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A concept — quantum order — is introduced to describe a new kind of orders that generally
appear in quantum states at zero temperature. Quantum orders that characterize universality
classes of quantum states (described by complex ground state wave-functions) is much richer then
classical orders that characterize universality classes of finite temperature classical states (described
by positive probability distribution functions). The Landau’s theory for orders and phase transitions
does not apply to quantum orders since they cannot be described by broken symmetries and the
associated order parameters. We introduced a mathematical object — projective symmetry group —
to characterize quantum orders. With the help of quantum orders and projective symmetry groups,
we construct hundreds of symmetric spin liquids, which have SU(2), U(1) or Z2 gauge structures
at low energies. We found that various spin liquids can be divided into four classes: (a) Rigid
spin liquid — spinons (and all other excitations) are fully gaped and may have bosonic, fermionic,
or fractional statistics. (b) Fermi spin liquid — spinons are gapless and are described by a Fermi
liquid theory. (c) Algebraic spin liquid — spinons are gapless, but they are not described by free
fermionic/bosonic quasiparticles. (d) Bose spin liquid — low lying gapless excitations are described
by a free boson theory. The stability of those spin liquids are discussed in details. We find that stable
2D spin liquids exist in the first three classes (a—c). Those stable spin liquids occupy a finite region
in phase space and represent quantum phases. Remarkably, some of the stable quantum phases
support gapless excitations even without any spontaneous symmetry breaking. In particular, the
gapless excitations in algebraic spin liquids interact down to zero energy and the interaction does
not open any energy gap. We propose that it is the quantum orders (instead of symmetries) that
protect the gapless excitations and make algebraic spin liquids and Fermi spin liquids stable. Since
high T. superconductors are likely to be described by a gapless spin liquid, the quantum orders and
their projective symmetry group descriptions lay the foundation for spin liquid approach to high 7.
superconductors.
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I. INTRODUCTION

Due to its long length, we would like to first outline
the structure of the paper so readers can choose to read
the parts of interests. The section X summarize the main
results of the paper, which also serves as a guide of the w-
hole paper. The concept of quantum order is introduced
in section IA. A concrete mathematical description of
quantum order is described in section IV A and section
IV B. Readers who are interested in the background and
motivation of quantum orders may choose to read sec-
tion I A. Readers who are familiar with the slave-boson
approach and just want a quick introduction to quantum
orders may choose to read sections IV A and IV B. Read-
ers who are not familiar with the slave-boson approach
may find the review sections II and III useful. Reader-
s who do not care about the slave-boson approach but
are interested in application to high T, superconductors
and experimental measurements of quantum orders may
choose to read sections I A, IB, VII and Fig. 1 - Fig. 15,
to gain some intuitive picture of spinon dispersion and
neutron scattering behavior of various spin liquids.

A. Topological orders and quantum orders

Matter can have many different states, such as gas,
liquid, and solid. Understanding states of matter is the
first step in understanding matter. Physicists find matter
can have much more different states than just gas, liquid,
and solid. Even solids and liquids can appear in many
different forms and states. With so many different states
of matter, a general theory is needed to gain a deeper
understanding of states of matter.

All the states of matter are distinguished by their in-
ternal structures or orders. The key step in developing
the general theory for states of matter is the realization
that all the orders are associated with symmetries (or
rather, the breaking of symmetries). Based on the rela-
tion between orders and symmetries, Landau developed
a general theory of orders and the transitions between d-
ifferent orders.[1, 2] Landau’s theory is so successful and
one starts to have a feeling that we understand, at in
principle, all kinds of orders that matter can have.

However, nature never stops to surprise us. In 1982,
Tsui, Stormer, and Gossard[3] discovered a new kind of
state — Fractional Quantum Hall (FQH) liquid.[4] Quan-
tum Hall liquids have many amazing properties. A quan-
tum Hall liquid is more “rigid” than a solid (a crystal),
in the sense that a quantum Hall liquid cannot be com-
pressed. Thus a quantum Hall liquid has a fixed and well-
defined density. When we measure the electron density
in terms of filling factor v, we found that all discovered
quantum Hall states have such densities that the filling
factors are exactly given by some rational numbers, such
as v = 1,1/3,2/3,2/5,.... Knowing that FQH liquids
exist only at certain magical filling factors, one cannot
help to guess that FQH liquids should have some inter-
nal orders or “patterns”. Different magical filling fac-
tors should be due to those different internal “patterns”.
However, the hypothesis of internal “patterns” appears
to have one difficulty — FQH states are liquids, and how
can liquids have any internal “patterns”?

In 1989, it was realized that the internal orders in
FQH liquids (as well as the internal orders in chiral spin
liquids[5, 6]) are different from any other known orders
and cannot be observed and characterized in any con-
ventional ways.[7, 8] What is really new (and strange)
about the orders in chiral spin liquids and FQH liquids
is that they are not associated with any symmetries (or
the breaking of symmetries), and cannot be described by
Landau’s theory using physical order parameters.[9] This
kind of order is called topological order. Topological order
is a new concept and a whole new theory was developed
to describe it.[9, 10]

Knowing FQH liquids contain a new kind of order —
topological order, we would like to ask why FQH liquids
are so special. What is missed in Landau’s theory for
states of matter so that the theory fails to capture the
topological order in FQH liquids?

When we talk about orders in FQH liquids, we are
really talking about the internal structure of FQH lig-



uids at zero temperature. In other words, we are talking
about the internal structure of the quantum ground state
of FQH systems. So the topological order is a property
of ground state wave-function. The Landau’s theory is
developed for system at finite temperatures where quan-
tum effects can be ignored. Thus one should not be sur-
prised that the Landau’s theory does not apply to states
at zero temperature where quantum effects are impor-
tant. The very existence of topological orders suggests
that finite-temperature orders and zero-temperature or-
ders are different, and zero-temperature orders contain
richer structures. We see that what is missed by Lan-
dau’s theory is simply the quantum effect. Thus FQH
liquids are not that special. The Landau’s theory and
symmetry characterization can fail for any quantum s-
tates at zero temperature. As a consequence, new kind
of orders with no broken symmetries and local order pa-
rameters (such as topological orders) can exist for any
quantum states at zero temperature. Because the orders
in quantum states at zero temperature and the orders in
classical states at finite temperatures are very different,
here we would like to introduce two concepts to stress
their differences:[11]

(A) Quantum orders:[92] which describe the universali-
ty classes of quantum ground states (ie the universality
classes of complex ground state wave-functions with in-
finity variables);

(B)Classical orders: which describe the universality
classes of classical statistical states (ie the universality
classes of positive probability distribution functions with
infinity variables).

From the above definition, it is clear that the quantum
orders associated with complex functions are richer than
the classical orders associated with positive function-
s. The Landau’s theory is a theory for classical orders,
which suggests that classical orders may be characterized
by broken symmetries and local order parameters.[93]
The existence of topological order indicates that quan-
tum orders cannot be completely characterized by bro-
ken symmetries and order parameters. Thus we need to
develop a new theory to describe quantum orders.

In a sense, the classical world described by positive
probabilities is a world with only “black and white”. The
Landau’s theory and the symmetry principle for classical
orders are color blind which can only describe different
“shades of grey” in the classical world. The quantum
world described by complex wave functions is a “colorful”
world. We need to use new theories, such as the theory of
topological order and the theory developed in this paper,
to describe the rich “color” of quantum world.

The quantum orders in FQH liquids have a special
property that all excitations above ground state have fi-
nite energy gaps. This kind of quantum orders are called
topological orders. In general, a topological order is de-
fined as a quantum order where all the excitations above
ground state have finite energy gapes.

Topological orders and quantum orders are general
properties of any states at zero temperature. Non trivial

topological orders not only appear in FQH liquids, they
also appear in spin liquids at zero temperature. In fact,
the concept of topological order was first introduced in a
study of spin liquids.[9] FQH liquid is not even the first
experimentally observed state with non trivial topolog-
ical orders. That honor goes to superconducting state
discovered in 1911.[12] In contrast to a common point
of view, a superconducting state cannot be characterized
by broken symmetries. It contains non trivial topological
orders,[13] and is fundamentally different from a super-
fluid state.

After a long introduction, now we can state the main
subject of this paper. In this paper, we will study a new
class of quantum orders where the excitations above the
ground state are gapless. We believe that the gapless
quantum orders are important in understanding high T,
superconductors. To connect to high T, superconduc-
tors, we will study quantum orders in quantum spin lig-
uids on a 2D square lattice. We will concentrate on how
to characterize and classify quantum spin liquids with
different quantum orders. We introduce projective sym-
metry groups to help us to achieve this goal. The projec-
tive symmetry group can be viewed as a generalization
of symmetry group that characterize different classical
orders.

B. Spin-liquid approach to high 7. superconductors

There are many different approaches to the high T,
superconductors. Different people have different points
of view on what are the key experimental facts for the
high T, superconductors. The different choice of the key
experimental facts lead to many different approaches and
theories. The spin liquid approach is based on a point of
view that the high T, superconductors are doped Mot-
t insulators.[14-16] (Here by Mott insulator we mean a
insulator with an odd number of electron per unit cel-
l.) We believe that the most important properties of
the high T, superconductors is that the materials are in-
sulators when the conduction band is half filled. The
charge gap obtained by the optical conductance experi-
ments is about 2eV, which is much larger than the anti-
ferromagnetic (AF) transition temperature Tar ~ 250K,
the superconducting transition temperature 7. ~ 100K,
and the spin pseudo-gap scale A ~ 40meV.[17-19] The
insulating property is completely due to the strong corre-
lations present in the high T, materials. Thus the strong
correlations are expect to play very important role in un-
derstanding high T, superconductors. Many importan-
t properties of high T, superconductors can be directly
linked to the Mott insulator at half filling, such as (a)
the low charge density[20] and superfluid density,[21] (b)
T. being proportional to doping T, x x,[22-24] (c) the
positive charge carried by the charge carrier,[20] etc .

In the spin liquid approach, the strategy is to try to
understand the properties of the high T, superconduc-
tors from the low doping limit. We first study the spin



liquid state at half filling and try to understand the par-
ent Mott insulator. (In this paper, by spin liquid, we
mean a spin state with translation and spin rotation
symmetry.) At half filling, the charge excitations can
be ignored due to the huge charge gap. Thus we can
use a pure spin model to describe the half filled system.
After understand the spin liquid, we try to understand
the dynamics of a few doped holes in the spin liquid s-
tates and to obtain the properties of the high T, super-
conductors at low doping. One advantage of the spin
liquid approach is that experiments (such as angle re-
solved photo-emission,[17, 18, 25, 26] NMR,[27], neutron
scattering,[28-30] etc ) suggest that underdoped cuper-
ates have many striking and qualitatively new properties
which are very different from the well known Fermi lig-
uids. It is thus easier to approve or disapprove a new
theory in the underdoped regime by studying those qual-
itatively new properties.

Since the properties of the doped holes (such as their
statistics, spin, effective mass, etc ) are completely de-
termined by the spin correlation in the parent spin lig-
uids, thus in the spin liquid approach, each possible spin
liquid leads to a possible theory for high T, supercon-
ductors. Using the concept of quantum orders, we can
say that possible theories for high T, superconductors in
the low doping limits are classified by possible quantum
orders in spin liquids on 2D square lattice. Thus one
way to study high T, superconductors is to construct all
the possible spin liquids that have the same symmetries
as those observed in high T, superconductors. Then an-
alyze the physical properties of those spin liquids with
dopings to see which one actually describes the high T
superconductor. Although we cannot say that we have
constructed all the symmetric spin liquids, in this paper
we have found a way to construct a large class of sym-
metric spin liquids. (Here by symmetric spin liquids we
mean spin liquids with all the lattice symmetries: transla-
tion, rotation, parity, and the time reversal symmetries.)
We also find a way to characterize the quantum order-
s in those spin liquids via projective symmetry groups.
This gives us a global picture of possible high T, the-
ories. We would like to mention that a particular spin
liquid — the staggered-flux/d-wave state[31, 32] — may be
important for high T, superconductors. Such a state can
explain[33, 34] the highly unusual pseudo-gap metallic
state found in underdoped cuperates,[17, 18, 25, 26] as
well as the d-wave superconducting state[32].

The spin liquids constructed in this paper can be divid-
ed into four class: (a) Rigid spin liquid — spinons are fully
gaped and may have bosonic, fermionic, or fractional s-
tatistics, (b) Fermi spin liquid — spinons are gapless and
are described by a Fermi liquid theory, (c¢) Algebraic spin
liquid — spinons are gapless, but they are not described
by free fermionic/bosonic quasiparticles. (d) Bose spin
liquid — low lying gapless excitations are described by a
free boson theory. We find some of the constructed spin
liquids are stable and represent stable quantum phas-
es, while others are unstable at low energies due to long

range interactions caused by gauge fluctuations. The al-
gebraic spin liquids and Fermi spin liquids are interesting
since they can be stable despite their gapless excitations.
Those gapless excitations are not protected by symme-
tries. This is particularly striking for algebraic spin lig-
uids since their gapless excitations interact down to zero
energy and the states are still stable. We propose that
it is the quantum orders that protect the gapless excita-
tions and ensure the stability of the algebraic spin liquids
and Fermi spin liquids.

We would like to point out that both stable and unsta-
ble spin liquids may be important for understanding high
T, superconductors. Although at zero temperature high
T, superconductors are always described stable quantum
states, some important states of high 7T, superconduc-
tors, such as the pseudo-gap metallic state for underdope-
d samples, are observed only at finite temperatures. Such
finite temperature states may correspond to (doped) un-
stable spin liquids, such as staggered flux state. Thus
even unstable spin liquids can be useful in understand-
ing finite temperature metallic states.

There are many different approach to spin liquid-
s. In addition to the slave-boson approach,[6, 15,
16, 31-33, 35-40] spin liquids has been studied using
slave-fermion/o-model approach,[41-46] quantum dimer
model,[47-51] and various numerical methods.[52-55] In
particular, the numerical results and recent experimen-
tal results[56] strongly support the existence of quantum
spin liquids in some frustrated systems. A 3D quantum
orbital liquid was also proposed to exist in L,T;03.[57]

However, I must point out that there is no generally
accepted numerical results yet that prove the existence
of spin liquids with odd number of electron per unit cel-
1 for spin-1/2 systems, despite intensive search in last
ten years. But it is my faith that spin liquids (with odd
number of electron per unit cell) exist in spin-1/2 system-
s. For more general systems, spin liquids do exist. Read
and Sachdev[43] found stable spin liquids in a Sp(N)
model in large N limit. The spin-1/2 model studied in
this paper can be easily generalized to SU(N) model with
N/2 fermions per site.[31, 58] In the large N limit, one
can easily construct various Hamiltonians whose ground
states realize various U(1) and Z5 spin liquids construct-
ed in this paper.[59] The quantum orders in those large-N
spin liquids can be described by the methods introduced
in this paper. Thus, despite the uncertainty about the
existence of spin-1/2 spin liquids, the methods and the
results presented in this paper are not about (possibly)
non-existing “ghost states”. Those methods and result-
s apply, at least, to certain large-N systems. In short,
non-trivial quantum orders exist in theory. We just need
to find them in nature. (In fact, our vacuum is likely to
be a state with a non-trivial quantum order, due to the
fact that light exists.[58]) Knowing the existence of spin
liquids in large- N systems, it is not such a big leap to go
one step further to speculate that spin liquids exist for
spin-1/2 systems.



C. Spin-charge separation in (doped) spin liquids

Spin-charge separation and the associated gauge theo-
ry in spin liquids (and in doped spin liquids) are very im-
portant concepts in our attempt to understand the prop-
erties of high T, superconductors.[14-16, 39, 60] However,
the exact meaning of spin-charge separation is different
for different researchers. The term “spin-charge separa-
tion” has at lease in two different interpretations. In the
first interpretation, the term means that it is better to in-
troduce separate spinons (a neutral spin-1/2 excitation)
and holons (a spinless excitation with unit charge) to un-
derstand the dynamical properties of high T, supercon-
ductors, instead of using the original electrons. However,
there may be long range interaction (possibly, even con-
fining interactions at long distance) between the spinons
and holons, and the spinons and holons may not be well
defined quasiparticles. We will call this interpretation
pseudo spin-charge separation. The algebraic spin liquids
have the pseudo spin-charge separation. The essence of
the pseudo spin-charge separation is not that spin and
charge separate. The pseudo spin-charge separation is
simply another way to say that the gapless excitations
cannot be described by free fermions or bosons. In the
second interpretation, the term “spin-charge separation”
means that there are only short ranged interactions be-
tween the spinons and holons. The spinons and holons
are well defined quasiparticles at least in the dilute limit
or at low energies. We will call the second interpretation
the true spin-charge separation. The rigid spin liquid-
s and the Fermi spin liquids have the true spin-charge
separation.

Electron operator is not a good starting point to de-
scribe states with pseudo spin-charge separation or true
spin-charge separation. To study those states, we usual-
ly rewrite the electron operator as a product of several
other operators. Those operators are called parton oper-
ators. (The spinon operator and the holon operator are
examples of parton operators). We then construct mean-
field state in the enlarged Hilbert space of partons. The
gauge structure can be determined as the most general
transformations between the partons that leave the elec-
tron operator unchanged.[61] After identifying the gauge
structure, we can project the mean-field state onto the
physical (ie the gauge invariant) Hilbert space and obtain
a strongly correlated electron state. This procedure in its
general form is called projective construction. It is a gen-
eralization of the slave-boson approach.[15, 16, 33, 36—
38, 40] The general projective construction and the relat-
ed gauge structure has been discussed in detail for quan-
tum Hall states.[61] Now we see a third (but technical)
meaning of spin-charge separation: to construct a strong-
ly correlated electron state, we need to use partons and
projective construction. The resulting effective theory
naturally contains a gauge structure.

Although, it is not clear which interpretation of spin-
charge separation actually applies to high T, supercon-
ductors, the possibility of true spin-charge separation in

an electron system is very interesting. The first con-
crete example of true spin-charge separation in 2D is
given by the chiral spin liquid state,[5, 6] where the
gauge interaction between the spinons and holons be-
comes short-ranged due to a Chern-Simons term. The
Chern-Simons term breaks time reversal symmetry and
gives the spinons and holons a fractional statistics. Lat-
er in 1991, it was realized that there is another way
to make the gauge interaction short-ranged through the
Anderson-Higgs mechanism.[38, 43] This led to a mean-
field theory[38, 40] of the short-ranged Resonating Va-
lence Bound (RVB) state[47, 48] conjectured earlier. We
will call such a state Z, spin liquid state, to stress the
unconfined Zs gauge field that appears in the low energy
effective theory of those spin liquids. (See remarks at the
end of this section. We also note that the Z5 spin liquids
studied in Ref. [43] all break the 90° rotation symmetry
and are different from the short-ranged RVB state stud-
ied Ref. [38, 40, 47, 48].) Since the Z gauge fluctuations
are weak and are not confining, the spinons and holons
have only short ranged interactions in the Z5 spin liquid
state. The Z5 spin liquid state also contains a Z5 vortex-
like excitation.[38, 62] The spinons and holons can be
bosons or fermions depending on if they are bound with
the Z5 vortex.

Recently, the true spin-charge separation, the Z, gauge
structure and the Zy vortex excitations were also pro-
posed in a study of quantum disordered superconduct-
ing state in a continuum model[63] and in a Z slave-
boson approach[64]. The resulting liquid state (which
was named nodal liquid) has all the novel properties of Zs
spin liquid state such as the Z5 gauge structure and the
Zy vortex excitation (which was named vison). From the
point of view of universality class, the nodal liquid is one
kind of Zs spin liquids. However, the particular Z5 spin
liquid studied in Ref. [38, 40] and the nodal liquid are two
different Zs spin liquids, despite they have the same sym-
metry. The spinons in the first Z5 spin liquid have a finite
energy gap while the spinons in the nodal liquid are gap-
less and have a Dirac-like dispersion. In this paper, we
will use the projective construction to obtain more gener-
al spin liquids. We find that one can construct hundreds
of different Z5 spin liquids. Some Z5 spin liquids have fi-
nite energy gaps, while others are gapless. Among those
gapless Z5 spin liquids, some have finite Fermi surfaces
while others have only Fermi points. The spinons near
the Fermi points can have linear E(k) « |k| or quadratic
E(k) o k* dispersions. We find there are more than one
Z5 spin liquids whose spinons have a massless Dirac-like
dispersion. Those Zs spin liquids have the same symme-
try but different quantum orders. Their ansatz are give
by Eq. (42), Eq. (39), Eq. (88), etc .

Both chiral spin liquid and Zs spin liquid states are
Mott insulators with one electron per unit cell if not
doped. Their internal structures are characterized by a
new kind of order — topological order, if they are gapped
or if the gapless sector decouples. Topological order is
not related to any symmetries and has no (local) or-



der parameters. Thus, the topological order is robust
against all perturbations that can break any symmetries
(including random perturbations that break translation
symmetry).[9, 10] (This point was also emphasized in
Ref. [65] recently.) Even though there are no order pa-
rameters to characterize them, the topological orders can
be characterized by other measurable quantum number-
s, such as ground state degeneracy in compact space as
proposed in Ref. [9, 10]. Recently, Ref. [65] introduced
a very clever experiment to test the ground state degen-
eracy associated with the non-trivial topological orders.
In addition to ground state degeneracy, there are other
practical ways to detect topological orders. For example,
the excitations on top of a topologically ordered state
can be defects of the under lying topological order, which
usually leads to unusual statistics for those excitations.
Measuring the statistics of those excitations also allow us
to measure topological orders.

The concept of topological order and quantum order
are very important in understanding quantum spin lig-
uids (or any other strongly correlated quantum liquids).
In this paper we are going to construct hundreds of dif-
ferent spin liquids. Those spin liquids all have the same
symmetry. To understand those spin liquids, we need to
first learn how to characterize those spin liquids. Those
states break no symmetries and hence have no order pa-
rameters. One would get into a wrong track if trying to
find an order parameter to characterize the spin liquids.
We need to use a completely new way, such as topological
orders and quantum orders, to characterize those states.

In addition to the above Z5 spin liquids, in this paper
we will also study many other spin liquids with differen-
t low energy gauge structures, such as U(1) and SU(2)
gauge structures. We will use the terms Z5 spin liquid-
s, U(1) spin liquids, and SU(2) spin liquids to describe
them. We would like to stress that Z,, U(1), and SU(2)
here are gauge groups that appear in the low energy ef-
fective theories of those spin liquids. They should not be
confused with the Z,, U(1), and SU(2) gauge group in
slave-boson approach or other theories of the projective
construction. The latter are high energy gauge groups.
The high energy gauge groups have nothing to do with
the low energy gauge groups. A high energy Z, gauge
theory (or a Zs slave-boson approach) can have a low
energy effective theory that contains SU(2), U(1) or Z,
gauge fluctuations. Even the ¢-J model, which has no
gauge structure at lattice scale, can have a low energy
effective theory that contains SU(2), U(1) or Z; gauge
fluctuations. The spin liquids studied in this paper all
contain some kind of low energy gauge fluctuations. De-
spite their different low energy gauge groups, all those
spin liquids can be constructed from any one of SU(2),
U(1), or Z, slave-boson approaches. After all, all those
slave-boson approaches describe the same t-J model and
are equivalent to each other. In short, the high ener-
gy gauge group is related to the way in which we write
down the Hamiltonian, while the low energy gauge group
is a property of ground state. Thus we should not re-

gard Zs spin liquids as the spin liquids constructed using
Zy slave-boson approach. A Z5 spin liquid can be con-
structed from the U(1) or SU(2) slave-boson approaches
as well. A precise mathematical definition of the low
energy gauge group will be given in section IV A.

D. Organization

In this paper we will use the method outlined in Re-
f. [38, 40] to study gauge structures in various spin liquid
states. In section II we review SU(2) mean-field theory
of spin liquids. In section III, we construct simple sym-
metric spin liquids using translationally invariant ansatz.
In section IV, projective symmetry group is introduced
to characterize quantum orders in spin liquids. In section
V, we study the transition between different symmetric
spin liquids, using the results obtained in appendix B,
where we find a way to construct all the symmetric spin
liquids in the neighborhood of some well known spin lig-
uids. We also study the spinon spectrum to gain some
intuitive understanding on the properties of the spin lig-
uids. Using the relation between two-spinon spectrum
and quantum order, we propose, in section VII, a prac-
tical way to use neutron scattering to measure quantum
orders. We study the stability of Fermi spin liquids and
algebraic spin liquids in section VIII. We find that both
Fermi spin liquids and algebraic spin liquids can exist
as zero temperature phases. This is particularly striking
for algebraic spin liquids since their gapless excitations
interacts even at lowest energies and there are no free
fermionic/bosonic quasiparticle excitations at low ener-
gies. We show how quantum order can protect gapless
excitations. Appendix A contains a more detailed discus-
sion on projective symmetry group, and a classification
of Zy, U(1) and SU(2) spin liquids using the projective
symmetry group. Section X summarizes the main results
of the paper.

II. PROJECTIVE CONSTRUCTION OF 2D
SPIN LIQUIDS — A REVIEW OF SU(2)
SLAVE-BOSON APPROACH

In this section, we are going to use projective construc-
tion to construct 2D spin liquids. We are going to review
a particular projective construction, namely the SU(2)
slave-boson approach.[15, 16, 33, 36-38, 40] The gauge
structure discovered by Baskaran and Anderson[16] in
the slave-boson approach plays a crucial role in our un-
derstanding of strongly correlated spin liquids.

We will concentrate on the spin liquid states of a pure
spin-1/2 model on a 2D square lattice

<ij>

where the summation is over different links (ie (¢j) and
(ji) are regarded as the same) and ... represents possi-



ble terms which contain three or more spin operators.
Those terms are needed in order for many exotic spin
liquid states introduced in this paper to become the
ground state. To obtain the mean-field ground state of
the spin liquids, we introduce fermionic parton operators
fia, @ = 1,2 which carries spin 1/2 and no charge. The
spin operator S; is represented as

1
Si = §f§aaaﬁf”:5 (2)

In terms of the fermion operators the Hamiltonian Eq. (1)
can be rewritten as

1 1

Hzg}@%(ﬂmu%m+2ﬂmw%m)<a
(i3)

Here we have used OaB " On'g = 2505/50/5 — 5a56a/5/.
We also added proper constant terms ), f;[afia and
Z<ij> f;fafmfjﬁfjg to get the above form. Notice that
the Hilbert space of Eq. (3) is generated by the parton
operators f, and is larger than that of Eq. (1). The e-
quivalence between Eq. (1) and Eq. (3) is valid only in
the subspace where there is exactly one fermion per site.
Therefore to use Eq. (3) to describe the spin state we

need to impose the constraint[15, 16]

flofia =1, fiafipeap =0 4)

The second constraint is actually a consequence of the
first one.

A mean-field ground state at “zeroth” order is obtained
by making the following approximations. First we replace
constraint Eq. (4) by its ground-state average

(fi fia) =1, (fiafig€as) =0 (5)

Such a constraint can be enforced by including a site
dependent and time independent Lagrangian multiplier:
aé(i)(f;rafm —1),1=1,2,3, in the Hamiltonian. At the
zeroth order we ignore the fluctuations (ie the time de-
pendence) of af). If we included the fluctuations of al), the
constraint Eq. (5) would become the original constraint
Eq. (4).[15, 16, 36, 37] Second we replace the operators
fga fip and fiq fip by their ground-state expectations val-
ue

Nij€ap = — 2(fia fiB)s Nij =MNji
XijOap =2(f1, fis), Xig =X} (6)

again ignoring their fluctuations. In this way we obtain
the zeroth order mean-field Hamiltonian:

Hmean
_Z [ ngfmfga + Uzjfzafjﬁ €ag + h. ¢)
(43)
—Ixi51* = [ °] (7)
+ 3 [ (fafia = 1) + [(ab + i03) fia figeas + hoc]

Xij and 7;; in Eq. (7) must satisfy the self consistency
condition Eq. (6) and the site dependent fields a} (i) are
chosen such that Eq. (5) is satisfied by the mean-field
ground state. Such x;j, n;; and aly give us a mean-field
solution. The fluctuations in x;j, 7:; and a} (i) describe
the collective excitations above the mean-field ground s-
tate.

