Uij = U†

ji, Eq. (11) may not describe a
spin-rotation invariant state. However, if Uij has a form

Uij = iρijWij ,

ρij = real number,
Wij ∈ SU(2), (13)

then Eq. (11) will describe a spin-rotation invariant state.
This is because the above Uij can be rewritten in a form
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Eq. (9). In this case Eq. (11) can be rewritten as Eq. (7)
where the spin-rotation invariance is explicit.

To obtain the mean-field theory, we have enlarged the
Hilbert space. Because of this, the mean-field theory
is not even qualitatively correct. Let |Ψ(Uij)

mean〉 be the
ground state of the Hamiltonian Eq. (11) with energy
E(Uij , al

iτ
l). It is clear that the mean-field ground state

is not even a valid wave-function for the spin system s-
ince it may not have one fermion per site. Thus it is
very important to include fluctuations of al

0 to enforce
one-fermion-per-site constraint. With this understand-
ing, we may obtain a valid wave-function of the spin sys-
tem Ψspin({αi}) by projecting the mean-field state to the
subspace of one-fermion-per-site:

Ψspin({αi}) = 〈0|
∏

i

fiαi |Ψ(Uij)
mean〉. (14)

Now the local SU(2) transformation Eq. (12) can have

a very physical meaning: |Ψ(Uij)
mean〉 and |Ψ(W (i)UijW

†(j))
mean 〉

give rise to the same spin wave-function after projection:

〈0|
∏

i

fiαi |Ψ(Uij)
mean〉 = 〈0|

∏

i

fiαi |Ψ(W (i)UijW
†(j))

mean 〉 (15)

Thus Uij and U ′
ij = W (i)UijW †(j) are just two differen-

t labels which label the same physical state. Within the
mean-field theory, a local SU(2) transformation changes
a mean-field state |Ψ(Uij)

mean〉 to a different mean-field state

|Ψ(U ′ij)
mean〉. If the two mean-field states always have the

same physical properties, the system has a local SU(2)
symmetry. However, after projection, the physical spin
quantum state described by wave-function Ψspin({αi}) is
invariant under the local SU(2) transformation. A local
SU(2) transformation just transforms one label, Uij , of a
physical spin state to another label, U ′

ij , which labels the
exactly the same physical state. Thus after projection,
local SU(2) transformations become gauge transforma-
tions. The fact that Uij and U ′

ij label the same physical
spin state creates a interesting situation when we consid-
er the fluctuations of Uij around a mean-field solution
– some fluctuations of Uij do not change the physical
state and are unphysical. Those fluctuations are called
the pure gauge fluctuations.

The above discussion also indicates that in order for
the mean-field theory to make any sense, we must at least
include the SU(2) gauge (or other gauge) fluctuations
described by al

0 and Wij in Eq. (13), so that the SU(2)
gauge structure of the mean-field theory is revealed and
the physical spin state is obtained. We will include the
gauge fluctuations to the zeroth-order mean-field theory.
The new theory will be called the first order mean-field
theory. It is this first order mean-field theory that rep-
resents a proper low energy effective theory of the spin
liquid.

Here, we would like make a remark about “gauge sym-
metry” and “gauge symmetry breaking”. We see that
two ansatz Uij and U ′

ij = W (i)UijW †(j) have the same

physical properties. This property is usually called the
“gauge symmetry”. However, from the above discussion,
we see that the “gauge symmetry” is not a symmetry. A
symmetry is about two different states having the same
properties. Uij and U ′

ij are just two labels that label
the same state, and the same state always have the same
properties. We do not usually call the same state hav-
ing the same properties a symmetry. Because the same
state alway have the same properties, the “gauge symme-
try” can never be broken. It is very misleading to call the
Anderson-Higgs mechanism “gauge symmetry breaking”.
With this understanding, we see that a superconductor is
fundamentally different from a superfluid. A superfluid
is characterized by U(1) symmetry breaking, while a su-
perconductor has no symmetry breaking once we include
the dynamical electromagnetic gauge fluctuations. A su-
perconductor is actually the first topologically ordered
state observed in experiments,[13] which has no symme-
try breaking, no long range order, and no (local) order
parameter. However, when the speed of light c = ∞,
a superconductor becomes similar to a superfluid and is
characterized by U(1) symmetry breaking.

The relation between the mean-field state and the
physical spin wave function Eq. (14) allows us to con-
struct transformation of the physical spin wave-function
from the mean-field ansatz. For example the mean-field
state |Ψ(U ′ij)

mean〉 with U ′
ij = Ui−l,j−l produces a phys-

ical spin wave-function which is translated by a dis-
tance l from the physical spin wave-function produced
by |Ψ(Uij)

mean〉. The physical state is translationally sym-
metric if and only if the translated ansatz U ′

ij and the
original ansatz Uij are gauge equivalent (it does not re-
quire U ′

ij = Uij). We see that the gauge structure can
complicates our analysis of symmetries, since the phys-
ical spin wave-function Ψspin({αi}) may has more sym-
metries than the mean-field state |Ψ(Uij)

mean〉 before projec-
tion.

Let us discuss time reversal symmetry in more detail.
A quantum system described by

i~∂tΨ(t) = HΨ(t) (16)

has a time reversal symmetry if Ψ(t) satisfying the equa-
tion of motion implies that Ψ∗(−t) also satisfying the
equation of motion. This requires that H = H∗. We
see that, for time reversal symmetric system, if Ψ is an
eigenstate, then Ψ∗ will be an eigenstate with the same
energy.

For our system, the time reversal symmetry means that
if the mean-field wave function Ψ(Uij ,a

l
iτ

l)
mean is a mean-field

ground state wave function for ansatz (Uij , al
iτ

l), then(
Ψ(Uij ,a

l
iτ

l)
mean

)∗
will be the mean-field ground state wave

function for ansatz (U∗
ij , a

l
i(τ

l)∗). That is

(
Ψ(Uij ,a

l
iτ

l)
mean

)∗
= Ψ

(U∗ij ,a
l
i(τ

l)∗)
mean (17)
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For a system with time reversal symmetry, the mean-field
energy E(Uij , al

iτ
l) satisfies

E(Uij , al
iτ

l) = E(U∗
ij , a

l
i(τ

l)∗) (18)

Thus if an ansatz (Uij , al
iτ

l) is a mean-field solution, then
(U∗
ij , a

l
i(τ

l)∗) is also a mean-field solution with the same
mean-field energy.

From the above discussion, we see that under the time
reversal transformation, the ansatz transforms as

Uij → U ′
ij = (−iτ2)U∗

ij(iτ
2) = −Uij ,

al
iτ

l → a′li τ
l = (−iτ2)(al

iτ
l)∗(iτ2) = −al

iτ
l. (19)

Note here we have included an additional SU(2) gauge
transformation Wi = −iτ2. We also note that under the
time reversal transformation, the loop operator trans-
forms as PC = eiθ+iθlτ l → (−iτ2)P ∗C(iτ2) = e−iθ+iθlτ l

.
We see that the U(1) flux changes the sign while the
SU(2) flux is not changed.

Before ending this review section, we would like to
point out that the mean-field ansatz of the spin liquids
Uij can be divided into two classes: unfrustrated ansatz
where Uij only link an even lattice site to an odd lattice
site and frustrated ansatz where Uij are nonzero between
two even sites and/or two odd sites. An unfrustrated
ansatz has only pure SU(2) flux through each plaquette,
while an frustrated ansatz has U(1) flux of multiple of
π/2 through some plaquettes in addition to the SU(2)
flux.

III. SPIN LIQUIDS FROM TRANSLATIONALLY
INVARIANT ANSATZ

In this section, we will study many simple examples
of spin liquids and their ansatz. Through those simple
examples, we gain some understandings on what kind of
spin liquids are possible. Those understandings help us
to develop the characterization and classification of spin
liquids using projective symmetry group.

Using the above SU(2) projective construction, one
can construct many spin liquid states. To limit ourselves,
we will concentrate on spin liquids with translation and
90◦ rotation symmetries. Although a mean-field ansatz
with translation and rotation invariance always generate
a spin liquid with translation and rotation symmetries,
a mean-field ansatz without those invariances can also
generate a spin liquid with those symmetries.[94] Because
of this, it is quite difficult to construct all the translation
and rotation symmetric spin liquids. In this section we
will consider a simpler problem. We will limit ourselves
to spin liquids generated from translationally invariant
ansatz:

Ui+l,j+l = Uij , al
0(i) = al

0 (20)

In this case, we only need to find the conditions under
which the above ansatz can give rise to a rotationally

symmetric spin liquid. First let us introduce uij :

3
8
JijUij = uij (21)

For translationally invariant ansatz, we can introduce a
short-hand notation:

uij = uµ
−i+jτ

µ ≡ u−i+j (22)

where u1,2,3
l are real, u0

l is imaginary, τ0 is the identity
matrix and τ1,2,3 are the Pauli matrices. The fermion
spectrum is determined by Hamiltonian

H =−
∑

〈ij〉

(
ψ†iuj−iψj + h.c.

)
+

∑

i

ψ†ia
l
0τ

lψi (23)

In k-space we have

H = −
∑

k

ψ†k(u
µ(k)− aµ

0 )τµψk (24)

where µ = 0, 1, 2, 3,

uµ(k) =
∑

l

uµ
l e

il·k, (25)

a0
0 = 0, and N is the total number of site. The fermion

spectrum has two branches and is given by

E±(k) =u0(k)± E0(k)

E0(k) =
√∑

l

(ul(k)− al
0)2 (26)

The constraints can be obtained from ∂Eground

∂al
0

= 0 and
have a form

N〈ψ†iτ lψi〉

=
∑

k,E−(k)<0

ul(k)− al
0

E0(k)
−

∑

k,E+(k)<0

ul(k)− al
0

E0(k)
= 0 (27)

which allow us to determine al
0, l = 1, 2, 3. It is inter-

esting to see that if u0
i = 0 and the ansatz is unfrus-

trated, then we can simply choose al
0 = 0 to satisfy the

mean-field constraints (since uµ(k) = −uµ(k+(π, π)) for
unfrustrated ansatz). Such ansatz always have time re-
versal symmetry. This is because Uij and −Uij are gauge
equivalent for unfrustrated ansatz.

Now let us study some simple examples. First let us
assume that only the nearest neighbor coupling ux̂ and
uŷ are non-zero. In order for the ansatz to describe a
rotationally symmetric state, the rotated ansatz must be
gauge equivalent to the original ansatz. One can easily
check that the following ansatz has the rotation symme-
try

al
0 = 0

ux̂ = χτ3 + ητ1

uŷ = χτ3 − ητ1 (28)
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since the 90◦ rotation followed by a gauge transforma-
tion Wi = iτ3 leave the ansatz unchanged. The above
ansatz also has the time reversal symmetry, since time
reversal transformation uij → −uij followed by a gauge
transformation Wi = iτ2 leave the ansatz unchanged.

To understand the gauge fluctuations around the above
mean-field state, we note that the mean-field ansatz
may generate non-trivial SU(2) flux through plaquettes.
Those flux may break SU(2) gauge structure down to
U(1) or Z2 gauge structures as discussed in Ref. [38, 40].
In particular, the dynamics of the gauge fluctuations in
the break down from SU(2) to Z2 has been discussed in
detail in Ref. [40]. According to Ref. [38, 40], the SU(2)
flux plays a role of Higgs fields. A non-trivial SU(2) flux
correspond to a condensation of Higgs fields which can
break the gauge structure and give SU(2) and/or U(1)
gauge boson a mass. Thus to understand the dynamics
of the gauge fluctuations, we need to find the SU(2) flux.

The SU(2) flux is defined for loops with a base point.
The loop starts and ends at the base point. For example,
we can consider the following two loops C1,2 with the
same base point i: C1 = i → i+x̂ → i+x̂+ŷ → i+ŷ → i
and C2 is the 90◦ rotation of C1: C2 = i → i + ŷ →
i− x̂+ ŷ → i− x̂ → i. The SU(2) flux for the two loops
is defined as

PC1 ≡ ui,i+ŷui+ŷ,i+x̂+ŷui+x̂+ŷ,i+x̂ui+x̂,i = u†ŷu
†
x̂uŷux̂

PC2 ≡ ui,i−x̂ui−x̂,i−x̂+ŷui−x̂+ŷ,i+ŷui+ŷ,i = ux̂u
†
ŷu
†
x̂uŷ
(29)

As discussed in Ref. [38, 40], if the SU(2) flux PC for all
loops are trivial: PC ∝ τ0, then the SU(2) gauge struc-
ture is unbroken. This is the case when χ = η or when
η = 0 in the above ansatz Eq. (28). The spinon in the
spin liquid described by η = 0 has a large Fermi surface.
We will call this state SU(2)-gapless state (This state
was called uniform RVB state in literature). The state
with χ = η has gapless spinons only at isolated k points.
We will call such a state SU(2)-linear state to stress the
linear dispersion E ∝ |k| near the Fermi points. (Such a
state was called the π-flux state in literature). The low
energy effective theory for the SU(2)-linear state is de-
scribed by massless Dirac fermions (the spinons) coupled
to a SU(2) gauge field.

After proper gauge transformations, the SU(2)-gapless
ansatz can be rewritten as

ux̂ = iχ

uŷ = iχ (30)

and the SU(2)-linear ansatz as

ui,i+x̂ = iχ

ui,i+ŷ = i(−)ixχ (31)

In these form, the SU(2) gauge structure is explicit since
uij ∝ iτ0. Here we would also like to mention that under

the projective-symmetry-group classification, the SU(2)-
gapless ansatz Eq. (30) is labeled by SU2An0 and the
SU(2)-linear ansatz Eq. (31) by SU2Bn0 (see Eq. (82)).

When χ 6= η 6= 0, The flux PC is non trivial. How-
ever, PC commute with PC′ as long as the two loops
C and C ′ have the same base point. In this case the
SU(2) gauge structure is broken down to a U(1) gauge
structure.[38, 40] The gapless spinon still only appear
at isolated k points. We will call such a state U(1)-
linear state. (This state was called staggered flux state
and/or d-wave pairing state in literature.) After a proper
gauge transformation, the U(1)-linear state can also be
described by the ansatz

ui,i+x̂ = iχ− (−)iητ3

ui,i+ŷ = iχ + (−)iητ3 (32)

where the U(1) gauge structure is explicit. Under the
projective-symmetry-group classification, such a state is
labeled by U1Cn01n (see Eq. (B4) and IVC). The low
energy effective theory is described by massless Dirac
fermions (the spinons) coupled to a U(1) gauge field.

The above results are all known before. In the follow-
ing we are going to study a new class of translation and
rotation symmetric ansatz, which has a form

al
0 =0

ux̂ =iητ0 − χ(τ3 − τ1)

uŷ =iητ0 − χ(τ3 + τ1) (33)

with χ and η non-zero. The above ansatz describes the
SU(2)-gapless spin liquid if χ = 0, and the SU(2)-linear
spin liquid if η = 0.

After a 90◦ rotation R90, the above ansatz becomes

ux̂ = −iητ0 − χ(τ3 + τ1)
uŷ = iητ0 − χ(τ3 − τ1) (34)

The rotated ansatz is gauge equivalent to the origi-
nal ansatz under the gauge transformation GR90(i) =
(−)ix(1 − iτ2)/

√
2. After a parity x → −x transforma-

tion Px, Eq. (33) becomes

ux̂ = −iητ0 − χ(τ3 − τ1)
uŷ = iητ0 − χ(τ3 + τ1) (35)

which is gauge equivalent to the original ansatz under the
gauge transformation GPx(i) = (−)ixi(τ3 + τ1)/

√
2. Un-

der time reversal transformation T , Eq. (33) is changed
to

ux̂ = −iητ0 + χ(τ3 − τ1)
uŷ = −iητ0 + χ(τ3 + τ1) (36)

which is again gauge equivalent to the original ansatz un-
der the gauge transformation GT (i) = (−)i. (In fact any
ansatz which only has links between two non-overlapping
sublattices (ie the unfrustrated ansatz) is time reversal
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symmetric if al
0 = 0 .) To summarize the ansatz Eq. (33)

is invariant under the rotation R90, parity Px, and time
reversal transformation T , followed by the following gauge
transformations

GR90(i) =(−)ix(1− iτ2)/
√

2

GPx(i) =(−)ixi(τ3 + τ1)/
√

2

GT (i) =(−)i (37)

Thus the ansatz Eq. (33) describes a spin liquid which
translation, rotation, parity and time reversal symme-
tries.

Using the time reversal symmetry we can show that
the vanishing al

0 in our ansatz Eq. (33) indeed satisfy the
constraint Eq. (27). This is because al

0 → −al
0 under the

time reversal transformation. Thus ∂Emean

∂al
0

= 0 when

al
0 = 0 for any time reversal symmetric ansatz, including

the ansatz Eq. (33).
The spinon spectrum is given by (see Fig. 5a)

E± = 2η(sin(kx) + sin(ky))± 2|χ|
√

2 cos2(kx) + 2 cos2(ky)
(38)

The spinons have two Fermi points and two small Fermi
pockets (for small η). The SU(2) flux is non-trivial. Fur-
ther more PC1 and PC2 do not commute. Thus the SU(2)
gauge structure is broken down to a Z2 gauge structure
by the SU(2) flux PC1 and PC2 .[38, 40] We will call the
spin liquid described by Eq. (33) Z2-gapless spin liquid.
The low energy effective theory is described by massless
Dirac fermions and fermions with small Fermi surfaces,
coupled to a Z2 gauge field. Since the Z2 gauge inter-
action is irrelevant at low energies, the spinons are free
fermions at low energies and we have a true spin-charge
separation in the Z2-gapless spin liquid. The Z2-gapless
spin liquid is one of the Z2 spin liquids classified in ap-
pendix A. Its projective symmetry group is labeled by
Z2Aτ13

− τ13̄
+ τ3τ0

− or equivalently by Z2Ax2(12)n (see sec-
tion IV B and Eq. (67)).

Now let us include longer links. First we still limit
ourselves to unfrustrated ansatz. An interesting ansatz
is given by

al
0 = 0

ux̂ = χτ3 + ητ1

uŷ = χτ3 − ητ1

u2x̂+ŷ = λτ2

u−x̂+2ŷ = −λτ2

u2x̂−ŷ = λτ2

ux̂+2ŷ = −λτ2 (39)

By definition, the ansatz is invariant under translation
and parity x → −x. After a 90◦ rotation, the ansatz is

changed to

ux̂ = −χτ3 − ητ1

uŷ = −χτ3 + ητ1

u2x̂+ŷ = −λτ2

u−x̂+2ŷ = +λτ2

u2x̂−ŷ = −λτ2

ux̂+2ŷ = +λτ2 (40)

which is gauge equivalent to Eq. (39) under the gauge
transformation GR90(i) = iτ3. Thus the ansatz describe
a spin liquid with translation, rotation, parity and the
time reversal symmetries. The spinon spectrum is given
by (see Fig. 1c)

E± = ±
√

ε1(k)2 + ε2(k)2 + ε3(k)2

ε1 = −2χ(cos(kx) + cos(ky))
ε2 = −2η(cos(kx)− cos(ky))
ε3 = −2λ[cos(2kx + ky) + cos(2kx − ky)

− cos(kx − 2ky)− cos(kx + 2ky)] (41)

Thus the spinons are gapless only at four k points
(±π/2,±π/2). We also find that PC3 and PC4 do not
commute, where the loops C3 = i → i + x̂ → i + 2x̂ →
i + 2x̂ + ŷ → i and C4 = i → i + ŷ → i + 2ŷ →
i + 2ŷ− x̂ → i. Thus the SU(2) flux PC3 and PC4 break
the SU(2) gauge structure down to a Z2 gauge struc-
ture. The spin liquid described by Eq. (39) will be called
the Z2-linear spin liquid. The low energy effective theory
is described by massless Dirac fermions coupled to a Z2

gauge field. Again the Z2 coupling is irrelevant and the
spinons are free fermions at low energies. We have a true
spin-charge separation. According to the classification
scheme summarized in section IVB, the above Z2-linear
spin liquid is labeled by Z2A003n.

Next let us discuss frustrated ansatz. A simple Z2

spin liquid can be obtained from the following frustrated
ansatz

a3
0 6= 0, a1,2

0 = 0

ux̂ =χτ3 + ητ1

uŷ =χτ3 − ητ1

ux̂+ŷ =γτ3

u−x̂+ŷ =γτ3 (42)

The ansatz has translation, rotation, parity, and the time
reversal symmetries. When a3

0 6= 0, χ 6= ±η and χη 6= 0,
al
0τ

l does not commute with the loop operators. Thus the
ansatz breaks the SU(2) gauge structure to a Z2 gauge
structure. The spinon spectrum is given by (see Fig. 1a)

E± =±
√

ε2(k) + ∆2(k)

ε(k) =2χ(cos(kx) + cos(ky)) + a3
0

2γ(cos(kx + ky) + cos(kx − ky))

∆(k) =2η(cos(kx)− cos(ky)) + a3
0 (43)
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which is gapless only at four k points with a linear dis-
persion. Thus the spin liquid described by Eq. (42) is a
Z2-linear spin liquid, which has a true spin-charge separa-
tion. The Z2-linear spin liquid is described by the projec-
tive symmetry group Z2A0032 or equivalently Z2A0013.
(see section IV B.) From the above two examples of Z2-
linear spin liquids, we find that it is possible to obtain
true spin-charge separation with massless Dirac points
(or nodes) within a pure spin model without the charge
fluctuations. We also find that there are more than one
way to do it.

A well known frustrated ansatz is the ansatz for the
chiral spin liquid[6]

ux̂ = −χτ3 − χτ1

uŷ = −χτ3 + χτ1

ux̂+ŷ = ητ2

u−x̂+ŷ = −ητ2

al
0 = 0 (44)

The chiral spin liquid breaks the time reversal and parity
symmetries. The SU(2) gauge structure is unbroken.[38]
The low energy effective theory is an SU(2) Chern-
Simons theory (of level 1). The spinons are gaped and
have a semionic statistics.[5, 6] The third interesting frus-
trated ansatz is given in Ref. [38, 40]

ux̂ =uŷ = −χτ3

ux̂+ŷ =ητ1 + λτ2

u−x̂+ŷ =ητ1 − λτ2

a2,3
0 =0, a1

0 6= 0 (45)

This ansatz has translation, rotation, parity and the time
reversal symmetries. The spinons are fully gaped and
the SU(2) gauge structure is broken down to Z2 gauge
structure. We may call such a state Z2-gapped spin liquid
(it was called sRVB state in Ref. [38, 40]). It is described
by the projective symmetry group Z2Axx0z. Both the
chiral spin liquid and the Z2-gapped spin liquid have true
spin-charge separation.

IV. QUANTUM ORDERS IN SYMMETRIC
SPIN LIQUIDS

A. Quantum orders and projective symmetry
groups

We have seen that there can be many different spin
liquids with the same symmetries. The stability analysis
in section VIII shows that many of those spin liquids oc-
cupy a finite region in phase space and represent stable
quantum phases. So here we are facing a similar situa-
tion as in quantum Hall effect: there are many distinct
quantum phases not separated by symmetries and order
parameters. The quantum Hall liquids have finite ener-
gy gaps and are rigid states. The concept of topological

order was introduced to describe the internal order of
those rigid states. Here we can also use the topological
order to describe the internal orders of rigid spin liquids.
However, we also have many other stable quantum spin
liquids that have gapless excitations.

To describe internal orders in gapless quantum spin liq-
uids (as well as gapped spin liquids), we have introduced
a new concept – quantum order – that describes the in-
ternal orders in any quantum phases. The key point in
introducing quantum orders is that quantum phases, in
general, cannot be completely characterized by broken
symmetries and local order parameters. This point is il-
lustrated by quantum Hall states and by the stable spin
liquids constructed in this paper. However, to make the
concept of quantum order useful, we need to find concrete
mathematical characterizations the quantum orders. S-
ince quantum orders are not described by symmetries
and order parameters, we need to find a completely new
way to characterize them. Here we would like to propose
to use Projective Symmetry Group to characterize quan-
tum (or topological) orders in quantum spin liquids. The
projective symmetry group is motivated from the follow-
ing observation. Although ansatz for different symmet-
ric spin liquids all have the same symmetry, the ansatz
are invariant under transformations followed by different
gauge transformations. We can use those different gauge
transformations to distinguish different spin liquids with
the same symmetry. In the following, we will introduce
projective symmetry group in a general and formal set-
ting.

We know that to find quantum numbers that charac-
terize a phase is to find the universal properties of the
phase. For classical systems, we know that symmetry
is a universal property of a phase and we can use sym-
metry to characterize different classical phases. To find
universal properties of quantum phases we need to find u-
niversal properties of many-body wave functions. This is
too hard. Here we want to simplify the problem by limit-
ing ourselves to a subclass of many-body wave functions
which can be described by ansatz (uij , al

0τ
l) via Eq. (14).

Instead of looking for the universal properties of many-
body wave functions, we try to find the universal prop-
erties of ansatz (uij , al

0τ
l). Certainly, one may object

that the universal properties of the ansatz (or the sub-
class of wave functions) may not be the universal prop-
erties of spin quantum phase. This is indeed the case for
some ansatz. However, if the mean-field state described
by ansatz (uij , al

0τ
l) is stable against fluctuations (ie the

fluctuations around the mean-field state do not cause any
infrared divergence), then the mean-field state faithfully
describes a spin quantum state and the universal proper-
ties of the ansatz will be the universal properties of the
correspond spin quantum phase. This completes the link
between the properties of ansatz and properties of phys-
ical spin liquids. Motivated by the Landau’s theory for
classical orders, here we whould like to propose that the
invariance group (or the “symmetry” group) of an ansatz
is a universal property of the ansatz. Such a group will
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be called the projective symmetry group (PSG). We will
show that PSG can be used to characterize quantum or-
ders in quantum spin liquids.

Let us give a detailed definition of PSG. A PSG is a
property of an ansatz. It is formed by all the transfor-
mations that keep the ansatz unchanged. Each trans-
formation (or each element in the PSG) can be written
as a combination of a symmetry transformation U (such
as translation) and a gauge transformation GU . The in-
variance of the ansatz under its PSG can be expressed
as

GUU(uij) =uij

U(uij) ≡uU(i),U(j)

GU (uij) ≡GU (i)uijG
†
U (j)

GU (i) ∈SU(2) (46)

for each GUU ∈ PSG.
Every PSG contains a special subgroup, which will be

called invariant gauge group (IGG). IGG (denoted by G)
for an ansatz is formed by all the gauge transformations
that leave the ansatz unchanged:

G = {Wi|WiuijW
†
j = uij ,Wi ∈ SU(2)} (47)

If we want to relate IGG to a symmetry transformation,
then the associated transformation is simply an identity
transformation.

If IGG is non-trivial, then for a fixed symmetry trans-
formation U , there are can be many gauge transforma-
tions GU that leave the ansatz unchanged. If GUU is in
the PSG of uij , GGUU will also be in the PSG iff G ∈ G.
Thus for each symmetry transformation U , the different
choices of GU have a one to one correspondence with the
elements in IGG. From the above definition, we see that
the PSG, the IGG, and the symmetry group (SG) of an
ansatz are related:

SG = PSG/IGG (48)

This relation tells us that a PSG is a projective repre-
sentation or an extension of the symmetry group.[95] (In
section A1 we will introduce a closely related but differ-
ent definition of PSG. To distinguish the two definitions,
we will call the PSG defined above invariant PSG and
the PSG defined in section A1 algebraic PSG.)

Certainly the PSG’s for two gauge equivalent ansatz
uij and W (i)uijW †(j) are related. From WGUU(uij) =
W (uij), where W (uij) ≡ W (i)uijW †(j), we find
WGUUW−1W (uij) = WGUW−1

U UW (uij) = W (uij),
where WU ≡ UWU−1 is given by WU (i) = W (U(i)).
Thus if GUU is in the PSG of ansatz uij , then
(WGUWU )U is in the PSG of gauge transformed ansatz
W (i)uijW †(j). We see that the gauge transformation
GU associated with the symmetry transformation U is
changed in the following way

GU (i) → W (i)GU (i)W †(U(i)) (49)

after a gauge transformation W (i).
Since PSG is a property of an ansatz, we can group

all the ansatz sharing the same PSG together to form a
class. We claim that such a class is formed by one or
several universality classes that correspond to quantum
phases. (A more detailed discussion of this important
point is given in section VIII E.) It is in this sense we say
that quantum orders are characterized by PSG’s.

We know that a classical order can be described by
its symmetry properties. Mathematically, we say that a
classical order is characterized by its symmetry group.
Using projective symmetry group to describe a quantum
order, conceptually, is similar to using symmetry group
to describe a classical order. The symmetry description
of a classical order is very useful since it allows us to
obtain many universal properties, such as the number of
Nambu-Goldstone modes, without knowing the details of
the system. Similarly, knowing the PSG of a quantum
order also allows us to obtain low energy properties of
a quantum system without knowing its details. As an
example, we will discuss a particular kind of the low en-
ergy fluctuations – the gauge fluctuations – in a quantum
state. We will show that the low energy gauge fluctua-
tions can be determined completely from the PSG. In fact
the gauge group of the low energy gauge fluctuations is
nothing but the IGG of the ansatz.

To see this, let us assume that, as an example, an
IGG G contains a U(1) subgroup which is formed by the
following constant gauge transformations

{Wi = eiθτ3 |θ ∈ [0, 2π)} ⊂ G (50)

Now we consider the following type of fluctuations
around the mean-field solution ūij : uij = ūije

ia3
ijτ

3
.