The Hamiltonian Eq. (7) and the constraints Eq. (4)
have a local SU(2) symmetry.[36, 37] The local SU(2)
symmetry becomes explicit if we introduce doublet

@-0) e

i
Xii g

Uij = < P J..) = Uj; (9)
MNij Xig

Using Eq. (8) and Eq. (9) we can rewrite Eq. (5) and
Eq. (7) as

and matrix

<¢IT%> =0 (10)

Hopean Z Jij [ UZTJ 'LJ) (¢ Usjv; + hc)

1.7)

+ 3 abwirl; (11)

where 7!, | = 1,2, 3 are the Pauli matrices. From Eq. (11)
we can see clearly that the Hamiltonian is invariant under
a local SU(2) transformation W (%):

Yy — W(i) ¥;
Usj — W(i) Uz W(5) (12)

The SU(2) gauge structure is originated from Eq. (2).
The SU(2) is the most general transformation between
the partons that leave the physical spin operator un-
changed. Thus once we write down the parton expres-
sion of the spin operator Eq. (2), the gauge structure of
the theory is determined.[61] (The SU(2) gauge structure
discussed here is a high energy gauge structure.)

We note that both components of 1 carry spin-up.
Thus the spin-rotation symmetry is not explicit in our
formalism and it is hard to tell if Eq. (11) describes a
spin-rotation invariant state or not. In fact, for a general
Us; satisfying U;; = UL, Eq. (11) may not describe a

: . . . Ju .
spin-rotation invariant state. However, if Us; has a form

Uij = ipiWij,
pij = real number,
Wij € SU(2), (13)

then Eq. (11) will describe a spin-rotation invariant state.
This is because the above U;; can be rewritten in a form



Eq. (9). In this case Eq. (11) can be rewritten as Eq. (7)
where the spin-rotation invariance is explicit.

To obtain the mean-field theory, we have enlarged the
Hilbert space. Because of this, the mean—ﬁeld theory

is not even qualitatively correct. Let \\Ilmecm> be the
ground state of the Hamiltonian Eq. (11) with energy
E(Uij,alr"). Tt is clear that the mean-field ground state
is not even a valid wave-function for the spin system s-
ince it may not have one fermion per site. Thus it is
very important to include fluctuations of @ to enforce
one-fermion-per-site constraint. With this understand-
ing, we may obtain a valid wave-function of the spin sys-
tem U,y ({a;}) by projecting the mean-field state to the
subspace of one-fermion-per-site:

Upin({0}) = (0] Hfmzw%i’;a; (14)

Now the local SU(2) transformation Eq. (12) can have

a very physical meaning: \\I/mpa2L> and |\I/£,‘:Z(S; Ui W' (3))>

give rise to the same spin wave-function after projection:

Usj W (@)U W (5
O TT Fios 2 5i0) = (O T Fio 2 Sresi o™ 9y (15)

Thus Uz and Uj; = W (4)U;;W1(j) are just two differen-
t labels which label the same physical state. Within the
mean-field theory, a local SU(2) transformation changes
a mean-field state |\I/$ffgg21> to a different mean-field state
|\I/£,[L];,’121> If the two mean-field states always have the
same physical properties, the system has a local SU(2)
symmetry. However, after projection, the physical spin
quantum state described by wave-function Uy, ({a;}) is
invariant under the local SU(2) transformation. A local
SU(2) transformation just transforms one label, U;;, of a
physical spin state to another label, Uz’], which labels the
exactly the same physical state. Thus after projection,
local SU(2) transformations become gauge transforma-
tions. The fact that U;; and szj label the same physical
spin state creates a interesting situation when we consid-
er the fluctuations of U;; around a mean-field solution
— some fluctuations of U;; do not change the physical
state and are unphysical. Those fluctuations are called
the pure gauge fluctuations.

The above discussion also indicates that in order for
the mean-field theory to make any sense, we must at least
include the SU(2) gauge (or other gauge) fluctuations
described by al) and W;; in Eq. (13), so that the SU(2)
gauge structure of the mean-field theory is revealed and
the physical spin state is obtained. We will include the
gauge fluctuations to the zeroth-order mean-field theory.
The new theory will be called the first order mean-field
theory. It is this first order mean-field theory that rep-
resents a proper low energy effective theory of the spin
liquid.

Here, we would like make a remark about “gauge sym-
metry” and “gauge symmetry breaking”. We see that
two ansatz U;; and Uj; = W (i)U;;WT(5) have the same

physical properties. This property is usually called the
“gauge symmetry”. However, from the above discussion,
we see that the “gauge symmetry” is not a symmetry. A
symmetry is about two different states having the same
properties. U;; and szj are just two labels that label
the same state, and the same state always have the same
properties. We do not usually call the same state hav-
ing the same properties a symmetry. Because the same
state alway have the same properties, the “gauge symme-
try” can never be broken. It is very misleading to call the
Anderson-Higgs mechanism “gauge symmetry breaking”.
With this understanding, we see that a superconductor is
fundamentally different from a superfluid. A superfluid
is characterized by U(1) symmetry breaking, while a su-
perconductor has no symmetry breaking once we include
the dynamical electromagnetic gauge fluctuations. A su-
perconductor is actually the first topologically ordered
state observed in experiments,[13] which has no symme-
try breaking, no long range order, and no (local) order
parameter. However, when the speed of light ¢ = oo,
a superconductor becomes similar to a superfluid and is
characterized by U(1) symmetry breaking.

The relation between the mean-field state and the
physical spin wave function Eq. (14) allows us to con-
struct transformation of the physical spin wave-function

from the mean-field ansatz. For example the mean-field

state |\Ifmea21> with Uj; = Uj—1;-1 produces a phys-

ical spin wave-function which is translated by a dis-
tance 1 from the physical spin wave-function produced

\\I/me(m> The physical state is translationally sym-
metrlc if and only if the translated ansatz Uj; and the
original ansatz U;; are gauge equivalent (it does not re-
quire U;; = Us;). We see that the gauge structure can
complicates our analysis of symmetries, since the phys-

ical spin wave-function WUy, ({a;}) may has more sym-

metries than the mean-field state |\I/mw21> before projec-

tion.
Let us discuss time reversal symmetry in more detail.
A quantum system described by
thoy¥(t) = HU(t) (16)
has a time reversal symmetry if U(¢) satisfying the equa-
tion of motion implies that U*(—t) also satisfying the
equation of motion. This requires that H = H*. We
see that, for time reversal symmetric system, if ¥ is an
eigenstate, then U* will be an eigenstate with the same
energy.
For our system, the time reversal symmetry means that
kel |
if the mean-field wave function \I/Ef{gg;f ) s a mean—ﬁeld
ground state wave function for ansatz (Usj,alr!), then
(\I’%fl;f T )> will be the mean-field ground state wave
ak(7h)*). That is

: *
function for ansatz (U, a;

(wiae™) = wiign " (17)



For a system with time reversal symmetry, the mean-field
energy E(U;j,aklr!) satisfies

E(Usj,a;7") = E(Ujz,a5(7')") (18)

Thus if an ansatz (U;j, atr!) is a mean-field solution, then
(U, a ak(r!)*) is also a mean-field solution with the same
mean—ﬁeld energy.

From the above discussion, we see that under the time

reversal transformation, the ansatz transforms as

Ui — Ul = (—ir?)Uj(ir?) = —Uy,
Ll il

a;7 — altt = (— ’LT)(Z l) (Z’T) —aéTl. (19)

Note here we have included an additional SU(2) gauge
transformation W; = —ir2. We also note that under the
time reversal transformation the loop operator trans-
forms as Po = eio+io'T (—iT?)Px(iT?) = e—i0+i0'T"
We see that the U(1) flux changes the sign while the
SU(2) flux is not changed.

Before ending this review section, we would like to
point out that the mean-field ansatz of the spin liquids
U;; can be divided into two classes: unfrustrated ansatz
where Us;; only link an even lattice site to an odd lattice
site and frustrated ansatz where U;; are nonzero between
two even sites and/or two odd sites. An unfrustrated
ansatz has only pure SU(2) flux through each plaquette,
while an frustrated ansatz has U(1) flux of multiple of
/2 through some plaquettes in addition to the SU(2)
flux.

III. SPIN LIQUIDS FROM TRANSLATIONALLY
INVARIANT ANSATZ

In this section, we will study many simple examples
of spin liquids and their ansatz. Through those simple
examples, we gain some understandings on what kind of
spin liquids are possible. Those understandings help us
to develop the characterization and classification of spin
liquids using projective symmetry group.

Using the above SU(2) projective construction, one
can construct many spin liquid states. To limit ourselves,
we will concentrate on spin liquids with translation and
90° rotation symmetries. Although a mean-field ansatz
with translation and rotation invariance always generate
a spin liquid with translation and rotation symmetries,
a mean-field ansatz without those invariances can also
generate a spin liquid with those symmetries.[94] Because
of this, it is quite difficult to construct all the translation
and rotation symmetric spin liquids. In this section we
will consider a simpler problem. We will limit ourselves
to spin liquids generated from translationally invariant
ansatz:

ap(i) = ag (20)

In this case, we only need to find the conditions under
which the above ansatz can give rise to a rotationally

Uiti,j+1 = Ui,

symmetric spin liquid. First let us introduce u;;:

3

8
For translationally invariant ansatz, we can introduce a
short-hand notation:

JijUsj = wij (21)

— M —
Uz = u_,H_jT“ =U_j+j5 (22)
1,2,3 0 s . 0
where u; are real, u; is imaginary, T
matrix and 7123 are the Pauli matrices.
spectrum is determined by Hamiltonian

H=-Y" (%Tujfiwj + h.c.) + > ylagrlys  (23)
(ig) ¢

is the identity
The fermion

In k-space we have
H == v (u(k) -
k
where © =0,1,2,3,

ut (k) = Zu;‘eil'k, (25)

ab) iy (24)

ad = 0, and N is the total number of site. The fermion
spectrum has two branches and is given by

Ey (k) =u’(k) + Eo(k)

Eo(k) = | (ul(k) — a})? (26)
l
The constraints can be obtained from % =0 and
have a form
N(pir' )
ul (k) — ab) ul(k) — al)

_ 70 =0 (27
X ThEm 2 Tmm O

k,E_(k)<0 k,E;(k)<0

which allow us to determine aé, [ =1,2,3. It is inter-
esting to see that if uY = 0 and the ansatz is unfrus-
trated, then we can simply choose al, = 0 to satisfy the
mean-field constraints (since u#(k) = —ut(k+ (7, x)) for
unfrustrated ansatz). Such ansatz always have time re-
versal symmetry. This is because U;; and —U;; are gauge
equivalent for unfrustrated ansatz.

Now let us study some simple examples. First let us
assume that only the nearest neighbor coupling usz and
ug are non-zero. In order for the ansatz to describe a
rotationally symmetric state, the rotated ansatz must be
gauge equivalent to the original ansatz. One can easily
check that the following ansatz has the rotation symme-
try

X7'3 + 777'1
uy = 7 —nrt (28)

<
&
I



since the 90° rotation followed by a gauge transforma-
tion W; = 413 leave the ansatz unchanged. The above
ansatz also has the time reversal symmetry, since time
reversal transformation u;; — —u;; followed by a gauge
transformation W; = i72 leave the ansatz unchanged.

To understand the gauge fluctuations around the above
mean-field state, we note that the mean-field ansatz
may generate non-trivial SU(2) flux through plaquettes.
Those flux may break SU(2) gauge structure down to
U(1) or Z3 gauge structures as discussed in Ref. [38, 40].
In particular, the dynamics of the gauge fluctuations in
the break down from SU(2) to Z; has been discussed in
detail in Ref. [40]. According to Ref. [38, 40], the SU(2)
flux plays a role of Higgs fields. A non-trivial SU(2) flux
correspond to a condensation of Higgs fields which can
break the gauge structure and give SU(2) and/or U(1)
gauge boson a mass. Thus to understand the dynamics
of the gauge fluctuations, we need to find the SU(2) flux.

The SU(2) flux is defined for loops with a base point.
The loop starts and ends at the base point. For example,
we can consider the following two loops Cj 2 with the
same base point ¢: C; =% — 1+& — +2+Yy — t+y — ¢
and Cy is the 90° rotation of Cy: Co =1 — 1+ Yy —
i—&+y—i—& — i. The SU(2) flux for the two loops
is defined as

_ gt
Pe, = Ui i gUivgitaotyUitatgivalives = UylyUyUs

— — TT
Poy, = Uii—aUi-zi—atgli-a+gi+glitys = Ualylyly

(29)

As discussed in Ref. [38, 40], if the SU(2) flux P for all
loops are trivial: Po o< 7°, then the SU(2) gauge struc-
ture is unbroken. This is the case when xy = n or when
17 = 0 in the above ansatz Eq. (28). The spinon in the
spin liquid described by = 0 has a large Fermi surface.
We will call this state SU(2)-gapless state (This state
was called uniform RVB state in literature). The state
with x = 7 has gapless spinons only at isolated k points.
We will call such a state SU(2)-linear state to stress the
linear dispersion E o |k| near the Fermi points. (Such a
state was called the 7-flux state in literature). The low
energy effective theory for the SU(2)-linear state is de-
scribed by massless Dirac fermions (the spinons) coupled
to a SU(2) gauge field.

After proper gauge transformations, the SU(2)-gapless
ansatz can be rewritten as

Ug = X
uy = ix (30)

and the SU(2)-linear ansatz as

Ui it = 1X
Uiy = i(—)"X (31)

In these form, the SU(2) gauge structure is explicit since
Ugj X i79. Here we would also like to mention that under
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the projective-symmetry-group classification, the SU(2)-
gapless ansatz Eq. (30) is labeled by SU2An0 and the
SU(2)-linear ansatz Eq. (31) by SU2Bn0 (see Eq. (82)).
When x # n # 0, The flux Po is non trivial. How-
ever, Po commute with Po as long as the two loops
C and C’ have the same base point. In this case the
SU(2) gauge structure is broken down to a U(1) gauge
structure.[38, 40] The gapless spinon still only appear
at isolated k points. We will call such a state U(1)-
linear state. (This state was called staggered flux state
and/or d-wave pairing state in literature.) After a proper
gauge transformation, the U(1)-linear state can also be
described by the ansatz
Ui e = ix — (—)nT?
Uity = X+ (=)'n7° (32)

where the U(1) gauge structure is explicit. Under the
projective-symmetry-group classification, such a state is
labeled by UlCn0ln (see Eq. (B4) and IV C). The low
energy effective theory is described by massless Dirac
fermions (the spinons) coupled to a U(1) gauge field.

The above results are all known before. In the follow-
ing we are going to study a new class of translation and
rotation symmetric ansatz, which has a form

af) =0
ue =inr® = x(r* = 1)
Ug =int? — x(3 +11) (33)

with x and 7 non-zero. The above ansatz describes the
SU(2)-gapless spin liquid if x = 0, and the SU(2)-linear
spin liquid if n = 0.

After a 90° rotation Ry, the above ansatz becomes

ug = —int® — x(7* + 1)
Uy = int® — x(T3 —7h (34)

The rotated ansatz is gauge equivalent to the origi-
nal ansatz under the gauge transformation Gg,,(3) =
(=)= (1 —i72)/\/2. After a parity x — —a transforma-
tion P, Eq. (33) becomes

ug = —int’ — x (7% —71)
uy = int® — x(r3 +11) (35)

which is gauge equivalent to the original ansatz under the
gauge transformation Gp, (i) = (—)%i(7% +7')/v/2. Un-
der time reversal transformation 7', Eq. (33) is changed
to

ug = —int’ 4+ x (7% — 1)
uy = —int® + X(TS + 7'1) (36)

which is again gauge equivalent to the original ansatz un-
der the gauge transformation G (i) = (—)%. (In fact any
ansatz which only has links between two non-overlapping
sublattices (ie the unfrustrated ansatz) is time reversal



symmetric if a), = 0 .) To summarize the ansatz Eq. (33)
is invariant under the rotation Rgg, parity P,, and time
reversal transformation T, followed by the following gauge
transformations

G Roo (1) =(=)" (1 = it?)/V/2
Gp, (i) =(=)=i(r> + 1) /V2
Gr(i) =(—) (37)

Thus the ansatz Eq. (33) describes a spin liquid which
translation, rotation, parity and time reversal symme-
tries.

Using the time reversal symmetry we can show that
the vanishing a}, in our ansatz Eq. (33) indeed satisfy the
constraint Eq. (27). This is because a} — —al, under the
time reversal transformation. Thus % = 0 when

af) = ( for any time reversal symmetric ansatz, including
the ansatz Eq. (33).

The spinon spectrum is given by (see Fig. 5a)

Ey = 2n(sin(ky) + sin(ky)) £ 2|X|\/2 cos?(ky) + 2 cos?(ky)
(38)

The spinons have two Fermi points and two small Fermi
pockets (for small ). The SU(2) flux is non-trivial. Fur-
ther more P, and Pg, do not commute. Thus the SU(2)
gauge structure is broken down to a Z, gauge structure
by the SU(2) flux Ps, and Pc,.[38, 40] We will call the
spin liquid described by Eq. (33) Z2-gapless spin liquid.
The low energy effective theory is described by massless
Dirac fermions and fermions with small Fermi surfaces,
coupled to a Z; gauge field. Since the Z; gauge inter-
action is irrelevant at low energies, the spinons are free
fermions at low energies and we have a true spin-charge
separation in the Zs-gapless spin liquid. The Zs-gapless
spin liquid is one of the Z5 spin liquids classified in ap-
pendix A. Its projective symmetry group is labeled by
Z2A713 7137370 or equivalently by Z2Ax2(12)n (see sec-
tion IV B and Eq. (67)).

Now let us include longer links. First we still limit
ourselves to unfrustrated ansatz. An interesting ansatz
is given by

aé =0
Ug = XT3+777'1
Uy = XT3—77’7'1
U2z+9y = /\7'2
U_g429 = —)\7'2
UQ@_,_,; = )\’I‘2
Ugiog = —AT” (39)

By definition, the ansatz is invariant under translation
and parity x — —x. After a 90° rotation, the ansatz is
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changed to
ug = —x7° —nr!
Uy = —XT3+T]’7'1
Ungrg = —AT
U_gyog = 272
Usg—gy = — 72
Ustoy = +AT (40)

which is gauge equivalent to Eq. (39) under the gauge
transformation Gg,,(¢) = i73. Thus the ansatz describe
a spin liquid with translation, rotation, parity and the
time reversal symmetries. The spinon spectrum is given
by (see Fig. 1c)

Er = £/e1(k)? + ex(k)? + e3(k)?

€1 = —2x(cos(kg) + cos(ky))

e = —2n(cos(kz) — cos(ky))

€3 = —2A[cos(2k, + k) + cos(2k, — ky)

—cos(ky — 2ky) — cos(kg + 2ky)] (41)

Thus the spinons are gapless only at four k points
(£7/2,+m/2). We also find that Po, and Ps, do not
commute, where the loops C3 =1t — i+ & — 1+ 2 —
i1+2e+y > tand Cy =1 > 14+9Y — 1+ 2y —
1+ 2y — & — ¢. Thus the SU(2) flux Pc, and Pg, break
the SU(2) gauge structure down to a Zs gauge struc-
ture. The spin liquid described by Eq. (39) will be called
the Zs-linear spin liquid. The low energy effective theory
is described by massless Dirac fermions coupled to a Zs
gauge field. Again the Z5 coupling is irrelevant and the
spinons are free fermions at low energies. We have a true
spin-charge separation. According to the classification
scheme summarized in section IV B, the above Zs-linear
spin liquid is labeled by Z2A003n.

Next let us discuss frustrated ansatz. A simple Zs
spin liquid can be obtained from the following frustrated
ansatz

ag #0, a(l) 2 =0
Ug ZXT3 + 177'
Ug =XT3 - 177'1
Ug+g =7’
U—g+g :’}/7'3 (42)

The ansatz has translation, rotation, parity, and the time
reversal symmetries. When a3 # 0, x # 4 and xn # 0,
ab7! does not commute with the loop operators. Thus the
ansatz breaks the SU(2) gauge structure to a Z gauge
structure. The spinon spectrum is given by (see Fig. 1a)

Er =+ +/e(k)+ A%(k)
e(k) =2x(cos(ky) + cos(ky)) + aj
2v(cos(ky + ky) + cos(ky — ky))

A(k) =2n(cos(k,) — cos(ky)) + ad (43)



which is gapless only at four k points with a linear dis-
persion. Thus the spin liquid described by Eq. (42) is a
Zs-linear spin liquid, which has a true spin-charge separa-
tion. The Zs-linear spin liquid is described by the projec-
tive symmetry group Z2A0032 or equivalently Z2A0013.
(see section IV B.) From the above two examples of Zs-
linear spin liquids, we find that it is possible to obtain
true spin-charge separation with massless Dirac points
(or nodes) within a pure spin model without the charge
fluctuations. We also find that there are more than one
way to do it.

A well known frustrated ansatz is the ansatz for the
chiral spin liquid|[6]

ug = —x7° = xT'
Uy = *XT3+XT1
Ug+y = 7772
U—z+y = -7’
ah =0 (44)

The chiral spin liquid breaks the time reversal and parity
symmetries. The SU(2) gauge structure is unbroken.[38]
The low energy effective theory is an SU(2) Chern-
Simons theory (of level 1). The spinons are gaped and
have a semionic statistics.[5, 6] The third interesting frus-
trated ansatz is given in Ref. [38, 40]

Uz :ui/ = —XT3
L 1 )\ 2
Ugtgy =NT + AT
U_ztg :7771 — A2

at® =0, a}#0 (45)

This ansatz has translation, rotation, parity and the time
reversal symmetries. The spinons are fully gaped and
the SU(2) gauge structure is broken down to Zs gauge
structure. We may call such a state Z-gapped spin liquid
(it was called sSRVB state in Ref. [38, 40]). It is described
by the projective symmetry group Z2Axzxz0z. Both the
chiral spin liquid and the Z5-gapped spin liquid have true
spin-charge separation.

IV. QUANTUM ORDERS IN SYMMETRIC
SPIN LIQUIDS

A. Quantum orders and projective symmetry
groups

We have seen that there can be many different spin
liquids with the same symmetries. The stability analysis
in section VIII shows that many of those spin liquids oc-
cupy a finite region in phase space and represent stable
quantum phases. So here we are facing a similar situa-
tion as in quantum Hall effect: there are many distinct
quantum phases not separated by symmetries and order
parameters. The quantum Hall liquids have finite ener-
gy gaps and are rigid states. The concept of topological
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order was introduced to describe the internal order of
those rigid states. Here we can also use the topological
order to describe the internal orders of rigid spin liquids.
However, we also have many other stable quantum spin
liquids that have gapless excitations.

To describe internal orders in gapless quantum spin lig-
uids (as well as gapped spin liquids), we have introduced
a new concept — quantum order — that describes the in-
ternal orders in any quantum phases. The key point in
introducing quantum orders is that quantum phases, in
general, cannot be completely characterized by broken
symmetries and local order parameters. This point is il-
lustrated by quantum Hall states and by the stable spin
liquids constructed in this paper. However, to make the
concept of quantum order useful, we need to find concrete
mathematical characterizations the quantum orders. S-
ince quantum orders are not described by symmetries
and order parameters, we need to find a completely new
way to characterize them. Here we would like to propose
to use Projective Symmetry Group to characterize quan-
tum (or topological) orders in quantum spin liquids. The
projective symmetry group is motivated from the follow-
ing observation. Although ansatz for different symmet-
ric spin liquids all have the same symmetry, the ansatz
are invariant under transformations followed by different
gauge transformations. We can use those different gauge
transformations to distinguish different spin liquids with
the same symmetry. In the following, we will introduce
projective symmetry group in a general and formal set-
ting.

We know that to find quantum numbers that charac-
terize a phase is to find the universal properties of the
phase. For classical systems, we know that symmetry
is a universal property of a phase and we can use sym-
metry to characterize different classical phases. To find
universal properties of quantum phases we need to find u-
niversal properties of many-body wave functions. This is
too hard. Here we want to simplify the problem by limit-
ing ourselves to a subclass of many-body wave functions
which can be described by ansatz (u;j, ah7!) via Eq. (14).
Instead of looking for the universal properties of many-
body wave functions, we try to find the universal prop-
erties of ansatz (usj,ab7'). Certainly, one may object
that the universal properties of the ansatz (or the sub-
class of wave functions) may not be the universal prop-
erties of spin quantum phase. This is indeed the case for
some ansatz. However, if the mean-field state described
by ansatz (u;j,ah7!) is stable against fluctuations (ie the
fluctuations around the mean-field state do not cause any
infrared divergence), then the mean-field state faithfully
describes a spin quantum state and the universal proper-
ties of the ansatz will be the universal properties of the
correspond spin quantum phase. This completes the link
between the properties of ansatz and properties of phys-
ical spin liquids. Motivated by the Landau’s theory for
classical orders, here we whould like to propose that the
invariance group (or the “symmetry” group) of an ansatz
is a universal property of the ansatz. Such a group will



be called the projective symmetry group (PSG). We will
show that PSG can be used to characterize quantum or-
ders in quantum spin liquids.

Let us give a detailed definition of PSG. A PSG is a
property of an ansatz. It is formed by all the transfor-
mations that keep the ansatz unchanged. Each trans-
formation (or each element in the PSG) can be written
as a combination of a symmetry transformation U (such
as translation) and a gauge transformation Gy. The in-
variance of the ansatz under its PSG can be expressed
as

GuU(uij) =uij
U(u‘L]) =Uy (3),U(j)
( uiz) =G ($)usgGly (j)
v (i) eSU(2) (46)

for each GyU € PSG.

Every PSG contains a special subgroup, which will be
called invariant gauge group (IGG). IGG (denoted by G)
for an ansatz is formed by all the gauge transformations
that leave the ansatz unchanged:

g = {W1|qu”W; = U4j, W; e SU(Q)} (47)

If we want to relate IGG to a symmetry transformation,
then the associated transformation is simply an identity
transformation.

If IGG is non-trivial, then for a fixed symmetry trans-
formation U, there are can be many gauge transforma-
tions Gy that leave the ansatz unchanged. If Gy U is in
the PSG of u;;, GGy U will also be in the PSG iff G € G.
Thus for each symmetry transformation U, the different
choices of Gy have a one to one correspondence with the
elements in IGG. From the above definition, we see that
the PSG, the IGG, and the symmetry group (SG) of an
ansatz are related:

SG = PSG/IGG (48)

This relation tells us that a PSG is a projective repre-
sentation or an extension of the symmetry group.[95] (In
section A 1 we will introduce a closely related but differ-
ent definition of PSG. To distinguish the two definitions,
we will call the PSG defined above invariant PSG and
the PSG defined in section A1 algebraic PSG.)

Certainly the PSG’s for two gauge equivalent ansatz
ui; and W (4)u;; WT(j) are related. From WGy U (u5) =
W (uij), where Wi(u;;) = W(@)ui;Wi(j), we find
WGuUW =W (usz) = WGuW5; UW (uig) = W(uijz),
where Wy = UWU ! is given by Wy (i) = W(U(3)).
Thus if GyU is in the PSG of ansatz wu;;, then
(WGuyWy)U is in the PSG of gauge transformed ansatz
W (i)u;;WT(j). We see that the gauge transformation
Gy associated with the symmetry transformation U is
changed in the following way

Gu(i) — W(E) Gy (@)WT

(U(@)) (49)
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after a gauge transformation W (%).

Since PSG is a property of an ansatz, we can group
all the ansatz sharing the same PSG together to form a
class. We claim that such a class is formed by one or
several universality classes that correspond to quantum
phases. (A more detailed discussion of this important
point is given in section VIIIE.) It is in this sense we say
that quantum orders are characterized by PSG’s.

We know that a classical order can be described by
its symmetry properties. Mathematically, we say that a
classical order is characterized by its symmetry group.
Using projective symmetry group to describe a quantum
order, conceptually, is similar to using symmetry group
to describe a classical order. The symmetry description
of a classical order is very useful since it allows us to
obtain many universal properties, such as the number of
Nambu-Goldstone modes, without knowing the details of
the system. Similarly, knowing the PSG of a quantum
order also allows us to obtain low energy properties of
a quantum system without knowing its details. As an
example, we will discuss a particular kind of the low en-
ergy fluctuations — the gauge fluctuations — in a quantum
state. We will show that the low energy gauge fluctua-
tions can be determined completely from the PSG. In fact
the gauge group of the low energy gauge fluctuations is
nothing but the IGG of the ansatz.

To see this, let us assume that, as an example, an
IGG G contains a U(1) subgroup which is formed by the
following constant gauge transformations

(W; =9 e [0,2m)} C G (50)

Now we consider the following type of fluctuations

. _ 3 .3
around the mean-field solution w;;: wus; = umemwT .
Since ;; is invariant under the constant gauge trans-
i073

formation €7 | a spatial dependent gauge transforma—

tion €™ will transform the fluctuation a3 to a3 i =
aj; +0; —0j. This means that af; and a; label the same
physical state and a; correspond to gauge fluctuation-
s. The energy of the fluctuations has a gauge invariance
E({ai’j ) = E({dg’j ). We see that the mass term of the
gauge field, (a;)?, is not allowed and the U(1) gauge
fluctuations described by ag’j will appear at low energies.

If the U(1) subgroup of G is formed by spatial depen-
dent gauge transformations

{Wz _ ei@niﬂ"a c [O, 271—)’ |nz‘ = 1} cgq, (51)

we can always use a SU(2) gauge transformation to ro-
tate n; to the 2 direction on every site and reduce the
problem to the one discussed above. Thus, regardless
if the gauge transformations in IGG have spatial depen-
dence or not, the gauge group for low energy gauge fluc-
tuations is always given by G.

We would like to remark that some times low ener-
gy gauge fluctuations not only appear near k = 0, but
also appear near some other k points. In this case, we
will have several low energy gauge fields, one for each k



points. Examples of this phenomenon are given by some
ansatz of SU(2) slave-boson theory discussed in section
VI, which have an SU(2) x SU(2) gauge structures at
low energies. We see that the low energy gauge structure
SU(2) x SU(2) can even be larger than the high energy
gauge structure SU(2). Even for this complicated case
where low energy gauge fluctuations appear around d-
ifferent k points, IGG still correctly describes the low
energy gauge structure of the corresponding ansatz. If
IGG contains gauge transformations that are indepen-
dent of spatial coordinates, then such transformations
correspond to the gauge group for gapless gauge fluctua-
tions near k = 0. If IGG contains gauge transformations
that depend on spatial coordinates, then those transfor-
mations correspond to the gauge group for gapless gauge
fluctuations near non-zero k. Thus IGG gives us a unified
treatment of all low energy gauge fluctuations, regardless
their momenta.

In this paper, we have used the terms Zs spin liquids,
U(1) spin liquids, SU(2) spin liquids, and SU(2) x SU(2)
spin liquids in many places. Now we can have a pre-
cise definition of those low energy Zs, U(1), SU(2), and
SU(2) x SU(2) gauge groups. Those low energy gauge
groups are nothing but the IGG of the corresponding
ansatz. They have nothing to do with the high ener-
gy gauge groups that appear in the SU(2), U(1), or Zs
slave-boson approaches. We also used the terms Z5 gauge
structure, U(1) gauge structure, and SU(2) gauge struc-
ture of a mean-field state. Their precise mathematical
meaning is again the IGG of the corresponding ansatz.
When we say a U(1) gauge structure is broken down to
a Zy gauge structure, we mean that an ansatz is changed
in such a way that its IGG is changed from U(1) to Z3

group.

B. Classification of symmetric Z; spin liquids

As an application of PSG characterization of quantum
orders in spin liquids, we would like to classify the PSG’s
associated with translation transformations assuming the
IGG G = Z5. Such a classification leads to a classification
of translation symmetric Zs spin liquids.

When G = Z,, it contains two elements — gauge trans-
formations G and Ga:

g :{G17 G2}
Gl (Z) :TO, G2 (’l,) = —TO. (52)
Let us assume that a Z5 spin liquid has a translation sym-

metry. The PSG associated with the translation group
is generated by four elements +G,T,, £G,T, where

Ty(uij) = ui—gj-g.  (53)

Due to the translation symmetry of the ansatz, we can
choose a gauge in which all the loop operators of the
ansatz are translation invariant. That is Po, = Pg, if

Ty (uij) = Ui—g j—a»
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the two loops C7 and C5 are related by a translation.
We will call such a gauge uniform gauge.

Under transformation G,7T,, a loop operator Pc
based at i transforms as Poc — G.(i')Pr,cGlL(i') =
G.(i")PcGl(i') where i’ = T,i is the base point of the
translated loop T (C'). We see that translation invariance
of P¢ in the uniform gauge requires

G.(i) = +7°, G, (i) = +7°. (54)

since different loop operators based at the same base
point do not commute for Zs spin liquids. We note that
the gauge transformations of form W (i) = £7° do not
change the translation invariant property of the loop op-
erators. Thus we can use such gauge transformations
to further simplify G, , through Eq. (49). First we can
choose a gauge to make

G, (i) = 7°. (55)

We note that a gauge transformation satisfying W (i) =
W (i) does not change the condition G, (i) = 7°. We
can use such kind of gauge transformations to make

Gy iz, iy =0) = 7°. (56)

Since the translations in z- and y-direction commute,
G,y must satisfy (for any ansatz, Zs or not Z3)

G.T.G,T,(G.T,) (G, T,) ' =
G.1,G,T, T, 'G,' T, "G, €G. (57)
That means
G.(1)Gy(i — )G (i —9)Gy(i) " € G (58)
For Z, spin liquids, Eq. (58) reduces to
G, ()G (i —y) = +7° (59)
or
G.(1)G; (i —g) = —7" (60)

When combined with Eq. (55) and Eq. (56), we find that
there are only two gauge inequivalent extensions of the
translation group when IGG is G = Z5. The two PSG’s
are given by
G (i) =79, G, (i) =1° (61)
and
Ga (i) =(=)"7°, Gy(i) =r" (62)

Thus, under PSG classification, there are only two types
of Z5 spin liquids if they have only the translation sym-
metry and no other symmetries. The ansatz that satisfy
Eq. (61) have a form

ui,i+m U, (63)



and the ones that satisfy Eq. (62) have a form

Ui itm =(—)"""" Um (64)

Through the above example, we see that PSG is a very
powerful tool. It can lead to a complete classification of
(mean-field) spin liquids with prescribed symmetries and
low energy gauge structures.

In the above, we have studied Z3 spin liquids which
have only the translation symmetry and no other sym-
metries. We find there are only two types of such spin
liquids. However, if spin liquids have more symmetries,
then they can have much more types. In the appendix
A, we will give a classification of symmetric Zs spin lig-
uids using PSG. Here we use the term symmetric spin
liquid to refer to a spin liquid with the translation sym-
metry T, ,, the time reversal symmetry T u;; — —us4,
and the three parity symmetries Py: (ig,%y) — (—iz,%y),
Py (ig,iy) — (ig,—ly), and Pry: (iz,%y) — (iy,iz).
The three parity symmetries also imply the 90° ro-
tation symmetry. In the appendix A, we find that
there are 272 different extensions of the symmetry group
{Tey, Poyzy, T} if IGG G = Z,. Those PSG’s are gen-
erated by (G.T.,G,T,,GrT,Gp,P,Gp,Py;,Gp,, Pry).

The PSG’s can be divided into two classes. The first
class is given by
G, (1) =7°, Gy (i) =7°
Gp, (1) =ngpatlipy9pr. G, (1) nmpynmmgpy
Gp,, (%) =gp,, Gr(i) =nigr (65)
and the second class by
Ga (i) =(=) 7", Gy(i) =
Gp, (1) =0Ty 9P, Py (&) STy iad,
Gp,,(4) =(=)"""gp,, GT(Z) =19t (66)

Here the three n’s can independently take two values +1.
g’s have 17 different choices which are given by Eq. (A39)
- Eq. (A55) in the appendix A. Thus there are 2 x 17 X
23 = 272 different PSG’s. They can potentially lead to
272 different types of symmetric Z5 spin liquids on 2D
square lattice.

To label the 272 PSG’s,
scheme:

we propose the following

Z2A(gp:c)mm (gpy)nzpygpa:y (gt)mv (67)
Z2B(9pa ) n.pe (Ipy ) 112py Gpay (9t ), (68)

The label Z2A... correspond to the case Eq. (65), and
the label Z2B... correspond to the case Eq. (66). A typi-
cal label will looks like Z2A7i737127§ . We will also use
an abbreviated notation. An abbreviated notation is ob-
tained by replacing (7, Tl 72 ;73 or (79,71, 73,73) by
(0,1,2,3) and (79,71,72,73) by (n,z,y, 2). For exam-
ple, ZQATi 071273 can be abbreviated as Z2A1n(12)z.
Those 272 different Z5 PSG’s, strictly speaking, are the
so called algebraic PSG’s. The algebraic PSG’s are de-
fined as extensions of the symmetry group. They can be
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calculated through the algebraic relations listed in section
A 1. The algebraic PSG’s are different from the invariant
PSG’s which are defined as a collection of all transfor-
mations that leave an ansatz u,; invariant. Although an
invariant PSG must be an algebraic PSG, an algebraic
PSG may not be an invariant PSG. This is because cer-
tain algebraic PSG’s have the following properties: any
ansatz u;; that is invariant under an algebraic PSG may
actually be invariant under a larger PSG. In this case
the original algebraic PSG cannot be an invariant PSG
of the ansatz. The invariant PSG of the ansatz is real-
ly given by the larger PSG. If we limit ourselves to the
spin liquids constructed through the ansatz u;;, then we
should drop the algebraic PSG’s are not invariant PSG’s.
This is because those algebraic PSG’s do not characterize
mean-field spin liquids.

We find that among the 272 algebraic Zy PSG’s, at
least 76 of them are not invariant PSG’s. Thus the 272 al-
gebraic Z3 PSG’s can at most lead to 196 possible Z5 spin
liquids. Since some of the mean-field spin liquid states
may not survive the quantum fluctuations, the number of
physical Zs spin liquids is even smaller. However, for the
physical spin liquids that can be obtained through the
mean-field states, the PSG’s do offer a characterization
of the quantum orders in those spin liquids.

C. Classification of symmetric U(1) and SU(2) spin
liquids

In addition to the Z; symmetric spin liquids studied
above, there can be symmetric spin liquids whose low
energy gauge structure is U(1) or SU(2). Such U(1)
and SU(2) symmetric spin liquids (at mean-field level)
are classified by U(1) and SU(2) symmetric PSG’s. The
U(1) and SU(2) symmetric PSG’s are calculated in the
appendix A. In the following we just summarize the re-
sults.

We find that the PSG’s that characterize mean-field
symmetric U(1) spin liquids can be divided into four

types: UlA, UlB, UlC and U1]*. There are 24 type
UlA PSG’s:
Ge =g3(02), Gy = gs(by),
Gp, :U;%xQS(epw)v Gp, = n;2m93(9py)
Gp,, =093(0pay), 93(Opay)iT
Gr =1{g3(00)|n=—1. 1{g3(60)iT" (69)
and
Gz =g3(0z), Gy =gs(0y),
Gp, =n%.93(0pa)it',  Gp, = ni,93(0py)iT"
GPa:y :93(9pﬂcy)a 93(9pwy)i7'1
Gr =1{g3(00)|ne=—1, 1g3(6s)it" (70)
where
ga(0) = 7" (71)



We will use UlAa,,, by, cdy to label the 24 PSG’s.
a, b, ¢, d are associated with Gp,, Gp,, Gp,,, GT re-
spectively. They are equal to 7! if the corresponding G
contains a 7! and equal to 79 otherwise. A typical nota-
tion looks like ULIAT 717971 which can be abbreviated
as UlAx10zx.
There are also 24 type U1B PSG’s:
Go :(_)inS(ew)a Gy = 93(9?/)’
Gr, =Mpe93(0pa);,  GP, = 140 93(0py)
(_)ZmlyGny =93(0pay), 93(9pxy)i7'1
Gr =n}g3(00)lni=—1, niga(6e)ir' (72)

and

G =(—)"gs(0:), Gy, =gs(by),
Gp, =N5u03(0pa)it's Gy = 10,93(0py )iT"
(_)iminsz =93(Opay) 93(9p:vy)i7'1
Gr =ntg3(00)ln=—1, 1tg3(0s)iT" (73)

We will use U1Ba,,,,by,,.cdy, to label the 24 PSG’s.
The 60 type U1C PSG’s are given by

Go =g3(0,)it", Gy = g3(6,)ir",

Gp, :Wiﬁ;zn;’;x%(@pz), Gp, = n;;wnﬁf;)wgg(ﬂpy)
Gp,, ZWZ;éyga(n;zyg + Opay):

Gr =0ig3(01)ln=—1, 1135y 93(00)ir" (74)

Go =g3(0,)it, Gy = gg(ﬁy)iTl,
G, =Npe93(0pa)it', G, = Nipullpny 93 (Opy )it!
i i T
Gsz :inxyg?) (pryz + HPIZ/)’

Gr =n{gs(00) ln=—1, 5, migs(0s)ir" (75)

Ge =g3(0.)it', G, = g3(0,)it",

Gr, =Nl 93Opa)s Gy = 0 n 93 (Opy)
Gp,, =93(0pay)iT"

G =n;93(0¢) = (76)

G, :g3(ew)i7'l7 Gy = gg(Qy)iTl,
Gp, =Ny 93Ope);  Gp, = My, 93(Opy)
i T .
Gsz =93 (npwyz + 017@1/)”—1
Gr =n,migs (0 )it" (77)
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G, 293(‘9w)i71a Gy = 93(9y)i7_17
GP:): :,’7;27193(9171)2.7—17 GPy = n;yz)mn;zyg3(epy)z7—l
LT .
G oy =93(Mpay  + Opay )i '

G =n}gs(00)|n=—1, 1ins,93(00)ir" (78)

which will be labeled by UlCay,, ., by,..C1pe, @i, -

The type U17* PSG’s have not been classified. How-
ever, we do know that for each rational number m/n €
(0,1), there exist at least one mean-field symmetric spin
liquid, which is described by the ansatz

Uiite = XT'  Uiity = X%(%iwﬁ'3 (79)
It has mm/n flux per plaquette. Thus there are infinite
many type U1™* spin liquids.

We would like to point out that the above 108
U1[A,B,C] PSG’s are algebraic PSG’s. They are only
a subset of all possible algebraic U(1) PSG’s. Howev-
er, they do contain all the invariant U(1) PSG’s of type
U1A, Ul1B and U1C. We find 46 of the 108 PSG’s are
also invariant PSG’s. Thus there are 46 different mean-
field U(1) spin liquids of type U1A, U1B and U1C. Their
ansatz and labels are given by Eq. (A110), Eq. (A111),
Eq. (A123), Eq. (A124), and Eq. (A152) — Eq. (A169).

To classify symmetric SU(2) spin liquids, we find 8
different SU(2) PSG’s which are given by

Go(1) =gz, Gy(3) =gy
Gp, () =05y 9pP.s  Gp, (1) = My gp,
Gp,, (i) =gp,,, Gr(i)=(-)'gr (80)

and
Gw(z) :(_)iygm GU(Z) =9y
Gp,, (1) =(=)*"gp,,, Gr(i)=(=)"gr (81)

where ¢’s are in SU(2). We would like to use the following
two notations

0o .0
SU2AT%M Toeny
0 0
SU2B7, T, (82)
to denote the above 8 PSG’s. SU2A7—$IW Tgmpy is for E-
q. (80) and SU2Br, 70 for Eq. (81). We find only 4

of the 8 SU(2) PSG’s, SU2A[n0,0n] and SU2B[n0, 0n],
leads to SU(2) symmetric spin liquids. The SU2An0 s-
tate is the uniform RVB state and the SU2Bn0 state is
the m-flux state. The other two SU(2) spin liquids are
given by SU2A0n:

0
Us i 28+9 = T IXT

0
Ui, i—2@+g = — UXT
0
Ui itd+2g = TIXT
0
U i—@tog = T IXT (83)



and SU2BOn:

Uiit2a+g = +i(=) X7

Ui i—28+§ — — (=)= xT
0
Ui ita+2g = T UXT
0
Us 4—g+29 = T IXT (84)

The above results give us a classification of symmet-
ric U(1) and SU(2) spin liquids at mean-field level. If
a mean-field state is stable against fluctuations, it will
correspond to a physical U(1) or SU(2) symmetric spin
liquids. In this way the U(1) and the SU(2) PSG’s also
provide an description of some physical spin liquids.

V. CONTINUOUS TRANSITIONS AND
SPINON SPECTRA IN SYMMETRIC SPIN
LIQUIDS

A. Continuous phase transitions without symmetry
breaking

After classifying mean-field symmetric spin liquids, we
would like to know how those symmetric spin liquids
are related to each other. In particular, we would like
to know which spin liquids can change into each oth-
er through a continuous phase transition. This problem
is studied in detail in appendix B, where we study the
symmetric spin liquids in the neighborhood of some im-
portant symmetric spin liquids. After lengthy calcula-
tions, we found all the mean-field symmetric spin lig-
uids around the Zs-linear state Z2A001n in Eq. (39),
the U(1)-linear state U1Cn0ln in Eq. (32), the SU(2)-
gapless state SU2An0 in Eq. (30), and the SU(2)-linear
state SU2Bn0 in Eq. (31). Those ansatz are given by
Eq. (B3) for the Zs-linear state, by Eq. (B6), Eq. (B24),
Eq. (B25), Eq. (B27), and Eq. (B28) for the U(1)-linear
state, by Eq. (B31), Eq. (B44) — Eq. (B49), and E-
q. (B92) — Eq. (B108) for the SU(2)-gapless state, and
by Eq. (B111), Eq. (B117) — Eq. (B122), and Eq. (B139)
— Eq. (B154) for the SU(2)-linear state. According to
the above results, we find that, at the mean-field lev-
el, the U(1)-linear spin liquid U1Cn01n can continuously
change into 8 different Zs spin liquids, the SU(2)-gapless
spin liquid SU2An0 can continuously change into 12 U(1)
spin liquids and 52 Z, spin liquids, and the SU(2)-linear
spin liquid SU2Bn0 can continuously change into 12 U(1)
spin liquids and 58 Zs spin liquids.

We would like to stress that the above results on the
continuous transitions are valid only at mean-field level.
Some of the mean-field results survive the quantum fluc-
tuations while others do not. One need to do a case by
case study to see which mean-field results can be valid
beyond the mean-field theory. In Ref. [40], a mean-field
transition between a SU(2) x SU(2)-linear spin liquid
and a Zs-gapped spin liquid was studied. In particular
the effects of quantum fluctuations were discussed.
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We would also like to point out that all the above
spin liquids have the same symmetry. Thus the contin-
uous transitions between them, if exist, represent a new
class of continuous transitions which do not change any
symmetries. [66]

B. Symmetric spin liquids around the U(1)-linear
spin liquid U1Cn01n

The SU(2)-linear state SU2Bn0 (the m-flux state), the
U (1)-linear state U1Cn01n (the staggered-flux/d-wave s-
tate), and the SU(2)-gapless state SU2An0 (the uniform
RVB state), are closely related to high T, superconduc-
tors. They reproduce the observed electron spectra func-
tion for undoped, underdoped, and overdoped samples
respectively. However, theoretically, those spin liquids
are unstable at low energies due to the U(1) or SU(2)
gauge fluctuations. Those states may change into more
stable spin liquids in their neighborhood. In the next a
few subsections, we are going to study those more sta-
ble spin liquids. Since there are still many different spin
liquids involved, we will only present some simplified re-
sults by limiting the length of non-zero links. Those spin
liquids with short links should be more stable for simple
spin Hamiltonians. The length of a link between ¢ and j
is defined as |iy — jz| + |iy — jy|. By studying the spinon
dispersion in those mean-field states, we can understand
some basic physical properties of those spin liquids, such
as their stability against the gauge fluctuations and the
qualitative behaviors of spin correlations which can be
measured by neutron scattering. Those results allow us
to identify them, if those spin liquids exist in certain sam-
ples or appear in numerical calculations. We would like
to point out that we will only study symmetric spin lig-
uids here. The above three unstable spin liquids may also
change into some other states that break certain symme-
tries. Such symmetry breaking transitions actually have
been observed in high T, superconductors (such as the
transitions to antiferromagnetic state, d-wave supercon-
ducting state, and stripe state).

First, let us consider the spin liquids around the
U(1)-linear state U1Cn01ln. In the neighborhood of the
U1Cn01n ansatz Eq. (32), there are 8 classes of symmet-
ric ansatz Eq. (B24), Eq. (B25) Eq. (B27), and Eq. (B28)
that break the U(1) gauge structure down to a Z gauge
structure. The first one is labeled by Z2A0013 and takes
the following form

Ui i+ :X’Tl — ’177'2
Uiirg =XT' + 177
Uiita+y = T 717'1
Uii-ary =+ N7
Ui ipos =Y2T" + AoT?
Uiiyoy =72T — AoT?
ay #0, aZ®=0 (85)



It has the same quantum order as that in the ansatz
Eq. (42). The label Z2A0013 tells us the PSG that char-
acterizes the spin liquid.
The second ansatz is labeled by Z2Az213:
Uiits =XT' — 0T
Uiipy =XT' + 077
Uii+a+y = — 717'1
U i—g+y = T+ 17t
Ui j425 =Us 5429 = 0
ag®? =0 (86)
The third one is labeled by Z2A001n (or equivalently
Z2A003n):

af) =0
Uiire =XT" + 077
Uity =XT —N7T°
Uiit2mty =AT"
Ui aioy = — AT°
Ui it2m—g =AT"
Ui jparog = — AT (87)

Such a spin liquid has the same quantum order as E-
q. (39). The fourth one is labeled by Z2Azz1n:

I _
ap =0
1 2
Ui i+a =XT +NT
1 2
Uity =XT —NT
_ 1 2 A 3
Us i4+28+9 =X1T + M7 + AT
1 2 3
Ui i—g429 =X1T —MT° + AT
1 2 3
Ui 42— =X1T +MT° — AT
1 2 3
U i4a4+29 =X1T — T° — AT (88)

The above four ansatz have translation invariance. The
next four Z; ansatz do not have translation invariance.
(But they still describe translation symmetric spin liquids
after the projection.) Those Z5 spin liquids are Z2B0013:

1 2
Uiite =XT 1T

Ui iy =(=)" (x7" +n7?)

1 2
Ui i12a = — V2T + AT
1 2
Ujitoy = — V2T — AoT
1 2,3 _
aO 7é Oa a(] - 07 (89)

72Bzz13:
Uiiye =XT =07

Qe 1 2
Ui iy =(=)"" (X7 +07°)
1
Uig+2e+29 = — N1T
1
Uq,i—2a+2y =17

1,2,3
0 — ()

ag , (90)
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FIG. 1: Contour plot of the spinon dispersion Ey(k) as a
function of (ks /2w, ky/2m) for the Zs-linear spin liquids. (a)
is for the Z2A0013 state in Eq. (85), (b) for the Z2Azz13 state
in Eq. (86), (c) for the Z2A001n state in Eq. (87), (d) for the
Z2Azz1n state in Eq. (88).

7Z2B001n:
Ui ita =x7" +n7°
Ui ity =(=)=(xr' = n7?)
Ui g5y =) A
3
Ui proy — AT
U ity =(—)" At
3
Ui iyaroy = = AT
ab =0, (91)
and Z2Bzzln:
Ug :XTl + 777'2

ug =(=)"= (xr' —n7?)
Ungryy =(=) 001" +m7° +27%)

U X1T1 — n172 + A3

—x2y =
Uog™ y =(=)=(xar! +mr? - )\7'3)
Uy, Loy :X171 — 77172 —

ap =0. (92)

The spinons are gapless at four isolated points with
a linear dispersion for the first four Z5 spin liquids E-
q. (85), Eq. (86), Eq. (87), and Eq. (88). (See Fig. 1)
Therefore the four ansatz describe symmetric Zs-linear
spin liquids. The single spinon dispersion for the second
Zo spin liquid Z2Azz13 is quite interesting. It has the
90° rotation symmetry around k = (0, 7) and the parity
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FIG. 2: Contour plot of the spinon dispersion

min(E1 (k), E2(k)) as a function of (k;/2m, ky,/2m) for
the Z,-linear states. (a) is for the Z2B0013 state in Eq. (89),
(b) for the Z2Bzz13 state in Eq. (90), (c¢) for the Z2B001n
state in Eq. (91), (d) for the Z2Bzz1n state in Eq. (92).

symmetry about k = (0,0). One very important thing to
notice is that the spinon dispersions for the four Zs-linear
spin liquids, Eq. (85), Eq. (86), Eq. (87), and Eq. (88)
have some qualitative differences between them. Those
differences can be used to physically measure quantum
orders (see section VII).

Next let us consider the ansatz Z2B0013 in Eq. (89).
The spinon spectrum for ansatz Eq. (89) is determined
by

H = — 2y cos(k;)T'o — 2ncos(k,)Ty

— 2x cos(ky)T'1 + 2ncos(ky)'s + ALy (93)
where k, € (0,7), ky € (—m, ) and

Ty =1'® 173, I =r'er,

Ty =r2® 13, I3 =r’®1",

F4 :7'1 ®TO. (94)

assuming ;2 = A2 = 0. The four bands of spinon
dispersion have a form +FE;(k), £E2(k). We find the
spinon spectrum vanishes at 8 isolated points near k =
(r/2,£m/2). (See Fig. 2a.) Thus the state Z2B0013 is a
Zs-linear spin liquid.

Knowing the translation symmetry of the above Zs-
linear spin liquid, it seems strange to find that the spinon
spectrum is defined only on half of the lattice Brillouin
zone. However, this is not inconsistent with translation
symmetry since the single spinon excitation is not phys-
ical. Only two-spinon excitations correspond to physical
excitations and their spectrum should be defined on the
full Brillouin zone. Now the problem is that how to ob-
tain two-spinon spectrum defined on the full Brillouin
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zone from the single-spinon spectrum defined on half of
the Brillouin zone. Let |k, 1) and |k, 2) be the two eigen-
states of single spinon with positive energies F;(k) and
Es(k) (here k, € (—7/2,7/2) and k, € (—m,m)). The
translation by & (followed by a gauge transformation)
change |k, 1) and |k, 2) to the other two eigenstates with
the same energies:
|k, 1) —|k + 7y, 1)

|k,2) —|k + 7y, 2) (95)

Now we see that momentum and the energy of two-spinon
states |k1,aq)|ks, o) + |k1 + 7Y, 1) |k + 7Y, ) are
given by
E25pinon :Eal (kl) + EOéz (k2)
k :kl -+ kg, k)l + kQ + T (96)

Eq. (96) allows us to construct two-spinon spectrum from
single-spinon spectrum.