Since ūij is invariant under the constant gauge trans-
formation eiθτ3

, a spatial dependent gauge transforma-
tion eiθiτ

3
will transform the fluctuation a3

ij to ã3
ij =

a3
ij+θi−θj . This means that a3

ij and ã3
ij label the same

physical state and a3
ij correspond to gauge fluctuation-

s. The energy of the fluctuations has a gauge invariance
E({a3

ij}) = E({ã3
ij}). We see that the mass term of the

gauge field, (a3
ij)

2, is not allowed and the U(1) gauge
fluctuations described by a3

ij will appear at low energies.
If the U(1) subgroup of G is formed by spatial depen-

dent gauge transformations

{Wi = eiθni·τ |θ ∈ [0, 2π), |ni| = 1} ⊂ G, (51)

we can always use a SU(2) gauge transformation to ro-
tate ni to the ẑ direction on every site and reduce the
problem to the one discussed above. Thus, regardless
if the gauge transformations in IGG have spatial depen-
dence or not, the gauge group for low energy gauge fluc-
tuations is always given by G.

We would like to remark that some times low ener-
gy gauge fluctuations not only appear near k = 0, but
also appear near some other k points. In this case, we
will have several low energy gauge fields, one for each k
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points. Examples of this phenomenon are given by some
ansatz of SU(2) slave-boson theory discussed in section
VI, which have an SU(2) × SU(2) gauge structures at
low energies. We see that the low energy gauge structure
SU(2)× SU(2) can even be larger than the high energy
gauge structure SU(2). Even for this complicated case
where low energy gauge fluctuations appear around d-
ifferent k points, IGG still correctly describes the low
energy gauge structure of the corresponding ansatz. If
IGG contains gauge transformations that are indepen-
dent of spatial coordinates, then such transformations
correspond to the gauge group for gapless gauge fluctua-
tions near k = 0. If IGG contains gauge transformations
that depend on spatial coordinates, then those transfor-
mations correspond to the gauge group for gapless gauge
fluctuations near non-zero k. Thus IGG gives us a unified
treatment of all low energy gauge fluctuations, regardless
their momenta.

In this paper, we have used the terms Z2 spin liquids,
U(1) spin liquids, SU(2) spin liquids, and SU(2)×SU(2)
spin liquids in many places. Now we can have a pre-
cise definition of those low energy Z2, U(1), SU(2), and
SU(2) × SU(2) gauge groups. Those low energy gauge
groups are nothing but the IGG of the corresponding
ansatz. They have nothing to do with the high ener-
gy gauge groups that appear in the SU(2), U(1), or Z2

slave-boson approaches. We also used the terms Z2 gauge
structure, U(1) gauge structure, and SU(2) gauge struc-
ture of a mean-field state. Their precise mathematical
meaning is again the IGG of the corresponding ansatz.
When we say a U(1) gauge structure is broken down to
a Z2 gauge structure, we mean that an ansatz is changed
in such a way that its IGG is changed from U(1) to Z2

group.

B. Classification of symmetric Z2 spin liquids

As an application of PSG characterization of quantum
orders in spin liquids, we would like to classify the PSG’s
associated with translation transformations assuming the
IGG G = Z2. Such a classification leads to a classification
of translation symmetric Z2 spin liquids.

When G = Z2, it contains two elements – gauge trans-
formations G1 and G2:

G ={G1, G2}
G1(i) =τ0, G2(i) = −τ0. (52)

Let us assume that a Z2 spin liquid has a translation sym-
metry. The PSG associated with the translation group
is generated by four elements ±GxTx, ±GyTx where

Tx(uij) = ui−x̂,j−x̂, Ty(uij) = ui−ŷ,j−ŷ. (53)

Due to the translation symmetry of the ansatz, we can
choose a gauge in which all the loop operators of the
ansatz are translation invariant. That is PC1 = PC2 if

the two loops C1 and C2 are related by a translation.
We will call such a gauge uniform gauge.

Under transformation GxTx, a loop operator PC

based at i transforms as PC → Gx(i′)PTxCG†x(i′) =
Gx(i′)PCG†x(i′) where i′ = Txi is the base point of the
translated loop Tx(C). We see that translation invariance
of PC in the uniform gauge requires

Gx(i) = ±τ0, Gy(i) = ±τ0. (54)

since different loop operators based at the same base
point do not commute for Z2 spin liquids. We note that
the gauge transformations of form W (i) = ±τ0 do not
change the translation invariant property of the loop op-
erators. Thus we can use such gauge transformations
to further simplify Gx,y through Eq. (49). First we can
choose a gauge to make

Gy(i) = τ0. (55)

We note that a gauge transformation satisfying W (i) =
W (ix) does not change the condition Gy(i) = τ0. We
can use such kind of gauge transformations to make

Gx(ix, iy = 0) = τ0. (56)

Since the translations in x- and y-direction commute,
Gx,y must satisfy (for any ansatz, Z2 or not Z2)

GxTxGyTy(GxTx)−1(GyTy)−1 =

GxTxGyTyT−1
x G−1

x T−1
y G−1

y ∈ G. (57)

That means

Gx(i)Gy(i− x̂)G−1
x (i− ŷ)Gy(i)−1 ∈ G (58)

For Z2 spin liquids, Eq. (58) reduces to

Gx(i)G−1
x (i− ŷ) = +τ0 (59)

or

Gx(i)G−1
x (i− ŷ) = −τ0 (60)

When combined with Eq. (55) and Eq. (56), we find that
there are only two gauge inequivalent extensions of the
translation group when IGG is G = Z2. The two PSG’s
are given by

Gx(i) =τ0, Gy(i) =τ0 (61)

and

Gx(i) =(−)iyτ0, Gy(i) =τ0 (62)

Thus, under PSG classification, there are only two types
of Z2 spin liquids if they have only the translation sym-
metry and no other symmetries. The ansatz that satisfy
Eq. (61) have a form

ui,i+m =um (63)
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and the ones that satisfy Eq. (62) have a form

ui,i+m =(−)myixum (64)

Through the above example, we see that PSG is a very
powerful tool. It can lead to a complete classification of
(mean-field) spin liquids with prescribed symmetries and
low energy gauge structures.

In the above, we have studied Z2 spin liquids which
have only the translation symmetry and no other sym-
metries. We find there are only two types of such spin
liquids. However, if spin liquids have more symmetries,
then they can have much more types. In the appendix
A, we will give a classification of symmetric Z2 spin liq-
uids using PSG. Here we use the term symmetric spin
liquid to refer to a spin liquid with the translation sym-
metry Tx,y, the time reversal symmetry T : uij → −uij ,
and the three parity symmetries Px: (ix, iy) → (−ix, iy),
Py: (ix, iy) → (ix,−iy), and Pxy: (ix, iy) → (iy, ix).
The three parity symmetries also imply the 90◦ ro-
tation symmetry. In the appendix A, we find that
there are 272 different extensions of the symmetry group
{Tx,y, Px,y,xy, T} if IGG G = Z2. Those PSG’s are gen-
erated by (GxTx, GyTy, GT T,GPx

Px, GPy
Py, GPxy

Pxy).
The PSG’s can be divided into two classes. The first
class is given by

Gx(i) =τ0, Gy(i) =τ0

GPx(i) =ηix
xpxηiy

xpygPx GPy (i) =ηix
xpyηiy

xpxgPy

GPxy (i) =gPxy GT (i) =ηitgT (65)

and the second class by

Gx(i) =(−)iyτ0, Gy(i) =τ0

GPx(i) =ηix
xpxηiy

xpygPx GPy (i) =ηix
xpyηiy

xpxgPy

GPxy (i) =(−)ixiygPxy GT (i) =ηitgT (66)

Here the three η’s can independently take two values ±1.
g’s have 17 different choices which are given by Eq. (A39)
- Eq. (A55) in the appendix A. Thus there are 2× 17×
23 = 272 different PSG’s. They can potentially lead to
272 different types of symmetric Z2 spin liquids on 2D
square lattice.

To label the 272 PSG’s, we propose the following
scheme:

Z2A(gpx)ηxpx(gpy)ηxpygpxy(gt)ηt , (67)

Z2B(gpx)ηxpx(gpy)ηxpygpxy(gt)ηt . (68)

The label Z2A... correspond to the case Eq. (65), and
the label Z2B... correspond to the case Eq. (66). A typi-
cal label will looks like Z2Aτ1

+τ2
−τ12τ3

−. We will also use
an abbreviated notation. An abbreviated notation is ob-
tained by replacing (τ0, τ1, τ2, τ3) or (τ0

+, τ1
+, τ2

+, τ3
+) by

(0, 1, 2, 3) and (τ0
−, τ1

−, τ2
−, τ3

−) by (n, x, y, z). For exam-
ple, Z2Aτ1

+τ0
−τ12τ3

− can be abbreviated as Z2A1n(12)z.
Those 272 different Z2 PSG’s, strictly speaking, are the

so called algebraic PSG’s. The algebraic PSG’s are de-
fined as extensions of the symmetry group. They can be

calculated through the algebraic relations listed in section
A1. The algebraic PSG’s are different from the invariant
PSG’s which are defined as a collection of all transfor-
mations that leave an ansatz uij invariant. Although an
invariant PSG must be an algebraic PSG, an algebraic
PSG may not be an invariant PSG. This is because cer-
tain algebraic PSG’s have the following properties: any
ansatz uij that is invariant under an algebraic PSG may
actually be invariant under a larger PSG. In this case
the original algebraic PSG cannot be an invariant PSG
of the ansatz. The invariant PSG of the ansatz is real-
ly given by the larger PSG. If we limit ourselves to the
spin liquids constructed through the ansatz uij , then we
should drop the algebraic PSG’s are not invariant PSG’s.
This is because those algebraic PSG’s do not characterize
mean-field spin liquids.

We find that among the 272 algebraic Z2 PSG’s, at
least 76 of them are not invariant PSG’s. Thus the 272 al-
gebraic Z2 PSG’s can at most lead to 196 possible Z2 spin
liquids. Since some of the mean-field spin liquid states
may not survive the quantum fluctuations, the number of
physical Z2 spin liquids is even smaller. However, for the
physical spin liquids that can be obtained through the
mean-field states, the PSG’s do offer a characterization
of the quantum orders in those spin liquids.

C. Classification of symmetric U(1) and SU(2) spin
liquids

In addition to the Z2 symmetric spin liquids studied
above, there can be symmetric spin liquids whose low
energy gauge structure is U(1) or SU(2). Such U(1)
and SU(2) symmetric spin liquids (at mean-field level)
are classified by U(1) and SU(2) symmetric PSG’s. The
U(1) and SU(2) symmetric PSG’s are calculated in the
appendix A. In the following we just summarize the re-
sults.

We find that the PSG’s that characterize mean-field
symmetric U(1) spin liquids can be divided into four
types: U1A, U1B, U1C and U1m

n . There are 24 type
U1A PSG’s:

Gx =g3(θx), Gy = g3(θy),

GPx =ηiy
ypxg3(θpx), GPy = ηix

ypxg3(θpy)

GPxy =g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (69)

and

Gx =g3(θx), Gy = g3(θy),

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxg3(θpy)iτ1

GPxy =g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (70)

where

ga(θ) ≡ eiθτa

. (71)
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We will use U1Aaηxpxbηypxcdηt to label the 24 PSG’s.
a, b, c, d are associated with GPx

, GPy
, GPxy

, GT re-
spectively. They are equal to τ1 if the corresponding G
contains a τ1 and equal to τ0 otherwise. A typical nota-
tion looks like U1Aτ1

−τ1τ0τ1
− which can be abbreviated

as U1Ax10x.
There are also 24 type U1B PSG’s:

Gx =(−)iyg3(θx), Gy = g3(θy),

GPx =ηiy
ypxg3(θpx), GPy = ηix

ypxg3(θpy)

(−)ixiyGPxy
=g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (72)

and

Gx =(−)iyg3(θx), Gy = g3(θy),

GPx
=ηix

xpxg3(θpx)iτ1, GPy
= ηiy

xpxg3(θpy)iτ1

(−)ixiyGPxy =g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (73)

We will use U1Baηxpxbηypxcdηt to label the 24 PSG’s.
The 60 type U1C PSG’s are given by

Gx =g3(θx)iτ1, Gy = g3(θy)iτ1,

GPx =ηix
xpxηiy

ypxg3(θpx), GPy = ηix
ypxηiy

xpxg3(θpy)

GPxy =ηix
pxyg3(ηipxy

π

4
+ θpxy),

GT =ηitg3(θt)|ηt=−1, ηix
pxyg3(θt)iτ1 (74)

Gx =g3(θx)iτ1, Gy = g3(θy)iτ1,

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxηipxyg3(θpy)iτ1

GPxy =ηix
pxyg3(ηipxy

π

4
+ θpxy),

GT =ηitg3(θt)|ηt=−1, ηix
pxyηitg3(θt)iτ1 (75)

Gx =g3(θx)iτ1, Gy = g3(θy)iτ1,

GPx =ηix
xpxηiy

ypxg3(θpx), GPy = ηix
ypxηiy

xpxg3(θpy)

GPxy =g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1 (76)

Gx =g3(θx)iτ1, Gy = g3(θy)iτ1,

GPx =ηix
xpxηiy

ypxg3(θpx), GPy = ηix
ypxηiy

xpxg3(θpy)

GPxy =g3(ηipxy

π

4
+ θpxy)iτ1

GT =ηix
pxyηitg3(θt)iτ1 (77)

Gx =g3(θx)iτ1, Gy = g3(θy)iτ1,

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxηipxyg3(θpy)iτ1

GPxy =g3(ηipxy

π

4
+ θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitη
ix
pxyg3(θt)iτ1 (78)

which will be labeled by U1Caηxpx
bηypx

cηpxy
dηt

.
The type U1m

n PSG’s have not been classified. How-
ever, we do know that for each rational number m/n ∈
(0, 1), there exist at least one mean-field symmetric spin
liquid, which is described by the ansatz

ui,i+x̂ = χτ3, ui,i+ŷ = χg3(
mπ

n
ix)τ3 (79)

It has πm/n flux per plaquette. Thus there are infinite
many type U1m

n spin liquids.
We would like to point out that the above 108

U1[A,B,C] PSG’s are algebraic PSG’s. They are only
a subset of all possible algebraic U(1) PSG’s. Howev-
er, they do contain all the invariant U(1) PSG’s of type
U1A, U1B and U1C. We find 46 of the 108 PSG’s are
also invariant PSG’s. Thus there are 46 different mean-
field U(1) spin liquids of type U1A, U1B and U1C. Their
ansatz and labels are given by Eq. (A110), Eq. (A111),
Eq. (A123), Eq. (A124), and Eq. (A152) – Eq. (A169).

To classify symmetric SU(2) spin liquids, we find 8
different SU(2) PSG’s which are given by

Gx(i) =gx, Gy(i) = gy

GPx(i) =ηix
xpxηiy

xpygPx , GPy (i) = ηix
xpyηiy

xpxgPy

GPxy (i) =gPxy , GT (i) = (−)igT (80)

and

Gx(i) =(−)iygx, Gy(i) = gy

GPx(i) =ηix
xpxηiy

xpygPx , GPy (i) = ηix
xpyηiy

xpxgPy

GPxy (i) =(−)ixiygPxy , GT (i) = (−)igT (81)

where g’s are in SU(2). We would like to use the following
two notations

SU2Aτ0
ηxpx

τ0
ηxpy

SU2Bτ0
ηxpx

τ0
ηxpy

(82)

to denote the above 8 PSG’s. SU2Aτ0
ηxpx

τ0
ηxpy

is for E-
q. (80) and SU2Bτ0

ηxpx
τ0
ηxpy

for Eq. (81). We find only 4
of the 8 SU(2) PSG’s, SU2A[n0, 0n] and SU2B[n0, 0n],
leads to SU(2) symmetric spin liquids. The SU2An0 s-
tate is the uniform RVB state and the SU2Bn0 state is
the π-flux state. The other two SU(2) spin liquids are
given by SU2A0n:

ui,i+2x̂+ŷ = + iχτ0

ui,i−2x̂+ŷ =− iχτ0

ui,i+x̂+2ŷ = + iχτ0

ui,i−x̂+2ŷ = + iχτ0 (83)
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and SU2B0n:

ui,i+2x̂+ŷ = + i(−)ixχτ0

ui,i−2x̂+ŷ =− i(−)ixχτ0

ui,i+x̂+2ŷ = + iχτ0

ui,i−x̂+2ŷ = + iχτ0 (84)

The above results give us a classification of symmet-
ric U(1) and SU(2) spin liquids at mean-field level. If
a mean-field state is stable against fluctuations, it will
correspond to a physical U(1) or SU(2) symmetric spin
liquids. In this way the U(1) and the SU(2) PSG’s also
provide an description of some physical spin liquids.

V. CONTINUOUS TRANSITIONS AND
SPINON SPECTRA IN SYMMETRIC SPIN

LIQUIDS

A. Continuous phase transitions without symmetry
breaking

After classifying mean-field symmetric spin liquids, we
would like to know how those symmetric spin liquids
are related to each other. In particular, we would like
to know which spin liquids can change into each oth-
er through a continuous phase transition. This problem
is studied in detail in appendix B, where we study the
symmetric spin liquids in the neighborhood of some im-
portant symmetric spin liquids. After lengthy calcula-
tions, we found all the mean-field symmetric spin liq-
uids around the Z2-linear state Z2A001n in Eq. (39),
the U(1)-linear state U1Cn01n in Eq. (32), the SU(2)-
gapless state SU2An0 in Eq. (30), and the SU(2)-linear
state SU2Bn0 in Eq. (31). Those ansatz are given by
Eq. (B3) for the Z2-linear state, by Eq. (B6), Eq. (B24),
Eq. (B25), Eq. (B27), and Eq. (B28) for the U(1)-linear
state, by Eq. (B31), Eq. (B44) – Eq. (B49), and E-
q. (B92) – Eq. (B108) for the SU(2)-gapless state, and
by Eq. (B111), Eq. (B117) – Eq. (B122), and Eq. (B139)
– Eq. (B154) for the SU(2)-linear state. According to
the above results, we find that, at the mean-field lev-
el, the U(1)-linear spin liquid U1Cn01n can continuously
change into 8 different Z2 spin liquids, the SU(2)-gapless
spin liquid SU2An0 can continuously change into 12 U(1)
spin liquids and 52 Z2 spin liquids, and the SU(2)-linear
spin liquid SU2Bn0 can continuously change into 12 U(1)
spin liquids and 58 Z2 spin liquids.

We would like to stress that the above results on the
continuous transitions are valid only at mean-field level.
Some of the mean-field results survive the quantum fluc-
tuations while others do not. One need to do a case by
case study to see which mean-field results can be valid
beyond the mean-field theory. In Ref. [40], a mean-field
transition between a SU(2) × SU(2)-linear spin liquid
and a Z2-gapped spin liquid was studied. In particular
the effects of quantum fluctuations were discussed.

We would also like to point out that all the above
spin liquids have the same symmetry. Thus the contin-
uous transitions between them, if exist, represent a new
class of continuous transitions which do not change any
symmetries.[66]

B. Symmetric spin liquids around the U(1)-linear
spin liquid U1Cn01n

The SU(2)-linear state SU2Bn0 (the π-flux state), the
U(1)-linear state U1Cn01n (the staggered-flux/d-wave s-
tate), and the SU(2)-gapless state SU2An0 (the uniform
RVB state), are closely related to high Tc superconduc-
tors. They reproduce the observed electron spectra func-
tion for undoped, underdoped, and overdoped samples
respectively. However, theoretically, those spin liquids
are unstable at low energies due to the U(1) or SU(2)
gauge fluctuations. Those states may change into more
stable spin liquids in their neighborhood. In the next a
few subsections, we are going to study those more sta-
ble spin liquids. Since there are still many different spin
liquids involved, we will only present some simplified re-
sults by limiting the length of non-zero links. Those spin
liquids with short links should be more stable for simple
spin Hamiltonians. The length of a link between i and j
is defined as |ix − jx|+ |iy − jy|. By studying the spinon
dispersion in those mean-field states, we can understand
some basic physical properties of those spin liquids, such
as their stability against the gauge fluctuations and the
qualitative behaviors of spin correlations which can be
measured by neutron scattering. Those results allow us
to identify them, if those spin liquids exist in certain sam-
ples or appear in numerical calculations. We would like
to point out that we will only study symmetric spin liq-
uids here. The above three unstable spin liquids may also
change into some other states that break certain symme-
tries. Such symmetry breaking transitions actually have
been observed in high Tc superconductors (such as the
transitions to antiferromagnetic state, d-wave supercon-
ducting state, and stripe state).

First, let us consider the spin liquids around the
U(1)-linear state U1Cn01n. In the neighborhood of the
U1Cn01n ansatz Eq. (32), there are 8 classes of symmet-
ric ansatz Eq. (B24), Eq. (B25) Eq. (B27), and Eq. (B28)
that break the U(1) gauge structure down to a Z2 gauge
structure. The first one is labeled by Z2A0013 and takes
the following form

ui,i+x̂ =χτ1 − ητ2

ui,i+ŷ =χτ1 + ητ2

ui,i+x̂+ŷ = + γ1τ
1

ui,i−x̂+ŷ = + γ1τ
1

ui,i+2x̂ =γ2τ
1 + λ2τ

2

ui,i+2ŷ =γ2τ
1 − λ2τ

2

a1
0 6= 0, a2,3

0 = 0 (85)
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It has the same quantum order as that in the ansatz
Eq. (42). The label Z2A0013 tells us the PSG that char-
acterizes the spin liquid.

The second ansatz is labeled by Z2Azz13:

ui,i+x̂ =χτ1 − ητ2

ui,i+ŷ =χτ1 + ητ2

ui,i+x̂+ŷ =− γ1τ
1

ui,i−x̂+ŷ = + γ1τ
1

ui,i+2x̂ =ui,i+2ŷ = 0

a1,2,3
0 = 0 (86)

The third one is labeled by Z2A001n (or equivalently
Z2A003n):

al
0 =0

ui,i+x̂ =χτ1 + ητ2

ui,i+ŷ =χτ1 − ητ2

ui,i+2x̂+ŷ =λτ3

ui,i−x̂+2ŷ =− λτ3

ui,i+2x̂−ŷ =λτ3

ui,i+x̂+2ŷ =− λτ3 (87)

Such a spin liquid has the same quantum order as E-
q. (39). The fourth one is labeled by Z2Azz1n:

al
0 =0

ui,i+x̂ =χτ1 + ητ2

ui,i+ŷ =χτ1 − ητ2

ui,i+2x̂+ŷ =χ1τ
1 + η1τ

2 + λτ3

ui,i−x̂+2ŷ =χ1τ
1 − η1τ

2 + λτ3

ui,i+2x̂−ŷ =χ1τ
1 + η1τ

2 − λτ3

ui,i+x̂+2ŷ =χ1τ
1 − η1τ

2 − λτ3 (88)

The above four ansatz have translation invariance. The
next four Z2 ansatz do not have translation invariance.
(But they still describe translation symmetric spin liquids
after the projection.) Those Z2 spin liquids are Z2B0013:

ui,i+x̂ =χτ1 − ητ2

ui,i+ŷ =(−)ix(χτ1 + ητ2)

ui,i+2x̂ =− γ2τ
1 + λ2τ

2

ui,i+2ŷ =− γ2τ
1 − λ2τ

2

a1
0 6= 0, a2,3

0 = 0, (89)

Z2Bzz13:

ui,i+x̂ =χτ1 − ητ2

ui,i+ŷ =(−)ix(χτ1 + ητ2)

ui,i+2x̂+2ŷ =− γ1τ
1

ui,i−2x̂+2ŷ =γ1τ
1

a1,2,3
0 = 0, (90)

(a) (b)

(c) (d)

FIG. 1: Contour plot of the spinon dispersion E+(k) as a
function of (kx/2π, ky/2π) for the Z2-linear spin liquids. (a)
is for the Z2A0013 state in Eq. (85), (b) for the Z2Azz13 state
in Eq. (86), (c) for the Z2A001n state in Eq. (87), (d) for the
Z2Azz1n state in Eq. (88).

Z2B001n:

u ˆi,i+x =χτ1 + ητ2

u ˆi,i+y =(−)ix(χτ1 − ητ2)

u ˆi,i+2x+y =(−)ixλτ3

u ˆi,i−x+2y =− λτ3

u ˆi,i+2x−y =(−)ixλτ3

u ˆi,i+x+2y =− λτ3

al
0 =0, (91)

and Z2Bzz1n:

ux̂ =χτ1 + ητ2

uŷ =(−)ix(χτ1 − ητ2)

u ˆ2x+y =(−)ix(χ1τ
1 + η1τ

2 + λτ3)

u ˆ−x+2y =χ1τ
1 − η1τ

2 + λτ3

u ˆ2x−y =(−)ix(χ1τ
1 + η1τ

2 − λτ3)

u ˆx+2y =χ1τ
1 − η1τ

2 − λτ3

al
0 =0. (92)

The spinons are gapless at four isolated points with
a linear dispersion for the first four Z2 spin liquids E-
q. (85), Eq. (86), Eq. (87), and Eq. (88). (See Fig. 1)
Therefore the four ansatz describe symmetric Z2-linear
spin liquids. The single spinon dispersion for the second
Z2 spin liquid Z2Azz13 is quite interesting. It has the
90◦ rotation symmetry around k = (0, π) and the parity
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(a) (b)

(c) (d)

FIG. 2: Contour plot of the spinon dispersion
min(E1(k), E2(k)) as a function of (kx/2π, ky/2π) for
the Z2-linear states. (a) is for the Z2B0013 state in Eq. (89),
(b) for the Z2Bzz13 state in Eq. (90), (c) for the Z2B001n
state in Eq. (91), (d) for the Z2Bzz1n state in Eq. (92).

symmetry about k = (0, 0). One very important thing to
notice is that the spinon dispersions for the four Z2-linear
spin liquids, Eq. (85), Eq. (86), Eq. (87), and Eq. (88)
have some qualitative differences between them. Those
differences can be used to physically measure quantum
orders (see section VII).

Next let us consider the ansatz Z2B0013 in Eq. (89).
The spinon spectrum for ansatz Eq. (89) is determined
by

H =− 2χ cos(kx)Γ0 − 2η cos(kx)Γ2

− 2χ cos(ky)Γ1 + 2η cos(ky)Γ3 + λΓ4 (93)

where kx ∈ (0, π), ky ∈ (−π, π) and

Γ0 =τ1 ⊗ τ3, Γ1 =τ1 ⊗ τ1,

Γ2 =τ2 ⊗ τ3, Γ3 =τ2 ⊗ τ1,

Γ4 =τ1 ⊗ τ0. (94)

assuming γ1,2 = λ2 = 0. The four bands of spinon
dispersion have a form ±E1(k), ±E2(k). We find the
spinon spectrum vanishes at 8 isolated points near k =
(π/2,±π/2). (See Fig. 2a.) Thus the state Z2B0013 is a
Z2-linear spin liquid.

Knowing the translation symmetry of the above Z2-
linear spin liquid, it seems strange to find that the spinon
spectrum is defined only on half of the lattice Brillouin
zone. However, this is not inconsistent with translation
symmetry since the single spinon excitation is not phys-
ical. Only two-spinon excitations correspond to physical
excitations and their spectrum should be defined on the
full Brillouin zone. Now the problem is that how to ob-
tain two-spinon spectrum defined on the full Brillouin

zone from the single-spinon spectrum defined on half of
the Brillouin zone. Let |k, 1〉 and |k, 2〉 be the two eigen-
states of single spinon with positive energies E1(k) and
E2(k) (here kx ∈ (−π/2, π/2) and ky ∈ (−π, π)). The
translation by x̂ (followed by a gauge transformation)
change |k, 1〉 and |k, 2〉 to the other two eigenstates with
the same energies:

|k, 1〉 →|k + πŷ, 1〉
|k, 2〉 →|k + πŷ, 2〉 (95)

Now we see that momentum and the energy of two-spinon
states |k1, α1〉|k2, α2〉 ± |k1 + πŷ, α1〉|k2 + πŷ, α2〉 are
given by

E2spinon =Eα1(k1) + Eα2(k2)
k =k1 + k2, k1 + k2 + πx̂ (96)

Eq. (96) allows us to construct two-spinon spectrum from
single-spinon spectrum.

Now let us consider the ansatz Z2Bzz13 in Eq. (90).
The spinon spectrum for ansatz Eq. (90) is determined
by

H =− 2χ cos(kx)Γ0 − 2η cos(kx)Γ2

− 2χ cos(ky)Γ1 + 2η cos(ky)Γ3 (97)
− 2γ1 cos(2kx + 2ky)Γ4 + 2γ1 cos(2kx − 2ky)Γ4

where kx ∈ (0, π), ky ∈ (−π, π) and

Γ0 =τ1 ⊗ τ3, Γ1 =τ1 ⊗ τ1,

Γ2 =τ2 ⊗ τ3, Γ3 =τ2 ⊗ τ1,

Γ4 =τ1 ⊗ τ0. (98)

We find the spinon spectrum to vanish at 2 isolated points
k = (π/2,±π/2). (See Fig. 2b.) The state Z2Bzz13 is a
Z2-linear spin liquid.

The spinon spectrum for the ansatz Z2B001n in E-
q. (91) is determined by

H =− 2χ cos(kx)Γ0 − 2η cos(kx)Γ2

− 2χ cos(ky)Γ1 + 2η cos(ky)Γ3

+ 2λ(cos(kx + 2ky) + cos(−kx + 2ky))Γ4

− 2λ(cos(2kx + ky) + cos(2kx − ky))Γ5 (99)

where kx ∈ (0, π), ky ∈ (−π, π) and

Γ0 =τ1 ⊗ τ3, Γ1 =τ1 ⊗ τ1,

Γ2 =τ2 ⊗ τ3, Γ3 =τ2 ⊗ τ1,

Γ4 =τ3 ⊗ τ3, Γ5 =τ3 ⊗ τ1. (100)

The spinon spectrum vanishes at 2 isolated points k =
(π/2,±π/2). (See Fig. 2c.) The state Z2B001n is also a
Z2-linear spin liquid.