Now let us consider the ansatz Z2Bzz13 in Eq. (90).
The spinon spectrum for ansatz Eq. (90) is determined
by

H = —2xcos(k;)To — 2ncos(k, )Ty

— 2x cos(ky)T'1 + 2n cos(ky)I'3 (97)
— 271 co8(2kg + 2ky )Ty + 21 cos(2ky — 2ky)T's
where k, € (0,7), k, € (—m,m) and
Ty =1 ® 73, I =r'®r,
Ty =12® 13,

F4:T1®TO.

s =r?®7!,
(98)
We find the spinon spectrum to vanish at 2 isolated points
k= (w/2,£7/2). (See Fig. 2b.) The state Z2Bzz13 is a
Zs-linear spin liquid.
The spinon spectrum for the ansatz Z2B001ln in E-
q. (91) is determined by
H = —2ycos(k;)To — 2ncos(k, )Ty
— 2x cos(ky)T'1 + 2ncos(ky)Ts
+ 2X(cos(kg + 2ky) + cos(—ky + 2ky))Ty

— 2X(cos(2ky + ky) + cos(2ky — ky))T's (99)
where k, € (0,7), k, € (—m, ) and

Ty =1'®13, I =r'er,

Ty =12®713, I3 =r’®71",

ry=r’®r’, Iy=r"@r'.  (100)

The spinon spectrum vanishes at 2 isolated points k =
(w/2,4+m/2). (See Fig. 2c.) The state Z2B001n is also a
Zs-linear spin liquid.
The spinon spectrum for the ansatz Z2Bzzln in E-
q- (92) can be obtained from
H = — 2y cos(k;)T'o — 2ncos(k, )y
— 2x cos(ky)T'1 + 2ncos(ky)I's
+ 2X(cos(k, + 2k,) — cos(—k, + 2k,))T4
(

— 2A(cos(2ky + ky) — cos(2k, — ky))I's  (101)



where k, € (0,7), k, € (—7,7) and
I =r'er,

I3 =r’®1,

Ty =1'®173,
Ty =r2® 173,
Iy =r*®r73,

We have also assumed that x; = 71 = 0. The spinon
spectrum vanishes at 2 isolated points k = (7/2, £7/2).
(See Fig. 2d.) The state Z2Bzzln is again a Zs-linear
spin liquid.

C. Symmetric spin liquids around the
SU(2)-gapless spin liquid SU2An0

There are many types of symmetric ansatz in the
neighborhood of the SU(2)-gapless state Eq. (30). Let
us first consider the 12 classes of symmetric U(1) spin
liquids around the SU(2)-gapless state Eq. (B44) — E-
q. (B49). Here we just present the simple cases where
u;; are non-zero only for links with length < 2. Among
the 12 classes of symmetric ansatz, We find that 5 class-
es actually give us the SU(2)-gapless spin liquid when
the link length is < 2. The other 7 symmetric U(1) spin
liquids are given bellow.

From Eq. (B50) we get

1 2 1 2
Uj i+3 =XT —NT Uj, 549 —XT + nt

ay®?® =0
Gm :Gy:TO, Gpm :pr:TO,
Gp,, =it!, Gr =(—)'r° (103)

In the above, we have also listed the gauge transforma-
tions G, Gp, p, P, and Gr associated translation,
parity and time reversal transformations. Those gauge
transformations define the PSG that characterizes the
U(1) spin liquid. In section IV C, we have introduced a
notation U1Cn0ln to label the PSG and its associated
ansatz. In the following, we will list ansatz together with
their labels and the associated gauge transformations.
From Eq. (B51) we get U1Cn00x state

1 1
Ui i+a =XT Ui, i+g =XT

3 3
Ui ita+y =TT Ui i—g+y =TT

3 3
Uq 5426 =T2T Uq 5429 =127

ag =13, ay* =0
G, =G, =1°, Gp, =Gp, = 1°,
Gp,, =T°, Gr =it? (104)
U1Cn0lx state
Ui ita =x7! Ui ity =x7"
Uj 4428 = — 77273 U i+27 :77273
ay®?® =0
G, =G, =1°, Gp, =Gp, =1°,
Gp,, =i, Gr =ir? (105)
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FIG. 3: Contour plot of the spinon dispersion E (k) as a func-
tion of (kg /2m, ky/27) for (a) the U(1)-linear state U1Cn00z
in Eq. (104), and (b) the U(1)-quadratic state UlCz10z in
Eq. (106). In the U(1)-quadratic state, the spinon energy
vanishes as Ak? near two points k = (,0), (0, 7).

and U1Cz10x state

1 1
Ui ite =XT Ui ity =XT

Uiita+y = — nr? Ui 5—a+ =7’
ab™* =0
Gw ZGy:TO, Gpl, ZGPy:iTl,
Gp. =10, G =it? (106)

From Eq. (B48) we get UTA0001 state

0 0
Ui i+e =LXT Us ity =IXT

Uj it+@+y — — 7)173 Ui i—a+g :77173
Ug, 1423 =no7° Ui i+27 =1p7°
ab>® =0
Gz :Gy = TO7 (_>7,TGP.L :(_)izGPy = TO’

Gp,, =79, Gr :i(—)iTl

(107)
and U1A0011 state

.0 £ 0
Ui i+ —UXT Ui ity =UXT

Ui i+28 = — 17’ Ui i+29 =1p7°
1,23 _
ay " =0
Go =Gy =1°  (=)*Gp, =(-)*Gp, =1,
Gp,, =it", Gr =i(—)ir! (108)

From Eq. (B49) we get, for Gp,, = 93(0pey), ULAz102
state

0 0
Ui ite =LXT Ui ity =UXT

Ui oty =NT° Ui ity =NT"
1,23
ay " =0
Gz :Gy = TO? (7)7;16"13.1 :(7)iIGPy = iTl’
Gp,, =T, Gr =i(—)irt (109)

Eq. (103) is the U1Cn01n U(1)-linear state (the stag-
gered flux state) studied in the last section. After exam-
ining the spinon dispersion, we find that the UlCn00z
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FIG. 4: Contour plot of the spinon dispersion Ey(k) as a
function of (ks /2w, k,/2m) for the U(1)-gapless states. (a) is
for the U1Cn0lx state Eq. (105), (b) for the UIA0001 state
Eq. (107), (c) for the ULAO0011 state Eq. (108), and (d) for
the UlAz10z state Eq. (109).

state in Eq. (104) can be a U(1)-linear or a U(1)-gapped
state depending on the value of a3. If it is a U(1)-linear
state, it will have 8 isolated Fermi points (see Fig. 3a).
The UlCnOlz state in Eq. (105) is a U(1)-gapless s-
tate (see Fig. 4a). The UlCx10x state in Eq. (106)
has two Fermi points at k; = (7,0) and ko = (0, 7).
(see Fig. 3b). However, the spinon energy has a form
E(k) < (k — k12)? near k; and ky. Thus we call the
U1Cz10z spin liquid Eq. (106) a U(1)-quadratic state.
The U1A0001 state in Eq. (107), the ULA0011 state in
Eq. (108), and the UlAx10z state in Eq. (109) are U(1)-
gapless states (see Fig. 4). Again the spinon dispersions
for the U(1) spin liquids have some qualitative differences
between each other, which can be used to detect different
quantum orders in those U(1) spin liquids.

We next consider the 52 classes of symmetric Z5 spin
liquids around the SU(2)-gapless state Eq. (B92) — E-
q. (B108). Here we just present the simplest case where
u4; are non-zero only for links with length < 1. We find
that 48 out of 52 classes of ansatz describe U(1) or SU(2)
spin liquids when the link’s length is < 1. In the following
we discuss the 4 remaining Z, ansatz.

We obtain one Z; spin liquid Z2Ax2(12)n from E-
q. (B94). Tt is described by Eq. (33). From Eq. (B100),
we obtain a Zs spin liquid Z2A0013. It is described by E-
q. (85) or Eq. (42). From Eq. (B102), we obtain a Z3 spin
liquid Z2By1(12)n (note Z2By1(12)n is gauge equivalent
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FIG. 5: Contour plot of the spinon dispersion Ey(k) as a
function of (ks /2w, ky/2m) for the Z, spin liquids. (a) is for
Zy-gapless state Z2Ax2(12)n in Eq. (33), and (b) is for Z»-
quadratic state Z2Bxz2(12)n in Eq. (110). Despite the lack of
rotation and parity symmetries in the single spinon dispersion
in (a), the two-spinon spectrum does have those symmetries.

to Z2Bx2(12)n ):
Uq 543 :iXTO -+ T]lTl
Ui iy =(=)" (ix7° +m7?)

ap®? =0 (110)

From Eq. (B108), we obtain a Zs spin liquid Z2B0013,
which is described by Eq. (89).

The ansatz Z2Bz2(12)n in Eq. (110) is a new Zs spin
liquid. The spinon spectrum for ansatz Eq. (110) is de-
termined by

H = —2xsin(k;)To + 2ncos(k, )Ty

— 2x sin(k,)T'1 + 21 cos(k,)T's (111)
where k, € (—7/2,7/2), ky € (—m,7) and
Ty =m"® 73, Iy =r'®7?,
r=r'er, I3 =r’®r. (112)

The spinon spectrum can be calculated exactly and
its four branches take a form +F;(k) and +Es(k).
The spinon energy vanishes at two isolated points k =
(0,0), (0,7). Near k = 0 the low energy spectrum is given
by (see Fig. 5b)

E =y [ +02)2(k2 — K22 + R2K2 (113)

It is interesting to see that the energy does not vanish
linearly as k — 0, instead it vanishes like k2.

We find that the loop operators for the following loops
t—1+2Z—1t+x4+y—t+y—tandi —1+y —
i— &+ Yy — 1— & — ¢ do not commute as long as both
x and n are non-zero. Thus the spin liquid described
by Eq. (110) indeed has a Zy gauge structure. We will
call such a state Zs-quadratic spin liquid to stress the
E o k? dispersion. Such a state cannot be construct-
ed from translation invariant ansatz, and it is the reason
why we missed this state in the last section. The two-
spinon spectrum is still related to the one-spinon spec-
trum through Eq. (96).



D. Symmetric spin liquids around the SU(2)-linear
spin liquid SU2Bn0

Last, we consider symmetric states in the neighbor-
hood of the SU(2)-linear state Eq. (31). The PSG’s for
those symmetric states can be obtained through the map-
ping Eq. (A112) from the PSG’s of symmetric spin liquids
around the SU(2)-gapless spin liquid. Here we will on-
ly consider the 12 classes of symmetric U(1) spin liquids
around the SU(2)-linear state given by Eq. (B117) — E-
q. (B122). We will just present the simple cases where u;;
are non-zero only for links with length < 2. We find that
7 of 12 classes of ansatz actually give us SU(2)-gapless
spin liquids when the link length is < 2. Thus we only
obtain the following 5 symmetric U(1) spin liquids.

From Eq. (B131) we get U1Cn01n ansatz

1 2 1 2
Ui i+a =XT —NT Ui ity =XT +0T

1,2,3
ag =0
Gz ZGyZTO7 pr :pr:To’
Gp,, =it', Gr =(=)7° (114)

which has the same quantum order as in the U(1)-linear
state Eq. (32) (the staggered-flux state).

From Eq. (B132) we get UlCn0x1 ansatz

2 1
Ui ite =XT Ui ity =XT

Ui itz = — 1T Uiivagy =NT"
a(l)’z’?’ =0
G, =Gy, = 70, Gp, =Gp, = 70,
Gp,, =it'?, Gr =(=)wir'  (115)
and U1CnOnl ansatz
Uiite =XT7) Uity = XT'
Ui i+28 =7, Ui it2g = nr?
ag =m, a(l)’2 =0
G, =G, =7° Gr=(-)vir!
Gp, =Gp, = 79,
Gp,, =(=)""g3((-)" = (=)")7/4).  (116)
From Eq. (B121) we get U1B0001 ansatz
Ui iye =IXT" Ui iy =i(=)" x7"
Wi iy2m =0T Ui iy2g =0T
ag =n, aé’Q =0
(-)*G =Gy =1°,  (~)Gp, =(~)=Gp, ="
Gp,, =(=)"="7°, Gr =i(—)'r! (117)
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FIG. 6: Contour plot of the spinon dispersion E (k) as a func-
tion of (kg /2, ky/27) for (a) the U(1)-linear state U1CnOz1
in Eq. (115) and (b) the U(1)-linear state Eq. (123).
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FIG. T: Contour plot of the spinon dispersion

min(E, (k), E2(k)) as a function of (k;/2m, ky,/2m) for
the U(1) spin liquid states. (a) is for the U(1)-gapless state
U1B0001 in Eq. (117) and (b) is for the U(1)-linear state
U1B0011 in Eq. (118).

and U1B0011 ansatz

0

.0 . i
Ui ita =IXT Uity =0(—)""XT

Uiiroe = —NT° Ui ipogy =NT°
ab?® =0
(-)"Gy =Gy =1°  (=)*Gp, =(-)"*CGp, =1°,
Gp,, =i(=)"="1, Gr =i(-)'r! (118)

Now let us discuss spinon dispersions in the above U (1)
spin liquids. The spinon in the U1Cn0z1 state Eq. (115)
has 4 linear nodes at (+m/2,+7/2). Thus UlCn0z1 s-
tate is a U(1)-linear spin liquid. The UlCnOnl state
Eq. (116) has fully gapped spinons and is a U(1)-gapped
spin liquid.

The four spinon bands in the U1B0001 state Eq. (117)
are given by (see Fig. 7a)

:I:QX\/sinz(k:w) +sin?(k, ) & (21 cos(2k,) + 21 cos(2k,) + m1)
(119)
We find that the U1B0001 state is a U(1)-gapless spin

liquid. The four spinon bands in the U1B0011 state E-
q. (118) are given by (see Fig. 7b)

+2x/sin?(k,) + sin? (k) £ 2n(cos(2k,) — cos(2k,))
(120)



Hence, the U1B0011 state is a U(1)-linear spin liquid.

To summarize we list all the spin liquids discussed so
far in the following table:

Zoy-gapped |Z2Azx0z
Zo-linear |Z2A0013, Z2Az213, Z2A001n
72Azz1n, 72B0013, Z2B2z13
72B001n, Z2Bzz1n
Zs-quadratic|Z2Bxz2(12)n
Zy-gapless|Z2Ax2(12)n
U(1)-gapped |U1Cn00z
U(1)-linear|U1B0011, U1Cn00z, U1Cn01ln
U1Cn0z1
U(1)-quadratic|U1Cz10x
U(1)-gapless|UTA0001, ULA0011, UlAz10z
U1B0001, U1Cn0lx
SU(2)-linear|SU2Bn0
SU (2)-gapless|SU2AnR0

VI. MEAN-FIELD PHASE DIAGRAM OF J;-J>
MODEL

To see which of the Zy, U(1), and SU(2) spin liquid-
s discussed in the last section have low ground energies
and may appear in real high T, superconductors, we cal-
culate the mean-field energy of a large class of transla-
tion invariant ansatz. In Fig. 8, we present the result-
ing mean-field phase diagram for a Ji-J spin system.
Here J; is the nearest-neighbor spin coupling and J; is
the next-nearest-neighbor spin coupling. We have fixed
Ji + Jo = 1. The y-axis is the mean-field energy per
site (multiplied by a factor 8/3). The phase (A) is the
m-flux state (the SU2Bn0 SU(2)-linear state) Eq. (31).
The phase (B) is a state with two independent uniform
RVB states on the diagonal links. It has SU(2) x SU(2)
gauge fluctuations at low energies and will be called an
SU(2) x SU(2)-gapless state. Its ansatz is given by

Ui it+a+y —=XT

(121)

The phase (C) is a state with two independent 7-flux
states on the diagonal links. It has SU(2) x SU(2) gauge
fluctuations at low energies and will be called an SU(2) x
SU(2)-linear state. Its ansatz is given by

Ui vty =X(T° + ")
Uiira—g =X(T° = T')
ab =0 (122)

The phase (D) is the chiral spin state Eq. (44). The
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FIG. 8: The mean-field energies for various phases in a Ji-
J2 spin system. (A) the m-flux state (the SU(2)-linear state
SU2Bn0). (B) the SU(2) x SU(2)-gapless state in Eq. (121).
(C) the SU(2) x SU(2)-linear state in Eq. (122). (D) the chiral
spin state (an SU(2)-gapped state). (E) the U(1)-linear state
Eq. (123) which breaks 90° rotation symmetry. (F) the U(1)-
gapped state U1Cn00z in Eq. (104). (G) the Zs-linear state
Z2Azz13 in Eq. (86). (H) the Zs-linear state Z2A0013 in
Eq. (85). (I) the uniform RVB state (the SU(2)-gapless state
SU2An0).

phase (E) is described by an ansatz

Ui ita+7 :XlTl + X272
Ug,i+3E—F :XlTl - XzT2
Wi it+g =7’

aby =0 (123)
which break the 90° rotation symmetry and is a U(1)-
linear state (see Fig. 6b). The phase (F) is described by
the ULlCn00z ansatz in Eq. (104). The UlCn00z state
can be a U(1)-linear or a U(1)-gapped state. The state
for phase (F) turns out to be a U(1)-gapped state. The
phase (G) is described by the Z2Az213 ansatz in Eq. (86)
which is a Zs-linear state. The phase (H) is described
by the Z2A0013 ansatz in Eq. (85) and is also a Zs-
linear state. The phase (I) is the uniform RVB state (the
SU(2)-gapless state SU2An0 Eq. (30)).

From Fig. 8, we see continuous phase transitions (at
mean-field level) between the following pairs of phases:
(AD), (A,G), (B,G), (C,E), and (B,H). The three contin-
uous transitions (B,G), (B,H) and (A,G) do not change
any symmetries. We also note that the SU(2) gauge
structure in the phase (A) breaks down to Zs in the
continuous transition from the phase (A) to the phase
(G). The SU(2) x SU(2) gauge structure in the phase
(B) breaks down to Z; in the two transitions (B,G) and
(B,H).
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FIG. 9: Contour plot of the dispersion for spin-1 excitation,
Eo(k), as a function of (k./2m, ky/27) for (a) the SU(2)-
linear spin liquid SU2Bn0 in Eq. (31) (the m-flux phase) and
(b) the U(1)-quadratic spin liquid U1Cz10z in Eq. (106).

VII. PHYSICAL MEASUREMENTS OF
QUANTUM ORDERS

After characterizing the quantum orders using PSG
mathematically, we would like to ask how to measure
quantum orders in experiments. The quantum orders in
gapped states are related to the topological orders. The
measurement of topological orders are discussed in Re-
f. [9, 10, 65]. The quantum order in a state with gapless
excitations can be measured, in general, by the dynami-
cal properties of gapless excitation. However, not all dy-
namical properties are universal. Thus we need to iden-
tify the universal properties of gapless excitations, before
using them to characterize and measure quantum orders.
The PSG characterization of quantum orders allows us
obtain those universal properties. We simply need to i-
dentify the common properties of gapless excitations that
are shared by all the ansatz with the same PSG.

To demonstrate the above idea, we would like to s-
tudy the spectrum of two-spinon excitations. We note
that spinons can only be created in pairs. Thus the
one-spinon spectrum is not physical. We also note that
the two-spinon spectrum include spin-1 excitations which
can be measured in experiments. At a given momentum,
the two-spinon spectrum is distributed in one or several
ranges of energy. Let Fss(k) be the lower edge of the
two-spinon spectrum at momentum k. In the mean-field
theory, the two-spinon spectrum can be constructed from
the one-spinon dispersion

E2-spinon(k) = El-spinon(Q) + El-spinon(k - Q) (124)

In Fig. 9 — 15 we present mean-field Fo4 for some simple
spin liquids. If the mean-field state is stable against the
gauge fluctuations, we expect the mean-field Fos should
qualitatively agrees with the real Fs;.

Among our examples, there are eight Zs-linear spin
liquids (see Fig. 10 and Fig. 11). We see that some of
those eight different Zs-linear spin liquids (or eight dif-
ferent quantum orders) have different number of gapless
points. The gapless points of some spin liquids are pinned
at position k = (m,7) and/or k = (,0), (0, 7). By mea-
suring the low energy spin excitations (say using neutron
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FIG. 10: Contour plot of FEas(k) as a function of
(ks /27, ky/2m) for the Zs-linear spin liquids. (a) is for the
Z2A0013 state in Eq. (85), (b) for the Z2Azz13 state in E-
q. (86), (c) for the Z2A001n state in Eq. (87), (d) for the
Z2Azz1n state in Eq. (88).
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FIG. 11: Contour plot of FEas(k) as a function of
(k2 /27, ky/2m) for the Zs-linear spin liquids. (a) is for the
Z2B0013 state in Eq. (89), (b) for the Z2Bzz13 state in E-
q. (90), (c) for the Z2B001n state in Eq. (91), (d) for the
Z2Bzz1ln state in Eq. (92).

scattering), we can distinguish those Z5 spin liquids. We
note that all the two-spinon spectra have rotation and
parity symmetries around k = 0. This is expected. Since
the two-spinon spectra are physical, they should have all
the symmetries the spin liquids have.

We also have four U(1)-linear spin liquids. Some of
them can be distinguished by their different numbers of
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FIG. 12: Contour plot of FEas(k) as a function of

(kz /27, ky/2m) for (a) the Zz-gapless state Z2Az2(12)n in
Eq. (33), and (b) the Zz-quadratic state Z2Bz2(12)n in E-
q. (110).
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FIG. 13: Contour plot of FEas(k) as a function of

(kg /27, ky /27) for two U(1)-linear spin liquids. (a) is for the
U1Cn01n state Eq. (32) (the staggered flux phase), and (b)
for the U1Cn00z state Eq. (104) in the gapless phase.

gapless points. It is interesting to note that all the U(1)
spin liquids discussed here have a gapless point in the
two-spinon spectrum pinned at position k = (7, 7). The
U(1)-linear spin liquids are also different from the Zs-
linear spin liquids in that the spin-spin correlations have
different decay exponents once the U(1) gauge fluctua-
tions are included. We also see that Fos has a quadratic
form Fss o k? for the U(1)-quadratic spin liquid. Fag
vanishes in two finite regions in k-space for the Z5-gapless
spin liquids.

Neutron scattering experiments probe the two-spinon
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FIG. 14: Contour plot of the two-spinon dispersion Eas(k)
as a function of (k./2m,k,/2m) for (a) the U(1)-linear spin
liquid state UlCn0z1 in Eq. (115) and (b) the U(1)-linear
spin liquid Eq. (123).
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FIG. 15: Contour plot of the two-spinon dispersion Eas(k) as
a function of (kg /2w, ky/27) for the U(1) spin liquid states.
(a) is for the U(1)-gapless state U1B0001 in Eq. (117) and (b)
is for the U(1)-linear state U1B0011 in Eq. (118).

sector. Thus low energy neutron scattering allows us to
measure quantum orders in high T, superconductors.

Let us discuss the U(1) linear state UlCn0Oln (the
staggered-flux state) in more detail. The UlCnOln s-
tate is proposed to describe the pseudo-gap metallic s-
tate in underdoped high T, superconductors.[33, 34] The
U1Cn01ln state naturally explains the spin pseudo-gap
in the underdoped metallic state. As an algebraic spin
liquid, the U1Cn0ln state also explain the Luttinger-
like electron spectral function[34] and the enhancement
of the (m, ) spin fluctuations[67] in the pseudo-gap s-
tate. From Fig. 13a, we see that gapless points of the
spin-1 excitations in the UlCn0Oln state are always at
k = (m,m), (0,0), (7,0) and (0,7). The equal energy
contour for the edge of the spin-1 continuum has a shape
of two overlapped ellipses at all the four k points. Also
the energy contours are not perpendicular to the zone
boundary. All those are the universal properties of the
U1Cn01n state. Measuring those properties in neutron
scattering experiments will allow us to determine if the
pseudo-gap metallic state is described by the U1Cn0ln
(the staggered-flux) state or not.

We have seen that at low energies, the UlCnOln s-
tate is unstable due to the instanton effect. Thus the
UlCn01ln state has to change into some other states,
such as the 8 Z5 spin liquids discussed in section V or
some other states not discussed in this paper. From Fig.
10a, we see that the transition from the UlCnOln state
to the Zs-linear state Z2A0013 can be detected by neu-
tron scattering if one observe the splitting of the node
at (m,7) into four nodes at (m + §,7 £+ ) and the split-
ting of the nodes at (w,0) and (0, 7) into two nodes at
(mr £ 6,0) and (0,7 £ d). From Fig. 10b, we see that,
for the transition from the U1CnOln state to the Zs-
linear state Z2Azz13, the node at (m,7) still splits in-
to four nodes at (m £+ §, 7 + 0). However, the nodes at
(m,0) and (0, 7) split differently into two nodes at (w, £9)
and (£0,7). We can also study the transition from the
U1Cn01n state to other 6 Z5 spin liquids. We find the
spectrum of spin-1 excitations all change in certain char-
acteristic ways. Thus by measuring the spin-1 excitation
spectrum and its evolution, we not only can detect a



quantum transition that do not change any symmetries,
we can also tell which transition is happening.

The neutron scattering on high 7T, superconductor in-
deed showed a splitting of the scattering peak at (m, )
into four peaks at (m £ d,7), (m,m £ 6) [30, 68-74] or
into two peaks at (m,7) — (7w + 6,7 — 9), (7 — §, ™ + 9)
[28, 75] as we lower the energy. This is consistent with
our belief that the U1Cn01n state is unstable at low en-
ergies. However, it is still unclear if we can identify the
position of the neutron scattering peak as the position of
the node in the spin-1 spectrum. If we do identify the
scattering peak as the node, then non of the 8 Z, spin
liquids in the neighborhood of the UlCn0ln state can
explain the splitting pattern (7w &+ §,7), (7,7 £+ §). This
will imply that the U1Cn01ln state change into another
state not studied in this paper. This example illustrates
that detailed neutron scattering experiments are power-
ful tools in detecting quantum orders and studying new
transitions between quantum orders that may not change
any symmetries.

VIII. FOUR CLASSES OF SPIN LIQUIDS AND

THEIR STABILITY

We have concentrated on the mean-field states of
spin liquids and presented many examples of mean-field
ansatz for symmetric spin liquids. In order for those
mean-field states to represent real physical spin liquid-
s, we need to include the gauge fluctuations. We also
need to show that the inclusion of the gauge fluctuations
does not destabilize the mean-field states at low ener-
gies. This requires that (a) the gauge interaction is not
too strong and (b) the gauge interaction is not a rele-
vant perturbation. (The gauge interaction, however, can
be a marginal perturbation.) The requirement (a) can
be satisfied through large N limit and/or adjustment of
short-range spin couplings in the spin Hamiltonian, if
necessary. Here we will mainly consider the requiremen-
t (b). We find that, at least in certain large N limits,
many (but not all) mean-field states do correspond to
real quantum spin liquids which are stable at low ener-
gies. In this case, the characterization of the mean-field
states by PSG’s correspond to the characterization of real
quantum spin liquids.

All spin liquids (with odd number of electron per unit
cell) studied so far can be divided into four classes. In
the following we will study each classes in turn.