The spinon spectrum for the ansatz Z2Bzz1n in E-
q. (92) can be obtained from

H =− 2χ cos(kx)Γ0 − 2η cos(kx)Γ2

− 2χ cos(ky)Γ1 + 2η cos(ky)Γ3

+ 2λ(cos(kx + 2ky)− cos(−kx + 2ky))Γ4

− 2λ(cos(2kx + ky)− cos(2kx − ky))Γ5 (101)
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where kx ∈ (0, π), ky ∈ (−π, π) and

Γ0 =τ1 ⊗ τ3, Γ1 =τ1 ⊗ τ1,

Γ2 =τ2 ⊗ τ3, Γ3 =τ2 ⊗ τ1,

Γ4 =τ3 ⊗ τ3, Γ5 =τ3 ⊗ τ1. (102)

We have also assumed that χ1 = η1 = 0. The spinon
spectrum vanishes at 2 isolated points k = (π/2,±π/2).
(See Fig. 2d.) The state Z2Bzz1n is again a Z2-linear
spin liquid.

C. Symmetric spin liquids around the
SU(2)-gapless spin liquid SU2An0

There are many types of symmetric ansatz in the
neighborhood of the SU(2)-gapless state Eq. (30). Let
us first consider the 12 classes of symmetric U(1) spin
liquids around the SU(2)-gapless state Eq. (B44) – E-
q. (B49). Here we just present the simple cases where
uij are non-zero only for links with length ≤ 2. Among
the 12 classes of symmetric ansatz, We find that 5 class-
es actually give us the SU(2)-gapless spin liquid when
the link length is ≤ 2. The other 7 symmetric U(1) spin
liquids are given bellow.

From Eq. (B50) we get

ui,i+x̂ =χτ1 − ητ2 ui,i+ŷ =χτ1 + ητ2

a1,2,3
0 =0

Gx =Gy = τ0, GPx =GPy = τ0,

GPxy =iτ1, GT =(−)iτ0 (103)

In the above, we have also listed the gauge transforma-
tions Gx,y, GPx,Py,Pxy and GT associated translation,
parity and time reversal transformations. Those gauge
transformations define the PSG that characterizes the
U(1) spin liquid. In section IVC, we have introduced a
notation U1Cn01n to label the PSG and its associated
ansatz. In the following, we will list ansatz together with
their labels and the associated gauge transformations.

From Eq. (B51) we get U1Cn00x state

ui,i+x̂ =χτ1 ui,i+ŷ =χτ1

ui,i+x̂+ŷ =η1τ
3 ui,i−x̂+ŷ =η1τ

3

ui,i+2x̂ =η2τ
3 ui,i+2ŷ =η2τ

3

a3
0 =η3, a1,2

0 =0

Gx =Gy = τ0, GPx =GPy = τ0,

GPxy =τ0, GT =iτ2 (104)

U1Cn01x state

ui,i+x̂ =χτ1 ui,i+ŷ =χτ1

ui,i+2x̂ =− η2τ
3 ui,i+2ŷ =η2τ

3

a1,2,3
0 =0

Gx =Gy = τ0, GPx =GPy = τ0,

GPxy =iτ1, GT =iτ2 (105)

(a) (b)

FIG. 3: Contour plot of the spinon dispersion E+(k) as a func-
tion of (kx/2π, ky/2π) for (a) the U(1)-linear state U1Cn00x
in Eq. (104), and (b) the U(1)-quadratic state U1Cx10x in
Eq. (106). In the U(1)-quadratic state, the spinon energy
vanishes as ∆k2 near two points k = (π, 0), (0, π).

and U1Cx10x state

ui,i+x̂ =χτ1 ui,i+ŷ =χτ1

ui,i+x̂+ŷ =− ητ3 ui,i−x̂+ŷ =ητ3

a1,2,3
0 =0

Gx =Gy = τ0, GPx
=GPy

= iτ1,

GPxy =τ0, GT =iτ2 (106)

From Eq. (B48) we get U1A0001 state

ui,i+x̂ =iχτ0 ui,i+ŷ =iχτ0

ui,i+x̂+ŷ =− η1τ
3 ui,i−x̂+ŷ =η1τ

3

ui,i+2x̂ =η2τ
3 ui,i+2ŷ =η2τ

3

a1,2,3
0 =0

Gx =Gy = τ0, (−)ixGPx =(−)ixGPy = τ0,

GPxy =τ0, GT =i(−)iτ1 (107)

and U1A0011 state

ui,i+x̂ =iχτ0 ui,i+ŷ =iχτ0

ui,i+2x̂ =− η2τ
3 ui,i+2ŷ =η2τ

3

a1,2,3
0 =0

Gx =Gy = τ0, (−)ixGPx =(−)ixGPy = τ0,

GPxy =iτ1, GT =i(−)iτ1 (108)

From Eq. (B49) we get, for GPxy = g3(θpxy), U1Ax10x
state

ui,i+x̂ =iχτ0 ui,i+ŷ =iχτ0

ui,i+x̂+ŷ =ητ3 ui,i−x̂+ŷ =ητ3

a1,2,3
0 =0

Gx =Gy = τ0, (−)ixGPx =(−)ixGPy = iτ1,

GPxy =τ0, GT =i(−)iτ1 (109)

Eq. (103) is the U1Cn01n U(1)-linear state (the stag-
gered flux state) studied in the last section. After exam-
ining the spinon dispersion, we find that the U1Cn00x
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(a) (b)

(c) (d)

FIG. 4: Contour plot of the spinon dispersion E+(k) as a
function of (kx/2π, ky/2π) for the U(1)-gapless states. (a) is
for the U1Cn01x state Eq. (105), (b) for the U1A0001 state
Eq. (107), (c) for the U1A0011 state Eq. (108), and (d) for
the U1Ax10x state Eq. (109).

state in Eq. (104) can be a U(1)-linear or a U(1)-gapped
state depending on the value of a3

0. If it is a U(1)-linear
state, it will have 8 isolated Fermi points (see Fig. 3a).
The U1Cn01x state in Eq. (105) is a U(1)-gapless s-
tate (see Fig. 4a). The U1Cx10x state in Eq. (106)
has two Fermi points at k1 = (π, 0) and k2 = (0, π).
(see Fig. 3b). However, the spinon energy has a form
E(k) ∝ (k − k1,2)2 near k1 and k2. Thus we call the
U1Cx10x spin liquid Eq. (106) a U(1)-quadratic state.
The U1A0001 state in Eq. (107), the U1A0011 state in
Eq. (108), and the U1Ax10x state in Eq. (109) are U(1)-
gapless states (see Fig. 4). Again the spinon dispersions
for the U(1) spin liquids have some qualitative differences
between each other, which can be used to detect different
quantum orders in those U(1) spin liquids.

We next consider the 52 classes of symmetric Z2 spin
liquids around the SU(2)-gapless state Eq. (B92) – E-
q. (B108). Here we just present the simplest case where
uij are non-zero only for links with length ≤ 1. We find
that 48 out of 52 classes of ansatz describe U(1) or SU(2)
spin liquids when the link’s length is ≤ 1. In the following
we discuss the 4 remaining Z2 ansatz.

We obtain one Z2 spin liquid Z2Ax2(12)n from E-
q. (B94). It is described by Eq. (33). From Eq. (B100),
we obtain a Z2 spin liquid Z2A0013. It is described by E-
q. (85) or Eq. (42). From Eq. (B102), we obtain a Z2 spin
liquid Z2By1(12)n (note Z2By1(12)n is gauge equivalent

(a) (b)

FIG. 5: Contour plot of the spinon dispersion E+(k) as a
function of (kx/2π, ky/2π) for the Z2 spin liquids. (a) is for
Z2-gapless state Z2Ax2(12)n in Eq. (33), and (b) is for Z2-
quadratic state Z2Bx2(12)n in Eq. (110). Despite the lack of
rotation and parity symmetries in the single spinon dispersion
in (a), the two-spinon spectrum does have those symmetries.

to Z2Bx2(12)n ):

ui,i+x̂ =iχτ0 + η1τ
1

ui,i+ŷ =(−)ix(iχτ0 + η1τ
2)

a1,2,3
0 =0 (110)

From Eq. (B108), we obtain a Z2 spin liquid Z2B0013,
which is described by Eq. (89).

The ansatz Z2Bx2(12)n in Eq. (110) is a new Z2 spin
liquid. The spinon spectrum for ansatz Eq. (110) is de-
termined by

H =− 2χ sin(kx)Γ0 + 2η cos(kx)Γ2

− 2χ sin(ky)Γ1 + 2η cos(ky)Γ3 (111)

where kx ∈ (−π/2, π/2), ky ∈ (−π, π) and

Γ0 =τ0 ⊗ τ3, Γ2 =τ1 ⊗ τ3,

Γ1 =τ0 ⊗ τ1, Γ3 =τ2 ⊗ τ1. (112)

The spinon spectrum can be calculated exactly and
its four branches take a form ±E1(k) and ±E2(k).
The spinon energy vanishes at two isolated points k =
(0, 0), (0, π). Near k = 0 the low energy spectrum is given
by (see Fig. 5b)

E = ±η−1
√

(χ2 + η2)2(k2
x − k2

y)2 + 4χ4k2
xk2

y (113)

It is interesting to see that the energy does not vanish
linearly as k → 0, instead it vanishes like k2.

We find that the loop operators for the following loops
i → i + x̂ → i + x̂ + ŷ → i + ŷ → i and i → i + ŷ →
i− x̂ + ŷ → i− x̂ → i do not commute as long as both
χ and η are non-zero. Thus the spin liquid described
by Eq. (110) indeed has a Z2 gauge structure. We will
call such a state Z2-quadratic spin liquid to stress the
E ∝ k2 dispersion. Such a state cannot be construct-
ed from translation invariant ansatz, and it is the reason
why we missed this state in the last section. The two-
spinon spectrum is still related to the one-spinon spec-
trum through Eq. (96).
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D. Symmetric spin liquids around the SU(2)-linear
spin liquid SU2Bn0

Last, we consider symmetric states in the neighbor-
hood of the SU(2)-linear state Eq. (31). The PSG’s for
those symmetric states can be obtained through the map-
ping Eq. (A112) from the PSG’s of symmetric spin liquids
around the SU(2)-gapless spin liquid. Here we will on-
ly consider the 12 classes of symmetric U(1) spin liquids
around the SU(2)-linear state given by Eq. (B117) – E-
q. (B122). We will just present the simple cases where uij
are non-zero only for links with length ≤ 2. We find that
7 of 12 classes of ansatz actually give us SU(2)-gapless
spin liquids when the link length is ≤ 2. Thus we only
obtain the following 5 symmetric U(1) spin liquids.

From Eq. (B131) we get U1Cn01n ansatz

ui,i+x̂ =χτ1 − ητ2 ui,i+ŷ =χτ1 + ητ2

a1,2,3
0 =0

Gx =Gy = τ0, GPx
=GPy

= τ0,

GPxy
=iτ1, GT =(−)iτ0 (114)

which has the same quantum order as in the U(1)-linear
state Eq. (32) (the staggered-flux state).

From Eq. (B132) we get U1Cn0x1 ansatz

ui,i+x̂ =χτ2 ui,i+ŷ =χτ1

ui,i+2x̂ =− ητ3 ui,i+2ŷ =ητ3

a1,2,3
0 =0

Gx =Gy = τ0, GPx =GPy = τ0,

GPxy =iτ12, GT =(−)iy iτ1 (115)

and U1Cn0n1 ansatz

ui,i+x̂ =χτ2, ui,i+ŷ = χτ1

ui,i+2x̂ =ητ3, ui,i+2ŷ = ητ3

a3
0 =η1, a1,2

0 = 0

Gx =Gy = τ0, GT = (−)iy iτ1

GPx =GPy = τ0,

GPxy =(−)ixiyg3(((−)ix − (−)iy )π/4). (116)

From Eq. (B121) we get U1B0001 ansatz

ui,i+x̂ =iχτ0 ui,i+ŷ =i(−)ixχτ0

ui,i+2x̂ =ητ3 ui,i+2ŷ =ητ3

a3
0 =η1, a1,2

0 =0

(−)iyGx =Gy = τ0, (−)ixGPx =(−)ixGPy = τ0,

GPxy =(−)ixiyτ0, GT =i(−)iτ1 (117)

(a) (b)

FIG. 6: Contour plot of the spinon dispersion E+(k) as a func-
tion of (kx/2π, ky/2π) for (a) the U(1)-linear state U1Cn0x1
in Eq. (115) and (b) the U(1)-linear state Eq. (123).

(a) (b)

FIG. 7: Contour plot of the spinon dispersion
min(E1(k), E2(k)) as a function of (kx/2π, ky/2π) for
the U(1) spin liquid states. (a) is for the U(1)-gapless state
U1B0001 in Eq. (117) and (b) is for the U(1)-linear state
U1B0011 in Eq. (118).

and U1B0011 ansatz

ui,i+x̂ =iχτ0 ui,i+ŷ =i(−)ixχτ0

ui,i+2x̂ =− ητ3 ui,i+2ŷ =ητ3

a1,2,3
0 =0

(−)iyGx =Gy = τ0, (−)ixGPx =(−)ixGPy = τ0,

GPxy =i(−)ixiyτ1, GT =i(−)iτ1 (118)

Now let us discuss spinon dispersions in the above U(1)
spin liquids. The spinon in the U1Cn0x1 state Eq. (115)
has 4 linear nodes at (±π/2,±π/2). Thus U1Cn0x1 s-
tate is a U(1)-linear spin liquid. The U1Cn0n1 state
Eq. (116) has fully gapped spinons and is a U(1)-gapped
spin liquid.

The four spinon bands in the U1B0001 state Eq. (117)
are given by (see Fig. 7a)

±2χ
√

sin2(kx) + sin2(ky)± (2η cos(2kx) + 2η cos(2ky) + η1)
(119)

We find that the U1B0001 state is a U(1)-gapless spin
liquid. The four spinon bands in the U1B0011 state E-
q. (118) are given by (see Fig. 7b)

±2χ
√

sin2(kx) + sin2(ky)± 2η(cos(2kx)− cos(2ky))
(120)
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Hence, the U1B0011 state is a U(1)-linear spin liquid.
To summarize we list all the spin liquids discussed so

far in the following table:
Z2-gapped Z2Axx0z

Z2-linear Z2A0013, Z2Azz13, Z2A001n

Z2Azz1n, Z2B0013, Z2Bzz13
Z2B001n, Z2Bzz1n

Z2-quadratic Z2Bx2(12)n
Z2-gapless Z2Ax2(12)n

U(1)-gapped U1Cn00x

U(1)-linear U1B0011, U1Cn00x, U1Cn01n

U1Cn0x1
U(1)-quadratic U1Cx10x

U(1)-gapless U1A0001, U1A0011, U1Ax10x

U1B0001, U1Cn01x

SU(2)-linear SU2Bn0
SU(2)-gapless SU2An0

VI. MEAN-FIELD PHASE DIAGRAM OF J1-J2

MODEL

To see which of the Z2, U(1), and SU(2) spin liquid-
s discussed in the last section have low ground energies
and may appear in real high Tc superconductors, we cal-
culate the mean-field energy of a large class of transla-
tion invariant ansatz. In Fig. 8, we present the result-
ing mean-field phase diagram for a J1-J2 spin system.
Here J1 is the nearest-neighbor spin coupling and J2 is
the next-nearest-neighbor spin coupling. We have fixed
J1 + J2 = 1. The y-axis is the mean-field energy per
site (multiplied by a factor 8/3). The phase (A) is the
π-flux state (the SU2Bn0 SU(2)-linear state) Eq. (31).
The phase (B) is a state with two independent uniform
RVB states on the diagonal links. It has SU(2)× SU(2)
gauge fluctuations at low energies and will be called an
SU(2)× SU(2)-gapless state. Its ansatz is given by

ui,i+x̂+ŷ =χτ3

ui,i+x̂−ŷ =χτ3

al
0 =0 (121)

The phase (C) is a state with two independent π-flux
states on the diagonal links. It has SU(2)×SU(2) gauge
fluctuations at low energies and will be called an SU(2)×
SU(2)-linear state. Its ansatz is given by

ui,i+x̂+ŷ =χ(τ3 + τ1)

ui,i+x̂−ŷ =χ(τ3 − τ1)

al
0 =0 (122)

The phase (D) is the chiral spin state Eq. (44). The

A

I
D

B

C

GE

H

J 2

F

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.45

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0 0.2 0.4 0.6 0.8 1

FIG. 8: The mean-field energies for various phases in a J1-
J2 spin system. (A) the π-flux state (the SU(2)-linear state
SU2Bn0). (B) the SU(2)× SU(2)-gapless state in Eq. (121).
(C) the SU(2)×SU(2)-linear state in Eq. (122). (D) the chiral
spin state (an SU(2)-gapped state). (E) the U(1)-linear state
Eq. (123) which breaks 90◦ rotation symmetry. (F) the U(1)-
gapped state U1Cn00x in Eq. (104). (G) the Z2-linear state
Z2Azz13 in Eq. (86). (H) the Z2-linear state Z2A0013 in
Eq. (85). (I) the uniform RVB state (the SU(2)-gapless state
SU2An0).

phase (E) is described by an ansatz

ui,i+x̂+ŷ =χ1τ
1 + χ2τ

2

ui,i+x̂−ŷ =χ1τ
1 − χ2τ

2

ui,i+ŷ =ητ3

al
0 =0 (123)

which break the 90◦ rotation symmetry and is a U(1)-
linear state (see Fig. 6b). The phase (F) is described by
the U1Cn00x ansatz in Eq. (104). The U1Cn00x state
can be a U(1)-linear or a U(1)-gapped state. The state
for phase (F) turns out to be a U(1)-gapped state. The
phase (G) is described by the Z2Azz13 ansatz in Eq. (86)
which is a Z2-linear state. The phase (H) is described
by the Z2A0013 ansatz in Eq. (85) and is also a Z2-
linear state. The phase (I) is the uniform RVB state (the
SU(2)-gapless state SU2An0 Eq. (30)).

From Fig. 8, we see continuous phase transitions (at
mean-field level) between the following pairs of phases:
(A,D), (A,G), (B,G), (C,E), and (B,H). The three contin-
uous transitions (B,G), (B,H) and (A,G) do not change
any symmetries. We also note that the SU(2) gauge
structure in the phase (A) breaks down to Z2 in the
continuous transition from the phase (A) to the phase
(G). The SU(2) × SU(2) gauge structure in the phase
(B) breaks down to Z2 in the two transitions (B,G) and
(B,H).
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(a) (b)

FIG. 9: Contour plot of the dispersion for spin-1 excitation,
E2s(k), as a function of (kx/2π, ky/2π) for (a) the SU(2)-
linear spin liquid SU2Bn0 in Eq. (31) (the π-flux phase) and
(b) the U(1)-quadratic spin liquid U1Cx10x in Eq. (106).

VII. PHYSICAL MEASUREMENTS OF
QUANTUM ORDERS

After characterizing the quantum orders using PSG
mathematically, we would like to ask how to measure
quantum orders in experiments. The quantum orders in
gapped states are related to the topological orders. The
measurement of topological orders are discussed in Re-
f. [9, 10, 65]. The quantum order in a state with gapless
excitations can be measured, in general, by the dynami-
cal properties of gapless excitation. However, not all dy-
namical properties are universal. Thus we need to iden-
tify the universal properties of gapless excitations, before
using them to characterize and measure quantum orders.
The PSG characterization of quantum orders allows us
obtain those universal properties. We simply need to i-
dentify the common properties of gapless excitations that
are shared by all the ansatz with the same PSG.

To demonstrate the above idea, we would like to s-
tudy the spectrum of two-spinon excitations. We note
that spinons can only be created in pairs. Thus the
one-spinon spectrum is not physical. We also note that
the two-spinon spectrum include spin-1 excitations which
can be measured in experiments. At a given momentum,
the two-spinon spectrum is distributed in one or several
ranges of energy. Let E2s(k) be the lower edge of the
two-spinon spectrum at momentum k. In the mean-field
theory, the two-spinon spectrum can be constructed from
the one-spinon dispersion

E2-spinon(k) = E1-spinon(q) + E1-spinon(k − q) (124)

In Fig. 9 – 15 we present mean-field E2s for some simple
spin liquids. If the mean-field state is stable against the
gauge fluctuations, we expect the mean-field E2s should
qualitatively agrees with the real E2s.

Among our examples, there are eight Z2-linear spin
liquids (see Fig. 10 and Fig. 11). We see that some of
those eight different Z2-linear spin liquids (or eight dif-
ferent quantum orders) have different number of gapless
points. The gapless points of some spin liquids are pinned
at position k = (π, π) and/or k = (π, 0), (0, π). By mea-
suring the low energy spin excitations (say using neutron

(a) (b)

(c) (d)

FIG. 10: Contour plot of E2s(k) as a function of
(kx/2π, ky/2π) for the Z2-linear spin liquids. (a) is for the
Z2A0013 state in Eq. (85), (b) for the Z2Azz13 state in E-
q. (86), (c) for the Z2A001n state in Eq. (87), (d) for the
Z2Azz1n state in Eq. (88).

(a) (b)

(c) (d)

FIG. 11: Contour plot of E2s(k) as a function of
(kx/2π, ky/2π) for the Z2-linear spin liquids. (a) is for the
Z2B0013 state in Eq. (89), (b) for the Z2Bzz13 state in E-
q. (90), (c) for the Z2B001n state in Eq. (91), (d) for the
Z2Bzz1n state in Eq. (92).

scattering), we can distinguish those Z2 spin liquids. We
note that all the two-spinon spectra have rotation and
parity symmetries around k = 0. This is expected. Since
the two-spinon spectra are physical, they should have all
the symmetries the spin liquids have.

We also have four U(1)-linear spin liquids. Some of
them can be distinguished by their different numbers of
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(a) (b)

FIG. 12: Contour plot of E2s(k) as a function of
(kx/2π, ky/2π) for (a) the Z2-gapless state Z2Ax2(12)n in
Eq. (33), and (b) the Z2-quadratic state Z2Bx2(12)n in E-
q. (110).

(a) (b)

FIG. 13: Contour plot of E2s(k) as a function of
(kx/2π, ky/2π) for two U(1)-linear spin liquids. (a) is for the
U1Cn01n state Eq. (32) (the staggered flux phase), and (b)
for the U1Cn00x state Eq. (104) in the gapless phase.

gapless points. It is interesting to note that all the U(1)
spin liquids discussed here have a gapless point in the
two-spinon spectrum pinned at position k = (π, π). The
U(1)-linear spin liquids are also different from the Z2-
linear spin liquids in that the spin-spin correlations have
different decay exponents once the U(1) gauge fluctua-
tions are included. We also see that E2s has a quadratic
form E2s ∝ k2 for the U(1)-quadratic spin liquid. E2s

vanishes in two finite regions in k-space for the Z2-gapless
spin liquids.

Neutron scattering experiments probe the two-spinon

(a) (b)

FIG. 14: Contour plot of the two-spinon dispersion E2s(k)
as a function of (kx/2π, ky/2π) for (a) the U(1)-linear spin
liquid state U1Cn0x1 in Eq. (115) and (b) the U(1)-linear
spin liquid Eq. (123).

(a) (b)

FIG. 15: Contour plot of the two-spinon dispersion E2s(k) as
a function of (kx/2π, ky/2π) for the U(1) spin liquid states.
(a) is for the U(1)-gapless state U1B0001 in Eq. (117) and (b)
is for the U(1)-linear state U1B0011 in Eq. (118).

sector. Thus low energy neutron scattering allows us to
measure quantum orders in high Tc superconductors.

Let us discuss the U(1) linear state U1Cn01n (the
staggered-flux state) in more detail. The U1Cn01n s-
tate is proposed to describe the pseudo-gap metallic s-
tate in underdoped high Tc superconductors.[33, 34] The
U1Cn01n state naturally explains the spin pseudo-gap
in the underdoped metallic state. As an algebraic spin
liquid, the U1Cn01n state also explain the Luttinger-
like electron spectral function[34] and the enhancement
of the (π, π) spin fluctuations[67] in the pseudo-gap s-
tate. From Fig. 13a, we see that gapless points of the
spin-1 excitations in the U1Cn01n state are always at
k = (π, π), (0, 0), (π, 0) and (0, π). The equal energy
contour for the edge of the spin-1 continuum has a shape
of two overlapped ellipses at all the four k points. Also
the energy contours are not perpendicular to the zone
boundary. All those are the universal properties of the
U1Cn01n state. Measuring those properties in neutron
scattering experiments will allow us to determine if the
pseudo-gap metallic state is described by the U1Cn01n
(the staggered-flux) state or not.

We have seen that at low energies, the U1Cn01n s-
tate is unstable due to the instanton effect. Thus the
U1Cn01n state has to change into some other states,
such as the 8 Z2 spin liquids discussed in section V or
some other states not discussed in this paper. From Fig.
10a, we see that the transition from the U1Cn01n state
to the Z2-linear state Z2A0013 can be detected by neu-
tron scattering if one observe the splitting of the node
at (π, π) into four nodes at (π ± δ, π ± δ) and the split-
ting of the nodes at (π, 0) and (0, π) into two nodes at
(π ± δ, 0) and (0, π ± δ). From Fig. 10b, we see that,
for the transition from the U1Cn01n state to the Z2-
linear state Z2Azz13, the node at (π, π) still splits in-
to four nodes at (π ± δ, π ± δ). However, the nodes at
(π, 0) and (0, π) split differently into two nodes at (π,±δ)
and (±δ, π). We can also study the transition from the
U1Cn01n state to other 6 Z2 spin liquids. We find the
spectrum of spin-1 excitations all change in certain char-
acteristic ways. Thus by measuring the spin-1 excitation
spectrum and its evolution, we not only can detect a
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quantum transition that do not change any symmetries,
we can also tell which transition is happening.

The neutron scattering on high Tc superconductor in-
deed showed a splitting of the scattering peak at (π, π)
into four peaks at (π ± δ, π), (π, π ± δ) [30, 68–74] or
into two peaks at (π, π) → (π + δ, π − δ), (π − δ, π + δ)
[28, 75] as we lower the energy. This is consistent with
our belief that the U1Cn01n state is unstable at low en-
ergies. However, it is still unclear if we can identify the
position of the neutron scattering peak as the position of
the node in the spin-1 spectrum. If we do identify the
scattering peak as the node, then non of the 8 Z2 spin
liquids in the neighborhood of the U1Cn01n state can
explain the splitting pattern (π ± δ, π), (π, π ± δ). This
will imply that the U1Cn01n state change into another
state not studied in this paper. This example illustrates
that detailed neutron scattering experiments are power-
ful tools in detecting quantum orders and studying new
transitions between quantum orders that may not change
any symmetries.

VIII. FOUR CLASSES OF SPIN LIQUIDS AND
THEIR STABILITY

We have concentrated on the mean-field states of
spin liquids and presented many examples of mean-field
ansatz for symmetric spin liquids. In order for those
mean-field states to represent real physical spin liquid-
s, we need to include the gauge fluctuations. We also
need to show that the inclusion of the gauge fluctuations
does not destabilize the mean-field states at low ener-
gies. This requires that (a) the gauge interaction is not
too strong and (b) the gauge interaction is not a rele-
vant perturbation. (The gauge interaction, however, can
be a marginal perturbation.) The requirement (a) can
be satisfied through large N limit and/or adjustment of
short-range spin couplings in the spin Hamiltonian, if
necessary. Here we will mainly consider the requiremen-
t (b). We find that, at least in certain large N limits,
many (but not all) mean-field states do correspond to
real quantum spin liquids which are stable at low ener-
gies. In this case, the characterization of the mean-field
states by PSG’s correspond to the characterization of real
quantum spin liquids.

All spin liquids (with odd number of electron per unit
cell) studied so far can be divided into four classes. In
the following we will study each classes in turn.

A. Rigid spin liquid

In rigid spin liquids, by definition, the spinons and all
other excitations are fully gaped. The gapped gauge field
only induces short range interaction between spinons due
to Chern-Simons terms or Anderson-Higgs mechanism.
By definition, the rigid spin liquids are locally stable and
self consistent. The rigid spin liquids are characterized

by topological orders and they have the true spin-charge
separation. The low energy effective theories for rigid
spin liquids are topological field theories. The Z2-gapped
spin liquid and chiral spin liquid are examples of rigid
spin liquids.

B. Bose spin liquid

The U(1)-gapped spin liquid discussed in the last sec-
tion is not a rigid spin liquid. It is a Bose spin liquid.
Although the spinon excitations are gapped, the U(1)
gauge fluctuations are gapless in the U(1)-gapped spin
liquid. The dynamics of the gapless U(1) gauge fluctua-
tions are described by low energy effective theory

L =
1
2g

(fµν)2 (125)

where fµν is the field strength of the U(1) gauge field.
However, in 1+2 dimension and after including the in-
stanton effect, the U(1) gauge fluctuations will gain an
energy gap.[76] The properties of the resulting quantum
state remain to be an open problem.

C. Fermi spin liquid

The Fermi spin liquids have gapless excitations that are
described by spin 1/2 fermions. Those gapless excitations
have only short range interactions between them. The
Z2-linear, Z2-quadratic and the Z2-gapless spin liquid
discussed above are examples of the Fermi spin liquids.