A. Rigid spin liquid

In rigid spin liquids, by definition, the spinons and all
other excitations are fully gaped. The gapped gauge field
only induces short range interaction between spinons due
to Chern-Simons terms or Anderson-Higgs mechanism.
By definition, the rigid spin liquids are locally stable and
self consistent. The rigid spin liquids are characterized
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by topological orders and they have the true spin-charge
separation. The low energy effective theories for rigid
spin liquids are topological field theories. The Z3-gapped
spin liquid and chiral spin liquid are examples of rigid
spin liquids.

B. Bose spin liquid

The U(1)-gapped spin liquid discussed in the last sec-
tion is not a rigid spin liquid. It is a Bose spin liquid.
Although the spinon excitations are gapped, the U(1)
gauge fluctuations are gapless in the U(1)-gapped spin
liquid. The dynamics of the gapless U(1) gauge fluctua-
tions are described by low energy effective theory

1 2
£= 5o (fw) (125)
where f,, is the field strength of the U(1) gauge field.
However, in 142 dimension and after including the in-
stanton effect, the U(1) gauge fluctuations will gain an
energy gap.[76] The properties of the resulting quantum
state remain to be an open problem.

C. Fermi spin liquid

The Fermi spin liquids have gapless excitations that are
described by spin 1/2 fermions. Those gapless excitations
have only short range interactions between them. The
Zs-linear, Zs-quadratic and the Zs-gapless spin liquid
discussed above are examples of the Fermi spin liquids.

The spinons have a massless Dirac dispersion in Zs-
linear spin liquids. Thus Zs-linear spin liquids are local-
ly stable since short range interactions between massless
Dirac fermions are irrelevant at 142 dimensions. We
would like to point out that the massless Dirac disper-
sion of the Zs-linear spin liquids are protected by the
PSG (or the quantum order). That is any perturbations
around, for example, the Zs-linear ansatz Eq. (39) can-
not destroy the massless Dirac dispersion as long as the
PSG are not changed by the perturbations. To under-
stand this result, we start with the most general form of
symmetric perturbations Eq. (B3) around the Zs-linear
ansatz Eq. (39). We find that such perturbations van-
ish in the momentum space at k = (£n/2,£7/2). The
translation, parity, and the time reversal symmetries do
not allow any mass terms or chemical potential terms.
Thus the Zs-linear spin liquid is a phase that occupy a
finite region in the phase space (at 7' = 0). One does not
need any fine tuning of coupling constants and u;; to get
massless Dirac spectrum.

Now let us consider the stability of the Zj-quadratic
spin liquid Eq. (110). The spinons have a gapless
quadratic dispersion in the Zs-quadratic spin liquid. The
gapless quadratic dispersion of the Zj-quadratic spin
liquid is also protected by the symmetries. The most
general form of symmetric perturbations around the



Zs-quadratic ansatz Eq. (110) is given by Eq. (B102)
(Z2Bx2(12)n). In the momentum space, the most gen-
eral symmetric Zs-quadratic ansatz give rise to the fol-
lowing Hamiltonian (after considering the 90° rotation
symmetry)

H=-2 Z Xmn[sin(nky, — mky)To + sin(mk, + nk, )]
+2 Z Nmn[cos(nky —mk,)Ta 4 cos(mk, + nky,)Ts]
+2 Z Amn[cos(nky — mky )Ty + cos(mk, + nk,)I's]

(126)
where
Ty =1"® 13, Ty =1'® 173,
r=r'er, I3 =r?®r7,
Iy=-72®7°, Iy =r'®r. (127)

and the summation is over m =even, n =odd. We find
that the spinon dispersion still vanish at k = (0, 0), (0, 7)
and the energy still satisfy E « k. The translation, par-
ity, and the time reversal symmetric perturbations do not
change the qualitative behavior of the low energy spinon
dispersion. Thus, at mean-field level, the Z-quadratic
spin liquid is a phase that occupy a finite region in the
phase space (at T'= 0). One does not need any fine tun-
ing of coupling constants to get gapless quadratic disper-
sion of the spinons. However, unlike the Zs-linear spin
liquid, the short range four-fermion interactions between
the gapless spinons in the Z>-quadratic state are marginal
at 142 dimensions. Further studies are needed to under-
stand the dynamical stability of the Zs-quadratic spin
liquid beyond the mean-field level.

The Zs-gapless spin liquid is as stable as Fermi liquid in
142 dimensions. Again we expect Zs-gapless spin liquid
to be a phase that occupy a finite region in the phase
space, at least at mean-field level.

D. Algebraic spin liquid

U(1)-linear spin liquids are examples of algebraic spin
liquids. Their low lying excitations are described by
massless Dirac fermions coupled to U(1) gauge field.
Although the massless Dirac fermions are protected by
quantum orders, the gauge couplings remain large at low
energies. Thus the low lying excitations in the U(1)-
linear spin liquids are not described by free fermions.
This makes the discussion on the stability of those states
much more difficult.

Here we would like to concentrate on the U(1)-linear
spin liquid U1Cn0Oln in Eq. (32). The spinons have a
massless Dirac dispersion in the U(1)-linear spin liquid.
First we would like to know if the massless Dirac dis-
persion is generic property of the U(1)-linear spin liquid,
ie if the massless Dirac dispersion is a property shared by
all the spin liquids that have the same quantum order as
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that in Eq. (32). The most general perturbations around
the U(1)-linear ansatz Eq. (32) are given by Eq. (B6),
if the perturbations respect translation, parity, and the
time reversal symmetries, and if the perturbation do not
break the U(1) gauge structure. Since duy, = dul, =0
for m = even, their contributions in the momentum s-
pace vanish at k = (0,0) and k = (0, 7). The spinon en-
ergy also vanish at those points for the ansatz Eq. (32).
Thus the massless Dirac dispersion is protected by the
symmetries and the U(1) gauge structure in the U(1)-
linear spin liquid Eq. (32). In other words, the massless
Dirac dispersion is protected by the quantum order in
the U(1)-linear spin liquid.

Next we consider if the symmetries and the U(1) gauge
structure in the U(1)-linear spin liquid can be broken
spontaneously due to interactions/fluctuations at low en-
ergy. The low energy effective theory is described by La-
grangian (in imaginary time)

L= U ey (0, +iau)la  (128)
a,p

where 4 = 0,1,2, a = 1,2, 4" are 4 x 4 ~-matrices,
v0 =1, and (vy,4,v2,) are velocities for a? fermion in
z and y directions. We make a large N generalization
of the above effective theory and allow a = 1,2,..,N.
Our first concern is about whether the self energy from
the gauge interaction can generate any mass/chemical-
potential term, due to infrared divergence. It turns out
that, in the 1/N expansion, the gauge fluctuations repre-
sent an exact marginal perturbation that does not gener-
ate any mass/chemical=potential term.[77] Instead the
gauge interaction changes the quantum fixed point de-
scribed by free massless Dirac fermions to a new quantum
fixed point which has no free fermionic excitations at low
energies.[34, 77] The new quantum fixed point has gapless
excitations and correlation functions all have algebraic
decay. Such a quantum fixed point was called algebraic
spin liquid.[34] Actually, it is easy to understand why the
gauge fluctuations represent an exact marginal perturba-
tion. This is because the conserved current that couple to
the gauge potential cannot have any anomalous dimen-
sions. Thus if the gauge interaction is marginal at first
order, then it is marginal at all orders. Gauge interaction
as an exact marginal perturbation is also supported by
the following results. The gauge invariant Green’s func-
tion of v is found to be gapless after coupling to gauge
field, to all orders in 1/N expansion.[77] Recently it was
argued that the U(1) gauge interaction do not generate
any mass perturbatively even when N is as small as 2.[78]

Now let us discuss other possible instabilities. First we
would like consider a possible instability that change the
U (1)-linear state to the Zy-linear state. To study such an
instability we add a charge-2 Higgs field to our effective
theory

L :wi’YO [Vlt(au + mu)]wa (129)
+ (80 — 2iag) @l + v*[(8; — 2ia;)¢|* + V(o)



where V(¢) has its minimum at ¢ = 0 and we have as-
sumed v1,, = v2 4 = 1 for simplicity. (Note that ¢ corre-
sponds to A in Eq. (39). It is a non-zero A that break the
U(1) gauge structure down to the Z; gauge structure.) If
after integrating out ¢ and a,,, the resulting effective po-
tential Vesr(]¢]) has its minimum at a non zero ¢, then
the U(1)-linear state has a instability towards the Zo-
linear state.

To calculate Ver(|¢|), we first integrate out ¢ and get

(130)
9 — 2ia;) > + V(9)

L ziauwwau
+ (80 — 2iao)e|* + v?|(
where
N
Ty = g(pz) V2 (p?6,

— Pubv) (131)

Now the effective potential Vs r(|¢|) can be obtained by
integrating out a,, (in the ag = 0 gauge) and the phase 0
of the ¢ field, ¢ = pei?:[96]

Verr(d) = V(o)

/ dw/ d2k1
27T22

(132)

(tn[—K* (iw)] + =K1 (i)

dw d2k N
:/0 7r/(27T)21mln(8(k;2w2o+)1/24|¢2)
where
1 N 2\1/2 2
K- = g(w + k%)= 4 49| (133)
N 2y-1/2 2 2 w?
w? N
RN T (8(w2+k2)1/2+4|¢|2)

We find that V.pr = V — C1]¢[%In|¢| where C} is a con-
stant. Now it is clear that the gapless gauge fluctuations
cannot shift the minimum of V' from ¢ = 0 and the U(1)-
linear state is stable against spontaneously changing into
the Zs-linear state.

So far we only considered the effects of perturbative
fluctuations. The non-perturbative instanton effects can
also cause instability of the algebraic spin liquid. The
instanton effects have been discussed in Ref. [60] for the
case vl = v2. It was found that the instanton effects
represent a relevant perturbation which can destabilize
the algebraic spin liquid when N < 24. In the following,
we will generalize the analysis of Ref. [60] to vl # v2
case. First we rewrite

3
5 = [ Gryrgon(hmuan()
3k 1
- Gt

f;,e = €pu)\al/a'A

k) K fu (k) (134)

where

(135)
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When 7, = k2§;w — kuk,, we find K, = 6,,. When
Ty = (k25,w — kuk,)/VE?, we may assume K,, =
S /VE2. When vy 4 # v o we have

1 -
(Kuw) = Z g(w2 + 07 K7 + 03 ,k3) /2 %

a

V1,aV2,a 0 0
0 U2,a/vl,a 0 (136)
0 0 Ul,a/vQ,a

The instanton field f, minimize the action Eq. (134) and
satisfies

K,uufu = C(k)k#

where ¢(k) is chosen such that k&, f, = 2im We find that

(137)

fo = 8cw
D@ 0F kA 0F k) P01 40
f o 8(2]€1
P @ 07 k0, K3)20g,0 /01
8CI€2
= 138
S R B Purafuee )
and
8 2
¢ =2im 2. .2 12 w2 N_1/2
Yoo (W i kT + 05 k3) 1201 4V2,4
n 8k?
Za(w2 + U%,ak‘% + v%,akg)_l/zv27a/lea
—1
. 8k3
oW g kT 03 k3) T 2010 v,
(139)

Using the above solution, we can calculate the action for
a single instanton, which has a form

Sinst = %0&(1}2/’01) In(L) (140)
where L is the size of the system and we have assumed
that N/2 fermions have velocity (vz,vy) = (v1,v2) and
the other N/2 fermions have velocity (vg,vy) = (v2,v1).
We find a(l) = 1/4 + O(1/N) and «(0.003) = 3. +
O(1/N). When fa(vsa/vy) > 3, the instanton effect is
irrelevant. We see that even for the case N = 2, the in-
stanton effect can be irrelevant for small enough vq/v;.
Therefore, the algebraic spin liquid exists and can be sta-
ble.

It has been proposed that the pseudo-gap metallic s-
tate in underdoped high T, superconductors is described
by the (doped) staggered flux state (the U(1)-linear s-
tate ULCn01n) which contains a long range U(1) gauge
interaction.[33, 34] From the above result, we see that,
for realistic vg /v ~ 0.1 in high T, superconductors, the



U1Cn01n spin liquid is unstable at low energies. Howev-
er, this does not mean that we cannot not use the alge-
braic spin liquid U1Cn01ln to describe the pseudo-gap
metallic state. It simply means that, at low temper-
atures, the algebraic spin liquid will change into other
stable quantum states, such as superconducting state or
antiferromagnetic state[79] as observed in experiments.

The unstable algebraic spin liquid can be viewed as
an unstable quantum fixed point. Thus the algebraic-
spin-liquid approach to the pseudo-gap metallic state
in underdoped samples looks similar to the quantum-
critical-point approach[80, 81]. However, there is an im-
portant distinction between the two approaches. The
quantum-critical-point approach assumes a nearby con-
tinuous phase transition that changes symmetries and
strong fluctuations of local order parameters that cause
the criticality. The algebraic-spin-liquid approach does
not require any nearby symmetry breaking state and
there is no local order parameter to fluctuate.

E. Quantum order and the stability of spin liquids

After introducing quantum orders and PSG, we can
have a deeper discussion on the stability of mean-field
states. The existence of the algebraic spin liquid is a
very striking phenomenon, since gapless excitations in-
teract down to zero energy and cannot be described by
free fermions or free bosons. According to a conventional
wisdom, if bosons/fermions interact at low energies, the
interaction will open an energy gap for those low lying ex-
citations. This implies that a system can either has free
bosonic/fermionic excitations at low energies or has no
low energy excitations at all. According to the discussion
in section VIII, such a conventional wisdom is incorrec-
t. But it nevertheless rises an important question: what
protects gapless excitations (in particular when they in-
teract at all energy scales). There should be a “reason”
or “principle” for the existence of the gapless excitation-
s. Here we would like to propose that it is the quantum
order that protects the gapless excitations. We would like
to stress that gapless excitations in the Fermi spin lig-
uids and in the algebraic spin liquids exist even without
any spontaneous symmetry breaking and they are not
protected by symmetries. The existence of gapless ex-
citations without symmetry breaking is a truly remark-
able feature of quantum ordered states. In addition to
the gapless Nambu-Goldstone modes from spontaneous
continuous symmetry breaking, quantum orders offer an-
other origin for gapless excitations.

We have seen from several examples discussed in sec-
tion V that the quantum order (or the PSG) not only
protect the zero energy gap, it also protects certain qual-
itative properties of the low energy excitations. Those
properties include the linear, quadratic, or gapless disper-
sions, the k locations where the 2-spinon energy Ea;(k)
vanishes, etc .

Since quantum order is a generic property for any
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quantum state at zero temperature, we expect that the
existence of interacting gapless excitations is also a gener-
ic property of quantum state. We see that algebraic state
is a norm. It is the Fermi liquid state that is special.

In the following, we would like to argue that the PSG
can be a stable (or universal) property of a quantum s-
tate. It is robust against perturbative fluctuations. Thus,
the PSG, as a universal property, can be used to char-
acterize a quantum phase. From the examples discussed
in sections VIII C and VIIID, we see that PSG protects
gapless excitations. Thus, the stability of PSG also imply
the stability of gapless excitations.

We know that a mean-field spin liquid state is char-
acterized by U;; = <1/le;r> If we include perturbative
fluctuations around the mean-field state, we expect Uy
to receive perturbative corrections 0U;;. Here we would
like to argue that the perturbative fluctuations can only
change U;; in such a way that U;; and Usj 4 6U;; have
the same PSG.

First we would like to note the following well know
facts: the perturbative fluctuations cannot change the
symmetries and the gauge structures. For example, if
U;; and the Hamiltonian have a symmetry, then 6Us;
generated by perturbative fluctuations will have the same
symmetry. Similarly, the perturbative fluctuations can-
not generate 0U;; that, for example, break a U(1) gauge
structure down to a Z, gauge structure.

Since both the gauge structure (described by the IGG)
and the symmetry are part of the PSG, it is reasonable
to generalize the above observation by saying that not
only the IGG and the symmetry in the PSG cannot be
changed, the whole PSG cannot be changed by the per-
turbative fluctuations. In fact, the mean-field Hamilto-
nian and the mean-field ground state are invariant under
the transformations in the PSG. Thus in a perturbative
calculation around a mean-field state, the transforma-
tions in the PSG behave just like symmetry transforma-
tions. Therefore, the perturbative fluctuations can only
generate dU;; that are invariant under the transforma-
tions in the PSG.

Since the perturbative fluctuations (by definition) do
not change the phase, U;; and U;; + 6U;; describe the
same phase. In other words, we can group U;; into class-
es (which are called universality classes) such that U;; in
each class are connected by the the perturbative fluctu-
ations and describe the same phase. We see that if the
above argument is true then the universality classes are
classified by the PSG’s (or quantum orders).

We would like to point out that we have assumed the
perturbative fluctuations to have no infrared divergence
in the above discussion. The infrared divergence implies
the perturbative fluctuations to be relevant perturbation-
s, which cause phase transitions.



IX. RELATION TO PREVIOUSLY
CONSTRUCTED SPIN LIQUIDS

Since the discovery of high T, superconductor in 1987,
many spin liquids were constructed. After classifying and
constructing a large class of spin liquids, we would like
to understand the relation between the previously con-
structed spin liquids and spin liquids constructed in this
paper.

Anderson, Baskaran, and Zou[l14-16] first used the
slave boson approach to construct uniform RVB state.
The uniform RVB state is a symmetric spin liquid which
has all the symmetries of the lattice. It is a SU(2)-gapless
state characterized by the PSG SU2An0. Later two more
spin liquids were constructed using the same U(1) slave
boson approach. One is the m-flux phase and the other
is the staggered-flux/d-wave state.[31, 32, 82] The 7-flux
phase is a SU(2)-linear symmetric spin liquid character-
ized by PSG SU2Bn0. The staggered-flux/d-wave state
is a U(1)-linear symmetric spin liquid characterized by
PSG U1Cn01n. The UlCn0Oln state is found to be the
mean-field ground for underdoped samples. Upon doping
the U1Cn01ln state becomes a metal with a pseudo-gap
at high temperatures and a d-wave superconductor at low
temperatures.

It is amazing to see that the slave boson approach,
which is regarded as a very unreliable approach, predict-
ed the d-wave superconducting state 5 years before its
experimental confirmation.[21, 83-85] Maybe predicting
the d-wave superconductor is not a big deal. After all, the
d-wave superconductor is a commonly known state and
the paramagnon approach[86, 87] predicted d-wave su-
perconductor before the slave boson approach. However,
what is really a big deal is that the slave boson approach
also predicted the pseudo-gap metal which is a complete-
ly new state. It is very rare in condensed matter physics
to predict a new state of matter before experiments. It
is also interesting to see that not many people believe in
the slave boson approach despite such a success.

The above U(1) and SU(2) spin liquids are likely to
be unstable at low energies and may not appear as the
ground states of spin systems. The first known stable
spin liquid is the chiral spin liquid.[5, 6]. It has a true
spin-charge separation. The spinons and holons carry
fractional statistics. Such a state breaks the time rever-
sal and parity symmetries and is a SU(2)-gapped state.
The SU(2) gauge fluctuations in the chiral spin state does
not cause any instability since the gauge fluctuations are
suppressed and become massive due to the Chern-Simons
term. Due to the broken time reversal and parity sym-
metries, the chiral spin state does not fit within our clas-
sification scheme.

Spin liquids can also be constructed using the slave-
fermion/c-model approach.[41, 42] Some gapped spin lig-
uids were constructed using this approach.[43, 44] Those
states turn out to be Zs spin liquids. But they are not
symmetric spin liquids since the 90° rotation symmetry
is broken. Thus they do not fit within our classifica-
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tion scheme. Later, a Zs-gapped symmetric spin liquid
was constructed using the SU(2) slave-boson approach
(or the SU(2) projective construction).[38] The PSG for
such a state is Z2Azz0z. Recently, another Z5 state was
constructed using slave-boson approach.[63, 64] It is a
Zs-linear symmetric spin liquid. Its PSG is given by
7Z2A0013. New Z, spin liquids were also obtained re-
cently using the slave-fermion/o-model approach.[46] It
appears that most of those states break certain symme-
tries and are not symmetric spin liquids. We would like
to mention that Z, spin liquids have a nice property that
they are stable at low energies and can appear as the
ground states of spin systems.

Many spin liquids were also obtained in quantum dimer
model,[47-51] and in various numerical approach.[52-55]
It is hard to compare those states with the spin liquids
constructed here. This is because either the spectrum of
spin-1 excitations was not calculated or the model has a
very different symmetry than the model discussed here.
We need to generalized our classification to models with
different symmetries so that we can have a direct com-
parison with those interesting results and with the non-
symmetric spin liquids obtained in the slave-fermion/o-
model approach. In quantum dimer model and in nu-
merical approach, we usually know the explicit form of
ground state wave function. However, at moment, we do
not know how to obtain PSG from ground wave function.
Thus, knowing the explicit ground state wave function
does not help us to obtain PSG. We see that it is im-
portant to understand the relation between the ground
state wave function and PSG so that we can understand
quantum order in the states obtained in numerical calcu-
lations.

X. SUMMARY OF THE MAIN RESULTS

In the following we will list the main results obtained
in this paper. The summary also serves as a guide of the
whole paper.

(1) A concept of quantum order is introduced. The
quantum order describes the orders in zero-temperature
quantum states. The opposite of quantum order — classi-
cal order describes the orders in finite-temperature clas-
sical states. Mathematically, the quantum order charac-
terizes universality classes of complex ground state wave-
functions. It is richer then the classical order that char-
acterizes the universality classes of positive distribution
functions. Quantum orders cannot be completely de-
scribed by symmetries and order parameters. Landau’s
theory of orders and phase transitions does not apply to
quantum orders. (See section I A)

(2) Projective symmetry group is introduced to de-
scribe different quantum orders. It is argued that PSG is
a universal property of a quantum phase. PSG extend-
s the symmetry group description of classical orders and
can distinguishes different quantum orders with the same
symmetries. (See section IV A and VIIIE)



(3) As an application of the PSG description of quan-
tum phases, we propose the following principle that gov-
ern the continuous phase transition between quantum
phases. Let PSG;, and PSGy be the PSG’s of the t-
wo quantum phases on the two sides of a transition, and
PSG,, be the PSG that describes the quantum criti-
cal state. Then PSG, C PSG,., and PSGy C PSG,,.
We note that the two quantum phases may have the
same symmetry and continuous quantum phase transi-
tions are possible between quantum phases with same
symmetry.[66] The continuous transitions between dif-
ferent mean-field symmetric spin liquids are discussed
in section V and appendix B which demonstrate the
above principle. However, for continuous transitions be-
tween mean-field states, we have an additional condition
PSG1 = PSG,, or PSGy = PSG,,.

(4) With the help of PSG, we find that, within the
SU(2) mean-field slave-boson approach, there are 4 sym-
metric SU(2) spin liquids and infinite many symmetric
U(1) spin liquids. There are at least 103 and at most 196
symmetric Zy spin liquids. Those symmetric spin liquids
have translation, rotation, parity and the time reversal
symmetries. Although the classifications are done for the
mean-field states, they apply to real physical spin liquids
if the corresponding mean-field states turn out to be sta-
ble against fluctuations. (See section IV and appendix
A)

(5) The stability of mean-field spin liquid states are dis-
cussed in detail. We find many gapless mean-field spin
liquids to be stable against quantum fluctuations. They
can be stable even in the presence of long range gauge in-
teractions. In that case the mean-field spin liquid states
become algebraic spin liquids where the gapless excita-
tions interact down to zero energy. (See section VIII)

(6) The existence of algebraic spin liquids is a striking
phenomenon since there is no spontaneous broken sym-
metry to protect the gapless excitations. There should be
a “principle” that prevents the interacting gapless exci-
tations from opening an energy gap and makes the alge-
braic spin liquids stable. We propose that quantum order
is such a principle. To support our idea, we showed that
just like the symmetry group of a classical state deter-
mines the gapless Nambu-Goldstone modes, the PSG of
a quantum state determines the structure of gapless exci-
tations. The gauge group of the low energy gauge fluctu-
ations is given by the IGG, a subgroup of the PSG. The
PSG also protects massless Dirac fermions from gaining
a mass due to radiative corrections. We see that the sta-
bilities of algebraic spin liquids and Fermi spin liquids
are protected by their PSG’s. The existence of gapless
excitations (the gauge bosons and gapless fermions) with-
out symmetry breaking is a truly remarkable feature of
quantum ordered states. The gapless gauge and fermion
excitations are originated from the quantum orders, just
like the phonons are originated from translation symme-
try breaking. (See sections VIIIC, VIIID, VIIIE and
discussions below Eq. (49))

(7) Many Zs spin liquids are constructed. Their low
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energy excitations are described by free fermions. Some
Z5 spin liquids have gapless excitations and others have
finite energy gap. For those gapless Z5 spin liquids some
have Fermi surface while others have only Fermi points.
The spinon dispersion near the Fermi points can be lin-
ear E o |k| (which gives us Zs-linear spin liquids) or
quadratic E o« k? (which gives us Zs-quadratic spin lig-
uids). In particular, we find there can be many Zs-linear
spin liquids with different quantum orders. All those d-
ifferent Zs-linear spin liquids have nodal spinon excita-
tions. (See section III, V, and appendix B)

(8) Many U (1) spin liquids are constructed. Some U(1)
spin liquids have gapless excitations near isolated Fermi
point with a linear dispersion. Those U(1) linear states
can be stable against quantum fluctuations. Due to long
range U(1) gauge fluctuations, the gapless excitations in-
teract at low energies. The U(1)-linear spin liquids can
be concrete realizations of algebraic spin liquids.[34, 67]
(See section III, V, and appendix B)

(9) Spin liquids with the same symmetry and differen-
t quantum orders can have continuous phase transitions
between them. Those phase transitions are very similar
to the continuous topological phase transitions between
quantum Hall states.[66, 88-90] We find that, at mean-
field level, the U1Cn01n spin liquid in Eq. (32) (the stag-
gered flux phase) can continuously change into 8 different
symmetric Zs spin liquids. The SU2An0 spin liquid in E-
q- (30) (the uniform RVB state) can continuously change
into 12 symmetric U(1) spin liquids and 52 symmetric
Z5 spin liquids. The SU2Bn0 spin liquid in Eq. (31) (the
m-flux phase) can continuously change into 12 symmetric
U(1) spin liquids and 58 symmetric Z5 spin liquids. (See
appendix B)

(10) We show that spectrum of spin-1 excitations
(ie the two-spinon spectrum), which can be probed in
neutron scattering experiments, can be used to measure
quantum orders. The gapless points of the spin-1 ex-
citations in the UlCnOln (the staggered-flux) state are
always at k = (m,m), (0,0), (7,0) and (0,7). In the
pseudo-gap metallic phase of underdoped high T, super-
conductors, the observed splitting of the neutron scat-
tering peak (m,7) — (7w £ 0,7), (m, ™ £ 0) [30, 68-74] or
(m,m) = (m+ 6,7 —=9),(m — 6,7+ 3J) [28, 75] at low en-
ergies indicates a transition of the UlCn0Oln state into
a state with a different quantum order, if we can indeed
identify the scattering peak as the gapless node. Non of
the 8 symmetric Zs spin liquids in the neighborhood of
the the U1Cn01n state can explain the splitting pattern.
Thus we might need to construct a new low energy state
to explain the splitting. This illustrates that detailed
neutron scattering experiments are powerful tools in de-
tecting quantum orders and studying transitions between
quantum orders. (See section VII.)