The spinons have a massless Dirac dispersion in Z2-
linear spin liquids. Thus Z2-linear spin liquids are local-
ly stable since short range interactions between massless
Dirac fermions are irrelevant at 1+2 dimensions. We
would like to point out that the massless Dirac disper-
sion of the Z2-linear spin liquids are protected by the
PSG (or the quantum order). That is any perturbations
around, for example, the Z2-linear ansatz Eq. (39) can-
not destroy the massless Dirac dispersion as long as the
PSG are not changed by the perturbations. To under-
stand this result, we start with the most general form of
symmetric perturbations Eq. (B3) around the Z2-linear
ansatz Eq. (39). We find that such perturbations van-
ish in the momentum space at k = (±π/2,±π/2). The
translation, parity, and the time reversal symmetries do
not allow any mass terms or chemical potential terms.
Thus the Z2-linear spin liquid is a phase that occupy a
finite region in the phase space (at T = 0). One does not
need any fine tuning of coupling constants and uij to get
massless Dirac spectrum.

Now let us consider the stability of the Z2-quadratic
spin liquid Eq. (110). The spinons have a gapless
quadratic dispersion in the Z2-quadratic spin liquid. The
gapless quadratic dispersion of the Z2-quadratic spin
liquid is also protected by the symmetries. The most
general form of symmetric perturbations around the
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Z2-quadratic ansatz Eq. (110) is given by Eq. (B102)
(Z2Bx2(12)n). In the momentum space, the most gen-
eral symmetric Z2-quadratic ansatz give rise to the fol-
lowing Hamiltonian (after considering the 90◦ rotation
symmetry)

H =− 2
∑

χmn[sin(nkx −mky)Γ0 + sin(mkx + nky)Γ1]

+ 2
∑

ηmn[cos(nkx −mky)Γ2 + cos(mkx + nky)Γ3]

+ 2
∑

λmn[cos(nkx −mky)Γ4 + cos(mkx + nky)Γ5]
(126)

where

Γ0 =τ0 ⊗ τ3, Γ2 =τ1 ⊗ τ3,

Γ1 =τ0 ⊗ τ1, Γ3 =τ2 ⊗ τ1,

Γ4 =− τ2 ⊗ τ3, Γ5 =τ1 ⊗ τ1. (127)

and the summation is over m =even, n =odd. We find
that the spinon dispersion still vanish at k = (0, 0), (0, π)
and the energy still satisfy E ∝ k2. The translation, par-
ity, and the time reversal symmetric perturbations do not
change the qualitative behavior of the low energy spinon
dispersion. Thus, at mean-field level, the Z2-quadratic
spin liquid is a phase that occupy a finite region in the
phase space (at T = 0). One does not need any fine tun-
ing of coupling constants to get gapless quadratic disper-
sion of the spinons. However, unlike the Z2-linear spin
liquid, the short range four-fermion interactions between
the gapless spinons in the Z2-quadratic state are marginal
at 1+2 dimensions. Further studies are needed to under-
stand the dynamical stability of the Z2-quadratic spin
liquid beyond the mean-field level.

The Z2-gapless spin liquid is as stable as Fermi liquid in
1+2 dimensions. Again we expect Z2-gapless spin liquid
to be a phase that occupy a finite region in the phase
space, at least at mean-field level.

D. Algebraic spin liquid

U(1)-linear spin liquids are examples of algebraic spin
liquids. Their low lying excitations are described by
massless Dirac fermions coupled to U(1) gauge field.
Although the massless Dirac fermions are protected by
quantum orders, the gauge couplings remain large at low
energies. Thus the low lying excitations in the U(1)-
linear spin liquids are not described by free fermions.
This makes the discussion on the stability of those states
much more difficult.

Here we would like to concentrate on the U(1)-linear
spin liquid U1Cn01n in Eq. (32). The spinons have a
massless Dirac dispersion in the U(1)-linear spin liquid.
First we would like to know if the massless Dirac dis-
persion is generic property of the U(1)-linear spin liquid,
ie if the massless Dirac dispersion is a property shared by
all the spin liquids that have the same quantum order as

that in Eq. (32). The most general perturbations around
the U(1)-linear ansatz Eq. (32) are given by Eq. (B6),
if the perturbations respect translation, parity, and the
time reversal symmetries, and if the perturbation do not
break the U(1) gauge structure. Since δu3

m = δu0
m = 0

for m = even, their contributions in the momentum s-
pace vanish at k = (0, 0) and k = (0, π). The spinon en-
ergy also vanish at those points for the ansatz Eq. (32).
Thus the massless Dirac dispersion is protected by the
symmetries and the U(1) gauge structure in the U(1)-
linear spin liquid Eq. (32). In other words, the massless
Dirac dispersion is protected by the quantum order in
the U(1)-linear spin liquid.

Next we consider if the symmetries and the U(1) gauge
structure in the U(1)-linear spin liquid can be broken
spontaneously due to interactions/fluctuations at low en-
ergy. The low energy effective theory is described by La-
grangian (in imaginary time)

L =
∑
a,µ

ψ†aγ0[vµ,aγµ(∂µ + iaµ)]ψa (128)

where µ = 0, 1, 2, a = 1, 2, γµ are 4 × 4 γ-matrices,
v0

a = 1, and (v1,a, v2,a) are velocities for aθ fermion in
x and y directions. We make a large N generalization
of the above effective theory and allow a = 1, 2, .., N .
Our first concern is about whether the self energy from
the gauge interaction can generate any mass/chemical-
potential term, due to infrared divergence. It turns out
that, in the 1/N expansion, the gauge fluctuations repre-
sent an exact marginal perturbation that does not gener-
ate any mass/chemical=potential term.[77] Instead the
gauge interaction changes the quantum fixed point de-
scribed by free massless Dirac fermions to a new quantum
fixed point which has no free fermionic excitations at low
energies.[34, 77] The new quantum fixed point has gapless
excitations and correlation functions all have algebraic
decay. Such a quantum fixed point was called algebraic
spin liquid.[34] Actually, it is easy to understand why the
gauge fluctuations represent an exact marginal perturba-
tion. This is because the conserved current that couple to
the gauge potential cannot have any anomalous dimen-
sions. Thus if the gauge interaction is marginal at first
order, then it is marginal at all orders. Gauge interaction
as an exact marginal perturbation is also supported by
the following results. The gauge invariant Green’s func-
tion of ψ is found to be gapless after coupling to gauge
field, to all orders in 1/N expansion.[77] Recently it was
argued that the U(1) gauge interaction do not generate
any mass perturbatively even when N is as small as 2.[78]

Now let us discuss other possible instabilities. First we
would like consider a possible instability that change the
U(1)-linear state to the Z2-linear state. To study such an
instability we add a charge-2 Higgs field to our effective
theory

L =ψ†aγ0[γµ(∂µ + iaµ)]ψa (129)

+ |(∂0 − 2ia0)φ|2 + v2|(∂i − 2iai)φ|2 + V (φ)
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where V (φ) has its minimum at φ = 0 and we have as-
sumed v1,a = v2,a = 1 for simplicity. (Note that φ corre-
sponds to λ in Eq. (39). It is a non-zero λ that break the
U(1) gauge structure down to the Z2 gauge structure.) If
after integrating out ψ and aµ, the resulting effective po-
tential Veff (|φ|) has its minimum at a non zero φ, then
the U(1)-linear state has a instability towards the Z2-
linear state.

To calculate Veff (|φ|), we first integrate out ψ and get

L =
1
2
aµπµνaν (130)

+ |(∂0 − 2ia0)φ|2 + v2|(∂i − 2iai)φ|2 + V (φ)

where

πµν =
N

8
(p2)−1/2(p2δµν − pµpν) (131)

Now the effective potential Veff (|φ|) can be obtained by
integrating out aµ (in the a0 = 0 gauge) and the phase θ
of the φ field, φ = ρeiθ:[96]

Veff (φ)− V (φ) (132)

=
∫ ∞

0

dω

π

∫
d2k

(2π)2
1
2
Im

(
ln[−K⊥(iω)] + ln[−K||(iω)]

)

=
∫ ∞

0

dω

π

∫
d2k

(2π)2
Im ln(−N

8
(k2 − ω2 − 0+)1/2 − 4|φ|2)

where

K⊥ =
N

8
(ω2 + k2)1/2 + 4|φ|2 (133)

K|| =
N

8
(ω2 + k2)−1/2ω2 + 4|φ|2 ω2

ω2 + v2k2

=
ω2

ω2 + v2k2

(
N

8
(ω2 + k2)1/2 + 4|φ|2

)

We find that Veff = V −C1|φ|6 ln |φ| where C1 is a con-
stant. Now it is clear that the gapless gauge fluctuations
cannot shift the minimum of V from φ = 0 and the U(1)-
linear state is stable against spontaneously changing into
the Z2-linear state.

So far we only considered the effects of perturbative
fluctuations. The non-perturbative instanton effects can
also cause instability of the algebraic spin liquid. The
instanton effects have been discussed in Ref. [60] for the
case v1

a = v2
a. It was found that the instanton effects

represent a relevant perturbation which can destabilize
the algebraic spin liquid when N < 24. In the following,
we will generalize the analysis of Ref. [60] to v1

a 6= v2
a

case. First we rewrite

S =
∫

d3k

(2π)3
1
2
aµ(−k)πµνaν(k)

=
∫

d3k

(2π)3
1
2
fµ(−k)Kµνfν(k) (134)

where

fµ = εµνλ∂νaλ (135)

When πµν = k2δµν − kµkν , we find Kµν = δµν . When
πµν = (k2δµν − kµkν)/

√
k2, we may assume Kµν =

δµν/
√

k2. When v1,a 6= v2,a we have

(Kµν) =
∑

a

1
8
(ω2 + v2

1,ak2
1 + v2

2,ak2
2)
−1/2 ×




v1,av2,a 0 0
0 v2,a/v1,a 0
0 0 v1,a/v2,a


 (136)

The instanton field fµ minimize the action Eq. (134) and
satisfies

Kµνfν = c(k)kµ (137)

where c(k) is chosen such that kµfµ = 2iπ We find that

f0 =
8cω∑

a(ω2 + v2
1,ak2

1 + v2
2,ak2

2)−1/2v1,av2,a

f1 =
8ck1∑

a(ω2 + v2
1,ak2

1 + v2
2,ak2

2)−1/2v2,a/v1,a

f2 =
8ck2∑

a(ω2 + v2
1,ak2

1 + v2
2,ak2

2)−1/2v1,a/v2,a
(138)

and

c =2iπ

(
8ω2

∑
a(ω2 + v2

1,ak2
1 + v2

2,ak2
2)−1/2v1,av2,a

+
8k2

1∑
a(ω2 + v2

1,ak2
1 + v2

2,ak2
2)−1/2v2,a/v1,a

+
8k2

2∑
a(ω2 + v2

1,ak2
1 + v2

2,ak2
2)−1/2v1,a/v2,a

)−1

(139)

Using the above solution, we can calculate the action for
a single instanton, which has a form

Sinst =
N

2
α(v2/v1) ln(L) (140)

where L is the size of the system and we have assumed
that N/2 fermions have velocity (vx, vy) = (v1, v2) and
the other N/2 fermions have velocity (vx, vy) = (v2, v1).
We find α(1) = 1/4 + O(1/N) and α(0.003) = 3. +
O(1/N). When N

2 α(v2/v1) > 3, the instanton effect is
irrelevant. We see that even for the case N = 2, the in-
stanton effect can be irrelevant for small enough v2/v1.
Therefore, the algebraic spin liquid exists and can be sta-
ble.

It has been proposed that the pseudo-gap metallic s-
tate in underdoped high Tc superconductors is described
by the (doped) staggered flux state (the U(1)-linear s-
tate U1Cn01n) which contains a long range U(1) gauge
interaction.[33, 34] From the above result, we see that,
for realistic v2/v1 ∼ 0.1 in high Tc superconductors, the
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U1Cn01n spin liquid is unstable at low energies. Howev-
er, this does not mean that we cannot not use the alge-
braic spin liquid U1Cn01n to describe the pseudo-gap
metallic state. It simply means that, at low temper-
atures, the algebraic spin liquid will change into other
stable quantum states, such as superconducting state or
antiferromagnetic state[79] as observed in experiments.

The unstable algebraic spin liquid can be viewed as
an unstable quantum fixed point. Thus the algebraic-
spin-liquid approach to the pseudo-gap metallic state
in underdoped samples looks similar to the quantum-
critical-point approach[80, 81]. However, there is an im-
portant distinction between the two approaches. The
quantum-critical-point approach assumes a nearby con-
tinuous phase transition that changes symmetries and
strong fluctuations of local order parameters that cause
the criticality. The algebraic-spin-liquid approach does
not require any nearby symmetry breaking state and
there is no local order parameter to fluctuate.

E. Quantum order and the stability of spin liquids

After introducing quantum orders and PSG, we can
have a deeper discussion on the stability of mean-field
states. The existence of the algebraic spin liquid is a
very striking phenomenon, since gapless excitations in-
teract down to zero energy and cannot be described by
free fermions or free bosons. According to a conventional
wisdom, if bosons/fermions interact at low energies, the
interaction will open an energy gap for those low lying ex-
citations. This implies that a system can either has free
bosonic/fermionic excitations at low energies or has no
low energy excitations at all. According to the discussion
in section VIII, such a conventional wisdom is incorrec-
t. But it nevertheless rises an important question: what
protects gapless excitations (in particular when they in-
teract at all energy scales). There should be a “reason”
or “principle” for the existence of the gapless excitation-
s. Here we would like to propose that it is the quantum
order that protects the gapless excitations. We would like
to stress that gapless excitations in the Fermi spin liq-
uids and in the algebraic spin liquids exist even without
any spontaneous symmetry breaking and they are not
protected by symmetries. The existence of gapless ex-
citations without symmetry breaking is a truly remark-
able feature of quantum ordered states. In addition to
the gapless Nambu-Goldstone modes from spontaneous
continuous symmetry breaking, quantum orders offer an-
other origin for gapless excitations.

We have seen from several examples discussed in sec-
tion V that the quantum order (or the PSG) not only
protect the zero energy gap, it also protects certain qual-
itative properties of the low energy excitations. Those
properties include the linear, quadratic, or gapless disper-
sions, the k locations where the 2-spinon energy E2s(k)
vanishes, etc .

Since quantum order is a generic property for any

quantum state at zero temperature, we expect that the
existence of interacting gapless excitations is also a gener-
ic property of quantum state. We see that algebraic state
is a norm. It is the Fermi liquid state that is special.

In the following, we would like to argue that the PSG
can be a stable (or universal) property of a quantum s-
tate. It is robust against perturbative fluctuations. Thus,
the PSG, as a universal property, can be used to char-
acterize a quantum phase. From the examples discussed
in sections VIII C and VIIID, we see that PSG protects
gapless excitations. Thus, the stability of PSG also imply
the stability of gapless excitations.

We know that a mean-field spin liquid state is char-
acterized by Uij = 〈ψiψ†j〉. If we include perturbative
fluctuations around the mean-field state, we expect Uij
to receive perturbative corrections δUij . Here we would
like to argue that the perturbative fluctuations can only
change Uij in such a way that Uij and Uij + δUij have
the same PSG.

First we would like to note the following well know
facts: the perturbative fluctuations cannot change the
symmetries and the gauge structures. For example, if
Uij and the Hamiltonian have a symmetry, then δUij
generated by perturbative fluctuations will have the same
symmetry. Similarly, the perturbative fluctuations can-
not generate δUij that, for example, break a U(1) gauge
structure down to a Z2 gauge structure.

Since both the gauge structure (described by the IGG)
and the symmetry are part of the PSG, it is reasonable
to generalize the above observation by saying that not
only the IGG and the symmetry in the PSG cannot be
changed, the whole PSG cannot be changed by the per-
turbative fluctuations. In fact, the mean-field Hamilto-
nian and the mean-field ground state are invariant under
the transformations in the PSG. Thus in a perturbative
calculation around a mean-field state, the transforma-
tions in the PSG behave just like symmetry transforma-
tions. Therefore, the perturbative fluctuations can only
generate δUij that are invariant under the transforma-
tions in the PSG.

Since the perturbative fluctuations (by definition) do
not change the phase, Uij and Uij + δUij describe the
same phase. In other words, we can group Uij into class-
es (which are called universality classes) such that Uij in
each class are connected by the the perturbative fluctu-
ations and describe the same phase. We see that if the
above argument is true then the universality classes are
classified by the PSG’s (or quantum orders).

We would like to point out that we have assumed the
perturbative fluctuations to have no infrared divergence
in the above discussion. The infrared divergence implies
the perturbative fluctuations to be relevant perturbation-
s, which cause phase transitions.
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IX. RELATION TO PREVIOUSLY
CONSTRUCTED SPIN LIQUIDS

Since the discovery of high Tc superconductor in 1987,
many spin liquids were constructed. After classifying and
constructing a large class of spin liquids, we would like
to understand the relation between the previously con-
structed spin liquids and spin liquids constructed in this
paper.

Anderson, Baskaran, and Zou[14–16] first used the
slave boson approach to construct uniform RVB state.
The uniform RVB state is a symmetric spin liquid which
has all the symmetries of the lattice. It is a SU(2)-gapless
state characterized by the PSG SU2An0. Later two more
spin liquids were constructed using the same U(1) slave
boson approach. One is the π-flux phase and the other
is the staggered-flux/d-wave state.[31, 32, 82] The π-flux
phase is a SU(2)-linear symmetric spin liquid character-
ized by PSG SU2Bn0. The staggered-flux/d-wave state
is a U(1)-linear symmetric spin liquid characterized by
PSG U1Cn01n. The U1Cn01n state is found to be the
mean-field ground for underdoped samples. Upon doping
the U1Cn01n state becomes a metal with a pseudo-gap
at high temperatures and a d-wave superconductor at low
temperatures.

It is amazing to see that the slave boson approach,
which is regarded as a very unreliable approach, predict-
ed the d-wave superconducting state 5 years before its
experimental confirmation.[21, 83–85] Maybe predicting
the d-wave superconductor is not a big deal. After all, the
d-wave superconductor is a commonly known state and
the paramagnon approach[86, 87] predicted d-wave su-
perconductor before the slave boson approach. However,
what is really a big deal is that the slave boson approach
also predicted the pseudo-gap metal which is a complete-
ly new state. It is very rare in condensed matter physics
to predict a new state of matter before experiments. It
is also interesting to see that not many people believe in
the slave boson approach despite such a success.

The above U(1) and SU(2) spin liquids are likely to
be unstable at low energies and may not appear as the
ground states of spin systems. The first known stable
spin liquid is the chiral spin liquid.[5, 6]. It has a true
spin-charge separation. The spinons and holons carry
fractional statistics. Such a state breaks the time rever-
sal and parity symmetries and is a SU(2)-gapped state.
The SU(2) gauge fluctuations in the chiral spin state does
not cause any instability since the gauge fluctuations are
suppressed and become massive due to the Chern-Simons
term. Due to the broken time reversal and parity sym-
metries, the chiral spin state does not fit within our clas-
sification scheme.

Spin liquids can also be constructed using the slave-
fermion/σ-model approach.[41, 42] Some gapped spin liq-
uids were constructed using this approach.[43, 44] Those
states turn out to be Z2 spin liquids. But they are not
symmetric spin liquids since the 90◦ rotation symmetry
is broken. Thus they do not fit within our classifica-

tion scheme. Later, a Z2-gapped symmetric spin liquid
was constructed using the SU(2) slave-boson approach
(or the SU(2) projective construction).[38] The PSG for
such a state is Z2Axx0z. Recently, another Z2 state was
constructed using slave-boson approach.[63, 64] It is a
Z2-linear symmetric spin liquid. Its PSG is given by
Z2A0013. New Z2 spin liquids were also obtained re-
cently using the slave-fermion/σ-model approach.[46] It
appears that most of those states break certain symme-
tries and are not symmetric spin liquids. We would like
to mention that Z2 spin liquids have a nice property that
they are stable at low energies and can appear as the
ground states of spin systems.

Many spin liquids were also obtained in quantum dimer
model,[47–51] and in various numerical approach.[52–55]
It is hard to compare those states with the spin liquids
constructed here. This is because either the spectrum of
spin-1 excitations was not calculated or the model has a
very different symmetry than the model discussed here.
We need to generalized our classification to models with
different symmetries so that we can have a direct com-
parison with those interesting results and with the non-
symmetric spin liquids obtained in the slave-fermion/σ-
model approach. In quantum dimer model and in nu-
merical approach, we usually know the explicit form of
ground state wave function. However, at moment, we do
not know how to obtain PSG from ground wave function.
Thus, knowing the explicit ground state wave function
does not help us to obtain PSG. We see that it is im-
portant to understand the relation between the ground
state wave function and PSG so that we can understand
quantum order in the states obtained in numerical calcu-
lations.

X. SUMMARY OF THE MAIN RESULTS

In the following we will list the main results obtained
in this paper. The summary also serves as a guide of the
whole paper.

(1) A concept of quantum order is introduced. The
quantum order describes the orders in zero-temperature
quantum states. The opposite of quantum order – classi-
cal order describes the orders in finite-temperature clas-
sical states. Mathematically, the quantum order charac-
terizes universality classes of complex ground state wave-
functions. It is richer then the classical order that char-
acterizes the universality classes of positive distribution
functions. Quantum orders cannot be completely de-
scribed by symmetries and order parameters. Landau’s
theory of orders and phase transitions does not apply to
quantum orders. (See section IA)

(2) Projective symmetry group is introduced to de-
scribe different quantum orders. It is argued that PSG is
a universal property of a quantum phase. PSG extend-
s the symmetry group description of classical orders and
can distinguishes different quantum orders with the same
symmetries. (See section IV A and VIII E)
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(3) As an application of the PSG description of quan-
tum phases, we propose the following principle that gov-
ern the continuous phase transition between quantum
phases. Let PSG1 and PSG2 be the PSG’s of the t-
wo quantum phases on the two sides of a transition, and
PSGcr be the PSG that describes the quantum criti-
cal state. Then PSG1 ⊆ PSGcr and PSG2 ⊆ PSGcr.
We note that the two quantum phases may have the
same symmetry and continuous quantum phase transi-
tions are possible between quantum phases with same
symmetry.[66] The continuous transitions between dif-
ferent mean-field symmetric spin liquids are discussed
in section V and appendix B which demonstrate the
above principle. However, for continuous transitions be-
tween mean-field states, we have an additional condition
PSG1 = PSGcr or PSG2 = PSGcr.

(4) With the help of PSG, we find that, within the
SU(2) mean-field slave-boson approach, there are 4 sym-
metric SU(2) spin liquids and infinite many symmetric
U(1) spin liquids. There are at least 103 and at most 196
symmetric Z2 spin liquids. Those symmetric spin liquids
have translation, rotation, parity and the time reversal
symmetries. Although the classifications are done for the
mean-field states, they apply to real physical spin liquids
if the corresponding mean-field states turn out to be sta-
ble against fluctuations. (See section IV and appendix
A)

(5) The stability of mean-field spin liquid states are dis-
cussed in detail. We find many gapless mean-field spin
liquids to be stable against quantum fluctuations. They
can be stable even in the presence of long range gauge in-
teractions. In that case the mean-field spin liquid states
become algebraic spin liquids where the gapless excita-
tions interact down to zero energy. (See section VIII)

(6) The existence of algebraic spin liquids is a striking
phenomenon since there is no spontaneous broken sym-
metry to protect the gapless excitations. There should be
a “principle” that prevents the interacting gapless exci-
tations from opening an energy gap and makes the alge-
braic spin liquids stable. We propose that quantum order
is such a principle. To support our idea, we showed that
just like the symmetry group of a classical state deter-
mines the gapless Nambu-Goldstone modes, the PSG of
a quantum state determines the structure of gapless exci-
tations. The gauge group of the low energy gauge fluctu-
ations is given by the IGG, a subgroup of the PSG. The
PSG also protects massless Dirac fermions from gaining
a mass due to radiative corrections. We see that the sta-
bilities of algebraic spin liquids and Fermi spin liquids
are protected by their PSG’s. The existence of gapless
excitations (the gauge bosons and gapless fermions) with-
out symmetry breaking is a truly remarkable feature of
quantum ordered states. The gapless gauge and fermion
excitations are originated from the quantum orders, just
like the phonons are originated from translation symme-
try breaking. (See sections VIII C, VIII D, VIII E and
discussions below Eq. (49))

(7) Many Z2 spin liquids are constructed. Their low

energy excitations are described by free fermions. Some
Z2 spin liquids have gapless excitations and others have
finite energy gap. For those gapless Z2 spin liquids some
have Fermi surface while others have only Fermi points.
The spinon dispersion near the Fermi points can be lin-
ear E ∝ |k| (which gives us Z2-linear spin liquids) or
quadratic E ∝ k2 (which gives us Z2-quadratic spin liq-
uids). In particular, we find there can be many Z2-linear
spin liquids with different quantum orders. All those d-
ifferent Z2-linear spin liquids have nodal spinon excita-
tions. (See section III, V, and appendix B)

(8) Many U(1) spin liquids are constructed. Some U(1)
spin liquids have gapless excitations near isolated Fermi
point with a linear dispersion. Those U(1) linear states
can be stable against quantum fluctuations. Due to long
range U(1) gauge fluctuations, the gapless excitations in-
teract at low energies. The U(1)-linear spin liquids can
be concrete realizations of algebraic spin liquids.[34, 67]
(See section III, V, and appendix B)

(9) Spin liquids with the same symmetry and differen-
t quantum orders can have continuous phase transitions
between them. Those phase transitions are very similar
to the continuous topological phase transitions between
quantum Hall states.[66, 88–90] We find that, at mean-
field level, the U1Cn01n spin liquid in Eq. (32) (the stag-
gered flux phase) can continuously change into 8 different
symmetric Z2 spin liquids. The SU2An0 spin liquid in E-
q. (30) (the uniform RVB state) can continuously change
into 12 symmetric U(1) spin liquids and 52 symmetric
Z2 spin liquids. The SU2Bn0 spin liquid in Eq. (31) (the
π-flux phase) can continuously change into 12 symmetric
U(1) spin liquids and 58 symmetric Z2 spin liquids. (See
appendix B)

(10) We show that spectrum of spin-1 excitations
(ie the two-spinon spectrum), which can be probed in
neutron scattering experiments, can be used to measure
quantum orders. The gapless points of the spin-1 ex-
citations in the U1Cn01n (the staggered-flux) state are
always at k = (π, π), (0, 0), (π, 0) and (0, π). In the
pseudo-gap metallic phase of underdoped high Tc super-
conductors, the observed splitting of the neutron scat-
tering peak (π, π) → (π ± δ, π), (π, π ± δ) [30, 68–74] or
(π, π) → (π + δ, π − δ), (π − δ, π + δ) [28, 75] at low en-
ergies indicates a transition of the U1Cn01n state into
a state with a different quantum order, if we can indeed
identify the scattering peak as the gapless node. Non of
the 8 symmetric Z2 spin liquids in the neighborhood of
the the U1Cn01n state can explain the splitting pattern.
Thus we might need to construct a new low energy state
to explain the splitting. This illustrates that detailed
neutron scattering experiments are powerful tools in de-
tecting quantum orders and studying transitions between
quantum orders. (See section VII.)

(11) The mean-field phase diagram Fig. 8 for a J1-
J2 spin system is calculated. (Only translation sym-
metric states are considered.) We find four mean-field
ground states as we change J2/J1: the π-flux state (the
SU2An0 state), the chiral spin state (an SU(2)-gapped
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state), the U(1)-linear state Eq. (123) which breaks 90◦
rotation symmetry, and the SU(2) × SU(2)-linear state
Eq. (122). We also find several locally stable mean-field
states: the U(1)-gapped state U1Cn00x in Eq. (104) and
two Z2-linear states Z2Azz13 in Eq. (86) and Z2A0013
in Eq. (85). Those spin liquids have a better chance
to appear in underdoped high Tc superconductors. The
Z2A0013 Z2-linear state has a spinon dispersion very sim-
ilar to electron dispersion observed in underdoped sam-
ples. The spinon dispersion in the Z2Azz13 Z2-linear
state may also be consistent with electron dispersion in
underdoped samples. We note that the two-spinon spec-
trum for the two Z2-linear states have some qualitative
differences (see Fig. 10a and Fig. 10b and note the posi-
tions of the nodes). Thus we can use neutron scattering
to distinguish the two states. (See section VI.)

Next we list some remarks/comments that may clar-
ify certain confusing points and help to avoid possible
misunderstanding.

(A) Gauge structure is simply a redundant labeling
of quantum states. The “gauge symmetries” (referring
different labels of same physical state give rise to the
same result) are not symmetries and can never be broken.
(See the discussion below Eq. (15))

(B) The gauge structures referred in this paper (such
as in Z2, U(1), or SU(2) spin liquids) are “low energy”
gauge structures. They are different from the “high ener-
gy” gauge structure that appear in Z2, U(1), and SU(2)
slave-boson approaches. The “low energy” gauge struc-
tures are properties of the quantum orders in the ground
state of a spin system. The “high energy” gauge struc-
ture is a particular way of writing down the Hamiltonian
of spin systems. The two kinds of gauge structures have
nothing to do with each other. (See discussions at the
end of section I C and at the end of section IV A)

(C) There are (at least) two different interpretations of
spin-charge separation. The first interpretation (pseudo
spin-charge separation) simply means that the low energy
excitations cannot be described by electron-like quasipar-
ticles. The second interpretation (true spin-charge sepa-
ration) means the existence of free spin-1/2 neutral quasi-
particles and spin-0 charged quasiparticles. In this paper
both interpretations are used. The algebraic spin liquids
have a pseudo spin-charge separation. The Z2 and chi-
ral spin liquids have a true spin-charge separation. (See
section I C)

(D) Although in this paper we stress that quantum
orders can be characterized by the PSG’s, we need to
point out that the PSG’s do not completely characterize
quantum orders. Two different quantum orders may be
characterized by the same PSG. As an example, we have
seen that the ansatz Eq. (104) can be a U(1)-linear state
or a U(1)-gapped state depending on the values of pa-
rameters in the ansatz. Both states are described by the
same PSG U1Cn00x. Thus the PSG can not distinguish
the different quantum orders carried by the U(1)-linear
state and the U(1)-gapped state.