(11) The mean-field phase diagram Fig. 8 for a J;-
Jo spin system is calculated. (Only translation sym-
metric states are considered.) We find four mean-field
ground states as we change Jz/J;: the m-flux state (the
SU2An0 state), the chiral spin state (an SU(2)-gapped



state), the U(1)-linear state Eq. (123) which breaks 90°
rotation symmetry, and the SU(2) x SU(2)-linear state
Eq. (122). We also find several locally stable mean-field
states: the U(1)-gapped state U1Cn00z in Eq. (104) and
two Zs-linear states Z2Azz13 in Eq. (86) and Z2A0013
in Eq. (85). Those spin liquids have a better chance
to appear in underdoped high T, superconductors. The
7Z2A0013 Zs-linear state has a spinon dispersion very sim-
ilar to electron dispersion observed in underdoped sam-
ples. The spinon dispersion in the Z2Azz13 Zs-linear
state may also be consistent with electron dispersion in
underdoped samples. We note that the two-spinon spec-
trum for the two Zs-linear states have some qualitative
differences (see Fig. 10a and Fig. 10b and note the posi-
tions of the nodes). Thus we can use neutron scattering
to distinguish the two states. (See section VI.)

Next we list some remarks/comments that may clar-
ify certain confusing points and help to avoid possible
misunderstanding.

(A) Gauge structure is simply a redundant labeling
of quantum states. The “gauge symmetries” (referring
different labels of same physical state give rise to the
same result) are not symmetries and can never be broken.
(See the discussion below Eq. (15))

(B) The gauge structures referred in this paper (such
as in Zy, U(1), or SU(2) spin liquids) are “low energy”
gauge structures. They are different from the “high ener-
gy” gauge structure that appear in Zy, U(1), and SU(2)
slave-boson approaches. The “low energy” gauge struc-
tures are properties of the quantum orders in the ground
state of a spin system. The “high energy” gauge struc-
ture is a particular way of writing down the Hamiltonian
of spin systems. The two kinds of gauge structures have
nothing to do with each other. (See discussions at the
end of section IC and at the end of section IV A)

(C) There are (at least) two different interpretations of
spin-charge separation. The first interpretation (pseudo
spin-charge separation) simply means that the low energy
excitations cannot be described by electron-like quasipar-
ticles. The second interpretation (true spin-charge sepa-
ration) means the existence of free spin-1/2 neutral quasi-
particles and spin-0 charged quasiparticles. In this paper
both interpretations are used. The algebraic spin liquids
have a pseudo spin-charge separation. The Z5 and chi-
ral spin liquids have a true spin-charge separation. (See
section IC)

(D) Although in this paper we stress that quantum
orders can be characterized by the PSG’s, we need to
point out that the PSG’s do not completely characterize
quantum orders. Two different quantum orders may be
characterized by the same PSG. As an example, we have
seen that the ansatz Eq. (104) can be a U(1)-linear state
or a U(1l)-gapped state depending on the values of pa-
rameters in the ansatz. Both states are described by the
same PSG U1Cn00z. Thus the PSG can not distinguish
the different quantum orders carried by the U(1)-linear
state and the U(1)-gapped state.

(E) The unstable spin liquids can be important in
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understanding the finite temperature states in high T,
superconductors. The pseudo-gap metallic state in un-
derdoped samples is likely to be described by the un-
stable UlCnOln algebraic spin liquid (the staggered
flux state) which contains a long range U(1) gauge
interaction.[33, 34] (See discussions at the end of section
VIIL.)

(F) Although we have been concentrated on the char-
acterization of stable quantum states, quantum order and
the PSG characterization can also be used to describe the
internal order of quantum critical states. Here we define
“quantum critical states” as states that appear at the
continuous phase transition points between two states
with different symmetries or between two states with d-
ifferent quantum orders (but the same symmetry). We
would like to point out that “quantum critical states”
thus defined are more general than “quantum critical
points”. “Quantum critical points”, by definition, are
the continuous phase transition points between two states
with different symmetries. The distinction is importan-
t. “Quantum critical points” are associated with broken
symmetries and order parameters. Thus the low energy
excitations at “quantum critical points” come from the
strong fluctuations of order parameters. While “quantum
critical states” may not be related to broken symmetries
and order parameters. In that case it is impossible to re-
late the gapless fluctuations in a “quantum critical state”
to fluctuations of an order parameter. The unstable spin
liquids mentioned in (E) can be more general quantum
critical states. Since some finite temperature phases in
high T, superconductors may be described by quantum
critical states or stable algebraic spin liquids, their char-
acterization through quantum order and PSG’s is useful
for describing those finite temperature phases.

(G) In this paper, we only studied quantum orders
and topological orders at zero temperature. However, we
would like point out that topological orders and quan-
tum orders may also apply to finite temperature systems.
Quantum effect can be important even at finite tempera-
tures. In Ref. [13], a dimension index (DI) is introduced
to characterize the robustness of the ground state degen-
eracy of a topologically ordered state. We find that if
DI< 1 topological orders cannot exist at finite tempera-
ture. However, if DI> 1, topological order can exist at
finite temperatures and one expect a finite-temperature
phase transition without any change of symmetry. Topo-
logical orders in FQH states have DI=1, and they cannot
exist at finite temperatures. The topological order in 3D
superconductors has DI=2. Such a topological order can
exist at finite temperatures, and we have a continuous
finite-temperature superconductor-metal transition that
do not change any symmetry.

Although we mainly discussed quantum orders in 2D
spin systems, the concept of quantum order is not limited
to 2D spin systems. The concept applies to any quantum
systems in any dimensions. Actually, a superconductor is
the simplest example of a state with non trivial quantum
order if the dynamical electromagnetic fluctuations are



included. A superconductor breaks no symmetries and
cannot be characterized by order parameters. An s-wave
and a d-wave superconductors, having the same symme-
try, are distinguished only by their different quantum
orders. The gapless excitations in a d-wave supercon-
ductor are not produced by broken symmetries, but by
quantum orders. We see that a superconductor has many
properties characteristic of quantum ordered states, and
it is a quantum ordered state. The quantum orders in
the superconducting states can also be characterized us-
ing PSG’s. The IGG G = Z, if the superconducting
state is caused by electron-pair condensation, and the
IGG G = Z, if the superconducting state is caused by
four-electron-cluster condensation. The different quan-
tum orders in an s-wave and a d-wave superconductors
can be distinguished by their different PSG’s. The ansatz
of the s-wave superconductor is invariant under the 90°
rotation, while the ansatz of the d-wave superconduc-
tor is invariant under the 90° rotation followed by gauge
transformations ¢; — +eim/ 2¢;.

It would be interesting to study quantum orders in
3D systems. In particular, it is interesting to find out
the quantum order that describes the physical vacuum
that we all live in. The existence of light — a massless
excitation — without any sign of spontaneous symmetry
breaking suggests that our vacuum contains a non-trivial
quantum order that protect the massless photons. Thus
quantum order provides an origin of light.[58]
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APPENDIX A: CLASSIFICATION OF
PROJECTIVE SYMMETRY GROUPS

1. General conditions on projective symmetry
groups

The transformations in a symmetry group satisfy vari-
ous algebraic relations so that they form a group. Those
algebraic relations leads to conditions on the elements
of the PSG. Solving those conditions for a given sym-
metry group and a given IGG allows us to find pos-
sible extensions of the symmetry group, or in another
word, to find possible PSG’s associated with the sym-
metry group. In section IV A, we have seen that the
relation T, T, T, 'T, ' = 1 between translations in z- and
y-directions leads to condition

G TGy T, (G, T,) " (G, T,) ! =
G.T.G,T,T, '\G, T, G, € G; (A1)
or

Go(1)Gy(i — 2)G (i - 9)Gy(i) ' € G (A2)

on elements G,T, and G,T), of the PSG. Here G is the
IGG. This condition allows us to determine that there
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are only two different extensions (given by Eq. (61) and
Eq. (62)) for the translation group generated by T, and
Ty, if G = Zs.

However, a bigger symmetry groups can have many
more extensions. In the following we are going to con-
sider PSG’s for the symmetry group generated by two
translations T, ,, three parity transformations Py y .y,
and the time reversal transformation 7. Since transla-
tions and the time reversal transformation commute we
have,

(G.T,) Y GrT)'G T,GrT € G
(G, T,) " GrT) 'G,T,GrT € G (A3)

which reduces to the following two conditions on G, , (%)
and G (i)

G (1)G7 (1)Ga(i)Gr(i — &) € G

G, ()G ()G, (i)Gr(i — ) € G (A4)
Since T-'P;'TP, = 1, T7'P;'TP, = 1, and
T*IP{;TPM =1, one can also show that
G7'(P:(4)Gp) ()Gr ()G, (i) €G
G (Py(4)GE, (i)Gr(i)Gp, (i) €G
G (Poy(1)Gp) (1)Gr(9)Gp,, (1) €G  (A5)

From the relation between the translations and the par-
ity transformations, T,P,'T,P, = T,'P;'T,P, =
T,p/'t,P, = T,'P/'T,P, = T,'P'T.P,, =
T,'P,'T,P,, =1, we find that

(GITI) (GPI Pm)_lGITxGPI P, eg

(G,T,)""(Gp,P) 'G,T,Gp, Py €G (A6)
(GyTy)(GPy Py)_leTyGPy Py €g
(G.T,) " (Gp,Py) ' G, T,Gp, P, €G (A7)
(GZUTZ!)71(GPr1/sz)71GIT$GPr1;PIy Eg
(G.Tw) " (Gp,, Poy) ' GyT,Gp,, Puy €G (A8)
Go(Pu(8))Gp! (i + #)Gu (i + &)Gp, (1) €G
G, (Pe(8)Gpl ()G (i)Gp,(i—9) €6 (A9)
Gy(Py(0)Gp, (i + 9)Gy (i + §)Gp, (i) €G
G, I(Py(i))G;j(i)Gz(i)GPy (t—z)eg  (Al0)
G, 1(ny(i))GEjy (1)G:(1)Gp,,(t — Z) €G
Gy 1(PLy(i))GEjy (1)Gy(9)Gp,, (i —9y) €G  (All)



We also have Pa:ychPguyPy_1 = PyPgEPy_ngLT1 = 1. Thus
Gp,,PoyGp, PoGp,, Puy(Gp,P,) " €G
Gp,PyGp, Po(Gp,P,)) " (G, Pa)”" €G

which implies

Gr,,(1)Gp, (Puoy(9)GP,, (Poy Pu(i))Gp, (i) €G
Gp, (1)Gp, (Py(1))Gp, (Pu(i))Gp, (i) €G  (A13)

The fact 72 = 1 leads to condition

(A12)

~.

GZ4(i)eg (A14)
and P? = P? = P}, =1 leads to
Gp,(1)Gp,(Py(1)) €G
pr (Z)pr (Py(’l,)) cg
GPmy(i)Gsz(P:cy(i)) €g (A15>

The above conditions completely determine the PSG’s.
The solutions of the above equations for G = Z5, U(1),
and SU(2) allow us to obtain PSG’s for Z3, U(1), and
SU(2) spin liquids. However, we would like to point out
that the above conditions define the so called algebraic
PSG’s, which are somewhat different from the invariant
PSG defined in section IV A. More precisely, an algebraic
PSG is defined for a given IGG and a given symmetry
group SG. It is a group equipped with a projection P and
satisfies the following conditions

IGG CcPSG, P(PSG)=S5G (A16)
P(gu) =P(u), for any u € PSG and g € IGG

It is clear that an invariant PSG is always an algebraic
PSG. However, some algebraic PSG’s are not invariant
PSG’s. This is because a generic ansatz u;; that are in-
variant under an algebraic PSG may be invariant under
a larger invariant PSG. If we limit ourselves to spin lig-
uids constructed using u;;, then an algebraic PSG char-
acterizes a mean-field spin liquid only when it is also an
invariant PSG at the same time.

We would like to remark that the definition of invariant
PSG can be generalized. In section IV A, the invariant
PSG is defined as a collection of transformations that
leave an ansatz u;; invariant. More generally, a spin lig-
uid is not only characterized by the two-point correlation

(Uij)ag = <1/)aing> but also by many-point correlation-

s such as (Uijmn)aﬁw\ = <¢a1wﬁg¢—tmw;n> ‘We may
define the generalized invariant PSG as a collection of
transformations that leave many-point correlation invari-
ant. It would be very interesting to see if the generalized

invariant PSG coincide with the algebraic PSG.

2. Classification of Z; projective symmetry groups

We have seen that there are only two types of Zs spin
liquids which have only the translation symmetry. How-
ever, spin liquids with more symmetries can have more
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types. In this section, we are going to construct all (al-
gebraic) PSG’s associated with the symmetry group gen-
erated by T y, Py y.ay, and T for the case G = Z. This
allows us to obtain a classification of mean-field symmet-
ric Z3 spin liquids.

We start with Z5 spin liquids with only translation
symmetry. First let us add the time reversal symmetry.
An arbitrary ansatz has the time reversal symmetry if it
satisfies

(A17)
For Z, spin liquid, the condition Eq. (A4) becomes

G, (3)Gr (1)Go()Gr (i — &) = 1y 7°
G_l(i)G%l(i)Gy(i)GT(i -y) = nytTO

; (A18)

where 1t 4+ = £1. For Zy spin liquids, G, o 7° and
the above four conditions (labeled by 7, = £1 ) on
Gt can be simplified

G ()G (i — &) = 1y
Gr' ()G (i = §) = ny

This leads to four types of G labeled by 1yt = 1

(A19)

by ig

Gr(2) =Nyt Nzt 9T (A20)

where gr satisfies g2 = £7°. We see that g7 has two
gauge inequivalent choices gr = 7°,473. Thus the sym-
metry group generated by T , and 7" has 2 x4 x 2 =16
different extensions (or 16 different PSG’s) if G = Zs.
There can be (at most) 16 different mean-field Zs spin
liquids which have only translation and the time reversal
symmetries.

Next let us add three types of parity symmetries. An
arbitrary ansatz has the parity symmetries if it satisfies

Gp, Pr(uij) =uij

Py (uij) =up,),p. ()

Gp, Py(uiz) =usj
Py(uiz) =up,),p, ()
Pry(uij) =up,,),P., ()
P, (l) :(iwix) (A23)

For Z, spin liquids, Eq. (A9), Eq. (A10), and Eq. (Al1)
reduce to

Go(Pu(3)Gp, (3 + &)Go (i + &)Gp, () =nupe

x

Gy (Po(9)Gp) ()G (i)Gp, (i — §) =nypet’

x

(A24)



Gy(Py (Z))G;yl("' +9)Gy (2 +9)Gp,(3) :nymﬂ'o

G, (P (9))Gp, (1)G(1)Gp, (i — &) =nupy ™’ (A25)
Gy (Pay ()G, (1)Go ()G, (i — &) =hzpay
G (Poy()Gp) (1)Gy ()G, (i = §) =nypay " (A26)

Ty

where 1zpz zpy,apey = £1 and Nype ypy,ypey = £1.

We will consider the two cases Eq. (61) and Eq. (62)
separately. First we assume G,(3) = G,(3) = 7°. In
this case, Eq. (A24), Eq. (A25), and Eq. (A26) can be

simplified

Gp) (i +&)Gp, (1) =nepet’
Gl_:'fl (T/)GPT (1‘ - Q) :przTO (A27)
Gpl(3+9)Gp, (8) =nyp,°
Gp, (1)Gp, (i — &) =iapy ™ (A28)
G;:y (":)GPW ('5 - ﬁf) =77xpxyro
Gp), (D)Gp,, (i =) =ypey . (A29)
We find
Gp, (8) =0 e gp,
Gp, (8) =My My 9P,
Gy, () =05hayMypay IPs, (A30)

where g%z = +79, g]%y = +79 and gfpzy = +7% n’s and
g’s in the above equation are not independent.
Eq. (A15), we find that

From

Lz Ly Ty Lz 2
nzpzynypxynwpwynypzngl,y

= £ Napy Nypay Napay Typay
=+70° (A31)

which requires Nzpzy = Nypay = Npay- From Eq. (A13) we
see that

(2 i 2 i %, (2 T %

9p.,9P. 9P, 9p, = £T°

9r,9P,9p, 9p, = £7° (A32)
We find
Napy Napry Nypz Typzy =1
Nypy Mypwy NepsNepry =1 (A33)
and
Jp,, 9P, gPIyQEyl =470
9p,9p.9p, 9p, = £T° (A34)
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From Eq. (A33) we find 7)zps = Nypy and Nepy = Nypa-
Eq. (A30) becomes

Gp, (3) =ni,.ni, 9P,
GP;/ (2) :W;Zy%zgzgﬂ,

Gp,, () =n}.,9p., (A35)

Now the three 1upe, Napy, and 7,y are independent.

We note that gauge transformation W; = niz 0., with
Nwa,wy = £ does not change the form of G, in Eq. (61)
and Eq. (62). Thus we can use such gauge transforma-
tion to further simplify Gp, , ., . We find that the gauge
transformation W; = (—)% changes sy t0 —1psyy. Thus
we can always set 7,0y, = 1. In the following we will
choose the gauge in which 7., = 1.
We also find that Eq. (A5) requires

Nat = Myt (A36)
and
9795 9rgp, =+ 7°
97'9p grgp, = £ 7°
9r'9p) grgp,, =+ 7° (A37)
Thus we only have two types of G (%)
Gr(i) = nigr (A38)

labeled by n; = +1.

In the following, we will list all the gauge inequivalent
solutions for g’s from Eq. (A34) and Eq. (A37). Most of
them are obtained by setting g’s to be one of 7#, u =
0,1,2,3.

9Pay =70 gp, =70 gp, =%  gr=7" (A39)
JPzxy :TO gpr, :iT3 gPy :’Z:’]'3 gr :7‘0; (A40)
gpey =070 gp, =T gp, =T gr=T"; (A4l)
9Pzxy =ir’ gp, =ir® gp, =it®  gr =19 (A42)
gpay =iT°  gp, =it'  gp, =it' gr=7"; (A43)
gpay =70 gp, =T°  gp, =T  gr =it; (A44)
gpay =7"  gp, =it® gp, =it® gr=ir’; (Ad5)
9Pzxy :TO gp, :’1:7'1 gp, :’L"Tl ar :iTB; (A46)
gpay =i°  gp, =1°  gp, =" gr =it®; (A47)
gpay =iT°  gp, =iT°  gp, =it® gr =ir’; (A48)
gpoy =iT°  gp, =iT'  gp, =iT" g =it’;  (A49)
JPzy =it qp, =70 gp, =70 gr :i7'3; (A50)
gpey =iT'  gp, =iT°  gp, =iT>  gr =it%;  (A51)
9Pxy :Z‘Tl gpr, :iTl gpy :iTl gr :iTS; (A52)
9Pzy :iTl gp, :iT2 gp, :’L.T2 gr :iTg; (A53)



9Pzy :i712 gp, :iTl gPy :i7—2 gr :iTO; (A54)
9Py =it'?  gp =it! gp, =it gp =it®; (A55)
where
a b _ a __ b
B T , T = - (A56)

V2 V2

The above 17 solutions, when combined with 8 choices of

Mty Napa, a0d Nzpy (see Eq. (A38) and Eq. (A35)), give us

136 different PSG’s for the case G, (i) = Gy (z) = 7°.
For Zs spin liquid with G,(¢) = (=)»7Y, G, (%) = 7°,

Eq. (A24), Eq. (A25), and Eq. (A26) can be simplified
as
Gp, (i +&)Gp, (1) =nupe’
G};j(i)GPI (i—9) :nypro (A57)
ngyl(i +9)Gp, (8) =nypy 7’
Gp, (1)Gp, (i — &) =1up,° (A58)
(_)zy ngjy (i)GP_Ly ('L i) NepeyT
(<) GFL (6)Gr,, (i — §) =Nypey™ (A59)
The above equations can be solved and we get
(7’) prx’?;”png
(7’) :prynypng
GPM () =(=) " Ny Moy 9Py (A60)
Eq. (A15) and Eq. (A13) still leads to Ngpyy = Mypsy and
Eq. (A32). Thus
Gp, (8) =05aipy 9P,
Gp, (8) =05y N 9P,

Gp,, (1) =(=)""gp,,

Eq. (A34) and Eq. (A37) are still valid here, which lead
to the same choices for g’s. For the case (—)vG,(i) =
Gy(¢) = 7°, the 17 choices of g’s in Eq. (A39) to E-
q. (A55), when combined with 8 choices of ¢, Nyps, and
Napy again give us 136 different PSG’s through Eq. (A38)
and Eq. (A61).

Now we would like to consider which of the translation
symmetric ansatz in Eq. (63) or Eq. (64) have the parity
and the time reversal symmetries. We note that three
parity symmetries also imply the 90° rotation symmetry.

After two parity transformations P, and P,, we find
Um, in Eq. (63) or Eq. (64) satisfies

(A61)

Un = Ny Nepa 9P, 9P, UmIp, 9p, (A62)
After the time reversal transformation, we have
~U = 1 gTUMYT (AG3)

36

Thus wy, = ubt, 7" must satisfy

0 _ : m ,m
Un, _07 if nlpyn.LpL -
l

l_,m m ! 1 -1 -1
UmnT =NgpyNepz 9Py 9P UmT Ip, gPy

lorp™=1

—ub, 7 =0 grul, T 97" (A64)

in order to have the parity and the time reversal symme-
tries. We see that u;; = 0 if gr = 70 and . = 1 and
uly, =0, 1=1,2,3,if ny = NupaNapy and gr = +gp, gp, -
There are 2 x 6 x 4 = 48 PSG’s with g7 = 7° and
ny = 1. There are 2 x 1 x 2 = 4 PSG’s with g7 # 79,
gr = %£gp,9p,, Nt = NupaNapy, and n = 1. There are
2x 6 x2=24PSG’s with gr = +9p, 9P, Mt = Napalzpys
and n; = —1. Since the ansatz that are invariant under
the above PSG’s have ul, = 0, those ansatz are actually
invariant under larger PSG’S w1th IGG equal or larger
than SU(2). Thus there are at most 272 —48 —4 — 24 =
196 different mean-field Z, spin liquids that can be con-
structed form w;;.

For ansatz of type Eq. (63) the parity symmetries also
require that

Up, (m) :77;7;277;2;291;: UmJP,
WP, (m) =My Mepedp, UmJPp,
Up,,(m) =Myaydp, UmIP,, (A65)

For ansatz of type Eq. (64) the parity symmetries require
that

up, (m) Uzpzﬁ%{,gp UmIP,
uPy (m) :nzpynxpa:gPy UmgPy

wp,,(m) =(=)" G5 Umgp,, (AG6)
For each choice of g’s and 7n’s, Eq. (A64), Eq. (A65), and

Eq. (A66) allow us to construct Zy symmetric ansatz u;;.

3. Classification of U(1) projective symmetry
groups

In this section we will use PSG to classify quantum
orders in U(1) spin liquids by finding the PSG with IGG
G = U(1). First we note that elements in the U(1) IGG
must have a form e*?*7 where v; is a site dependent
vector. We can always choose a gauge such that v; all
point to the same direction, say, the 7% direction. We
will call this gauge canonical gauge. We also find that
|v;| must be independent of 2 in order for u;; to be non-
zero and invariant under the IGG. Thus, in the canonical
gauge, IGG has a form

G = {10 € [0,2m)} (A67)
and the ansatz u;; has a form
Ui = ungo + uf-j73 (A68)



We see that the flux through any loops is in the 73 direc-
tion. Due to the translation symmetry of the ansatz, the
absolute value of the flux must be translation invariant,
but the sign may change as we translate the loops. Thus,
the loop operator have a form

Po, = (T1)" Po,_o(T1)"™ (AG69)
where n; = 0,1 and Cj is loop with base point 4. Here
the two loops C; and C}; are related by a translation and
have the same shape. Now we can choose a different
gauge by making a gauge transformation W; = (it!)m.
In the new gauge we have

Usj :(iTl)”"_"ju?jTO + (iTl)’Li+"jug’j73
Pe, =Pc,_,

G ={e)"07" 19 ¢ [0, 27)} (A70)

Since the loop operators are uniform, we will call the new
gauge uniform gauge.

Let us first work in the uniform gauge. From the trans-
lation invariance of Pg,

P, =G4 (i)Pc,_, G5 (i) = Ga(i)Pe, G5 (4)

%

PCi :Gy(z)Pszgngl(?“) = Gy(Z)PCngl(’L) (A71)
we find that G, have a form
Ga() =g3(02(2))
Gy(2) =g3(0,(3)) (A72)

Now we switch to the canonical gauge. We note that
a gauge transformation that keep an ansatz to have the
form in the canonical gauge Eq. (A68) must have a one
the following two forms

W, = g3(6(2))
W; =it gs(0(4))

(AT3)
(AT74)

if we require that w;; # 0. (More precisely, we require
that any two points on the lattice can be connected by
several non-zero u;;’s. We will call such an ansatz con-
nected.) Thus for spin liquids with connected u;j, Gy
must take one of the above two forms in the canonical
gauge, since G, are two special gauge transformations.
From Eq. (A72), we find that G, have a form

Gy(%) Z(—iTl)"igg (ey(i))(iTl)"i—@
G.(7) :(_iTl)ni93 (0 (Z))(M'l)”**m

in the canonical gauge. Thus n; can only be one of the
following four choices: n; = 0, n; = (1 — (—)%)/2, n; =
(1 — (=)%)/2, and n; = (1 — (=)%)/2. In these four
cases, Gz, take one of the above two forms and w;; can
be connected.

Let us consider those cases in turn. We will work in
the canonical gauge. When n; = 0, G, have a form

Ga(3) = g3(02(2),  Gy(d) = g3(0y(%))

(A75)

(A76)
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Since the gauge transformation W; = g3(6;) keep an
ansatz and its PSG in the canonical gauge, we can use
such kind of gauge transformation to simplify G, , by
setting 6, (¢) = 0 and 6,(iy, = 0,i;) = 0. Now Eq. (A2)
takes a form

Gu(1)Ga(i =)~ = gs(p) (ATT)
for a constant . This allows us to obtain
Go(3) = gs(iyp +0:),  Gy(d) = g3(6y).  (AT8)
The translation symmetric ansatz has a form
Ui itm = 1Pmg3(—Myizp + @) (A79)

where pp, > 0. The above ansatz describes particle hop-
ping in uniform “magnetic field” with e flux per pla-
quette. In this case /7 should be a rational number
o/m = p/q (between 0 and 1) so that the ansatz can be
put on a finite lattice. Thus ¢/m should be viewed as a
discrete label and different rational numbers between 0
and 1 will gives rise to different type of spin liquids.
When n; = (1+ (—)%)/2, Gy, have a form

Gu(i) = g3(0:(2))ir", Gy (i) = g3(0,(i))ir"

Again we can use the gauge transformation W; = g3(6;)
to simplify G , by setting 0,(¢) = 0 and 6, (i, = 0,i,) =
0. Now Eq. (A2) takes a form

G ()T Go(i = 9) 77" =g3(p)

(A80)

(A81)
0:(%) +0.(2 —9) = (A82)

for a constant ¢. This allows us to obtain

G (3) = g3((=)" Gur + 02 )iT",  Gy(3) = ga(B, )it
(A83)

where ¢y € [0,7). A gauge transformation W; =
93(—(—=)" ¢ /2) change the above to

Go(i) = g3(0)im", Gy (3) = ga(8,)ir". (A84)

The translation symmetric ansatz has a form
Ui itm = 1pmg3 (=) dm) (A85)

When n; = (14 (=)*)/2, G, have a form
Gu(i) = g3(0u(8))it",  Gy(i) = g3(0,(i))  (AS6)

After using a gauge transformation W; = g3(6;) to sim-
plify G, by setting 6,(7) = 0, Eq. (A2) takes a form

Ga(1)Ga(i — 9) 7" =gs(p) (A87)

0:(3) = 0:(i —9) = ¢ (A88)



for a constant . This allows us to obtain
Gy(2) = g3(0y).

where ¢ € [0,7). A gauge transformation W, =
93(—iy@/2) change the above to

Go(i) = g3(iyp + 0. )it (A89)

Go(i) = g3(0.)it",  Gy(3) = g3(0y). (A90)
The translation symmetric ansatz has a form
Ui itm = ipm9s (=) dm) (A91)

To summarize, Eq. (A78), Eq. (A84) and Eq. (A90) are
the most general translation PSG’s that allow non-zero
uz;. Eq. (A79), Eq. (A85), and Eq. (A91) are the most
general translation symmetric mean-field ansatz for U(1)
spin liquids.

Next, we would like to include more symmetries. We
first consider the translation PSG in Eq. (A78). When
¢ = 0 the translation PSG has a form

Gm(l) = 93(91)7 Gy(l) = gB(Qy)~

The corresponding spin liquids will be called type UlA
spin liquids. When ¢ = 7 the translation PSG has a
form

(A92)

G (i) = (*)iygia(oz)a Gy(z) = 93(9y)~

and the corresponding spin liquids will be called type
U1B spin liquids. For other value of ¢, we will call the
corresponding spin liquids type U17" spin liquids, where
m/n = ¢/m mod 1. The translation PSG’s Eq. (A84)
and Eq. (A90) will correspond to type UlC and type
U1D spin liquids respectively.

Let us first consider the type U1A spin liquids. To add
the time reversal symmetry, we note that, for type ULA
spin liquid, the condition Eq. (A4) becomes

(A93)

GHH()Gr(i—2) € U(1)

Gr'()Gr(i—9) e UQ1) (A94)
This leads to two types of G
Gr = g3(i -, +01), igs(i-p, +0,)7" (A95)
Since T? = 1 and G% € U(1), the above becomes
Gr = 15nyiga(0h). igs(i- @, +0)T'  (A96)

To add three types of parity symmetries, we note that,
for type ULA spin liquids, Eq. (A9), Eq. (A10), and E-
q. (A11) reduce to

Gpl(i + )G, (i) €U (1)

Gpl(i)Gp, (i —9) €U(1) (A97)
Gp, (i +9)Gp,(3) €U(1)
Gy, (9)Gp, (i — &) €U(1) (A98)
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Gyl ()Gp,, (i =) €U(1). (A99)

We find that Gp, p, p,, can have the following forms

GPac :93(7: *Ppx + 91’1)3 i93(i *Ppa + 9;’“)71
GPy =g3(2 - Ppy T Opy)s 193(% - Ppy T+ epy)Tl
GPwy :gd("' : (Ppwy + 9pwy)7 Zg?) (7' : Qopwy + ep:cy)Tl
(A100)

Note that the gauge transformation W; = g3(¢ - 0) does
not change G, ,. Thus, we can use it to simplify Gp, p,
and get

Gr, =93(iyPps + Opa), i93(ixppe + ‘gpw)Tl

GPy 293(%@1)3; + pr), Z.93(1.3190193/ + pr)Tl (A101)

Gsz =93 (1’ " Ppay + epﬂfy)v Z‘93(7: " Ppay + opﬂcy)Tl
From the condition Eq. (A15), we find that

Gp, :U;%xQS (Opz), i77fi§w93 (Opa) T

GPy :n;%ygii(opy)a ’Lnglf]l)yg:f(epy)Tl (Aloz)
Gp,, =93((iz
Gp,.p,.P,, v should also satisfy Eq. (A13) and E-

Ty

q. (A5). We find Gp,, can be obtained from Gp, p,
through Eq. (A13) and G from Gp, p, p,, through E-
q. (A5). This leads to the following 24 sets of solutions
C"YPJc :777351’9193(9pz)7 GPy = n;fmeB(epy)

GPM :.93(0;01'3;); gB(pry)iTl
Gr =0793(00)lp=—1. 193(0c)iT" (A103)

and

Gp, =n%.930pe)it!,  Gp, = 0i,93(0py)iT"
GPW :93(9;0373/)’ 93(9pry)i7—1

G =n}g3(0¢)ln=—1, migs(0y)it" (A104)

When combined with the type UlA translation PSG E-
q. (A92), the above 24 sets of solutions give us 24 dif-
ferent PSG’s. A labeling scheme of the above PSG’s is
given below Eq. (70).

Now let us consider the form of ansatz that is invari-
ant under the above PSG’s. The translation symmetry
requires that

Ui iy = U, = U T° +ud T3 (A105)

The 180° rotation symmetry requires that, for Gp, =
771%193(9171)7 Gp, = Nyhu93 (Opy),

— ,m _,m . f
Um = nypzu—m - nypzum

(A106)
and for Gp, = ni;xg3(9pw)i717 Gp, = n;’jmgg,(é’py)h'l,

Um, = NypyU—m = n;';zuin (A107)

— iy)Ppay + Opay)s 193((7x + iy)Ppay + epwy)Tl



The time reversal symmetry requires that, for Gr =
193 (0¢) ln,=—1

U, = — (=) U, (A108)
for G = nfg;;(@t)iTl
U, = =0 gy, 70+ U, T, (A109)

We find the following 8 sets of ansatz that give
rise to U(1) symmetric spin liquids: U1A00[0,1]1 and
U1A11[0, 1]1,

Ui gm =Uoy T (A110)

U1AO0n[0, 1]z and UlAz1[0, 1]z,

U 54+m :u?nTO + u3m7'3
ud, =0, if m = even
ud, =0, if m = odd. (A111)

Other 16 PSG’s lead to SU(2) spin liquids and can be
dropped.

To obtain the PSG’s for type U1B symmetric spin lig-
uids, we would like to first prove a general theorem. Giv-
en a PSG generated by G, ,r and Gp, p, p,,, the fol-
lowing generators '

éx(z) :(_)inm(i)v
Gp, (1) =Gp,(3),
Gp,,(4) =(=)""Gp,, (i),
generate a new PSG. The new PSG has the same IG-
G and is an extension of the same symmetry group as

the original PSG. If an ansatz u;; is described by a PS-
G (Gey,1, Gp, P, P,,), & new ansatz described by PSG

Gy(3) =Gy (3),
Gp, (i) =Gp, (1),

Gr(i) =Gr(i). (A112)

(G Gp,,p,.p,,) can be constructed
g =(=) I g, for (ju — i) (jy — i) = even
U5 =0,  for (jy —iz)(Jy — iy) = odd (A113)
The new ansatz @;; has the same symmetry and the same
gauge structure as u;;.
To obtain the above result, we note that the following
ansatz
(=)o,

for (jy —is)(jy — ty) = even

—i,) = odd (A114)

’U,ij =

ui; =0, for (ju —i.)(Jjy

has all the translation, parity, and the time reversal sym-
metries and has an SU(2) invariant gauge group. The
PSG of the ansatz has a subgroup
Gaﬁ(z) :(7)@70’
Gp, (7’) :7—07
Gsz (i) :(_)ZTZU TO

(A115)
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The above properties of ;; can be obtained after realiz-
ing that ;5 can be obtained by combining u;; with the
ansatz in Eq. (A114). We see that the mapping has a
meaning of adding m-flux to each plaquette.

Using the mapping Eq. (A112) and the results for the
type ULA symmetric spin liquids, we find that the type
U1B symmetric spin liquids are also classified by 24 PS-
G’s. Gp,p,.P,, T of those PSG’s are given by

Gp, :77;1;109593(0;71)7 GPy = 77;%1:93(91)74)’
(=) =" Gp,, =93(Opay), 93(9p:vy)i71
Gr =1t g3(01)ln——1, nigs(Be)it',  (A116)

and

Gp, =00 930pa)iT" . Gp, = 02,930y )iT",
(_)iminPmy 293(9pxy)7 g3(opwy)7;7-17

Gr =n;g3(0¢)ln——1, migs(0e)ir", (A117)

A labeling scheme of the above PSG’s is given below E-
q. (73).

Next we consider the form of ansatz that is invariant
under the above PSG’s. The translation symmetry re-
quires that

Ui i = (=) Uy, = (=) (ud, 70+ ud, %)
(A118)
The 180° rotation symmetry requires that, for Gp, =

i3 (Ops), G b, = 0itn3(Opy),

U, = Mg limn = Ty (=)™ ™0l (A119)
and for Gp, = 77%;9393(9;;1)@'7'17 Gp, = 77:?393693(917 yitt,
(A120)

Um = NgpzU—m = prz(_) U,

The time reversal symmetry requires that, for Gr =
77;93(9t)|m:—1

Um = — (=) Um, (A121)
for G = nfgg(Ht)iTl
Um, = _nlnu'(r)nTO + 77:n“§n7'3> (A122)

We find the following 8 sets of ansatz that give
rise to U(1) symmetric spin liquids: U1B00[0, 1]1 and
U1B11[0, 1]1,

umurm Zu:;’nT3.
ul, =0, if m, = odd and m,, = odd. (A123)
U1BO0n|0, 1]z and U1Bz1|0, 1]z,
Ui i4+m :u?nTO + ui’nTS
ud =0, if m = even
ul, =0, if m, = odd or m, = odd . (A124)



Other 16 PSG’s lead to SU(2) spin liquids and can be
dropped.
Next we consider the type U1C spin liquids. To add

the time reversal symmetry, we note that the condition
Eq. (A4) becomes

TG )T Gr(i — &) € U(1)
TG ()T Gr(i — ) € U(1) (A125)
This leads to the following G
Gr = g5((=)'6(3), gs((—)e(d))ir". (A126)
where ¢(2) satisfies
$(i + &) — ¢(i) =(—)*p1 mod 27
6(i +§) — $(3) =(—)"2 mod 27 (A127)
The solution exist only for two cases where ¢1 — w2 =
0 mod 7
o(i + &) — ¢(i) = — (—)*26, mod 27
6(i +9) — 6(i) = — (—)120, mod 27 (A128)
and
(i + &) — ¢(i) = — (—)¥(260; 4+ 7) mod 27
(i +9) — ¢(i) = — (—)*26, mod 27 (A129)
The two solutions are given by
$(4) = + (=)0,
G(8) =1 + (=)*0¢ +iam (A130)
Thus G can take the following four forms
Gr =g3((=)*p: + 9t)7 (A131)
93 (i + (=) "p1 + 01),
93((=)* s + O )it
g3(iam + (=)’ s + O )iT
Since 7% = 1 and G% € U(1), the above becomes
G =n.11,193(0,),
93((=) e + 0,)i",
g3(ipm 4+ (=)o + 0, )it (A132)

where 1z = 1.

To add three types of parity symmetries, we note that,
for type ULC spin liquids, Eq. (A9), Eq. (A10), and E-
q. (A11) reduce to

7GRN i+ &)7' G, (3) €U(L),

T Gp ()7T G, (i — ) €U(1), (A133)
TGy (i +9)7 G, (i) €U(L),
T Gp, ()T G, (i — &) €U(1), (A134)
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Tlagjy (4)7'Gp,, (i —§) €U(1). (A135)

After a calculation similar to that for Gy, we find that
Gp,,p, P,, can have the following forms

(=)*pa + Opa),

G+ (=) pe + Opa),

(_)iS/’px + opx)i7'17

in + (=) pu + Op)iT'; (A136)

=g3((—)* Ppy + Opy),

93(ia + (=) ppy + pr),

gs((—) ‘Ppu + Opy )it
(izm

g3tz + (— ) ©py T+ epy)”l; (A137)

—93(( ) Ppay + Opay),
gs(iam + (=)° Ppay + Opay),
g3((— ) Ppay + szy)m—l
93(ixm + (*) Ppay T opry)i7'1§
From the condition Eq. (A15), we find that

(A138)

Gp, =My 93 (Opz),
93((—) ¥ pa + Opa )i,
93 (1o + (=) ps + Op )it (A139)
Gp, =05y 93 (Ope ),
93((=) ppy + Opy it?,
93(i2 + (=) 0py + Opy )it!; (A140)

Gpwy =g3 (GPTZJ) )

. 0
g3(izm + (—) 1 + Opay)s

93((_)i¢pwy + Hpmy)i7'1§ (A141)

The first condition in Eq. (A13) requires G py, py should
have the same number of 7!. The second condition in
Eq. (A13) further requires that ¢p, = ¢py mod 7/2. We
note that G5, in Eq. (A84) are invariant under gauge
transformation W; = g3((—)%¢). Using such a gauge
transformation, we can set ¢,, = 0 and ¢,, = 0 mod
/2. This leads to

GR’I: :77;%177;1}39593 (epm ) )

W93 (Opa )i (A142)
GPy :U;}yﬂﬁ,ygg(@pm),
nzpznppg3 (epy)iTl’ (A143)



GPMJ =93 (epzy) >

. s
QS(Z:EW + (=) 4 + szy),

93((*)1.9017%3/ + epmy)“'l; (Al144)

We find Gp,, can be determined from G'p, p, through
Eq. (A13) and Gp from Gp,.p,.p,, through Eq. (A5).
Thus from Eq. (A13) and Eq. (A5), we find the following
60 sets of solutions for Gp, p, p,, T:

yr Ly,

GPT, :77;%77;1};3;93 (0]336 ) ) GPy = U;an%x% (opy)v
. . ’Tr
Gny :n;?ryg3 (U;my Z + Hpa:y ) ;

Gr =n;g3(00)l=—1, M, g3(00)iT". (A145)

GPz :nifnzg?)(epr)i’rl’ GPy = n;%xn;ryQS(epy)ZT17

, ;T
Gsz :n;o?cyg?) (n;)xyz + apwy)a

Gr =nigs(00)ln,=—1, mymiga(Or)iT". (A146)

Gp,, :93(9pzy)i7—1»

Gr =n}93(01)n=—1- (A147)

Gp, =N uie93(0pc),  Gp, = 1aie93(0py),

. T .
GPwy =343 (T}nyg + ‘9pacy)l7—17

Gr zn;;ynfgg(et)hl. (A148)

GP: :nj{,ﬂ})‘ng(epx)ZT17 GPy = n;fémn;u,yg?)(epy)w-l?

. T .
Gsz 293(77;95741 + 0pmy)7l7-1’

Gr =nigs(00)ln=—1, min',93(00)iT". (A149)

When combined with the type U1C translation PSG E-
q. (A84), the above 60 sets of solutions give us 60 different
type U1C PSG’s. A labeling scheme of the above PSG’s
is given below Eq. (78).

Now let us consider the form of ansatz that is invari-
ant under the above type U1C PSG’s. The translation
symmetry requires that

Ui jtm = uBnTO + (—)iufnT3 (A150)

For PSG’s U1C[00,nn][0,n,1]n, U1C11[0,1]n, and
U1Cz1[n, z|n, the 180° rotation symmetry requires that,

b = ()™,

The time reversal symmetry requires that,

= () My Uy = — (=) Uy

41

The ansatz have a form
m, 3 3
Ui i+m :(_) Uy T

ud. =0,

o if m = even.

(A151)

which describe SU(2) spin liquids.
For PSG’s

U1C[n0, 0n][0,n, 1]n,
U1Cz1]0, 1]n,

Ul1Cl1n, z|n,
(A152)

the 180° rotation symmetry requires that

ud, = — (=)™l ud, =l

The time reversal symmetry requires that

Wy = (), = — ()™

The ansatz have a form

i =0+ ()

ud? =0, if m = even. (A153)

For PSG’s

U1C[00, nn][0, 1]1, U1C11[0,1]1, (A154)

the 180° rotation symmetry requires that,

0 _ 0
Um = —Um,

The ansatz have a form

3 3
Ui itm =(—)"Up, T
3 if m = odd.

Uy, =0,

(A155)

The ansatz gives rise to U(1) x U(1) spin liquids since

uz; only connect points within two different sublattices.
For PSG’s

U1C[n0, 0n][0, 1]1,

U1Cz1[0, 1]1, (A156)

the 180° rotation symmetry requires that

uby = —(—)mud, ud, =l

The time reversal symmetry requires that

0o _
Um = —Um,

The ansatz have a form
Ui iprm =(=) U T (A157)

For PSG’s
U1C[00, nn]1z,

U1C11)0, 1]z, (A158)



the 180° rotation symmetry requires that,

b = ()™,

The time reversal symmetry requires that,
Wy = () = ()

The ansatz have a form

Usg i4+m Z(—)mufrﬂ'g
ud, =0, if m = odd. (A159)

The ansatz gives rise to U(1) x U(1) spin liquids since
u;; only connect points within two different sublattices.
For PSG’s

U1C[n0, On]1z, U1Cz1[0, 1]z, (A160)

the 180° rotation symmetry requires that

Wy = (), iy = 0

The time reversal symmetry requires that

Wy = (), = ()

m

The ansatz have a form

Ui, itm :(_)mufnT3
0

Uy, =0,

3 _
Uy, =0,

if m = even

if m = odd. (A161)

For PSG’s
U1C[00, nn|[n, |1,

UlCzl[n, z|1, (A162)

the 180° rotation symmetry requires that,

= ()™,

0 _ _,0 3
U = Uy Uy
The time reversal symmetry requires that,

= =)y = ()

The ansatz have a form

Uiipm =(—) ™ T
ul, =0,

if my = odd or m,, = odd. (A163)

The ansatz gives rise to (U(1))* spin liquids since u;;

only connect points within four different sublattices.
For PSG’s

U1C[n0, 0n][n, z|1, Ul1Cl11n, z|1, (Al64)

the 180° rotation symmetry requires that,

u?n = f(f)mugn, ud = ud .

The time reversal symmetry requires that,

= (s by = ()
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The ansatz have a form

Wi i+m =(=)"up,
ub, =0, if m, = even or m, = odd
ul, =0, if m, = odd. (A165)
For PSG’s
U1CJ00, nn]zx, UlCzl[n, z]x, (A166)
the 180° rotation symmetry requires that,
W= i = ()
The time reversal symmetry requires that,
Upy = = (=) Uy Uy = (=)™,
The ansatz have a form
Ui i+m :(—)mufrﬁg
ud, =0, if m, = odd or m, = odd. (A167)

The ansatz gives rise to (U(1))* spin liquids since u;
only connect points within four different sublattices.
For PSG’s

U1CIn0, On]zx, UlCl11n, ]z, (A168)
the 180° rotation symmetry requires that,
= =) =
The time reversal symmetry requires that,
Wy = (), = ()™
The ansatz have a form
Ui i =(—) ™ up, T
u?n =0, if m, = odd or m, = even
ud, =0, if m, = odd. (A169)

The type U1D spin liquids always break the parity gen-
erated by P,, and Eq. (A1l) cannot be satisfied. Thus
there is no type U1D symmetric spin liquid.

Last, let us consider the type U1} spin liquids. Instead
of finding a classification of U1]" spin liquids, here, we
will just consider the following example:

mm .

Ui i+@ — XTS, Uj i+y = X%(TZz)Ts- (A170)

One can check that the above ansatz describes a sym-
metric spin liquid. Its PSG is given by

mm
G, :gg(—%zy +0,), Gy =gs(0,), (A171)
Gp, =i(=)"7'g3(0pa), Gp, =i(=)"T" g3(0,y),

) i mm ., . i
GPmy =i(—) 7'193(7%22/ + 9pwy): Gr = (—)"g3(0:).



The form of G, tells us that Eq. (A170) indeed de-
scribes a U1 spin liquid. Using the labeling scheme for
the U1[A,B,C] PSG’s, we can label the above PSG by
Ull'zxzan. From the above example, we see that there
are infinite different spin liquids of type U1]" | at least
one for each rational number m/n between 0 and 1.

In summary, we find 8 type ULA, 8 type U1B, and 30
type U1C symmetric U(1) spin liquids. But there is an
infinite number of type U1}" spin liquids.

4. Classification of SU(2) projective symmetry
groups

In this section we will use PSG to classify quantum
orders in mean-field symmetric SU(2) spin liquids. We
need to find the extensions of the symmetry transforma-
tions when IGG G = SU(2). First, we assume that, for
a SU(2) spin liquid, we can always choose a gauge such
that u;; has a form

Uz = ungO. (A172)

We will call this gauge canonical gauge. In the canonical
gauge, IGG has a form G = SU(2). Here we will only
consider spin liquids described by non-zero u;;. In this
case the gauge transformations that keep u;; to have the
form in the canonical gauge are given by

Wi =n(i)g

where (i) = %1 for each ¢ and g € SU(2). The gauge
transformations G, associated with the translation also
take the above form:

G (%) =n2(4) gz
Gy(2) =ny()gy

(A173)

(A174)

Note that gauge transformation Wy = n(2)7° still keep
uz; in the canonical gauge. So we can use such gauge
transformation to simplify G (¢) and G (%) (see Eq. (49))
and get

Ga(t) =g
Gy(2) =ny(2)gy

with n, (i =0,i,) = 1. Now Eq. (A2) takes a form
(i — &), (0) € SU2) (A176)

We find that there are only two different PSG’s for trans-
lation symmetric ansatz

Gw(z) =9z Gy(z) =9y
Gm(?‘) =0z Gy(l) :(_)imgy

The two PSG’s lead to the following two translation sym-
metric ansatz

(A175)

(A177)
(A178)

Us,i+m :U(T)nTO (A179)

Uit =(=)" 0 (A180)

43

Next we will consider the case G (2) = g, and G (2) =
gy and add more symmetries. First let us add the three
parities Py, 2. Eq. (A9), Eq. (A10), and Eq. (Al1) can
be simplified

S 6 (i — ) €6

x

Gp, (i +2)Gp, (i) €G
G (A181)

;yl(i +9)Gp, (i) €G

G
Gp, (9)Gp, (i — &) €G (A182)

<
=
|
&
M
Q

Gp (1)GP,
G

,;jy (1)Gp, (A183)

<
-
|
<S>
Mm
Q

We find
Gp, (1) =0 .. 9p,
Gp, () =155y My 9P,

where gp, € SU(2), gp, € SU(2), and gp,, € SU(2).

(A184)

7’s in the above equation are not independent. From
Eq. (A15), we find that
Wy itpaylepay Mpoy 92, € G (A185)

which requires 7zpzy = Nypay = Mpay- From Eq. (A13) we
see that

Qg i % Ty o0 . ty o0

9P.,9P.9P,,9p, € G (A186)
We find
NzpyNzpzyypzNypzy =1
Nypy Mypay NaepsNepry =1 (A187)

When combined with 0gpey = ypay, We see that 1y, =
Nypy A0d Ngpy = Nypz. Eq. (A184) becomes

Gp, (i) =01, 9P,
Gp,(2) =Ny e 9P,
Gp,, () =n}.,9p., (A188)

Now the three nzpz, Nepy, and 7,y are independent.
Similarly from Eq. (A4) and Eq. (A5) we find there are
only two types of Gp:

Gr(i) = nigr (A189)

labeled by 7y = £1. We note that n; = 1 implies u;; = 0
for the SU(2) spin liquids. Thus we can only choose

= —1
(A190)



Eq. (A177), Eq. (A188) and Eq. (A190) give us PSG’s
for symmetric SU(2) spin liquids. They are labeled by
Nepe,zpy,pry- Again we can use the gauge transformation
W; = (=)' to set npzy = 1. Thus there are only four
PSG’s labeled by nupa,zpy

Now we consider the case G,(¢) = g, and Gy(i) =

(=)=g,. Eq. (A9), Eq. (A10), and Eq. (A11) have the
form
Gl i+ 2)Gp, (1) €G
7 ()G (i — 9) €6 (A191)
G7l(i+9)G, (i) €0
Gp'(i)Gp,(i — ) €G (A192)
(V4G (DG, (i — @) €0
(—)*GL ()G, (i — §) €6 (A193)
We find
Gp, (i) =nizw§;mgpz
GPW (i) =(- )“’ynmyny‘;wgmy (A194)

where gp, € SU(2), gp, € SU(2), and gp,, € SU(2). n’s
in the above equation are not independent. We find that
Nepay = Nypay = Npay, Nape = Nypy AN Tapy = Nypa-
After setting npyy = 1 through gauge transformation
W; = (=)', Eq. (A194) becomes

Gp, (1) =N liipy 9P,
G (1’) U;}y%ngpy

Gp,, (&) =(—)""gp,,

and the two 7;p; and 75y, are independent. The gauge
transformation associated with the time reversal trans-
formation is still given by Eq. (A190). Eq. (A178), E-
q.- (A195) and Eq. (A190) give us PSG’s for symmetric
SU(2) spin liquids.

We see there are total of 2 x 22 = 8 different SU(2)
PSG’s. A labeling scheme of those 8 SU(2) is given below
Eq. (81). Those SU(2) PSG’s are algebraic PSG’s. In the
following we will see which of them lead to symmetric
SU(2) spin liquids.

First we consider which of the translation symmetric
ansatz in Eq. (A179) have the parity and the time rever-
sal symmetries. After two parity transformations P, and
P,, we find u,, in Eq. (A179) satisfies

(A195)

U = (NapyNapz) " 9P, 9P, UmIp. Ip, (A196)
or
—U?n = (nzpynwpx)mugn (A197)
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After the time reversal transformation, we have

—tm = (=) grUmgT (A198)
Thus the SU2An0 and SU2A0n symmetric ansatz have
a form

U, =0, T

u? =0,

™ it m = even

(A199)

The other two PSG’s SU2A[00, nn| leads to vanishing u;;
and should be dropped.

For the translation symmetric ansatz in Eq. (A180) the
180° rotation symmetry requires that

— (=), = (nwpynwpw>mu2n (A200)
The time reversal transformation requires that
—ud, = (=)™ud, (A201)

Thus the SU2Bn0 and SU2B0n symmetric ansatz have a
form

tm, =(=) #0870

u? =0,

m it m = even (A202)

The other two PSG’s SU2BJ[00, nn| leads to vanishing u;;
and are dropped.

We see that only 4 of the 8 SU(2) PSG’s leads to sym-
metric SU(2) ansatz. Thus there are only 4 SU(2) sym-
metric spin liquids at mean-field level.

For ansatz of type Eq. (A179) the parity symmetries
also require that

Mo My o0
nzpwna:py m

nwpy Ny yx Um,

’U/Pz(m) =
uPy (m)

For ansatz of type Eq. (A180) the parity symmetries re-
quire that

UP, (m) =Tipis NaplyUm

uPy(m) :nﬁzn;’npgrum

up,,(m) =(=)"""" gy um (A204)
For each choice of n’s, Eq. (A199), Eq. (A202), E-

q. (A203), and Eq. (A204) allow us to construct ansatz
u;; for symmetric SU(2) spin liquids.

APPENDIX B: SYMMETRIC PERTURBATIONS
AROUND SYMMETRIC SPIN LIQUIDS

1. Construction of symmetric perturbations

Let us consider a perturbation du;; around a gener-
al mean-field ansatz u;;. We would like to find all the



symmetric perturbations that do not change the symme-
tries of the original ansatz. Let PSGy be the PSG of
the ansatz u;;. Clearly, the PSG of the perturbed ansatz
usj + 0usj, PSGh, is a subgroup of PSGy. If we require
the two ansatz u;; and u;; 4+ dus; to have the same sym-
metry, then the two PSGy and PSG1 must satisfy

PSGy/IGGy = PSG1/IGG, (B1)
where IGGy 1 are the IGG of PSGy 1. We see that the
low energy gauge group of the perturbed ansatz is equal
or less than the low energy gauge group of the original
ansatz.

In the next a few subsections, we will use the following
steps to find symmetric perturbations. We first choose
IGG; to be IGGy or a subgroup of IGGy. Second,
we find all the gauge inequivalent subgroup of PSGy:
PSG, € PSGy, which has IGGy as its IGG and satisfies

Eq. (B1). Last, we find all the ansatz that are invariant
under PSG;.