(E) The unstable spin liquids can be important in

understanding the finite temperature states in high Tc

superconductors. The pseudo-gap metallic state in un-
derdoped samples is likely to be described by the un-
stable U1Cn01n algebraic spin liquid (the staggered
flux state) which contains a long range U(1) gauge
interaction.[33, 34] (See discussions at the end of section
VIII.)

(F) Although we have been concentrated on the char-
acterization of stable quantum states, quantum order and
the PSG characterization can also be used to describe the
internal order of quantum critical states. Here we define
“quantum critical states” as states that appear at the
continuous phase transition points between two states
with different symmetries or between two states with d-
ifferent quantum orders (but the same symmetry). We
would like to point out that “quantum critical states”
thus defined are more general than “quantum critical
points”. “Quantum critical points”, by definition, are
the continuous phase transition points between two states
with different symmetries. The distinction is importan-
t. “Quantum critical points” are associated with broken
symmetries and order parameters. Thus the low energy
excitations at “quantum critical points” come from the
strong fluctuations of order parameters. While “quantum
critical states” may not be related to broken symmetries
and order parameters. In that case it is impossible to re-
late the gapless fluctuations in a “quantum critical state”
to fluctuations of an order parameter. The unstable spin
liquids mentioned in (E) can be more general quantum
critical states. Since some finite temperature phases in
high Tc superconductors may be described by quantum
critical states or stable algebraic spin liquids, their char-
acterization through quantum order and PSG’s is useful
for describing those finite temperature phases.

(G) In this paper, we only studied quantum orders
and topological orders at zero temperature. However, we
would like point out that topological orders and quan-
tum orders may also apply to finite temperature systems.
Quantum effect can be important even at finite tempera-
tures. In Ref. [13], a dimension index (DI) is introduced
to characterize the robustness of the ground state degen-
eracy of a topologically ordered state. We find that if
DI≤ 1 topological orders cannot exist at finite tempera-
ture. However, if DI> 1, topological order can exist at
finite temperatures and one expect a finite-temperature
phase transition without any change of symmetry. Topo-
logical orders in FQH states have DI=1, and they cannot
exist at finite temperatures. The topological order in 3D
superconductors has DI=2. Such a topological order can
exist at finite temperatures, and we have a continuous
finite-temperature superconductor-metal transition that
do not change any symmetry.

Although we mainly discussed quantum orders in 2D
spin systems, the concept of quantum order is not limited
to 2D spin systems. The concept applies to any quantum
systems in any dimensions. Actually, a superconductor is
the simplest example of a state with non trivial quantum
order if the dynamical electromagnetic fluctuations are
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included. A superconductor breaks no symmetries and
cannot be characterized by order parameters. An s-wave
and a d-wave superconductors, having the same symme-
try, are distinguished only by their different quantum
orders. The gapless excitations in a d-wave supercon-
ductor are not produced by broken symmetries, but by
quantum orders. We see that a superconductor has many
properties characteristic of quantum ordered states, and
it is a quantum ordered state. The quantum orders in
the superconducting states can also be characterized us-
ing PSG’s. The IGG G = Z2 if the superconducting
state is caused by electron-pair condensation, and the
IGG G = Z4 if the superconducting state is caused by
four-electron-cluster condensation. The different quan-
tum orders in an s-wave and a d-wave superconductors
can be distinguished by their different PSG’s. The ansatz
of the s-wave superconductor is invariant under the 90◦
rotation, while the ansatz of the d-wave superconduc-
tor is invariant under the 90◦ rotation followed by gauge
transformations ci → ±eiπ/2ci.

It would be interesting to study quantum orders in
3D systems. In particular, it is interesting to find out
the quantum order that describes the physical vacuum
that we all live in. The existence of light – a massless
excitation – without any sign of spontaneous symmetry
breaking suggests that our vacuum contains a non-trivial
quantum order that protect the massless photons. Thus
quantum order provides an origin of light.[58]
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APPENDIX A: CLASSIFICATION OF
PROJECTIVE SYMMETRY GROUPS

1. General conditions on projective symmetry
groups

The transformations in a symmetry group satisfy vari-
ous algebraic relations so that they form a group. Those
algebraic relations leads to conditions on the elements
of the PSG. Solving those conditions for a given sym-
metry group and a given IGG allows us to find pos-
sible extensions of the symmetry group, or in another
word, to find possible PSG’s associated with the sym-
metry group. In section IV A, we have seen that the
relation TxTyT−1

x T−1
y = 1 between translations in x- and

y-directions leads to condition

GxTxGyTy(GxTx)−1(GyTy)−1 =

GxTxGyTyT−1
x G−1

x T−1
y G−1

y ∈ G; (A1)

or

Gx(i)Gy(i− x̂)G−1
x (i− ŷ)Gy(i)−1 ∈ G (A2)

on elements GxTx and GyTy of the PSG. Here G is the
IGG. This condition allows us to determine that there

are only two different extensions (given by Eq. (61) and
Eq. (62)) for the translation group generated by Tx and
Ty, if G = Z2.

However, a bigger symmetry groups can have many
more extensions. In the following we are going to con-
sider PSG’s for the symmetry group generated by two
translations Tx,y, three parity transformations Px,y,xy,
and the time reversal transformation T . Since transla-
tions and the time reversal transformation commute we
have,

(GxTx)−1(GT T )−1GxTxGT T ∈ G
(GyTy)−1(GT T )−1GyTyGT T ∈ G (A3)

which reduces to the following two conditions on Gx,y(i)
and GT (i)

G−1
x (i)G−1

T (i)Gx(i)GT (i− x̂) ∈ G
G−1

y (i)G−1
T (i)Gy(i)GT (i− ŷ) ∈ G (A4)

Since T−1P−1
x TPx = 1, T−1P−1

y TPy = 1, and
T−1P−1

xy TPxy = 1, one can also show that

G−1
T (Px(i))G−1

Px
(i)GT (i)GPx(i) ∈G

G−1
T (Py(i))G−1

Py
(i)GT (i)GPy (i) ∈G

G−1
T (Pxy(i))G−1

Pxy
(i)GT (i)GPxy (i) ∈G (A5)

From the relation between the translations and the par-
ity transformations, TxP−1

x TxPx = T−1
y P−1

x TyPx =
TyP−1

y TyPy = T−1
x P−1

y TxPy = T−1
y P−1

xy TxPxy =
T−1

x P−1
xy TyPxy = 1, we find that

(GxTx)(GPxPx)−1GxTxGPxPx ∈G
(GyTy)−1(GPxPx)−1GyTyGPxPx ∈G (A6)

(GyTy)(GPyPy)−1GyTyGPyPy ∈G
(GxTx)−1(GPy

Py)−1GxTxGPy
Py ∈G (A7)

(GyTy)−1(GPxyPxy)−1GxTxGPxyPxy ∈G
(GxTx)−1(GPxyPxy)−1GyTyGPxyPxy ∈G (A8)

or

Gx(Px(i))G−1
Px

(i + x̂)Gx(i + x̂)GPx(i) ∈G
G−1

y (Px(i))G−1
Px

(i)Gy(i)GPx(i− ŷ) ∈G (A9)

Gy(Py(i))G−1
Py

(i + ŷ)Gy(i + ŷ)GPy (i) ∈G
G−1

x (Py(i))G−1
Py

(i)Gx(i)GPy (i− x̂) ∈G (A10)

G−1
y (Pxy(i))G−1

Pxy
(i)Gx(i)GPxy (i− x̂) ∈G

G−1
x (Pxy(i))G−1

Pxy
(i)Gy(i)GPxy (i− ŷ) ∈G (A11)
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We also have PxyPxPxyP−1
y = PyPxP−1

y P−1
x = 1. Thus

GPxy
PxyGPx

PxGPxy
Pxy(GPy

Py)−1 ∈G
GPy

PyGPx
Px(GPy

Py)−1(GPx
Px)−1 ∈G (A12)

which implies

GPxy
(i)GPx

(Pxy(i))GPxy
(PxyPx(i))G−1

Py
(i) ∈G

GPy (i)GPx(Py(i))G−1
Py

(Px(i))G−1
Px

(i) ∈G (A13)

The fact T 2 = 1 leads to condition

G2
T (i) ∈ G (A14)

and P 2
x = P 2

y = P 2
xy = 1 leads to

GPx
(i)GPx

(Px(i)) ∈G
GPy

(i)GPy
(Py(i)) ∈G

GPxy
(i)GPxy

(Pxy(i)) ∈G (A15)

The above conditions completely determine the PSG’s.
The solutions of the above equations for G = Z2, U(1),
and SU(2) allow us to obtain PSG’s for Z2, U(1), and
SU(2) spin liquids. However, we would like to point out
that the above conditions define the so called algebraic
PSG’s, which are somewhat different from the invariant
PSG defined in section IV A. More precisely, an algebraic
PSG is defined for a given IGG and a given symmetry
group SG. It is a group equipped with a projection P and
satisfies the following conditions

IGG ⊂PSG, P (PSG) = SG (A16)
P (gu) =P (u), for any u ∈ PSG and g ∈ IGG

It is clear that an invariant PSG is always an algebraic
PSG. However, some algebraic PSG’s are not invariant
PSG’s. This is because a generic ansatz uij that are in-
variant under an algebraic PSG may be invariant under
a larger invariant PSG. If we limit ourselves to spin liq-
uids constructed using uij , then an algebraic PSG char-
acterizes a mean-field spin liquid only when it is also an
invariant PSG at the same time.

We would like to remark that the definition of invariant
PSG can be generalized. In section IV A, the invariant
PSG is defined as a collection of transformations that
leave an ansatz uij invariant. More generally, a spin liq-
uid is not only characterized by the two-point correlation
(Uij)αβ =

〈
ψαiψ

†
βj

〉
but also by many-point correlation-

s such as (Uijmn)αβγλ =
〈
ψαiψβjψ

†
γmψ†λn

〉
. We may

define the generalized invariant PSG as a collection of
transformations that leave many-point correlation invari-
ant. It would be very interesting to see if the generalized
invariant PSG coincide with the algebraic PSG.

2. Classification of Z2 projective symmetry groups

We have seen that there are only two types of Z2 spin
liquids which have only the translation symmetry. How-
ever, spin liquids with more symmetries can have more

types. In this section, we are going to construct all (al-
gebraic) PSG’s associated with the symmetry group gen-
erated by Tx,y, Px,y,xy, and T for the case G = Z2. This
allows us to obtain a classification of mean-field symmet-
ric Z2 spin liquids.

We start with Z2 spin liquids with only translation
symmetry. First let us add the time reversal symmetry.
An arbitrary ansatz has the time reversal symmetry if it
satisfies

GT T (uij) =uij

T (uij) ≡− uij (A17)

For Z2 spin liquid, the condition Eq. (A4) becomes

G−1
x (i)G−1

T (i)Gx(i)GT (i− x̂) = ηxtτ
0

G−1
y (i)G−1

T (i)Gy(i)GT (i− ŷ) = ηytτ
0 (A18)

where ηxt,yt = ±1. For Z2 spin liquids, Gx,y ∝ τ0 and
the above four conditions (labeled by ηxt,yt = ±1 ) on
GT can be simplified

G−1
T (i)GT (i− x̂) = ηxtτ

0

G−1
T (i)GT (i− ŷ) = ηytτ

0 (A19)

This leads to four types of GT labeled by ηxt,yt = ±1

GT (i) =η
iy

ytη
ix
xtgT (A20)

where gT satisfies g2
T = ±τ0. We see that gT has two

gauge inequivalent choices gT = τ0, iτ3. Thus the sym-
metry group generated by Tx,y and T has 2× 4× 2 = 16
different extensions (or 16 different PSG’s) if G = Z2.
There can be (at most) 16 different mean-field Z2 spin
liquids which have only translation and the time reversal
symmetries.

Next let us add three types of parity symmetries. An
arbitrary ansatz has the parity symmetries if it satisfies

GPxPx(uij) =uij

Px(uij) ≡uPx(i),Px(j)

Px(i) =(−ix, iy) (A21)

GPyPy(uij) =uij

Py(uij) ≡uPy(i),Py(j)

Py(i) =(ix,−iy) (A22)

GPxyPxy(uij) =uij

Pxy(uij) ≡uPxy(i),Pxy(j)

Pxy(i) =(iy, ix) (A23)

For Z2 spin liquids, Eq. (A9), Eq. (A10), and Eq. (A11)
reduce to

Gx(Px(i))G−1
Px

(i + x̂)Gx(i + x̂)GPx(i) =ηxpxτ0

G−1
y (Px(i))G−1

Px
(i)Gy(i)GPx(i− ŷ) =ηypxτ0 (A24)
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Gy(Py(i))G−1
Py

(i + ŷ)Gy(i + ŷ)GPy (i) =ηypyτ0

G−1
x (Py(i))G−1

Py
(i)Gx(i)GPy

(i− x̂) =ηxpyτ0 (A25)

G−1
y (Pxy(i))G−1

Pxy
(i)Gx(i)GPxy

(i− x̂) =ηxpxyτ0

G−1
x (Pxy(i))G−1

Pxy
(i)Gy(i)GPxy

(i− ŷ) =ηypxyτ0 (A26)

where ηxpx,xpy,xpxy = ±1 and ηypx,ypy,ypxy = ±1.
We will consider the two cases Eq. (61) and Eq. (62)

separately. First we assume Gx(i) = Gy(i) = τ0. In
this case, Eq. (A24), Eq. (A25), and Eq. (A26) can be
simplified

G−1
Px

(i + x̂)GPx(i) =ηxpxτ0

G−1
Px

(i)GPx(i− ŷ) =ηypxτ0 (A27)

G−1
Py

(i + ŷ)GPy (i) =ηypyτ0

G−1
Py

(i)GPy
(i− x̂) =ηxpyτ0 (A28)

G−1
Pxy

(i)GPxy
(i− x̂) =ηxpxyτ0

G−1
Pxy

(i)GPxy (i− ŷ) =ηypxyτ0. (A29)

We find

GPx(i) =ηix
xpxηiy

ypxgPx

GPy (i) =ηix
xpyηiy

ypygPy

GPxy (i) =ηiy
xpxyηix

ypxygPxy (A30)

where g2
Px

= ±τ0, g2
Py

= ±τ0, and g2
Pxy

= ±τ0. η’s and
g’s in the above equation are not independent. From
Eq. (A15), we find that

ηix
xpxyηiy

ypxyηiy
xpxyηix

ypxyg2
Pxy

=± ηix
xpxyηiy

ypxyηiy
xpxyηix

ypxy

=± τ0 (A31)

which requires ηxpxy = ηypxy ≡ ηpxy. From Eq. (A13) we
see that

ηix
xpxyηiy

ypxyηiy
xpxηix

ypxηiy
xpxyηix

ypxyηix
xpyηiy

ypy ×
gPxygPxgPxyg−1

Py
= ±τ0

gPygPxg−1
Py

g−1
Px

= ±τ0 (A32)

We find

ηxpyηxpxyηypxηypxy =1
ηypyηypxyηxpxηxpxy =1 (A33)

and

gPxygPxgPxyg−1
Py

=± τ0

gPygPxg−1
Py

g−1
Px

= ±τ0 (A34)

From Eq. (A33) we find ηxpx = ηypy and ηxpy = ηypx.
Eq. (A30) becomes

GPx(i) =ηix
xpxηiy

xpygPx

GPy
(i) =ηix

xpyηiy
xpxgPy

GPxy (i) =ηipxygPxy (A35)

Now the three ηxpx, ηxpy, and ηpxy are independent.
We note that gauge transformation Wi = ηix

wxη
iy
wy with

ηwx,wy = ± does not change the form of Gx,y in Eq. (61)
and Eq. (62). Thus we can use such gauge transforma-
tion to further simplify GPx,y,xy

. We find that the gauge
transformation Wi = (−)ix changes ηpxy to −ηpxy. Thus
we can always set ηpxy = 1. In the following we will
choose the gauge in which ηpxy = 1.

We also find that Eq. (A5) requires

ηxt = ηyt (A36)

and

g−1
T g−1

Px
gT gPx =± τ0

g−1
T g−1

Py
gT gPy =± τ0

g−1
T g−1

Pxy
gT gPxy =± τ0 (A37)

Thus we only have two types of GT (i)

GT (i) = ηitgT (A38)

labeled by ηt = ±1.
In the following, we will list all the gauge inequivalent

solutions for g’s from Eq. (A34) and Eq. (A37). Most of
them are obtained by setting g’s to be one of τµ, µ =
0, 1, 2, 3.

gPxy =τ0 gPx =τ0 gPy =τ0 gT =τ0; (A39)

gPxy =τ0 gPx =iτ3 gPy =iτ3 gT =τ0; (A40)

gPxy =iτ3 gPx =τ0 gPy =τ0 gT =τ0; (A41)

gPxy =iτ3 gPx =iτ3 gPy =iτ3 gT =τ0; (A42)

gPxy =iτ3 gPx =iτ1 gPy =iτ1 gT =τ0; (A43)

gPxy =τ0 gPx =τ0 gPy =τ0 gT =iτ3; (A44)

gPxy =τ0 gPx =iτ3 gPy =iτ3 gT =iτ3; (A45)

gPxy =τ0 gPx =iτ1 gPy =iτ1 gT =iτ3; (A46)

gPxy =iτ3 gPx =τ0 gPy =τ0 gT =iτ3; (A47)

gPxy =iτ3 gPx =iτ3 gPy =iτ3 gT =iτ3; (A48)

gPxy =iτ3 gPx =iτ1 gPy =iτ1 gT =iτ3; (A49)

gPxy =iτ1 gPx =τ0 gPy =τ0 gT =iτ3; (A50)

gPxy =iτ1 gPx =iτ3 gPy =iτ3 gT =iτ3; (A51)

gPxy =iτ1 gPx =iτ1 gPy =iτ1 gT =iτ3; (A52)

gPxy =iτ1 gPx =iτ2 gPy =iτ2 gT =iτ3; (A53)
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gPxy =iτ12 gPx =iτ1 gPy =iτ2 gT =iτ0; (A54)

gPxy =iτ12 gPx
=iτ1 gPy

=iτ2 gT =iτ3; (A55)

where

τab =
τa + τ b

√
2

, τab̄ =
τa − τ b

√
2

. (A56)

The above 17 solutions, when combined with 8 choices of
ηt, ηxpx, and ηxpy (see Eq. (A38) and Eq. (A35)), give us
136 different PSG’s for the case Gx(i) = Gy(i) = τ0.

For Z2 spin liquid with Gx(i) = (−)iyτ0, Gy(i) = τ0,
Eq. (A24), Eq. (A25), and Eq. (A26) can be simplified
as

G−1
Px

(i + x̂)GPx
(i) =ηxpxτ0

G−1
Px

(i)GPx
(i− ŷ) =ηypxτ0 (A57)

G−1
Py

(i + ŷ)GPy (i) =ηypyτ0

G−1
Py

(i)GPy (i− x̂) =ηxpyτ0 (A58)

(−)iyG−1
Pxy

(i)GPxy (i− x̂) =ηxpxyτ0

(−)ixG−1
Pxy

(i)GPxy (i− ŷ) =ηypxyτ0. (A59)

The above equations can be solved and we get

GPx(i) =ηix
xpxηiy

ypxgPx

GPy (i) =ηix
xpyηiy

ypygPy

GPxy (i) =(−)ixiyηix
xpxyηiy

ypxygPxy (A60)

Eq. (A15) and Eq. (A13) still leads to ηxpxy = ηypxy and
Eq. (A32). Thus

GPx(i) =ηix
xpxηiy

xpygPx

GPy (i) =ηix
xpyηiy

xpxgPy

GPxy (i) =(−)ixiygPxy (A61)

Eq. (A34) and Eq. (A37) are still valid here, which lead
to the same choices for g’s. For the case (−)iyGx(i) =
Gy(i) = τ0, the 17 choices of g’s in Eq. (A39) to E-
q. (A55), when combined with 8 choices of ηt, ηxpx, and
ηxpy again give us 136 different PSG’s through Eq. (A38)
and Eq. (A61).

Now we would like to consider which of the translation
symmetric ansatz in Eq. (63) or Eq. (64) have the parity
and the time reversal symmetries. We note that three
parity symmetries also imply the 90◦ rotation symmetry.

After two parity transformations Px and Py, we find
um in Eq. (63) or Eq. (64) satisfies

u−m = ηmxpyηmxpxgPygPxumg−1
Px

g−1
Py

(A62)

After the time reversal transformation, we have

−um = ηmt gT umg−1
T (A63)

Thus um = uµ
mτµ must satisfy

u0
m =0, if ηmxpyηmxpx = 1 or ηmt = 1

ul
mτ l =ηmxpyηmxpxgPy

gPx
ul
mτ lg−1

Px
g−1

Py

−ul
mτ l =ηmt gT ul

mτ lg−1
T (A64)

in order to have the parity and the time reversal symme-
tries. We see that uij = 0 if gT = τ0 and ηt = 1 and
ul
m = 0, l = 1, 2, 3, if ηt = ηxpxηxpy and gT = ±gPy

gPx
.

There are 2 × 6 × 4 = 48 PSG’s with gT = τ0 and
ηt = 1. There are 2 × 1 × 2 = 4 PSG’s with gT 6= τ0,
gT = ±gPy

gPx
, ηt = ηxpxηxpy, and ηt = 1. There are

2× 6× 2 = 24 PSG’s with gT = ±gPygPx , ηt = ηxpxηxpy,
and ηt = −1. Since the ansatz that are invariant under
the above PSG’s have ul

m = 0, those ansatz are actually
invariant under larger PSG’s with IGG equal or larger
than SU(2). Thus there are at most 272− 48− 4− 24 =
196 different mean-field Z2 spin liquids that can be con-
structed form uij .

For ansatz of type Eq. (63) the parity symmetries also
require that

uPx(m) =ηmx
xpxηmy

xpyg−1
Px

umgPx

uPy(m) =ηmx
xpyηmy

xpxg−1
Py

umgPy

uPxy(m) =ηmpxyg−1
Pxy

umgPxy (A65)

For ansatz of type Eq. (64) the parity symmetries require
that

uPx(m) =ηmx
xpxηmy

xpyg−1
Px

umgPx

uPy(m) =ηmx
xpyηmy

xpxg−1
Py

umgPy

uPxy(m) =(−)mxmyηmpxyg−1
Pxy

umgPxy (A66)

For each choice of g’s and η’s, Eq. (A64), Eq. (A65), and
Eq. (A66) allow us to construct Z2 symmetric ansatz uij .

3. Classification of U(1) projective symmetry
groups

In this section we will use PSG to classify quantum
orders in U(1) spin liquids by finding the PSG with IGG
G = U(1). First we note that elements in the U(1) IGG
must have a form eiθvi·τ where vi is a site dependent
vector. We can always choose a gauge such that vi all
point to the same direction, say, the τ3 direction. We
will call this gauge canonical gauge. We also find that
|vi| must be independent of i in order for uij to be non-
zero and invariant under the IGG. Thus, in the canonical
gauge, IGG has a form

G = {eiθτ3 |θ ∈ [0, 2π)} (A67)

and the ansatz uij has a form

uij = u0
ijτ

0 + u3
ijτ

3 (A68)



37

We see that the flux through any loops is in the τ3 direc-
tion. Due to the translation symmetry of the ansatz, the
absolute value of the flux must be translation invariant,
but the sign may change as we translate the loops. Thus,
the loop operator have a form

PCi = (τ1)niPCi=0(τ
1)ni (A69)

where ni = 0, 1 and Ci is loop with base point i. Here
the two loops Ci and Cj are related by a translation and
have the same shape. Now we can choose a different
gauge by making a gauge transformation Wi = (iτ1)ni .
In the new gauge we have

uij =(iτ1)ni−nju0
ijτ

0 + (iτ1)ni+nju3
ijτ

3

PCi =PCi=0

G ={ei(−)niθτ3 |θ ∈ [0, 2π)} (A70)

Since the loop operators are uniform, we will call the new
gauge uniform gauge.

Let us first work in the uniform gauge. From the trans-
lation invariance of PCi

PCi =Gx(i)PCi−x̂G
−1
x (i) = Gx(i)PCiG

−1
x (i)

PCi =Gy(i)PCi−ŷG
−1
y (i) = Gy(i)PCiG

−1
y (i) (A71)

we find that Gx,y have a form

Gx(i) =g3(θx(i))
Gy(i) =g3(θy(i)) (A72)

Now we switch to the canonical gauge. We note that
a gauge transformation that keep an ansatz to have the
form in the canonical gauge Eq. (A68) must have a one
the following two forms

Wi = g3(θ(i)) (A73)

Wi = iτ1g3(θ(i)) (A74)

if we require that uij 6= 0. (More precisely, we require
that any two points on the lattice can be connected by
several non-zero uij ’s. We will call such an ansatz con-
nected.) Thus for spin liquids with connected uij , Gx,y

must take one of the above two forms in the canonical
gauge, since Gx,y are two special gauge transformations.
From Eq. (A72), we find that Gx,y have a form

Gy(i) =(−iτ1)nig3(θy(i))(iτ1)ni−ŷ

Gx(i) =(−iτ1)nig3(θx(i))(iτ1)ni−x̂ (A75)

in the canonical gauge. Thus ni can only be one of the
following four choices: ni = 0, ni = (1 − (−)i)/2, ni =
(1 − (−)iy )/2, and ni = (1 − (−)ix)/2. In these four
cases, Gx,y take one of the above two forms and uij can
be connected.

Let us consider those cases in turn. We will work in
the canonical gauge. When ni = 0, Gx,y have a form

Gx(i) = g3(θx(i)), Gy(i) = g3(θy(i)) (A76)

Since the gauge transformation Wi = g3(θi) keep an
ansatz and its PSG in the canonical gauge, we can use
such kind of gauge transformation to simplify Gx,y by
setting θy(i) = 0 and θx(iy = 0, ix) = 0. Now Eq. (A2)
takes a form

Gx(i)Gx(i− ŷ)−1 = g3(ϕ) (A77)

for a constant ϕ. This allows us to obtain

Gx(i) = g3(iyϕ + θx), Gy(i) = g3(θy). (A78)

The translation symmetric ansatz has a form

ui,i+m = iρmg3(−myixϕ + φ) (A79)

where ρm > 0. The above ansatz describes particle hop-
ping in uniform “magnetic field” with eiϕτ3

flux per pla-
quette. In this case ϕ/π should be a rational number
ϕ/π = p/q (between 0 and 1) so that the ansatz can be
put on a finite lattice. Thus ϕ/π should be viewed as a
discrete label and different rational numbers between 0
and 1 will gives rise to different type of spin liquids.

When ni = (1 + (−)i)/2, Gx,y have a form

Gx(i) = g3(θx(i))iτ1, Gy(i) = g3(θy(i))iτ1 (A80)

Again we can use the gauge transformation Wi = g3(θi)
to simplify Gx,y by setting θy(i) = 0 and θx(iy = 0, ix) =
0. Now Eq. (A2) takes a form

Gx(i)τ1Gx(i− ŷ)−1τ1 =g3(ϕ) (A81)

or

θx(i) + θx(i− ŷ) = ϕ (A82)

for a constant ϕ. This allows us to obtain

Gx(i) = g3((−)iyφtr + θx)iτ1, Gy(i) = g3(θy)iτ1.
(A83)

where φtr ∈ [0, π). A gauge transformation Wi =
g3(−(−)iyφtr/2) change the above to

Gx(i) = g3(θx)iτ1, Gy(i) = g3(θy)iτ1. (A84)

The translation symmetric ansatz has a form

ui,i+m = iρmg3

(
(−)iφm

)
(A85)

When ni = (1 + (−)ix)/2, Gx,y have a form

Gx(i) = g3(θx(i))iτ1, Gy(i) = g3(θy(i)) (A86)

After using a gauge transformation Wi = g3(θi) to sim-
plify Gx,y by setting θy(i) = 0, Eq. (A2) takes a form

Gx(i)Gx(i− ŷ)−1 =g3(ϕ) (A87)

or

θx(i)− θx(i− ŷ) = ϕ (A88)
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for a constant ϕ. This allows us to obtain

Gx(i) = g3(iyϕ + θx)iτ1, Gy(i) = g3(θy). (A89)

where ϕ ∈ [0, π). A gauge transformation Wi =
g3(−iyϕ/2) change the above to

Gx(i) = g3(θx)iτ1, Gy(i) = g3(θy). (A90)

The translation symmetric ansatz has a form

ui,i+m = iρmg3

(
(−)ixφm

)
(A91)

To summarize, Eq. (A78), Eq. (A84) and Eq. (A90) are
the most general translation PSG’s that allow non-zero
uij . Eq. (A79), Eq. (A85), and Eq. (A91) are the most
general translation symmetric mean-field ansatz for U(1)
spin liquids.

Next, we would like to include more symmetries. We
first consider the translation PSG in Eq. (A78). When
ϕ = 0 the translation PSG has a form

Gx(i) = g3(θx), Gy(i) = g3(θy). (A92)

The corresponding spin liquids will be called type U1A
spin liquids. When ϕ = π the translation PSG has a
form

Gx(i) = (−)iyg3(θx), Gy(i) = g3(θy). (A93)

and the corresponding spin liquids will be called type
U1B spin liquids. For other value of ϕ, we will call the
corresponding spin liquids type U1m

n spin liquids, where
m/n = ϕ/π mod 1. The translation PSG’s Eq. (A84)
and Eq. (A90) will correspond to type U1C and type
U1D spin liquids respectively.

Let us first consider the type U1A spin liquids. To add
the time reversal symmetry, we note that, for type U1A
spin liquid, the condition Eq. (A4) becomes

G−1
T (i)GT (i− x̂) ∈ U(1)

G−1
T (i)GT (i− ŷ) ∈ U(1) (A94)

This leads to two types of GT

GT = g3(i ·ϕt + θt), ig3(i ·ϕt + θt)τ1 (A95)

Since T 2 = 1 and G2
T ∈ U(1), the above becomes

GT = ηix
xtη

iy

ytg3(θt), ig3(i ·ϕt + θt)τ1 (A96)

To add three types of parity symmetries, we note that,
for type U1A spin liquids, Eq. (A9), Eq. (A10), and E-
q. (A11) reduce to

G−1
Px

(i + x̂)GPx(i) ∈U(1)

G−1
Px

(i)GPx(i− ŷ) ∈U(1) (A97)

G−1
Py

(i + ŷ)GPy (i) ∈U(1)

G−1
Py

(i)GPy (i− x̂) ∈U(1) (A98)

G−1
Pxy

(i)GPxy
(i− ŷ) ∈U(1). (A99)

We find that GPx,Py,Pxy can have the following forms

GPx
=g3(i ·ϕpx + θpx), ig3(i ·ϕpx + θpx)τ1

GPy
=g3(i ·ϕpy + θpy), ig3(i ·ϕpy + θpy)τ1

GPxy
=g3(i ·ϕpxy + θpxy), ig3(i ·ϕpxy + θpxy)τ1

(A100)

Note that the gauge transformation Wi = g3(i · θ) does
not change Gx,y. Thus, we can use it to simplify GPx,Py

and get

GPx
=g3(iyϕpx + θpx), ig3(ixϕpx + θpx)τ1

GPy =g3(ixϕpy + θpy), ig3(iyϕpy + θpy)τ1 (A101)

GPxy
=g3(i ·ϕpxy + θpxy), ig3(i ·ϕpxy + θpxy)τ1

From the condition Eq. (A15), we find that

GPx
=ηiy

ypxg3(θpx), iηix
xpxg3(θpx)τ1

GPy =ηix
xpyg3(θpy), iηiy

ypyg3(θpy)τ1 (A102)

GPxy =g3((ix − iy)ϕpxy + θpxy), ig3((ix + iy)ϕpxy + θpxy)τ1

GPx,Py,Pxy,T should also satisfy Eq. (A13) and E-
q. (A5). We find GPxy can be obtained from GPx,Py

through Eq. (A13) and GT from GPx,Py,Pxy through E-
q. (A5). This leads to the following 24 sets of solutions

GPx =ηiy
ypxg3(θpx), GPy = ηix

ypxg3(θpy)

GPxy =g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (A103)

and

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxg3(θpy)iτ1

GPxy =g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1 (A104)

When combined with the type U1A translation PSG E-
q. (A92), the above 24 sets of solutions give us 24 dif-
ferent PSG’s. A labeling scheme of the above PSG’s is
given below Eq. (70).

Now let us consider the form of ansatz that is invari-
ant under the above PSG’s. The translation symmetry
requires that

ui,i+m = um = u0
mτ0 + u3

mτ3 (A105)

The 180◦ rotation symmetry requires that, for GPx =
η

iy
ypxg3(θpx), GPy = ηix

ypxg3(θpy),

um = ηmypxu−m = ηmypxu†m (A106)

and for GPx = ηix
xpxg3(θpx)iτ1, GPy = η

iy
xpxg3(θpy)iτ1,

um = ηmxpxu−m = ηmxpxu†m (A107)
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The time reversal symmetry requires that, for GT =
ηitg3(θt)|ηt=−1

um = −(−)mum, (A108)

for GT = ηitg3(θt)iτ1

um = −ηmt u0
mτ0 + ηmt u3

mτ3, (A109)

We find the following 8 sets of ansatz that give
rise to U(1) symmetric spin liquids: U1A00[0, 1]1 and
U1A11[0, 1]1,

ui,i+m =u3
mτ3. (A110)

U1A0n[0, 1]x and U1Ax1[0, 1]x,

ui,i+m =u0
mτ0 + u3

mτ3

u0
m =0, if m = even

u3
m =0, if m = odd. (A111)

Other 16 PSG’s lead to SU(2) spin liquids and can be
dropped.

To obtain the PSG’s for type U1B symmetric spin liq-
uids, we would like to first prove a general theorem. Giv-
en a PSG generated by Gx,y,T and GPx,Py,Pxy , the fol-
lowing generators

G̃x(i) =(−)iyGx(i), G̃y(i) =Gy(i),

G̃Px(i) =GPx(i), G̃Py (i) =GPy (i),

G̃Pxy (i) =(−)ixiyGPxy (i), G̃T (i) =GT (i). (A112)

generate a new PSG. The new PSG has the same IG-
G and is an extension of the same symmetry group as
the original PSG. If an ansatz uij is described by a PS-
G (Gx,y,T , GPx,Py,Pxy ), a new ansatz described by PSG
(G̃x,y,T , G̃Px,Py,Pxy ) can be constructed

ũij =(−)(jy−iy)ixuij , for (jx − ix)(jy − iy) = even

ũij =0, for (jx − ix)(jy − iy) = odd (A113)

The new ansatz ũij has the same symmetry and the same
gauge structure as uij .

To obtain the above result, we note that the following
ansatz

uij =(−)(jy−iy)ixτ0, for (jx − ix)(jy − iy) = even

uij =0, for (jx − ix)(jy − iy) = odd (A114)

has all the translation, parity, and the time reversal sym-
metries and has an SU(2) invariant gauge group. The
PSG of the ansatz has a subgroup

Gx(i) =(−)iyτ0, Gy(i) =τ0,

GPx(i) =τ0, GPy (i) =τ0,

GPxy (i) =(−)ixiyτ0 (A115)

The above properties of ũij can be obtained after realiz-
ing that ũij can be obtained by combining uij with the
ansatz in Eq. (A114). We see that the mapping has a
meaning of adding π-flux to each plaquette.

Using the mapping Eq. (A112) and the results for the
type U1A symmetric spin liquids, we find that the type
U1B symmetric spin liquids are also classified by 24 PS-
G’s. GPx,Py,Pxy,T of those PSG’s are given by

GPx =ηiy
ypxg3(θpx), GPy = ηix

ypxg3(θpy),

(−)ixiyGPxy
=g3(θpxy), g3(θpxy)iτ1

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1, (A116)

and

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxg3(θpy)iτ1,

(−)ixiyGPxy
=g3(θpxy), g3(θpxy)iτ1,

GT =ηitg3(θt)|ηt=−1, ηitg3(θt)iτ1, (A117)

A labeling scheme of the above PSG’s is given below E-
q. (73).

Next we consider the form of ansatz that is invariant
under the above PSG’s. The translation symmetry re-
quires that

ui,i+m = (−)ixmyum = (−)ixmy (u0
mτ0 + u3

mτ3)
(A118)

The 180◦ rotation symmetry requires that, for GPx =
η

iy
ypxg3(θpx), GPy = ηix

ypxg3(θpy),

um = ηmypxu−m = ηmypx(−)mxmyu†m (A119)

and for GPx = ηix
xpxg3(θpx)iτ1, GPy = η

iy
xpxg3(θpy)iτ1,

um = ηmxpxu−m = ηmxpx(−)mxmyu†m (A120)

The time reversal symmetry requires that, for GT =
ηitg3(θt)|ηt=−1

um = −(−)mum, (A121)

for GT = ηitg3(θt)iτ1

um = −ηmt u0
mτ0 + ηmt u3

mτ3, (A122)

We find the following 8 sets of ansatz that give
rise to U(1) symmetric spin liquids: U1B00[0, 1]1 and
U1B11[0, 1]1,

ui,i+m =u3
mτ3.

u3
m =0, if mx = odd and my = odd. (A123)

U1B0n[0, 1]x and U1Bx1[0, 1]x,

ui,i+m =u0
mτ0 + u3

mτ3

u0
m =0, if m = even

u3
m =0, if mx = odd or my = odd . (A124)
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Other 16 PSG’s lead to SU(2) spin liquids and can be
dropped.

Next we consider the type U1C spin liquids. To add
the time reversal symmetry, we note that the condition
Eq. (A4) becomes

τ1G−1
T (i)τ1GT (i− x̂) ∈ U(1)

τ1G−1
T (i)τ1GT (i− ŷ) ∈ U(1) (A125)

This leads to the following GT

GT = g3((−)iφ(i)), g3((−)iφ(i))iτ1. (A126)

where φ(i) satisfies

φ(i + x̂)− φ(i) =(−)iϕ1 mod 2π

φ(i + ŷ)− φ(i) =(−)iϕ2 mod 2π (A127)

The solution exist only for two cases where ϕ1 − ϕ2 =
0 mod π:

φ(i + x̂)− φ(i) =− (−)i2θt mod 2π

φ(i + ŷ)− φ(i) =− (−)i2θt mod 2π (A128)

and

φ(i + x̂)− φ(i) =− (−)i(2θt + π) mod 2π

φ(i + ŷ)− φ(i) =− (−)i2θt mod 2π (A129)

The two solutions are given by

φ(i) =ϕt + (−)iθt

φ(i) =ϕt + (−)iθt + ixπ (A130)

Thus GT can take the following four forms

GT =g3((−)iϕt + θt), (A131)

g3(ixπ + (−)iϕt + θt),

g3((−)iϕt + θt)iτ1,

g3(ixπ + (−)iϕt + θt)iτ1.

Since T 2 = 1 and G2
T ∈ U(1), the above becomes

GT =ηix
xtη

iy

ytg3(θt),

g3((−)iϕt + θt)iτ1,

g3(ixπ + (−)iϕt + θt)iτ1. (A132)

where ηxt,yt = ±1.
To add three types of parity symmetries, we note that,

for type U1C spin liquids, Eq. (A9), Eq. (A10), and E-
q. (A11) reduce to

τ1G−1
Px

(i + x̂)τ1GPx(i) ∈U(1),

τ1G−1
Px

(i)τ1GPx(i− ŷ) ∈U(1), (A133)

τ1G−1
Py

(i + ŷ)τ1GPy (i) ∈U(1),

τ1G−1
Py

(i)τ1GPy (i− x̂) ∈U(1), (A134)

τ1G−1
Pxy

(i)τ1GPxy
(i− x̂) ∈U(1),

τ1G−1
Pxy

(i)τ1GPxy
(i− ŷ) ∈U(1). (A135)

After a calculation similar to that for Gt, we find that
GPx,Py,Pxy can have the following forms

GPx =g3((−)iϕpx + θpx),

g3(ixπ + (−)iϕpx + θpx),

g3((−)iϕpx + θpx)iτ1,

g3(ixπ + (−)iϕpx + θpx)iτ1; (A136)

GPy
=g3((−)iϕpy + θpy),

g3(ixπ + (−)iϕpy + θpy),

g3((−)iϕpy + θpy)iτ1,

g3(ixπ + (−)iϕpy + θpy)iτ1; (A137)

GPxy =g3((−)iϕpxy + θpxy),

g3(ixπ + (−)iϕpxy + θpxy),

g3((−)iϕpxy + θpxy)iτ1,

g3(ixπ + (−)iϕpxy + θpxy)iτ1; (A138)

From the condition Eq. (A15), we find that

GPx =ηix
xpxηiy

ypxg3(θpx),

g3((−)iϕpx + θpx)iτ1,

g3(ixπ + (−)iϕpx + θpx)iτ1; (A139)

GPy =ηix
xpyηiy

ypyg3(θpx),

g3((−)iϕpy + θpy)iτ1,

g3(ixπ + (−)iϕpy + θpy)iτ1; (A140)

GPxy =g3(θpxy),

g3(ixπ + (−)i
π

4
+ θpxy),

g3((−)iϕpxy + θpxy)iτ1; (A141)

The first condition in Eq. (A13) requires GPx,Py should
have the same number of τ1. The second condition in
Eq. (A13) further requires that ϕpx = ϕpy mod π/2. We
note that Gx,y in Eq. (A84) are invariant under gauge
transformation Wi = g3((−)iφ). Using such a gauge
transformation, we can set ϕpx = 0 and ϕpy = 0 mod
π/2. This leads to

GPx =ηix
xpxηiy

ypxg3(θpx),

ηix
xpxg3(θpx)iτ1; (A142)

GPy =ηix
xpyηiy

ypyg3(θpx),

ηiy
xpxηippg3(θpy)iτ1; (A143)
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GPxy =g3(θpxy),

g3(ixπ + (−)i
π

4
+ θpxy),

g3((−)iϕpxy + θpxy)iτ1; (A144)

We find GPxy
can be determined from GPx,Py

through
Eq. (A13) and GT from GPx,Py,Pxy

through Eq. (A5).
Thus from Eq. (A13) and Eq. (A5), we find the following
60 sets of solutions for GPx,Py,Pxy,T :

GPx
=ηix

xpxηiy
ypxg3(θpx), GPy

= ηix
ypxηiy

xpxg3(θpy),

GPxy
=ηix

pxyg3(ηipxy

π

4
+ θpxy),

GT =ηitg3(θt)|ηt=−1, ηix
pxyg3(θt)iτ1. (A145)

GPx
=ηix

xpxg3(θpx)iτ1, GPy
= ηiy

xpxηipxyg3(θpy)iτ1,

GPxy =ηix
pxyg3(ηipxy

π

4
+ θpxy),

GT =ηitg3(θt)|ηt=−1, ηix
pxyηitg3(θt)iτ1. (A146)

GPx =ηix
xpxηiy

ypxg3(θpx), GPy = ηix
ypxηiy

xpxg3(θpy),

GPxy =g3(θpxy)iτ1,

GT =ηitg3(θt)|ηt=−1. (A147)

GPx =ηix
xpxηiy

ypxg3(θpx), GPy = ηix
ypxηiy

xpxg3(θpy),

GPxy =g3(ηipxy

π

4
+ θpxy)iτ1,

GT =ηix
pxyηitg3(θt)iτ1. (A148)

GPx =ηix
xpxg3(θpx)iτ1, GPy = ηiy

xpxηipxyg3(θpy)iτ1,

GPxy =g3(ηipxy

π

4
+ θpxy)iτ1,

GT =ηitg3(θt)|ηt=−1, ηitη
ix
pxyg3(θt)iτ1. (A149)

When combined with the type U1C translation PSG E-
q. (A84), the above 60 sets of solutions give us 60 different
type U1C PSG’s. A labeling scheme of the above PSG’s
is given below Eq. (78).

Now let us consider the form of ansatz that is invari-
ant under the above type U1C PSG’s. The translation
symmetry requires that

ui,i+m = u0
mτ0 + (−)iu3

mτ3 (A150)

For PSG’s U1C[00, nn][0, n, 1]n, U1C11[0, 1]n, and
U1Cx1[n, x]n, the 180◦ rotation symmetry requires that,

u0
m = −u0

m, u3
m = (−)mu3

m.

The time reversal symmetry requires that,

u0
m = −(−)mu0

m, u3
m = −(−)mu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u3
m =0, if m = even. (A151)

which describe SU(2) spin liquids.
For PSG’s

U1C[n0, 0n][0, n, 1]n, U1C11[n, x]n,

U1Cx1[0, 1]n, (A152)

the 180◦ rotation symmetry requires that

u0
m = −(−)mu0

m, u3
m = u3

m.

The time reversal symmetry requires that

u0
m = −(−)mu0

m, u3
m = −(−)mu3

m.

The ansatz have a form

ui,i+m =u0
mτ0 + (−)mu3

mτ3

u0,3
m =0, if m = even. (A153)

For PSG’s

U1C[00, nn][0, 1]1, U1C11[0, 1]1, (A154)

the 180◦ rotation symmetry requires that,

u0
m = −u0

m, u3
m = (−)mu3

m.

The time reversal symmetry requires that,

u0
m = −u0

m, u3
m = u3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u3
m =0, if m = odd. (A155)

The ansatz gives rise to U(1) × U(1) spin liquids since
uij only connect points within two different sublattices.

For PSG’s

U1C[n0, 0n][0, 1]1, U1Cx1[0, 1]1, (A156)

the 180◦ rotation symmetry requires that

u0
m = −(−)mu0

m, u3
m = u3

m.

The time reversal symmetry requires that

u0
m = −u0

m, u3
m = u3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3. (A157)

For PSG’s

U1C[00, nn]1x, U1C11[0, 1]x, (A158)
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the 180◦ rotation symmetry requires that,

u0
m = −u0

m, u3
m = (−)mu3

m.

The time reversal symmetry requires that,

u0
m = −(−)mu0

m, u3
m = (−)mu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u3
m =0, if m = odd. (A159)

The ansatz gives rise to U(1) × U(1) spin liquids since
uij only connect points within two different sublattices.

For PSG’s

U1C[n0, 0n]1x, U1Cx1[0, 1]x, (A160)

the 180◦ rotation symmetry requires that

u0
m = −(−)mu0

m, u3
m = u3

m.

The time reversal symmetry requires that

u0
m = −(−)mu0

m, u3
m = (−)mu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u0
m =0, if m = even

u3
m =0, if m = odd. (A161)

For PSG’s

U1C[00, nn][n, x]1, U1Cx1[n, x]1, (A162)

the 180◦ rotation symmetry requires that,

u0
m = −u0

m, u3
m = (−)mu3

m.

The time reversal symmetry requires that,

u0
m = −(−)mxu0

m, u3
m = (−)mxu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u3
m =0, if mx = odd or my = odd. (A163)

The ansatz gives rise to (U(1))4 spin liquids since uij
only connect points within four different sublattices.

For PSG’s

U1C[n0, 0n][n, x]1, U1C11[n, x]1, (A164)

the 180◦ rotation symmetry requires that,

u0
m = −(−)mu0

m, u3
m = u3

m.

The time reversal symmetry requires that,

u0
m = −(−)mxu0

m, u3
m = (−)mxu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u0
m =0, if mx = even or my = odd

u3
m =0, if mx = odd. (A165)

For PSG’s

U1C[00, nn]xx, U1Cx1[n, x]x, (A166)

the 180◦ rotation symmetry requires that,

u0
m = −u0

m, u3
m = (−)mu3

m.

The time reversal symmetry requires that,

u0
m = −(−)myu0

m, u3
m = (−)myu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u3
m =0, if mx = odd or my = odd. (A167)

The ansatz gives rise to (U(1))4 spin liquids since uij
only connect points within four different sublattices.

For PSG’s

U1C[n0, 0n]xx, U1C11[n, x]x, (A168)

the 180◦ rotation symmetry requires that,

u0
m = −(−)mu0

m, u3
m = u3

m.

The time reversal symmetry requires that,

u0
m = −(−)myu0

m, u3
m = (−)myu3

m.

The ansatz have a form

ui,i+m =(−)mu3
mτ3

u0
m =0, if mx = odd or my = even

u3
m =0, if my = odd. (A169)

The type U1D spin liquids always break the parity gen-
erated by Pxy and Eq. (A11) cannot be satisfied. Thus
there is no type U1D symmetric spin liquid.

Last, let us consider the type U1m
n spin liquids. Instead

of finding a classification of U1m
n spin liquids, here, we

will just consider the following example:

ui,i+x̂ = χτ3, ui,i+ŷ = χg3(
mπ

n
ix)τ3. (A170)

One can check that the above ansatz describes a sym-
metric spin liquid. Its PSG is given by

Gx =g3(−mπ

n
iy + θx), Gy = g3(θy), (A171)

GPx =i(−)iτ1g3(θpx), GPy = i(−)iτ1g3(θpy),

GPxy =i(−)iτ1g3(
mπ

n
ixiy + θpxy), GT = (−)ig3(θt).
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The form of Gx,y tells us that Eq. (A170) indeed de-
scribes a U1m

n spin liquid. Using the labeling scheme for
the U1[A,B,C] PSG’s, we can label the above PSG by
U1m

n xxxn. From the above example, we see that there
are infinite different spin liquids of type U1m

n , at least
one for each rational number m/n between 0 and 1.

In summary, we find 8 type U1A, 8 type U1B, and 30
type U1C symmetric U(1) spin liquids. But there is an
infinite number of type U1m

n spin liquids.

4. Classification of SU(2) projective symmetry
groups

In this section we will use PSG to classify quantum
orders in mean-field symmetric SU(2) spin liquids. We
need to find the extensions of the symmetry transforma-
tions when IGG G = SU(2). First, we assume that, for
a SU(2) spin liquid, we can always choose a gauge such
that uij has a form

uij = u0
ijτ

0. (A172)

We will call this gauge canonical gauge. In the canonical
gauge, IGG has a form G = SU(2). Here we will only
consider spin liquids described by non-zero uij . In this
case the gauge transformations that keep uij to have the
form in the canonical gauge are given by

Wi = η(i)g (A173)

where η(i) = ±1 for each i and g ∈ SU(2). The gauge
transformations Gx,y associated with the translation also
take the above form:

Gx(i) =ηx(i)gx

Gy(i) =ηy(i)gy (A174)

Note that gauge transformation Wi = η(i)τ0 still keep
uij in the canonical gauge. So we can use such gauge
transformation to simplify Gx(i) and Gy(i) (see Eq. (49))
and get

Gx(i) =gx

Gy(i) =ηy(i)gy (A175)

with ηy(ix = 0, iy) = 1. Now Eq. (A2) takes a form

ηy(i− x̂)ηy(i) ∈ SU(2) (A176)

We find that there are only two different PSG’s for trans-
lation symmetric ansatz

Gx(i) =gx Gy(i) =gy (A177)

Gx(i) =gx Gy(i) =(−)ixgy (A178)

The two PSG’s lead to the following two translation sym-
metric ansatz

ui,i+m =u0
mτ0 (A179)

ui,i+m =(−)mxiyu0
mτ0 (A180)

Next we will consider the case Gx(i) = gx and Gy(i) =
gy and add more symmetries. First let us add the three
parities Px,y,xy. Eq. (A9), Eq. (A10), and Eq. (A11) can
be simplified

G−1
Px

(i + x̂)GPx
(i) ∈G

G−1
Px

(i)GPx
(i− ŷ) ∈G (A181)

G−1
Py

(i + ŷ)GPy
(i) ∈G

G−1
Py

(i)GPy (i− x̂) ∈G (A182)

G−1
Pxy

(i)GPxy
(i− x̂) ∈G

G−1
Pxy

(i)GPxy
(i− ŷ) ∈G. (A183)

We find

GPx(i) =ηix
xpxηiy

ypxgPx

GPy
(i) =ηix

xpyηiy
ypygPy

GPxy
(i) =ηiy

xpxyηix
ypxygPxy

(A184)

where gPx ∈ SU(2), gPy ∈ SU(2), and gPxy ∈ SU(2).
η’s in the above equation are not independent. From
Eq. (A15), we find that

ηix
xpxyηiy

ypxyηiy
xpxyηix

ypxyg2
Pxy

∈ G (A185)

which requires ηxpxy = ηypxy ≡ ηpxy. From Eq. (A13) we
see that

ηix
xpxyηiy

ypxyηiy
xpxηix

ypxηiy
xpxyηix

ypxyηix
xpyηiy

ypy

gPxygPxgPxyg−1
Py
∈ G (A186)

We find

ηxpyηxpxyηypxηypxy =1
ηypyηypxyηxpxηxpxy =1 (A187)

When combined with ηxpxy = ηypxy, we see that ηxpx =
ηypy and ηxpy = ηypx. Eq. (A184) becomes

GPx(i) =ηix
xpxηiy

xpygPx

GPy (i) =ηix
xpyηiy

xpxgPy

GPxy (i) =ηipxygPxy (A188)

Now the three ηxpx, ηxpy, and ηpxy are independent.
Similarly from Eq. (A4) and Eq. (A5) we find there are

only two types of GT :

GT (i) = ηitgT (A189)

labeled by ηt = ±1. We note that ηt = 1 implies uij = 0
for the SU(2) spin liquids. Thus we can only choose
ηt = −1

GT (i) = (−)igT (A190)
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Eq. (A177), Eq. (A188) and Eq. (A190) give us PSG’s
for symmetric SU(2) spin liquids. They are labeled by
ηxpx,xpy,pxy. Again we can use the gauge transformation
Wi = (−)ix to set ηpxy = 1. Thus there are only four
PSG’s labeled by ηxpx,xpy

Now we consider the case Gx(i) = gx and Gy(i) =
(−)ixgy. Eq. (A9), Eq. (A10), and Eq. (A11) have the
form

G−1
Px

(i + x̂)GPx(i) ∈G
G−1

Px
(i)GPx

(i− ŷ) ∈G (A191)

G−1
Py

(i + ŷ)GPy
(i) ∈G

G−1
Py

(i)GPy
(i− x̂) ∈G (A192)

(−)iyG−1
Pxy

(i)GPxy
(i− x̂) ∈G

(−)ixG−1
Pxy

(i)GPxy
(i− ŷ) ∈G. (A193)

We find

GPx(i) =ηix
xpxηiy

ypxgPx

GPy (i) =ηix
xpyηiy

ypygPy

GPxy (i) =(−)ixiyηiy
xpxyηix

ypxygPxy (A194)

where gPx ∈ SU(2), gPy ∈ SU(2), and gPxy ∈ SU(2). η’s
in the above equation are not independent. We find that
ηxpxy = ηypxy ≡ ηpxy, ηxpx = ηypy and ηxpy = ηypx.
After setting ηpxy = 1 through gauge transformation
Wi = (−)ix , Eq. (A194) becomes

GPx(i) =ηix
xpxηiy

xpygPx

GPy (i) =ηix
xpyηiy

xpxgPy

GPxy (i) =(−)ixiygPxy (A195)

and the two ηxpx and ηxpy are independent. The gauge
transformation associated with the time reversal trans-
formation is still given by Eq. (A190). Eq. (A178), E-
q. (A195) and Eq. (A190) give us PSG’s for symmetric
SU(2) spin liquids.

We see there are total of 2 × 22 = 8 different SU(2)
PSG’s. A labeling scheme of those 8 SU(2) is given below
Eq. (81). Those SU(2) PSG’s are algebraic PSG’s. In the
following we will see which of them lead to symmetric
SU(2) spin liquids.

First we consider which of the translation symmetric
ansatz in Eq. (A179) have the parity and the time rever-
sal symmetries. After two parity transformations Px and
Py, we find um in Eq. (A179) satisfies

u−m = (ηxpyηxpx)mgPygPxumg−1
Px

g−1
Py

(A196)

or

−u0
m = (ηxpyηxpx)mu0

m (A197)

After the time reversal transformation, we have

−um = (−)mgT umg−1
T (A198)

Thus the SU2An0 and SU2A0n symmetric ansatz have
a form

um =u0
mτ0

u0
m =0, if m = even (A199)

The other two PSG’s SU2A[00, nn] leads to vanishing uij
and should be dropped.

For the translation symmetric ansatz in Eq. (A180) the
180◦ rotation symmetry requires that

−(−)mxmyu0
m = (ηxpyηxpx)mu0

m (A200)

The time reversal transformation requires that

−u0
m = (−)mu0

m (A201)

Thus the SU2Bn0 and SU2B0n symmetric ansatz have a
form

um =(−)iymxu0
mτ0

u0
m =0, if m = even (A202)

The other two PSG’s SU2B[00, nn] leads to vanishing uij
and are dropped.

We see that only 4 of the 8 SU(2) PSG’s leads to sym-
metric SU(2) ansatz. Thus there are only 4 SU(2) sym-
metric spin liquids at mean-field level.

For ansatz of type Eq. (A179) the parity symmetries
also require that

uPx(m) =ηmx
xpxηmy

xpyum

uPy(m) =ηmx
xpyηmy

xpxum

uPxy(m) =ηmpxyum (A203)

For ansatz of type Eq. (A180) the parity symmetries re-
quire that

uPx(m) =ηmx
xpxηmy

xpyum

uPy(m) =ηmx
xpyηmy

xpxum

uPxy(m) =(−)mxmyηmpxyum (A204)

For each choice of η’s, Eq. (A199), Eq. (A202), E-
q. (A203), and Eq. (A204) allow us to construct ansatz
uij for symmetric SU(2) spin liquids.

APPENDIX B: SYMMETRIC PERTURBATIONS
AROUND SYMMETRIC SPIN LIQUIDS

1. Construction of symmetric perturbations

Let us consider a perturbation δuij around a gener-
al mean-field ansatz uij . We would like to find all the
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symmetric perturbations that do not change the symme-
tries of the original ansatz. Let PSG0 be the PSG of
the ansatz uij . Clearly, the PSG of the perturbed ansatz
uij + δuij , PSG1, is a subgroup of PSG0. If we require
the two ansatz uij and uij + δuij to have the same sym-
metry, then the two PSG0 and PSG1 must satisfy

PSG0/IGG0 = PSG1/IGG1 (B1)

where IGG0,1 are the IGG of PSG0,1. We see that the
low energy gauge group of the perturbed ansatz is equal
or less than the low energy gauge group of the original
ansatz.

In the next a few subsections, we will use the following
steps to find symmetric perturbations. We first choose
IGG1 to be IGG0 or a subgroup of IGG0. Second,
we find all the gauge inequivalent subgroup of PSG0:
PSG1 ∈ PSG0, which has IGG0 as its IGG and satisfies
Eq. (B1). Last, we find all the ansatz that are invariant
under PSG1.

2. Symmetric perturbations around the Z2-linear
state Z2A003z

First let us apply the above approach to find all the
symmetric ansatz near the the Z2-linear state Eq. (39).
Here by symmetric ansatz we mean the ansatz with the
translation, the time reversal and the three parity sym-
metries. The IGG that leaves the Z2-linear ansatz E-
q. (39) invariant is G = Z2. The PSG of ansatz Eq. (39)
is given by

Gx(i) =τ0, Gy(i) =τ0

GPx(i) =τ0 GPy (i) =τ0

GPxy (i) =τ3 GT (i) =(−)iτ0 (B2)

This is one of the PSG of the Z2 spin liquids labeled by
Z2A003z. We note that the IGG for any ansatz uij is
at least Z2. Thus the above Z2 PSG is already minimal,
ie non of its subgroup can be regarded as the PSG of
some symmetric ansatz. Therefore, all the symmetric
perturbations around the Z2-linear state are invariant
under the above PSG Eq. (B2). From Eq. (A64) and
Eq. (A65), we find that the most general symmetric spin
liquid with PSG Z2Aτ0

+τ0
+τ3τ3

− have the form

ui,i+m =ul
mτ l|l=1,2,3

u1,2
Pxy(m) =− u1,2

m

u3
Pxy(m) =u3

m

u1,2,3
Px(m) =u1,2,3

m

u1,2,3
Py(m) =u1,2,3

m

um =0, for m = even (B3)

3. Symmetric perturbations around the
U(1)-linear state U1Cn01n

The above analysis can also be used to obtain all the
symmetric perturbations around the U(1)-linear ansatz
in Eq. (32). The invariant gauge group is G = {eiθτ3}.

The ansatz is invariant under translations by x̂ and ŷ
followed by gauge transformation iτθx and iτθy , where
iτθ ≡ i(cos θτ1 + sin θτ2). The ansatz also has the time
reversal and the three parity symmetries. The PSG of
the ansatz is generated by

Gx(i) =iτθx , Gy(i) =iτθy

GPx(i) =(−)ixg3(θpx) GPy (i) = (−)iyg3(θpy)

GPxy (i) =τθpxy GT (i) =(−)ig3(θT ) (B4)

where ga(θ) = eiθτa

and θx,y,px,py,pxy,T can take any
values. We see that the ansatz Eq. (32) is labeled by
U1Cn01n.

First let us consider the symmetric perturbations that
do not break the U(1) gauge structure. Since the per-
turbed ansatz are required to invariant under the same
IGG and have the same symmetry as the original U(1)-
linear ansatz Eq. (32), the perturbations must be invari-
ant under the original PSG Eq. (B4). The translation
symmetry require the perturbations to have a form

δui,i+m = δu0
mτ0 + (−)iδu3

mτ3 (B5)

The 180◦ rotation symmetry PxPy requires that

δu0
−m =δu0

m(−)m

δu3
−m =δu3

m(−)m

and the time reversal symmetry requires

−δu0
m =δu0

m(−)m

−δu3
m =δu3

m(−)m

Thus the symmetric ansatz with PSG Eq. (B4) are given
by

ui,i+m =u0
mτ0 + (−)iu3

mτ3

u0,3
m =0, for m = even

u0
Pxy(m) =u0

m

u3
Pxy(m) =− u3

m

u0,3
Px(m) =(−)mxu0,3

m

u0,3
Py(m) =(−)myu0,3

m (B6)

The above represent most general ansatz around the
U(1)-linear state that do not break any symmetries and
do not change the quantum order in the state.

Next we consider the symmetric perturbations that
break the U(1) gauge structure down to a Z2 gauge struc-
ture. The IGG becomes G = Z2 for the perturbed ansatz.
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We first need to find subgroups of Eq. (B4) which have
the reduced IGG and the same symmetries. The elements
in new PSG have the following form

Gx(i) =± iτθx , Gy(i) =± iτθy

GPx
(i) =± (−)ixg3(θpx) GPy

(i) =± (−)iyg3(θpy)

GPxy (i) =± iτθpxy GT (i) =± (−)ig3(θT )
(B7)

where θx,y,px,py,pxy,T each takes a fixed value. The ±
signs are independent from each other and come from
the Z2 IGG. Different choices of θx,y,px,py,pxy,T give us
different subgroups which lead to different classes of Z2

symmetric perturbations.
To obtain the consistent choices of θx,y,px,py,pxy,T , we

note that Gx,y, GPx,Py,Pxy and GT must satisfy Eq. (A2),
Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {±τ0}. Those equations reduce to

τθxτθyτθxτθy = ±τ0 (B8)

τθxg−1
3 (θT )τθxg3(θT ) =± τ0

τθyg−1
3 (θT )τθyg3(θT ) =± τ0 (B9)

τθxg−1
3 (θpx)τθxg3(θpx) =± τ0

τθyg−1
3 (θpx)τθyg3(θpx) =± τ0 (B10)

τθyg−1
3 (θpy)τθyg3(θpy) =± τ0

τθxg−1
3 (θpy)τθxg3(θpy) =± τ0 (B11)

τθyτθpxyτθxτθpxy =± τ0

τθxτθpxyτθyτθpxy =± τ0 (B12)

g−1
3 (θT )g−1

3 (θpx)g3(θT )g3(θpx) =± τ0

g−1
3 (θT )g−1

3 (θpy)g3(θT )g3(θpy) =± τ0

g−1
3 (θT )τθpxyg3(θT )τθpxy =± τ0 (B13)

τθpxyg3(θpx)τθpxyg−1
3 (θpy) =± τ0

g3(θpy)g3(θpx)g−1
3 (θpy)g−1

3 (θpx) =± τ0 (B14)

Since P 2
x = P 2

y = P 2
xy = T 2 = 1, we also have

g2
3(θpx) =± τ0, g2

3(θpy) =± τ0,

g2
3(θT ) =± τ0. (B15)

We can choose a gauge to make θx = 0. Eq. (B8) has
two solutions

Gx =iτ1, Gy =iτ1 (B16)

Gx =iτ1, Gy =iτ2 (B17)

When Gx = iτ1, and Gy = iτ1, we find the following 8
solutions for Eq. (B8), Eq. (B9), Eq. (B10), Eq. (B11),
Eq. (B12), Eq. (B13), and Eq. (B14), with G = {±τ0}.

Gx(i) =iτ1, Gy(i) = iτ1,

(−)ixGPx
(i) = (−)iyGPy

(i) = τ0, iτ3,

GPxy (i) =iτ1, iτ2 (−)iGT (i) = τ0, iτ3; (B18)

We can make a gauge transformation Wi = (iτ1)i (see
Eq. (49)) to change the above to

Gx(i) =τ0, Gy(i) = τ0,

GPx
(i) = GPy

(i) = τ0, i(−)iτ3,

GPxy
(i) =iτ1, i(−)iτ2 GT (i) = (−)iτ0, iτ3;

G ={±τ0} (B19)

We can use a gauge transformation Wi = (−)ix to change
GPxy

(i) = i(−)iτ2 to GPxy
(i) = iτ2 without affecting

other G’s. Now we see that GPxy (i) = i(−)iτ2 and
GPxy

(i) = iτ1 give rise to gauge equivalent PSG’s. Thus
we only have 4 different PSG’s

Gx(i) =τ0, Gy(i) = τ0,

GPx(i) = GPy (i) = τ0, i(−)iτ3,

GPxy (i) =iτ1 GT (i) = (−)iτ0, iτ3;

G ={±τ0} (B20)

When Gx = iτ1, and Gy = iτ2, we find the following
4 solutions for Eq. (B8), Eq. (B9), Eq. (B10), Eq. (B11),
Eq. (B12), Eq. (B13), and Eq. (B14), with G = {±τ0}.

Gx(i) =iτ1, Gy(i) = iτ2,

(−)ixGPx(i) = (−)iyGPy (i) = τ0, iτ3,

GPxy (i) =iτ12 (−)iGT (i) = τ0, iτ3; (B21)

We can make a gauge transformation Wi = (iτ1)ix(iτ2)iy

(see Eq. (49)) to change the above to

Gx(i) =(−)iyτ0, Gy(i) = τ0,

GPx(i) = GPy (i) = τ0, i(−)iτ3,

GPxy (i) =(−)ixiy iτ1 GT (i) = (−)iτ0, iτ3;

G ={±τ0} (B22)

We note the 4 PSG’s in Eq. (B22) can be obtained from
the 4 PSG’s in Eq. (B20) through the transformation
Eq. (A113).

We find that all the symmetric spin liquids around the
U(1)-linear state Eq. (32) that break the U(1) gauge
structure to a Z2 gauge structure can be divided into
eight classes. Using PSG’s in Eq. (B20), we find transla-
tion symmetry requires the ansatz to have a form

ui,i+m = uµ
mτµ (B23)
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The 180◦ rotation (generated by PxPy) symmetry re-
quires that

um =u−m

which implies u0
m = 0. The time reversal T symmetry

requires that

um =− (−)mum

or

um =− τ3umτ3

The four ansatz for PSG’s in Eq. (B20) are given by
Z2A[τ0

+τ0
+, τ3

−τ3
−]τ1τ0

−:

ui,i+m =ul
mτ l (B24)

u1,2,3
m =0, for m = even

and Z2A[τ0
+τ0

+, τ3
−τ3
−]τ1τ3

+:

ui,i+m =u1
mτ1 + u2

mτ2 (B25)

Using PSG’s in Eq. (B22), we find translation symme-
try requires the ansatz to have a form

ui,i+m = (−)ixmyuµ
mτµ (B26)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal T symmetry requires that

um =− (−)mum

or

um =− τ3umτ3

The four ansatz for PSG’s in Eq. (B22) are given by
Z2B[τ0

+τ0
+, τ3

−τ3
−]τ1τ0

−:

ui,i+m =(−)ixmyul
mτ l (B27)

u1,2,3
m =0, for m = even

and Z2B[τ0
+τ0

+, τ3
−τ3
−]τ1τ3

+:

ui,i+m =(−)ixmy (u1
mτ1 + u2

mτ2) (B28)

u1,2
m =0, for mx = odd and my = odd

The eight different Z2 spin liquids have different quan-
tum orders. They can transform into each other via the
U(1)-linear spin liquids. without any change of symme-
tries. Those transitions are continuous transitions with-
out broken symmetries.

4. Symmetric perturbations around the
SU(2)-gapless state SU2An0

In this subsection, we would like to consider the sym-
metric perturbations around the SU(2)-gapless ansatz
Eq. (30), which describes a SU2An0 spin liquid. The
invariant gauge group is G = SU(2). The PSG of the
ansatz is generated by

Gx(i) =gx, Gy(i) =gy

GPx
(i) =(−)ixgpx GPy

(i) =(−)iygpy

GPxy
(i) =gpxy GT (i) =(−)igT (B29)

where gx,y,px,py,pxy,T ∈ SU(2). Thus the SU(2)-gapless
state is labeled by SU2Aτ0

−τ0
+.

First let us consider the symmetric perturbations that
do not break the SU(2) gauge structure. To have the
SU(2) gauge structure, the perturbations must be in-
variant under the gauge transformations in G and satisfy
δuij ∝ τ0. To have the symmetries, the perturbations
must be invariant under PSG in Eq. (B29). The transla-
tion symmetry require the perturbations to have a form

δui,i+m = δu0
mτ0 (B30)

The 180◦ rotation symmetry PxPy and the time reversal
symmetry T require that

δu0
−m =δu0

m(−)m

−δu0
m =δu0

m(−)m

Thus the symmetric ansatz with PSG Eq. (B29) are given
by

ui,i+m =u0
mτ0

u0
m =0, for m = even

u0
Pxy(m) =u0

m

u0
Px(m) =(−)mxu0

m

u0
Py(m) =(−)myu0

m (B31)

The above represent most general ansatz around the
SU(2)-gapless state that do not break any symmetries
and do not change the quantum order in the state. It de-
scribes the most general SU(2)-gapless state with quan-
tum order SU2Aτ0

−τ0
+.

Next we consider the symmetric perturbations that
break the SU(2) gauge structure down to a U(1) gauge
structure. The invariant gauge group becomes G = U(1)
for the perturbed ansatz. We first need to find sub-
groups of Eq. (B29) by choosing a fixed value for each
gx,y,px,py,pxy,T . We choose gx,y,px,py,pxy,T in such a way
that Eq. (A2), Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11),
Eq. (A5), and Eq. (A13) can be satisfied when we limit G
to a U(1) subgroup. (Those equations are always satis-
fied when G = SU(2)). Since the original invariant gauge
group is formed by constant gauge transformations, its
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U(1) subgroup is also formed by constant gauge trans-
formations. We can choose a gauge such that the U(1)
invariant gauge group is given by G = {g3(θ)|θ ∈ [0, 2π)}.

To obtain the consistent choices of gx,y,px,py,pxy,T , we
note that Gx,y, GPx,Py,Pxy and GT must satisfy Eq. (A2),
Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {g3(θ)|θ ∈ [0, 2π)}. Those equations
reduce to

gxgyg−1
x g−1

y ∈ U(1) (B32)

g−1
x g−1

T gxgT ∈U(1) g−1
y g−1

T gygT ∈U(1) (B33)

gxg−1
px gxgpx ∈U(1) g−1

y g−1
px gygpx ∈U(1) (B34)

gyg−1
py gygpy ∈U(1) g−1

x g−1
py gxgpy ∈U(1) (B35)

g−1
y g−1

pxygxgpxy ∈U(1) g−1
x g−1

pxygygpxy ∈U(1) (B36)

g−1
T g−1

px gT gpx ∈U(1) g−1
T g−1

py gT gpy ∈U(1)

g−1
T g−1

pxygT gpxy ∈U(1) (B37)

gpxygpxgpxyg−1
py ∈U(1) gpygpxg−1

py g−1
px ∈U(1) (B38)

Since P 2
x = P 2

y = P 2
xy = T 2 = 1, we also have

g2
px ∈U(1), g2

py ∈U(1),

g2
pxy ∈U(1), g2

T ∈U(1). (B39)

Solving the above equations, we find 16 different PSG’s
with U(1) invariant gauge group. The following are their
generators and their labels.
U1Aτ0

−τ0
+[τ0, τ1][τ0

−, τ1
−] ( which is gauge equivalent to

U1Aτ0
+τ0

+[τ0, τ1][τ0
−, τ1

+]):

Gx(i) = g3(θx), Gy(i) = g3(θy) (B40)

(−)ixGPx(i) = g3(θpx) (−)iyGPy (i) = g3(θpy)

GPxy (i) = g3(θpxy), iτθpxy (−)iGT (i) = g3(θT ), iτθT

U1Aτ1
−τ1

+[τ0, τ1][τ0
−, τ1

−]:

Gx(i) = g3(θx), Gy(i) = g3(θy) (B41)

(−)ixGPx(i) = iτθpx (−)iyGPy (i) = iτθpy

GPxy (i) = g3(θpxy), iτθpxy (−)iGT (i) = g3(θT ), iτθT

U1Cτ0
−τ0

+[τ0
+, τ1

+][τ0
−, τ1

−]:

Gx(i) = iτθx , Gy(i) = iτθy (B42)

(−)ixGPx(i) = g3(θpx) (−)iyGPy (i) = g3(θpy)

GPxy (i) = g3(θpxy), iτθpxy (−)iGT (i) = g3(θT ), iτθT

U1Cτ1
−τ1[τ0

+, τ1
+][τ0

−, τ1
−]:

Gx(i) = iτθx , Gy(i) = iτθy (B43)

(−)ixGPx(i) = iτθpx (−)iyGPy (i) = iτθpy

GPxy (i) = g3(θpxy), iτθpxy (−)iGT (i) = g3(θT ), iτθT

The 180◦ rotation symmetry PxPy and the time rever-
sal symmetry T require that

u−i,−i−m =ui,i+m(−)m = u†−i−m,−i
−ui,i+m =gT ui,i+mg−1

T (−)m

We find that all the symmetric spin liquids around the
SU(2)-gapless state Eq. (30) that break the SU(2) gauge
structure to a U(1) gauge structure can be divided into 12
classes. They are given by (using abbreviated notation)
U1Cn0[0, 1]n:

ui,i+m = u0
mτ0 + (−)iu3

mτ3

u0,3
m =0, for m = even (B44)

Gx(i) =iτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =g3(θpx), (−)iyGPy (i) = g3(θpy),

GPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = g3(θT );

U1Cn0[0, 1]x:

ui,i+m = u0
mτ0 + (−)iu3

mτ3

u0
m =0, for m = even

u3
m =0, for m = odd (B45)

Gx(i) =iτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =g3(θpx), (−)iyGPy (i) = g3(θpy),

GPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

U1Cx1[0, 1]n:

ui,i+m = u0
mτ0 + (−)iu3

mτ3

u0,3
m =0, for m = even (B46)

Gx(i) =iτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =iτθpx , (−)iyGPy (i) = iτθpy ,

GPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = g3(θT );

U1Cx1[0, 1]x:

ui,i+m = u0
mτ0 + (−)iu3

mτ3

u0
m =0, for m = even

u3
m =0, for m = odd (B47)

Gx(i) =iτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =iτθpx , (−)iyGPy (i) = iτθpy ,

GPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;
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U1An0[0, 1]x (which is gauge equivalent to U1A00[0, 1]1):

ui,i+m = u0
mτ0 + u3

mτ3

u0
m =0, for m = even

u3
m =0, for m = odd (B48)

Gx(i) =g3(θx), Gy(i) = g3(θy),

(−)ixGPx
(i) =g3(θpx), (−)iyGPy

(i) = g3(θpy),

GPxy
(i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

U1Ax1[0, 1]x:

ui,i+m = u0
mτ0 + u3

mτ3

u0
m =0, for m = even

u3
m =0, for m = odd (B49)

Gx(i) =g3(θx), Gy(i) = g3(θy),

(−)ixGPx
(i) =iτθpx , (−)iyGPy

(i) = iτθpy ,

GPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

The 12 different U(1) spin liquids have different quantum
orders.

We can use a gauge transformation Wi = (iτ1)i to
make ansatz Eq. (B44) to Eq. (B47) translation invariant.
We get U1C[n0, x1][0, 1]n:

ui,i+m = u0
m(iτ1)m + u3

m(iτ1)mτ3

u0,3
m =0, for m = even (B50)

Gx(i) =τ0, Gy(i) = τ0,

GPx(i) =GPy (i) = τ0, iτ1

GPxy (i) =τ0, iτ1 GT (i) = (−)iτ0;

and U1C[n0, x1][0, 1]x:

ui,i+m = u0
m(iτ1)m + u3

m(iτ1)mτ3

u0
m =0, for m = even

u3
m =0, for m = odd (B51)

Gx(i) =τ0, Gy(i) = τ0,

GPx(i) =GPy (i) = τ0, iτ1

GPxy (i) =τ0, iτ1 GT (i) = iτ2;

Now we consider the symmetric perturbations that
break the SU(2) gauge structure down to a Z2 gauge
structure. The invariant gauge group becomes G = Z2

for the perturbed ansatz. We choose a fixed value for
each gx,y,px,py,pxy,T in Eq. (B29) such that Eq. (A2), E-
q. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13) can be satisfied when we limit G to a Z2 sub-
group. Since the original invariant gauge group is formed
by constant gauge transformations, its Z2 subgroup is
also formed by constant gauge transformations, which is
given by G = {±τ0}.

To obtain the consistent choices of gx,y,px,py,pxy,T , we
note that Gx,y, GPx,Py,Pxy and GT must satisfy Eq. (A2),

Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {±τ0}. Those equations reduce to

gxgyg−1
x g−1

y = ±τ0 (B52)

g−1
x g−1

T gxgT =± τ0 g−1
y g−1

T gygT =± τ0 (B53)

gxg−1
px gxgpx =± τ0 g−1

y g−1
px gygpx =± τ0 (B54)

gyg−1
py gygpy =± τ0 g−1

x g−1
py gxgpy =± τ0 (B55)

g−1
y g−1

pxygxgpxy =± τ0 g−1
x g−1

pxygygpxy =± τ0 (B56)

g−1
T g−1

px gT gpx =± τ0 g−1
T g−1

py gT gpy =± τ0

g−1
T g−1

pxygT gpxy =± τ0 (B57)

gpxygpxgpxyg−1
py =± τ0 gpygpxg−1

py g−1
px =± τ0 (B58)

Since P 2
x = P 2

y = P 2
xy = T 2 = 1, we also have

g2
px =± τ0 g2

py =± τ0,

g2
pxy =± τ0 g2

T =± τ0. (B59)

From Eq. (B58), we see that gpxppy = ±gpygpx. gpx,py

has the following 5 gauge inequivalent choices

gpx =τ0, iτ3 gpy =τ0, iτ3 (B60)

gpx =iτ1 gpy =iτ2 (B61)

Also, according to Eq. (B58), gpx = ±gpxygpygpxy. This
requires gpx = gpy if [gpx, gpy] = 0. Similarly, we also
have gx = gy if [gx, gy] = 0. Many solutions can be
obtained by simply choosing each of gx,y,T and gpx,py,pxy

to have one of the four values: (τ0, iτ1,2,3). We find the
following 65 solutions

Gx =Gy = τ0, (−)iGT =τ0,

(−)ixGPx =(−)iyGPy = τ0, iτ3 GPxy =τ0, iτ3;
(B62)

Gx =Gy = τ0, (−)iGT =τ0,

(−)ixGPx =(−)iyGPy = iτ1 GPxy =iτ2; (B63)

Gx =Gy = τ0, (−)iGT =τ0,

(−)ixGPx =iτ1, (−)iyGPy =iτ2

GPxy =iτ12; (B64)

Gx =Gy = τ0, (−)iGT =iτ3,

(−)ixGPx =(−)iyGPy = τ0, iτ3 GPxy =τ0, iτ3;
(B65)
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Gx =Gy = τ0, (−)iGT =iτ3,

(−)ixGPx
=(−)iyGPy

= τ0, iτ1,2,3 GPxy
=iτ1;

(B66)

Gx =Gy = τ0, (−)iGT =iτ3,

(−)ixGPx =(−)iyGPy = iτ1 GPxy =τ0, iτ1,2,3;
(B67)

Gx =Gy = τ0, (−)iGT =τ3,

(−)ixGPx
=iτ1, (−)iyGPy

=iτ2

GPxy
=iτ12; (B68)

Gx =Gy = iτ3, (−)iGT =τ0,

(−)ixGPx
=(−)iyGPy

= τ0, iτ3 GPxy
=τ0, iτ3;

(B69)

Gx =Gy = iτ3, (−)iGT =τ0,

(−)ixGPx =(−)iyGPy = τ0, iτ1,2,3 GPxy =iτ1;
(B70)

Gx =Gy = iτ3, (−)iGT =τ0,

(−)ixGPx =(−)iyGPy = iτ1 GPxy =τ0, iτ1,2,3;
(B71)

Gx =Gy = iτ3, (−)iGT =iτ3,

(−)ixGPx =(−)iyGPy = τ0, iτ3 GPxy =τ0, iτ3;
(B72)

Gx =Gy = iτ3, (−)iGT =iτ3,

(−)ixGPx =(−)iyGPy = τ0, iτ1,2,3 GPxy =iτ1;
(B73)

Gx =Gy = iτ3, (−)iGT =iτ3,

(−)ixGPx =(−)iyGPy = iτ1 GPxy =τ0, iτ1,2,3;
(B74)

Gx =Gy = iτ3, (−)iGT =iτ1,

(−)ixGPx =(−)iyGPy = τ0, iτ1,2,3 GPxy =τ0, iτ1,2,3;
(B75)

Gx =iτ1, Gy =iτ2,

GPxy =iτ12, (−)iGT =τ0, iτ3,

(−)ixGPx =iτ2, (−)iyGPy =iτ1; (B76)

Gx =iτ1, Gy =iτ2,

GPxy
=iτ12, (−)iGT =τ0, iτ3,

(−)ixGPx
=iτ1, (−)iyGPy

=iτ2; (B77)

Gx =iτ1, Gy =iτ2,

GPxy
=iτ12, (−)iGT =τ0, iτ3,

(−)ixGPx =τ0, (−)iyGPy =τ0; (B78)

Using a gauge transformation Wi = (iτ3)i(±)ix , we
can change Eq. (B69) – Eq. (B75) to standard Z2 form
Eq. (61) or Eq. (62). We choose the ± to remove the
(−)i factor in GPxy . We get

Gx =Gy = τ0, (−)iGT =τ0,

GPx =GPy = τ0, iτ3 GPxy =τ0, iτ3; (B79)

Gx =Gy = τ0, (−)iGT =τ0,

GPx
=GPy

= τ0,3, (−)iiτ1,2 GPxy
=iτ1; (B80)

Gx =Gy = τ0, (−)iGT =τ0,

GPx =GPy = (−)iiτ1 GPxy =τ0, iτ1,2,3; (B81)

Gx =Gy = τ0, (−)iGT =iτ3,

GPx =GPy = τ0, iτ3 GPxy =τ0, iτ3; (B82)

Gx =Gy = τ0, (−)iGT =iτ3,

GPx =GPy = τ0,3, (−)iiτ1,2 GPxy =iτ1; (B83)

Gx =Gy = τ0, (−)iGT =iτ3,

GPx =GPy = (−)iiτ1 GPxy =τ0, iτ1,2,3; (B84)

Gx =Gy = τ0, GT =iτ1,

GPx =GPy = τ0,3, (−)iiτ1,2 GPxy =τ0, iτ1,2,3; (B85)

Using a gauge transformation Wi = (iτ1)ix(iτ2)iy , we
can change Eq. (B76) – Eq. (B78) to more standard forms
(see Eq. (61) and Eq. (62)):

Gx =(−)iyτ0, Gy =τ0,

GPxy =(−)ixiy iτ12, GT =(−)iτ0, iτ3,

(−)ixGPx =iτ2, (−)iyGPy =iτ1; (B86)

Gx =(−)iyτ0, Gy =τ0,

GPxy =(−)ixiy iτ12, GT =(−)iτ0, iτ3,

(−)iyGPx =iτ1, (−)ixGPy =iτ2; (B87)
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Gx =(−)iyτ0, Gy =τ0,

GPxy =(−)ixiy iτ12, GT =(−)iτ0, iτ3,

GPx =τ0, GPy =τ0; (B88)

Now we can list all PSG’s that describe the Z2 spin
liquids in the neighborhood of the SU(2)-gapless state
using the notation Z2A... or Z2B.... We find that the
65 PSG’s obtained before lead to 58 gauge inequivalent
PSG’s.

In the following, we will list all the 58 PSG’s. We
will also construct ansatz for those PSG’s. First let us
consider PSG of form Z2A.... For those PSG the ansatz
can be written as

ui,i+m = um (B89)

In the following we consider the constraint imposed by
the 180◦ rotation symmetry and the time reversal sym-
metry.

For PSG

Z2A[τ0
−τ0

+, τ3
−τ3

+][τ0, τ3]τ0
−

Z2Aτ3
−τ3

+τ1τ0
−

(B90)

(here we have used the notation [a, b][c, d] to represent
four combinations ac, ad, bc, bd), the 180◦ rotation sym-
metry generated by PxPy requires that

u−m =um(−)m = u†m

The time reversal symmetry T requires that

−um =um(−)m

The above two equations require that uij ∝ τ0, which
describe SU(2) spin liquids.

For PSG

Z2Aτ3
−τ3
−τ0,1,2,3τ0

−
Z2A[τ0

+τ0
+, τ3

+τ3
+]τ0,1,3τ0

− (B91)

the 180◦ rotation symmetry and the time reversal sym-
metry require that

u−m =um = u†m
−um =um(−)m

The above two equations give us

ui,i+m =u1
mτ1 + u2

mτ2 + u3
mτ3

u1,2,3
m =0, for m = even (B92)

For PSG

Z2Aτ1
−τ2

+τ12τ0
−, (B93)

the 180◦ rotation and the time reversal symmetries re-
quire that

u−m =τ3umτ3(−)m = u†m
−um =um(−)m

We find

ui,i+m =u0
mτ0 + u1

mτ1 + u2
mτ2

u0,1,2
m =0, for m = even (B94)

For PSG

Z2A[τ0
−τ0

+, τ3
−τ3

+]τ0,1,3τ3
−

Z2Aτ1
−τ1

+τ0,1,2,3τ3
− (B95)

the 180◦ rotation and the time reversal symmetries re-
quire that

u−m =um(−)m = u†m
−um =τ3umτ3(−)m

The ansatz has a form

ui,i+m =u0
mτ0 + u1

mτ1 + u2
mτ2

u0
m =0, for m = even

u1,2
m =0, for m = odd (B96)

For PSG’s

Z2Aτ3
−τ3
−τ3τ3

−
Z2Aτ1

−τ1
−τ0,1,2,3τ3

−
Z2A[τ0

+τ0
+, τ3

+τ3
+]τ0,1,3τ3

− (B97)

the 180◦ rotation and the time reversal symmetries re-
quire that

u−m =um = u†m
−um =τ3umτ3(−)m

The ansatz has a form

ui,i+m =u1
mτ1 + u2

mτ2 + u3
mτ3

u3
m =0, for m = even

u1,2
m =0, for m = odd (B98)

For PSG Z2Aτ1
−τ2

+τ12τ3
−, the 180◦ rotation and the

time reversal symmetries require that

u−m =τ3umτ3(−)m = u†m
−um =τ3umτ3(−)m

We find uij ∝ τ0. The spin liquid constructed from uij
is a SU(2) spin liquid.
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For PSG’s

Z2Aτ3
−τ3
−τ0,1,3τ3

+

Z2Aτ1
−τ1
−τ0,1,2,3τ3

+

Z2Aτ0
+τ0

+τ0,1,3τ3
+

Z2Aτ1
+τ1

+τ0,1,2,3τ3
+ (B99)

the 180◦ rotation and the time reversal symmetries re-
quire that

u−m =um = u†m
−um =τ3umτ3

The ansatz has a form

ui,i+m =u1
mτ1 + u1

mτ2 (B100)

There are six PSG’s of form Z2B.... The first two are

Z2B[τ1
−τ2

+, τ1
+τ2
−]τ12τ0

−. (B101)

The 180◦ rotation symmetry requires that

(−)ixmyum = (−)m(−)(ix+mx)myτ3u†mτ3

or

u0,1,2
m =0, for mx = even and my = even

u3
m =0, for mx = odd or my = odd

The time reversal symmetry requires that

−um =um(−)m

We find

ui,i+m =(−)myix(u0
mτ0 + u1

mτ1 + u2
mτ2)

u0,1,2
m =0, for m = even (B102)

For PSG

Z2Bτ0
+τ0

+τ3τ0
− (B103)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal symmetry requires that

−um =um(−)m

The above two equations give us

ui,i+m =(−)ixmy (u1
mτ1 + u2

mτ2 + u3
mτ3)

u1,2,3
m =0, for m = even (B104)

For PSG

Z2B[τ1
−τ2

+, τ1
+τ2
−]τ12τ3

+ (B105)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)m(−)(ix+mx)myτ3u†mτ3

or

u0,1,2
m =0, for mx = even and my = even

u3
m =0, for mx = odd or my = odd

The time reversal symmetry requires that

−um =τ3umτ3

ui,i+m =(−)ixmy (u1
mτ1 + u2

mτ2) (B106)

u1,2
m =0, for mx = even and my = even

For PSG

Z2Bτ0
+τ0

+τ3τ3
+ (B107)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal symmetry requires that

−um =τ3umτ3

The ansatz has a form

ui,i+m =(−)ixmy (u1
mτ1 + u1

mτ2) (B108)

u1,2
m =0, for mx = odd and my = odd

We find that there are 52 different Z2 spin liquids in
the neighborhood of the SU(2)-gapless state Eq. (30).
Those Z2 spin liquids can be constructed through uij .

5. Symmetric perturbations around the
SU(2)-linear state SU2Bn0

In this subsection, we would like to consider the sym-
metric perturbations around the SU(2)-linear ansatz E-
q. (31), which describes a SU2Bn0 spin liquid. The in-
variant gauge group is G = SU(2). The PSG of the
ansatz is generated by

Gx(i) =(−)iygx, Gy(i) =gy

GPx(i) =(−)ixgpx GPy (i) =(−)iygpy

GPxy (i) =(−)ixiygpxy GT (i) =(−)igT (B109)
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where gx,y,px,py,pxy,T ∈ SU(2).
First let us consider the symmetric perturbations that

do not break the SU(2) gauge structure. To have the
SU(2) gauge structure and the symmetries, the pertur-
bations must be invariant under PSG in Eq. (B109). The
translation symmetry require the perturbations to have
a form

δui,i+m = (−)ixmyδu0
mτ0 (B110)

The 180◦ rotation symmetry PxPy and the time reversal
symmetry T require that

(−)(ix+mx)my (δu0
m)† =(−)ixmyδu0

m(−)m

−δu0
m =δu0

m(−)m

Thus the symmetric ansatz with PSG Eq. (B109) are
given by

ui,i+m =(−)ixmyu0
mτ0 (B111)

u0
m =0, for m = even

The above represent most general ansatz around the
SU(2)-linear state that do not break any symmetries and
do not change the quantum order in the state.

To obtain other symmetric perturbations around the
SU(2)-linear state SU2Bn0, we can use the mapping E-
q. (A112) and Eq. (A113). We first note that the PSG’s
that describe the spin liquids around the SU(2)-linear
state can be obtained from those around the SU(2)-
gapless state SU2An0. This is because mapping de-
scribed by Eq. (A112) maps the SU2An0 PSG Eq. (B29)
to the SU2Bn0 PSG Eq. (B109). Using this results, we
can obtain all the PSG’s that describe the spin liquids in
the neighborhood of the SU(2)-linear state. The SU2An0
PSG for the SU(2)-gapless state have 16 different sub-
groups with IGG=U(1) (see Eq. (B40) - Eq. (B43)) and
58 subgroups with IGG=Z2 (see Eq. (B62) - Eq. (B88)).
Therefore, the SU2Bn0 PSG of the SU(2)-linear state
also have 16 different subgroups with IGG=U(1) and 58
subgroups with IGG=Z2 (see Eq. (B62) - Eq. (B88)).

The 16 subgroups with IGG=U(1) can be obtained
from Eq. (B40) - Eq. (B43) through the mapping E-
q. (A112). They are U1Bτ0

−τ0
+[τ0, τ1][τ0

−, τ1
−] ( which is

gauge equivalent to U1Bτ0
+τ0

+[τ0, τ1][τ0
−, τ1

+]):

Gx(i) = (−)iyg3(θx), Gy(i) = g3(θy) (B112)

(−)ixGPx(i) = g3(θpx) (−)iGT (i) = g3(θT ), iτθT

(−)iyGPy (i) = g3(θpy) (−)ixiyGPxy (i) = g3(θpxy), iτθpxy

U1Bτ1
−τ1

+[τ0, τ1][τ0
−, τ1

−]:

Gx(i) = (−)iyg3(θx), Gy(i) = g3(θy) (B113)

(−)ixGPx(i) = iτθpx (−)iGT (i) = g3(θT ), iτθT

(−)iyGPy (i) = iτθpy (−)ixiyGPxy (i) = g3(θpxy), iτθpxy

U1Cτ0
−τ0

+τ0
−[τ0

−, τ1
+], U1Cτ0

−τ0
+τ1
−τ1

+ and U1Cτ0
−τ0

+τ1τ0
−:

Gx(i) = i(−)iyτθx , Gy(i) = iτθy (B114)

(−)ixGPx
(i) = g3(θpx) (−)iGT (i) = g3(θT ), iτθT

(−)iyGPy
(i) = g3(θpy) (−)ixiyGPxy

(i) = g3(θpxy), iτθpxy

U1Cτ1
+τ1

+[τ0
−, τ1

−][τ0
−, τ1

−]:

Gx(i) = i(−)iyτθx , Gy(i) = iτθy (B115)

(−)ixGPx(i) = iτθpx (−)iGT (i) = g3(θT ), iτθT

(−)iyGPy
(i) = iτθpy (−)ixiyGPxy

(i) = g3(θpxy), iτθpxy

The labels for the last two equations are obtained by
making a gauge transformation to put Gx,y in a more
standard form (see Eq. (B123) and Eq. (B124)).

After obtaining the PSG’s, we can construct the ansatz
which are invariant under those PSG’s. We note that for
the above PSG’s the time reversal symmetry T requires
that

−ui,i+m =gT ui,i+mg−1
T (−)m

gT =τ0, iτ1

and the 180◦ rotation symmetry PxPy requires that

u−i,−i−m =ui,i+m(−)m = u†−i−m,−i (B116)

When Gx(i) = i(−)iyτθx , Gy(i) = iτθy , uij has a for-
m ui,i+m = (−)ixmy (u0

mτ0 + (−)iu3
mτ3). Eq. (B116)

reduces to

u0
m =0, if mx = even and my = even

u3
m =0, if mx = odd and my = odd

When Gx(i) = (−)iyg3(θx), Gy(i) = g3(θy), uij has a
form ui,i+m = (−)ixmy (u0

mτ0 + u3
mτ3). Eq. (B116) re-

duces to

u0
m =0, if mx = even and my = even

u3
m =0, if mx = odd or my = odd

Using the above results, we find that all the symmetric
spin liquids around the SU(2)-linear state Eq. (31) that
break the SU(2) gauge structure to a U(1) gauge struc-
ture can be divided into 12 classes. They are given by
U1Cn0[n, 1]n:

ui,i+m = (−)ixmy (u0
mτ0 + (−)iu3

mτ3)
(B117)

u0,3
m =0, if m = even

Gx(i) =i(−)iyτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =g3(θpx), (−)iyGPy (i) = g3(θpy),

(−)ixiyGPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = g3(θT );
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U1Cn0[n, x]1:

ui,i+m = (−)ixmy (u0
mτ0 + (−)iu3

mτ3)
(B118)

u0
m =0, if m = even

u3
m =0, if mx = odd or my = odd

Gx(i) =i(−)iyτθx , Gy(i) = iτθy ,

(−)ixGPx
(i) =g3(θpx), (−)iyGPy

(i) = g3(θpy),

(−)ixiyGPxy
(i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

U1C11[n, x]n:

ui,i+m = (−)ixmy (u0
mτ0 + (−)iu3

mτ3)
(B119)

u0,3
m =0, if m = even

Gx(i) =i(−)iyτθx , Gy(i) = iτθy ,

(−)ixGPx
(i) =iτθpx , (−)iyGPy

(i) = iτθpy ,

(−)ixiyGPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = g3(θT );

U1C11[n, x]x:

ui,i+m = (−)ixmy (u0
mτ0 + (−)iu3

mτ3)
(B120)

u0
m =0, if m = even

u3
m =0, if mx = odd or my = odd

Gx(i) =i(−)iyτθx , Gy(i) = iτθy ,

(−)ixGPx(i) =iτθpx , (−)iyGPy (i) = iτθpy ,

(−)ixiyGPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

U1B00[0, 1]1:

ui,i+m = (−)ixmy (u0
mτ0 + u3

mτ3) (B121)

u0
m =0, if m = even

u3
m =0, if mx = odd or my = odd

Gx(i) =(−)iyg3(θx), Gy(i) = g3(θy),

(−)ixGPx(i) =g3(θpx), (−)iyGPy (i) = g3(θpy),

(−)ixiyGPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

U1Bx1[0, 1]x:

ui,i+m = (−)ixmy (u0
mτ0 + u3

mτ3) (B122)

u0
m =0, if m = even

u3
m =0, if mx = odd or my = odd

Gx(i) =(−)iyg3(θx), Gy(i) = g3(θy),

(−)ixGPx(i) =iτθpx , (−)iyGPy (i) = iτθpy ,

(−)ixiyGPxy (i) =g3(θpxy), iτθpxy (−)iGT (i) = iτθT ;

Using the gauge transformation Wi = g3((−)iyπ/4) we

can change Eq. (B114) and Eq. (B115) to

Gx =iτθx , Gy = iτθy ,

GPx =(−)ixg3(θpx), GPy = (−)iyg3(θpy),

GPxy
=(−)ixiyg3(((−)iy − (−)ix)

π

4
+ θpxy),

(−)ixiyg3(((−)iy + (−)ix)
π

4
+ θpxy)iτ1,

GT =(−)ig3(θT ), (−)ixg3(θT )iτ1 (B123)

Gx =iτθx , Gy = iτθy ,

GPx
=(−)iiτθpx , GPy

= iτθpy

GPxy =(−)ixiyg3(((−)iy − (−)ix)
π

4
+ θpxy),

(−)ixiyg3(((−)iy + (−)ix)
π

4
+ θpxy)iτ1,

GT =(−)ig3(θT ), (−)ixg3(θT )iτ1 (B124)

We note that

(−)ixiyg3(((−)iy − (−)ix)
π

4
+ θpxy)

=(−)ixg3((−)i
π

4
+ θ′pxy) (B125)

and

(−)ixiyg3(((−)iy + (−)ix)
π

4
+ θpxy)

=g3((−)i
π

4
+ θ′pxy) (B126)

Thus the above two sets of PSG’s are labeled by
U1Cτ0

−τ0
+[τ0

−, τ1
−][τ0

−, τ1
+] and U1Cτ1

+τ1
+[τ0

−, τ1
−][τ0

−, τ1
−]

respectively (see Eq. (74) - Eq. (78)). We also note
that the PSG U1Cτ0

−τ0
+τ1
−τ0
− is gauge equivalent to

U1Cτ0
−τ0

+τ1
+τ0
−. Using the gauge transformation Wi =

g3(−(−)iπ/8) we can change Eq. (B123) and Eq. (B124)
to

Gx =iτθx , Gy = iτθy

GPx =(−)ixg3(θpx) GPy = (−)iyg3(θpy)

GPxy =(−)ixiyg3(((−)iy − (−)ix)
π

4
+ θpxy), g3(θpxy)iτ1,

GT =(−)ig3(θT ), (−)iyg3((−)iπ/4)iτθT (B127)

Gx =iτθx , Gy = iτθy

GPx =ig3(θpx + (−)i
π

4
)τ1 GPy = ig3(θpy − (−)i

π

4
)τ1

GPxy =(−)ixiyg3(((−)iy − (−)ix)
π

4
+ θpxy), g3(θpxy)iτ1,

GT =(−)ig3(θT ), (−)iyg3((−)iπ/4)iτθT (B128)

Then we can use the gauge transformation Wi = (iτ1)i
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to change Eq. (B127) and Eq. (B128) to

Gx =g3((−)iθx), Gy = g3((−)iθy)

GPx
=g3((−)iθpx) GPy

= g3((−)iθpy)

GPxy =(−)ixiyg3(((−)ix − (−)iy )
π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ1,

GT =(−)ig3((−)iθT ), (−)iyg3((−)iθT )iτ12̄ (B129)

Gx =g3((−)iθx), Gy = g3((−)iθy),

GPx =(−)ixg3((−)iθpx)iτ12̄ GPy = (−)iyg3((−)iθpy)iτ12

GPxy
=(−)ixiyg3(((−)ix − (−)iy )

π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ1,

GT =(−)ig3((−)iθT ), (−)iyg3((−)iθT )iτ12̄ (B130)

We can use a gauge transformation Wi =
(iτ1)ig3(−(−)iπ/8)g3((−)iyπ/4) to simplify the ansatz
Eq. (B117) - Eq. (B120). After the gauge transfor-
mation, the IGG is given by {g3((−)iθ)}. The ansatz
has a form ui,i+m = u1

mτ1 + u2
mτ2 for m = odd and

ui,i+m = u0
mτ0 + u3

mτ3 for m = even. We find the
ansatz Eq. (B117) - Eq. (B120) become

ui,i+m =u1
mτ1 + u2

mτ2

um =0, for m = even (B131)

Gx =g3((−)iθx), Gy = g3((−)iθy)

GPx =g3((−)iθpx) GPy = g3((−)iθpy)

GPxy =(−)ixiyg3(((−)ix − (−)iy )
π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ1,

GT =(−)ig3((−)iθT )

ui,i+m =u1
mτ1 + u2

mτ2 + u3
mτ3

u1
m 6=0, for mx = even and my = odd

u2
m 6=0, for mx = odd and my = even

u3
m 6=0, for mx = even and my = even (B132)

Gx =g3((−)iθx), Gy = g3((−)iθy)

GPx =g3((−)iθpx) GPy = g3((−)iθpy)

GPxy =(−)ixiyg3(((−)ix − (−)iy )
π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ12,

GT =(−)iyg3((−)iθT )iτ1

ui,i+m =u1
mτ1 + u2

mτ2

u1,2
m =0, for m = even (B133)

Gx =g3((−)iθx), Gy = g3((−)iθy)

GPx =(−)ixg3((−)iθpx)iτ1,

GPy =(−)iyg3((−)iθpy)iτ2

GPxy
=(−)ixiyg3(((−)ix − (−)iy )

π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ12,

GT =(−)ig3((−)iθT )

ui,i+m =u1
mτ1 + u2

mτ2 + u3
mτ3

u1
m 6=0, for mx = even and my = odd

u2
m 6=0, for mx = odd and my = even

u3
m 6=0, for mx = even and my = even (B134)

Gx =g3((−)iθx), Gy = g3((−)iθy)

GPx =(−)ixg3((−)iθpx)iτ1,

GPy =(−)iyg3((−)iθpy)iτ2

GPxy =(−)ixiyg3(((−)ix − (−)iy )
π

4
+ (−)iθpxy),

g3((−)iθpxy)iτ12,

GT =(−)iyg3((−)iθT )iτ1

In Eq. (B132), Eq. (B133) and Eq. (B134) we have made
additional gauge transformation (τ12̄, τ12)− > (τ1, τ2).

Using the mapping Eq. (A112), we can obtain all the
PSG’s for the Z2 symmetric spin liquids near the SU(2)-
linear state from the 58 Z2 PSG’s obtained in the last
subsection for the SU(2)-gapless state. We note that,
under the mapping Eq. (A112), a Z2 PSG labeled by
Z2Aabcd will be mapped into a PSG labeled by Z2Babcd
and a Z2 PSG labeled by Z2Babcd will be mapped into
a PSG labeled by Z2Aabcd. In the following, we will list
all the 58 Z2 PSG’s for the spin liquids near the SU(2)
linear spin liquid. We will also construct ansatz for those
PSG’s. First let us consider PSG’s of form Z2B.... For
those PSG’s the ansatz can be written as

ui,i+m = (−)ixmyum (B135)

In the following we consider the constraint imposed by
the 180◦ rotation symmetry and the time reversal sym-
metry.

For PSG

Z2B[τ0
−τ0

+, τ3
−τ3

+][τ0, τ3]τ0
−

Z2Bτ3
−τ3

+τ1τ0
− (B136)

the 180◦ rotation symmetry generated by PxPy requires
that

(−)ixmyum = (−)m(−)(ix+mx)myu†m



56

or

u0
m =0, for mx = even and my = even

u1,2,3
m =0, for mx = odd or my = odd

The time reversal symmetry T requires that

−um =um(−)m

The above two equations give us

ui,i+m =(−)ixmyuµ
mτµ

u0
m =0, for m = even (B137)

u1,2,3
m =0, for mx = odd or my = odd

For PSG

Z2Bτ3
−τ3
−τ0,1,2,3τ0

−
Z2B[τ0

+τ0
+, τ3

+τ3
+]τ0,1,3τ0

− (B138)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal symmetry requires that

−um =um(−)m

The above two equations give us

ui,i+m =(−)ixmy (u1
mτ1 + u2

mτ2 + u3
mτ3)

u1,2,3
m =0, for m = even (B139)

For PSG

Z2Bτ1
−τ2

+τ12τ0
−, (B140)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)m(−)(ix+mx)myτ3u†mτ3

or

u0,1,2
m =0, for mx = even and my = even

u3
m =0, for mx = odd or my = odd

The time reversal symmetry requires that

−um =um(−)m

We find

ui,i+m =(−)ixmy (u0
mτ0 + u1

mτ1 + u2
mτ2)

u0,1,2
m =0, for m = even (B141)

For PSG

Z2B[τ0
−τ0

+, τ3
−τ3

+]τ0,1,3τ3
−

Z2Bτ1
−τ1

+τ0,1,2,3τ3
− (B142)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)m(−)(ix+mx)myu†m

or

u0
m =0, for mx = even and my = even

u1,2,3
m =0, for mx = odd or my = odd

The time reversal symmetry requires that

−um =τ3umτ3(−)m

The ansatz has a form

ui,i+m =(−)ixmy (u0
mτ0 + u1

mτ1 + u2
mτ2) (B143)

u0
m =0, for m = even

u1,2
m =0, for mx = odd or my = odd

For PSG’s

Z2Bτ3
−τ3
−τ3τ3

−
Z2Bτ1

−τ1
−τ0,1,2,3τ3

−
Z2B[τ0

+τ0
+, τ3

+τ3
+]τ0,1,3τ3

− (B144)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal symmetry requires that

−um =τ3umτ3(−)m

The ansatz has a form

ui,i+m =(−)ixmy (u1
mτ1 + u2

mτ2 + u3
mτ3) (B145)

u3
m =0, for m = even

u1,2
m =0, for mx = odd or my = odd

For PSG

Z2Bτ1
−τ2

+τ12τ3
−, (B146)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)m(−)(ix+mx)myτ3u†mτ3

or

u0,1,2
m =0, for mx = even and my = even

u3
m =0, for mx = odd or my = odd
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The time reversal symmetry requires that

−um =τ3umτ3(−)m

We get

ui,i+m =(−)ixmy (u0
mτ0 + u1

mτ1 + u2
mτ2) (B147)

u0
m =0, for m = even

u1,2
m =0, for mx = even or my = even

For PSG’s

Z2Bτ3
−τ3
−τ0,1,3τ3

+

Z2Bτ1
−τ1
−τ0,1,2,3τ3

+

Z2Bτ0
+τ0

+τ0,1,3τ3
+

Z2Bτ1
+τ1

+τ0,1,2,3τ3
+ (B148)

the 180◦ rotation symmetry requires that

(−)ixmyum = (−)(ix+mx)myu†m

or

u0
m =0, for mx = even or my = even

u1,2,3
m =0, for mx = odd and my = odd

The time reversal symmetry requires that

−um =τ3umτ3

The ansatz has a form

ui,i+m =(−)ixmy (u1
mτ1 + u1

mτ2) (B149)

u1,2
m =0, for mx = odd and my = odd

There are six PSG’s of form Z2A... whose ansatz have
a form

ui,i+m = um (B150)

The first two are

Z2A[τ1
−τ2

+, τ1
+τ2
−]τ12τ0

−. (B151)

Their ansatz have a form Eq. (B94). For PSG

Z2Aτ0
+τ0

+τ3τ0
− (B152)

the ansatz have a form Eq. (B92). For

Z2A[τ1
−τ2

+, τ1
+τ2
−]τ12τ3

+ (B153)

the 180◦ rotation and the time reversal symmetries re-
quire that

u−m =τ3umτ3(−)m = u†m
−um =τ3umτ3

which gives us

ui,i+m =u1
mτ1 + u2

mτ2

u1,2
m =0, for m = even (B154)

For PSG

Z2Aτ0
+τ0

+τ3τ3
+ (B155)

the ansatz has a form Eq. (B100).
In summary, we find that there are 12 classes of per-

turbations around the SU(2)-linear spin liquid that break
the SU(2) gauge structure down to a U(1) gauge struc-
ture, and there are 58 classes of perturbations that break
the SU(2) gauge structure down to a Z2 gauge structure.
The resulting U(1) and Z2 spin liquids can be construct-
ed through uij .

[1] L. D. Landau and E. M. Lifschitz, Satistical Physics -
Course of Theoretical Physics Vol 5, Pergamon, London,
1958.

[2] V. L. Ginzburg and L. D. Landau, J. exp. theor. Phys.
20, 1064 (1950).

[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys.
Rev. Lett. 48, 1559 (1982).

[4] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[5] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59,

2095 (1987).
[6] X.-G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39,

11413 (1989).
[7] X.-G. Wen, Phys. Rev. B 40, 7387 (1989).
[8] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[9] X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).

[10] X.-G. Wen, Advances in Physics 44, 405 (1995).

[11] X.-G. Wen, cond-mat , 0110397 (2001).
[12] H. K. Onnes, Comm. Phys. Lab. Univ. Leiden, Nos 119

120, 122 (1911).
[13] X.-G. Wen, Int. J. Mod. Phys. B 5, 1641 (1991).
[14] P. W. Anderson, Science 235, 1196 (1987).
[15] G. Baskaran, Z. Zou, and P. W. Anderson, Solid State

Comm. 63, 973 (1987).
[16] G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580

(1988).
[17] D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996).
[18] H. Ding et al., Nature 382, 51 (1996).
[19] A. J. Millis, L. Ioffe, and H. Monien, J. Phys. Chem. Sol.

56, 1641 (1995).
[20] N. P. Ong, Z. Z. Wang, J. C. J. M. Tarascon, L. H.

Greene, and W. R. McKinnon, Phys. Rev. B 35, 8807
(1987).



58

[21] W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and
K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).

[22] Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).
[23] Y. J. Uemura et al., Phys. Rev. Lett. 66, 2665 (1991).
[24] S. A. Kivelson and V. J. Emery, Nature 374, 434 (1995).
[25] A. G. Loeser et al., Science 273, 325 (1996).
[26] J. M. Harris, Z.-X. Shen, P. J. White, D. S. Marshall,

and M. C. Schabel, Phys. Rev. B 54, 665 (1996).
[27] M. Takigawa et al., Phys. Rev. B 43, 247 (1991).
[28] M. Matsuda et al., Phys. Rev. B 62, 9148 (2000).
[29] P. Bourges et al., Science 288, 1234 (2000).
[30] P. Dai, H. A. Mook, R. D. Hunt, and F. Doan, Phys.

Rev. B 63, 54525 (2001).
[31] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774

(1988).
[32] G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).
[33] X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503

(1996).
[34] W. Rantner and X.-G. Wen, Phys. Rev. Lett. 86, 3871

(2001).
[35] Y. Suzumura, Y. Hasegawa, and H. Fukuyama, J. Phys.

Soc. Jpn. 57, 2768 (1988).
[36] I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys.

Rev. B 38, 745 (1988).
[37] E. Dagotto, E. Fradkin, and A. Moreo, Phys. Rev. B 38,

2926 (1988).
[38] X.-G. Wen, Phys. Rev. B 44, 2664 (1991).
[39] P. A. Lee and N. Nagaosa, Phys. Rev. B 45, 5621 (1992).
[40] C. Mudry and E. Fradkin, Phys. Rev. B 49, 5200 (1994).
[41] D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316

(1988).
[42] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694

(1989).
[43] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773

(1991).
[44] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[45] Z. Y. Weng, D. N. Sheng, Y. C. Chen, and C. S. Ting,

Phys. Rev. B 55, 3894 (1997).
[46] S. Sachdev and K. Park, cond-mat , 0108214 (2001).
[47] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys.

Rev. B 35, 8865 (1987).
[48] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61,

2376 (1988).
[49] L. B. Ioffe and A. I. Larkin, Phys. Rev. B 40, 6941

(1989).
[50] E. Fradkin and S. Kivelson, Mod. Phys. Lett. B 4, 225

(1990).
[51] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881

(2001).
[52] G. J. Chen, R. Joynt, F. C. Zhang, and C. Gros, Phys.

Rev. B 42, 2662 (1990).
[53] G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann,

Phys. Rev. B 60, 1064 (1999).
[54] L. Capriotti, F. Becca, A. Parola, and S. Sorella, cond-

mat , 0107204 (2001).
[55] T. Kashima and M. Imada, cond-mat , 0104348 (2001).
[56] R. Coldea, D. Tennant, A. Tsvelik, and Z. Tylczynski,

Phys. Rev. Lett. 86, 1335 (2001).
[57] G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950

(2000).
[58] X.-G. Wen, hep-th , 01090120 (2001).
[59] X.-G. Wen, to appear .
[60] L. Ioffe and A. Larkin, Phys. Rev. B 39, 8988 (1989).
[61] X.-G. Wen, Phys. Rev. B 60, 8827 (1999).

[62] N. Read and B. Chakraborty, Phys. Rev. B 40, 7133
(1989).

[63] L. Balents, M. P. A. Fisher, and C. Nayak, Int. J. Mod.
Phys. B 12, 1033 (1998).

[64] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850
(2000).

[65] T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292
(2001).

[66] X.-G. Wen, Phys. Rev. Lett. 84, 3950 (2000).
[67] W. Rantner and X.-G. Wen, to appear (2001).
[68] H. Yoshizawa, S. Mitsuda, H. Kitazawa, and K. Kat-

sumata, J. Phys. Soc. Jpn. 57, 3686 (1988).
[69] R. J. Birgeneau et al., Phys. Rev. B 39, 2868 (1989).
[70] S.-W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991).
[71] H. F. Fong, B. Keimer, D. L. Milius, and I. A. Aksay,

Phys. Rev. Lett. 78, 713 (1997).
[72] P. Bourges et al., Phys. Rev. B 56, 11439 (1997).
[73] K. Yamada et al., Physical Review B 57, 6165 (1998).
[74] H. Fong et al., Phys. Rev. B 61, 14773 (2000).
[75] S. Wakimoto et al., Phys. Rev. B 61, 3699 (2000).
[76] A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
[77] T. Appelquist and D. Nash, Phys. Rev. Lett. 64, 721

(1990).
[78] T. Appelquist, A. G. Cohen, and M. Schmaltz, Phys.

Rev. D 60, 45003 (1999).
[79] D. H. Kim and P. A. Lee, Annals of Physics 272, 130

(1999).
[80] A. V. Chubukov and S. Sachdev, Phys. Rev. Lett. 71,

169 (1993).
[81] A. Sokol and D. Pines, Phys. Rev. Lett. 71, 2813 (1993).
[82] G. Kotliar, Phys. Rev. B 37, 3664 (1988).
[83] Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).
[84] D. A. Brawner and H. R. Ott, Phys. Rev. B 50, 6530

(1994).
[85] J. R. Kirtley et al., Nature 373, 225 (1995).
[86] D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B

34, 8190 (1986).
[87] D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B

35, 6694 (1987).
[88] X.-G. Wen and Y.-S. Wu, Phys. Rev. Lett. 70, 1501

(1993).
[89] W. Chen, M. P. A. Fisher, and Y.-S. Wu, Phys. Rev. B

48, 13749 (1993).
[90] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[91] P. Wiegmann, Princeton preprint IASSNS-HEP-91/29

(unpublished) (1991).
[92] A more precise definition of quantum order is given in

Ref. [11].
[93] The Landau’s theory may not even be able to describe

all the classical orders. Some classical phase transitions,
such as Kosterliz-Thouless transition, do not change any
symmetries.

[94] In this paper we will distinguish the invariance of an
ansatz and the symmetry of an ansatz. We say an ansatz
has a translation invariance when the ansatz itself does
not change under translation. We say an ansatz has a
translation symmetry when the physical spin wave func-
tion obtained from the ansatz has a translation symme-
try.

[95] In his unpublished study of quantum antiferromagnetism
with a symmetry group of large rank, Wiegmenn[91] con-
structed a gauge theory which realizes a double valued
magnetic space group. The double valued magnetic s-
pace group extends the space group and is a special case



59

of projective symmetry group.
[96] We need to integrate out the phase of the φ field to get

a gauge invariant result.