2. Symmetric perturbations around the Zs-linear
state Z2A003z

First let us apply the above approach to find all the
symmetric ansatz near the the Zs-linear state Eq. (39).
Here by symmetric ansatz we mean the ansatz with the
translation, the time reversal and the three parity sym-
metries. The IGG that leaves the Zs-linear ansatz E-
q. (39) invariant is G = Z5. The PSG of ansatz Eq. (39)
is given by

G, (1) =710, Gy (i) =7°
Gp, (1) =1° Gp, (i) =7°
Gp,, (i) =7° Gr(i) =(—)'7° (B2)

This is one of the PSG of the Z5 spin liquids labeled by
Z2A003z. We note that the IGG for any ansatz u;; is
at least Zs. Thus the above Z; PSG is already minimal,
ie non of its subgroup can be regarded as the PSG of
some symmetric ansatz. Therefore, all the symmetric
perturbations around the Zs-linear state are invariant
under the above PSG Eq. (B2). From Eq. (A64) and
Eq. (A65), we find that the most general symmetric spin
liquid with PSG Z2AT$T$T3 3 have the form

l l
Us b =Up, T 1=1,2,3

B ) = U
b, (m) =Um
28, ks
i
Um =0, for m = even (B3)
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3. Symmetric perturbations around the
U(1)-linear state U1Cn0ln

The above analysis can also be used to obtain all the
symmetric perturbations around the U(1)-linear ansatz
in Eq. (32). The invariant gauge group is G = {6“973}.

The ansatz is invariant under translations by £ and g
followed by gauge transformation i7% and i7%, where
it? = i(cos @71 + sin #72). The ansatz also has the time
reversal and the three parity symmetries. The PSG of
the ansatz is generated by

G (1) =irl=,

Gp, (4) =(=)"g3(0ps)
Gp,, (i) =7

Gy (1) =i
Gp, (1) = (=) g3(0py)
Gr(i) =(—)"g3(67) (B4)

where g,(0) = € and 0,y prpypey.r can take any
values. We see that the ansatz Eq. (32) is labeled by
U1Cn01n.

First let us consider the symmetric perturbations that
do not break the U(1) gauge structure. Since the per-
turbed ansatz are required to invariant under the same
IGG and have the same symmetry as the original U(1)-
linear ansatz Eq. (32), the perturbations must be invari-
ant under the original PSG Eq. (B4). The translation
symmetry require the perturbations to have a form

5ui7i+m = 511,2”7'0 + (—)iéuf’nTS (B5)

The 180° rotation symmetry P, P, requires that
du? pyy =0ty (=)™
0u? pyy =01 (=)™
and the time reversal symmetry requires
by, b ()™
— Oty =0ty (=)™

Thus the symmetric ansatz with PSG Eq. (B4) are given
by

0.0 i3 3
Usipm =Up, T + (=) Uy, T
ud? =0, for m = even

0 _,,0
Up,,(m) —Um

UP,, (m) = = tUm
3 m s
Up oy =(=) ") (B6)

The above represent most general ansatz around the
U(1)-linear state that do not break any symmetries and
do not change the quantum order in the state.

Next we consider the symmetric perturbations that
break the U(1) gauge structure down to a Zs gauge struc-
ture. The IGG becomes G = Z, for the perturbed ansatz.



We first need to find subgroups of Eq. (B4) which have
the reduced IGG and the same symmetries. The elements
in new PSG have the following form

Gq(i) = £ ir’,
Gp, (i) =+ (=) 9g3(0pa) G, (8) =+ (=) 5(0py)

Gp,, (i) = £ irfr Gr(i) =+ (—)gs(07)
(B7)

where 04y pa py,pey,r €ach takes a fixed value. The +
signs are independent from each other and come from
the Zy IGG. Different choices of 0, y pz py.pey, give us
different subgroups which lead to different classes of Zs
symmetric perturbations.

To obtain the consistent choices of 0 y po py.poy, 7, WE
note that G, Gp, p, p,, and Gt must satisfy Eq. (A2),
Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {47°}. Those equations reduce to

702 70 0o 70y = 470 (B8)
7% 921 (07) 7% g3(07) = + 7°
g1 (0r)T% g3(07) = £ 7° (B9)
Temg?jl (epI)Tem!]S (Opz) =+ 7
Teyg?:l(ﬁpm)Teygg (Opz) = £ 70 (B10)
Teyg?jl(epv)TeygS (Opy) =+ 7
g5 1(91711)70“”93(9%) =+7° (B11)
70 70pay 20 20pay — 4 20
702 70pey 70y 70pey — 4 70 (B12)
95 1 (07)95 " (0p2)93(07)g3(0pe) = £ 7°
93_1(GT)gs_l(epy)QS(oT)QS(‘gpy) =+7°
02 Or)r g br)rer =210 (B13)
70w gg (opz)Tepzygs_l(‘gpy) =+7°
93(6111/)93(9171)9??1(epy)ggl(epw) =+’ (B14)
Since P} = P} = P}, = T? = 1, we also have
gg(epz) :iTov gg(epy) ::t7'0>
g3 (07) =+ 7°. (B15)

We can choose a gauge to make 6, = 0. Eq. (B8) has
two solutions

1
G, =it

.1
G, =it

G, =it (B16)
G, =it? (B17)

46

When G, = ir!, and Gy = it!, we find the following 8
solutions for Eq. (B8), Eq. (B9), Eq. (B10), Eq. (B11),
Eq. (B12), Eq. (B13), and Eq. (B14), with G = {+7°}.
G, (i) =it', G, (i) =",
(<)*Gr, (6) = ()G, (i) = °, ir?,
(5)'Gr(i) =7°, ir?;

Gp,, (i) =it', ir? (B18)

We can make a gauge transformation W; = (i71)? (see
Eq. (49)) to change the above to
Ga(1) =77, Gy(i) = ™,

Gp,(i) =Gp, (i) =7°, i(-)"7°,
Gp,, (1) =ir!, i(—)iTQ Gr(i) = (—)iTO, i3

G ={+7"} (B19)

We can use a gauge transformation W; = (—)* to change

Gp,, (1) = i(=)7? to Gp,, (i) = ir? without affecting

other G’s. Now we see that Gp,, (i) = i(—)r* and
Gp, (i) =it! give rise to gauge equivalent PSG’s. Thus

Ty

we only have 4 different PSG’s

Go(i) =, Gy(i) =7,
Gp, (i) = Gp, (i) = 7°, i(=)'r?,
Gp,, (7) =ir! Gr(i) = (_)iTO’ i3

G ={+7%} (B20)

When G, = ir!, and G, = it?, we find the following
4 solutions for Eq. (B8), Eq. (B9), Eq. (B10), Eq. (B11),
Eq. (B12), Eq. (B13), and Eq. (B14), with G = {+7°}.
G, (i) =it!, G, (i) =ir?,
(=) “Gp,(4) = (=)"Gp, (i) = 7°, ir°,

Gp,, (i) =it'?  (=)iGp(i) =7 ir%  (B21)

We can make a gauge transformation Wy = (it!)% (i72)%
(see Eq. (49)) to change the above to

Gali) =(=) 07",
Gp, (i) =Gp,

Gy (1) = TO’

(B22)

We note the 4 PSG’s in Eq. (B22) can be obtained from
the 4 PSG’s in Eq. (B20) through the transformation
Eq. (A113).

We find that all the symmetric spin liquids around the
U(1)-linear state Eq. (32) that break the U(1) gauge
structure to a Zy gauge structure can be divided into
eight classes. Using PSG’s in Eq. (B20), we find transla-
tion symmetry requires the ansatz to have a form
(B23)

U itm = U T



The 180° rotation (generated by P,P,) symmetry re-
quires that

Um =U_m

which implies ul, = 0. The time reversal T symmetry
requires that

Um = — (=) Um
or
Um, = — T Uy, T°

The four ansatz for PSG’s in Eq. (B20) are given by
Z2A[7979, 3737170

1ol
Ui gm =Upy, T (B24)
ub?3 =0, for m = even
0.0 33113,
and Z2A[r) 7Y, 33 ) Ty
Uijipm =gy 7' + u, 72 (B25)

Using PSG’s in Eq. (B22), we find translation symme-
try requires the ansatz to have a form

Ui ipm = (=) gy, T (B26)
the 180° rotation symmetry requires that

()t = (=) ey

or
ud =0, for m, = even or m, = even
m ) T Y
1,2,3 — —
Uyy® =0, for m, = odd and m, = odd

The time reversal T symmetry requires that
Um = — (_)mum
or

U, = — T Uy T°

The four ansatz for PSG’s in Eq. (B22) are given by

Z2B[TJOF7'2, 373)7rir0:

Wiitrm =(=) " 7! (B27)
ub?? =0, for m = even
and Z2B[r970, 3737173
Ui ipm =(—)"" (U '+ ud, T2) (B28)
ul? =0, for m, = odd and my = odd

The eight different Z5 spin liquids have different quan-
tum orders. They can transform into each other via the
U(1)-linear spin liquids. without any change of symme-
tries. Those transitions are continuous transitions with-
out broken symmetries.
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4. Symmetric perturbations around the
SU(2)-gapless state SU2An0

In this subsection, we would like to consider the sym-
metric perturbations around the SU(2)-gapless ansatz
Eq. (30), which describes a SU2An0 spin liquid. The
invariant gauge group is G = SU(2). The PSG of the
ansatz is generated by

Gm(?’) =4z,
Gp, (i) =(=)"gpx  Gp, (1) =(=)"gpy
G, (1) =gpay Gr(i) =(—)'gr

where gz y popypey, € SU(2). Thus the SU(2)-gapless
state is labeled by SU2AT9’T_?_.

First let us consider the symmetric perturbations that
do not break the SU(2) gauge structure. To have the
SU(2) gauge structure, the perturbations must be in-
variant under the gauge transformations in G and satisfy
duij oc 70, To have the symmetries, the perturbations
must be invariant under PSG in Eq. (B29). The transla-
tion symmetry require the perturbations to have a form

(B29)

5Ui,i+m = (5’(1,9”7'0 (B?)O)

The 180° rotation symmetry P, P, and the time reversal
symmetry 7" require that

Sy =005 ()
—oud =6ud (—)™
Thus the symmetric ansatz with PSG Eq. (B29) are given
by
Ui itm =Upp T

u? =0,

™ for m = even

0 _.0
Up,,(m) —Um

UP, (my =(—)"" Un,
UOPy(m) =(=)""ugy, (B31)

The above represent most general ansatz around the
SU(2)-gapless state that do not break any symmetries
and do not change the quantum order in the state. It de-
scribes the most general SU(2)-gapless state with quan-
tum order SU2AT?7Y.

Next we consider the symmetric perturbations that
break the SU(2) gauge structure down to a U(1) gauge
structure. The invariant gauge group becomes G = U(1)
for the perturbed ansatz. We first need to find sub-
groups of Eq. (B29) by choosing a fixed value for each
9z.y,px.py,pry,T- We cho0se gu y e py.pey, 7 N sSUch a way
that Eq. (A2), Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11),
Eq. (A5), and Eq. (A13) can be satisfied when we limit G
to a U(1) subgroup. (Those equations are always satis-
fied when G = SU(2)). Since the original invariant gauge
group is formed by constant gauge transformations, its



U(1) subgroup is also formed by constant gauge trans-
formations. We can choose a gauge such that the U(1)
invariant gauge group is given by G = {g3(6)|0 € [0,27)}.

To obtain the consistent choices of gz y pa.py pey, T W
note that G, Gp, p, p,, and Gt must satisfy Eq. (A2),
Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {g5(0)]0 € [0,27)}. Those equations
reduce to

929495 9, €U (1) (B32)

9297 9297 €UQ) g, 97 gy9r €U(1)  (B33)
9o 9pn Gudpe UML) gy 90 9ygpe €U(1)  (B34)
9yTpy Iu9oy UML) 9395, 9e0py €U(1)  (B35)
ggjlggzlygmgpry €u(1) gllggzlygygpmy €v(1) (B36)

97 9pe 979pc €UL) 97795, 919py €U(1)

97" Gy 9T 9py €U (1) (B37)

gpwygpwgpxygp_yl eu(l) gpygpﬂcgp_ylgp_z eu(1) (B38)
Since P? = P} = P2, =T? = 1, we also have
e €U(L), Gy €U(L),

Gy €U(D), g7 €U(1). (B39)

Solving the above equations, we find 16 different PSG’s
with U(1) invariant gauge group. The following are their
generators and their labels.

UIA72 7070 71][7°, 71] ( which is gauge equivalent to
ULAT 70 70, 71)[70, 1))
Gz(2) = g3(02), Gy() = g3(0y) (B40)

(=)=Gp, (%) = g3(0pz) (
Gp,, (%) = 93(Opay), irfrev (=)'Gr(i) = g3(Or), iT'"

UlA7L T+ (79, 7172, rL]:

G (i) = gs(0 ) Gy (i) = gs(0y) (B41)
(=)Gr. (i) = (=) G, (3) = ir
Gp,, (1) = g3 (epxy) iz Ovey (_)iGT(":) = g3(07), irfr

u1cro T+[T+,Ti][7'9,7'i]l

Go(d) = ir", G, () = ir%
(=)=Gp, (i) = g5(0pa) .
szy (Z) =93 (ap_xy)’ iTepmy

48

U1Crir! [TJOF, TJH [79, 71]:

G, (1) = b, G (i) = ir% (B43)
(—)=Gp, (i) = ir%= (—)Gp, (i) =
GPwy (2) = 93(Opay), irOrey (= ) r(i) = 93(9T) ir’"

The 180° rotation symmetry P, P, and the time rever-
sal symmetry T require that

t

U—j,—i—m :ui,i+m( ) =U_ i—m,—i

—Uii+m =9TUii+mIr ( )

We find that all the symmetric spin liquids around the
SU(2)-gapless state Eq. (30) that break the SU(2) gauge
structure to a U(1) gauge structure can be divided into 12
classes. They are given by (using abbreviated notation)
U1Cn0[0, 1]n:

Wi i = u, 70 4 (=)l P
ud3 =0, for m = even (B44)
(i) =it?%, G, (i) = ir%,
(=)*Gp, (i) =g3(0pa), (=) Gp, (i) = g3(0py),
Gr,, (1) =g3(Opsy), it%  (=)'Gr(i) = g5(07);
U1Cn0[0, 1]z:
Wi i = U, T + (— )ous,
ud =0, for m = even
ul =0, for m = odd (B45)
Go(i) =it’, Gy (i) =ir%,
(=)Gp,(4) =g3(0pa),  (=)"Gp, (i) = g3(bpy),
Gp,, (1) =g3(Opay), 7% (=)'Gr(i) = ir'T;
U1Cz1]0, 1]n:
Ui i = uo, 70 4 (=)l P
ud3 =0, for m = even (B46)
G (i) =itl, G, (1) =ir%,
(—)=Gp,(4) =i, (=)"Gp,(§) = i,
Gr,, (1) =g3(Opay), i7" (=)'Gr(i) = g5(07);
U1Cz1]0, 1]z:
Ui i = w2, 70 4 (=) ud 73
uo =0, for m = even
ud =0, for m = odd (B47)
G (i) =it? Gy (i) = ir%,
(=)= Gp, (i) =ir®=,  (=)"Gp, (i) = i,
Gy §) =galOpey), 7 (~Gr() = i7"



U1An0[0, 1)a (which is gauge equivalent to UTA00[0, 1]1):

0.0 3 .3
Ug 44m = Uy, T+ Up, T

0

u,, =0, for m = even
ul =0, for m = odd (B48)
Gi(i) =g3(0z),  Gy(i) = g(0y),
()*Cp,(6) =g5(0p), (=) Cp, (4) = g5(6py),
Gr,, (&) =gs(0pey), i7" (2)'Gr(i) = ir'";

UlAz1[0, 1]z:

Uj j4m = ugnTO + ufnT3

ul, =0, for m = even
ud =0, for m = odd (B49)
G (1) =g3(02),  Gy(d) = g3(6y),
(=)=Gp, (i) =it (=)"Gp,(5) = ir,
G, (8) =03(Opay), i7" (=)'Gr(3) = i7"

The 12 different U(1) spin liquids have different quantum
orders.

We can use a gauge transformation W; = (ir1)* to
make ansatz Eq. (B44) to Eq. (B47) translation invariant.
We get U1CIn0, 21][0, 1]n:

s jpm, = ugn(iTl)m + ufn(i'rl)m'r3

ud3 =0, for m = even (B50)
G.(i) =1, G,(i)=71
Gp, (i) =Gp, (i) = 70, irt
Gp,, (1) =70 it Gr(i) = (-)r;
and U1C[n0, 21][0, 1]z:

Wit = Uy (iT1)"™ + 13, (a7 ™7
u? =0, for m = even
ud =0, for m = odd (B51)
(1) =1%  Gy(i) =T

Gp, (1) :pr( ) =70 ir!

Gp,, (i) =", Gr (i) = ir*;

Now we consider the symmetric perturbations that
break the SU(2) gauge structure down to a Zs gauge
structure. The invariant gauge group becomes G = Zy
for the perturbed ansatz. We choose a fixed value for
each gy y pr.py.poy,7 i0 Eq. (B29) such that Eq. (A2), E-
q. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13) can be satisfied when we limit G to a Z; sub-
group. Since the original invariant gauge group is formed
by constant gauge transformations, its Z5 subgroup is
also formed by constant gauge transformations, which is
given by G = {£7°}.

To obtain the consistent choices of gz y pa.py,pey, T W
note that G, Gp, p, p,, and Gt must satisfy Eq. (A2),
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Eq. (A4), Eq. (A9), Eq. (A10), Eq. (A11), Eq. (A5), and
Eq. (A13), with G = {£7"}. Those equations reduce to
gxgygglggl =470 (B52)

92 97 9297 =£7° g, gr'gy9r =70 (B53)
Gaps Yape =ET° 9y 00 9ygpe = £ 70 (BB4)
9y9py GyIpy = ET° G Gy 9uGpy =70 (B55)
gy_lgp_xlygzgpwy ==+ TO gz_lgp_zlygygpacy ==+ TO (B56)

97 Oy 97 Gp =70 970y grGpy == T°

gglg;;clyngpacy == TO (B57)
gpxygpxgpxyg;yl =+7° gpygpxg;ylg;xl =+7° (B58)
Since P} = P} = P, = T? = 1, we also have
g;x::l:TO g§y=:|:7'o,
Grpy =+ 7° g =+7 (B59)

From Eq. (B58), we see that ¢puPpy = £9pyIpz- Ipa.py
has the following 5 gauge inequivalent choices

Gpu =T, iT° Gpy =T, iT° (B60)

Gpz =iT Gpy =iT> (B61)

Also, according to Eq. (B58), gpz = £9peyIpydpzy- This
requires gpz = Gpy if [9pa, gpy] = 0. Similarly, we also
have g, = gy if [g92,9y] = 0. Many solutions can be
obtained by simply choosing each of g, v and gpe py pey
to have one of the four values: (79, i7%%3). We find the
following 65 solutions

Gy =Gy = 1", (—)'Gr =",
—)=Gp, =(=)"Gp, =7°, ir®  Gp,, =17, it%;
(=)=Gp, =(=)"Gp, ; Py, =T0, 0T
(B62)
G =G, =1°, (—)Gr =7°,
(5)"Gp, =(=)"Gp, =it"  Gp, =iT*  (B63)
G, =G (—=)'Gr =7°,
(=)*Gp, =it (—)"Gp, =ir*
GPTU —ZTIQ,
Gy =Gy =1 (—)'Gr =it?,
VeGp =(=)vGp =79, i3 Gp. =710 i3
( ) Py ( ) Py ? Pmy ) )
(B65)

(B64)
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Gy =Gy =1, (—=)'Gr =it®, Gy =it!, G, =it?,
(=)=Gp, =(=)"Gp, =7, ir"?? Gp,, =it'; Gp,, =it"?, (—)'Gyp =7,i7°,
(BG6) ()G, =it!,  (2)vGp, =it (BTT)
G, =Gy =1, (-)'Gr =ir®, G, =ir!, G, =ir?,
Vs —(_\iy _ 1 _ 0 123, .
(=)=Gp, =(=)"*Gp, =it Gp,, =T, iT°7; Gp,, =it'?, (—)iGr =10, ir?,
(B67) (_)izGPI :7_07 (_)inPy :TO; (B78)
G, =G, = 70, (-)iGr =%, Using a gauge transformation W; = (i73)}(£)%, we
()i Gp, —ir! G —in? can change Eq. (B69) — Eq. (B75) to standard Zy form
Py =UT, (=) Gp, =it Eq. (61) or Eq. (62). We choose the £ to remove the
Gp,, =ir'2, (B68) (—)* factor in Gp,,. We get
Gz :Gy = 7_03 (7)ZGT :7_03
(3 Ny 0
_ Ga =Gy - T (=)'Gr =77, Gp, =Gp, = 70, ir3 Gp,, =79 ir3; (B79)
(—)=Gp, =(=)"Gp, =7, ir° Gp,, =1, it%; '
(B69) ; .
G:c :Gy =T, (_)ZGT :Toa
Go =Gy = ir?, (=)iGr =12, Gp, =Gp, =7%% (=)%ir"?  Gp,, =it';  (BSO)
(=)=Gp, =(=)*Gp, = °,ir"?>? Gp,, =it'; o .
(B70) Gy =Gy =77, (=)'Gr =1°,
Gp, =Gp, = (—)bir! Gp,, =7°, ir"®3;  (B81)
G, =G, = it°, ()G =71°,
(-)*Gp, =(=)Gp, =it"  Gp,, =1", ir"% G =Gy =", (=)'Gr =ir®,
(B71) Gp, =Gp, =17, ir? Gp,, =7°, ir®;  (B82)
G, =G, =it®, (=):Gr =iT3, G, =G, =1°, ()G =iT3,
(=)=Gp, =(=)vGp =71°, it Gp,, =T°, it%; Gp, =Gp, =172, (—)%ir"? Gp,, =it'; (B83)
(B72)
G, =G, =1° VG =ir3
G, =G, =it* ()G =it e i1 e ZTo,.123
z Y ) o s ) Gp, =Gp, = (—)"iT Gp,, =7, iT>7;  (B84)
(=)*Gp, =(=)"Gp, =7, i7" Gp,, =it';
(B73) .
Gz :Gy:’r 5 GT :iTl,
. Go —Gp — 703 (L)iir12 G =70 jr123.
Gx :Gy =T y (—)’LGT =T s Fe i ’ 7( ) ' Fou T , (B85)
(-)=Gp, =(—)"Gp, =it Gp,, =1°, ith?3, Using a gauge transformation W; = (it1)% (ir?)%, we
(Br4) can change Eq. (B76) — Eq. (B78) to more standard forms
(see Eq. (61) and Eq. (62)):
G, :Gy = 7;7-37 (—)iGT =i, Gz :(_>iy7_0’ Gy :TO>
(7)7;:2GP7; :(*)inPy 70, ZT1’2’3 GP,W — ,i71’2’3, GP.W :(_)ixiyi7_12’ GT :(_)117_07 i7_37
(B75)  (-)Gp, =ir, ()G, =it (BSH)
G, =ir?, G, =it?, G, =(=)r", G, =1°,
GPrxry :iTIQ’ (_)iGT :ToviTSa GP.zy _(_)iwiyi’rlzv Gr _(_)117_07 7’7—37

(-)Gp, =ir®,  (-)Gp, =ir's  (BT6)



Gy =(=)7Y, G, =1°,
Gp,, =(—)ttvir!2, Gr =(—)%°, ir®,
Gp, =7°, Gp, =1 (B88)

Now we can list all PSG’s that describe the Z5 spin
liquids in the neighborhood of the SU(2)-gapless state
using the notation Z2A... or Z2B.... We find that the
65 PSG’s obtained before lead to 58 gauge inequivalent
PSG’s.

In the following, we will list all the 58 PSG’s. We
will also construct ansatz for those PSG’s. First let us
consider PSG of form Z2A.... For those PSG the ansatz
can be written as

Uj itm = Um (B89)
In the following we consider the constraint imposed by
the 180° rotation symmetry and the time reversal sym-

metry.
For PSG

Z2A[r0 70, 220, )0
Z2Ar2 37170
(B90)
(here we have used the notation [a, b][c,d] to represent

four combinations ac, ad, be, bd), the 180° rotation sym-
metry generated by P, P, requires that

Uy =l (—)™ = 0,
The time reversal symmetry 7' requires that
~ U, =Um (=)™

The above two equations require that u;; o 70, which
describe SU(2) spin liquids.
For PSG

Z2A73 73 701,230

Z2A[ 3 3] 0.1,3.0

0, T (B91)

the 180° rotation symmetry and the time reversal sym-
metry require that

s—f—

Uy =Um = U

3

Uy, U (—)
The above two equations give us

11 2 2 3.3
Ug 44m =Up, T+ Up, T° + Uy, T

1,2,3 =0
—Y,

Uy for m = even (B92)

For PSG

Z2A7 7271210, (B93)

ol

the 180° rotation and the time reversal symmetries re-
quire that

Uy =T Uy T2 (—)™ = ul

~ U, =Um (=)

We find
U i+m :u?,;o + uinfl + ufnTQ
udb? =0, for m = even (B94)
For PSG
Z2A[7’ 7'+,7'3 Ti] 01,33
Z2A7’_711L7'0'1 2373 (B95)

the 180° rotation and the time reversal symmetries re-
quire that

Uy =l (—)™ = 0,

Uy, =T Uy T3 (=)™

The ansatz has a form

Ui 5+m :ugnro + uinTl + u,2n7'2
ud, =0, for m = even
ul? =0, for m = odd (B96)
For PSG’s
Z2AT3 3733
Z2Ar 71701233
Z2A[r7Y 3 31033 (B97)

the 180° rotation and the time reversal symmetries re-
quire that

U_gy =Um = uIn

Uy, =T Uy 73 (=)™

The ansatz has a form

1.1, .2 2
Ui ibm =Upy T° + Uy, T° + uy, 7°

ud, =0, for m = even

ub? =0, for m = odd (B98)

For PSG Z2A7l737'273 | the 180° rotation and the
time reversal symmetries require that

Uy =T Uy T2 (—)™ =,
— U, :TSUmTS(f)m

We find ;5 o 70, The spin liquid constructed from Usj
is a SU(2) spin hquld



For PSG’s

33,0133
Z2AT T Ty
1,0123.3
Z2Ar 1 Ty
0 0 L0133
Z2AT\ T Ty

Z2At +Ti70’1v2 33 (B99)

the 180° rotation and the time reversal symmetries re-
quire that
Uy =gy, = U]
—-m m m
gy, =T Uy T2

The ansatz has a form

1.1 1,2
Ugitm =Up, T + Uy, T

(B100)
There are six PSG’s of form Z2B.... The first two are
Z2B[r 72 rir? |12l (B101)

The 180° rotation symmetry requires that

()t = ()™ (=) 7

or
uom’l’2 =0, for m, = even and m, = even
=0, o = v =
3 _ _
uy, =0, for m, = odd or m, = odd

The time reversal symmetry requires that

— U, =Up (=)™

We find

Ui i =(=)"" (g, 70+ Uup, 7!+l T2

udl? =0, for m = even (B102)
For PSG
Z2Br{7) 370 (B103)
the 180° rotation symmetry requires that
(=)™t = (=)0 ]
or
ud, =0, for m, = even or m, = even
up?® =0, for m, = odd and m,, = odd
The time reversal symmetry requires that
— U, =Um (=)™
The above two equations give us
st =)l 02, )
ub?? =0, for m = even (B104)
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For PSG
Z2B[r 7%, rir? | (B105)
the 180° rotation symmetry requires that

()t = ()™ (=) e

or
upt? =0, for m, = even and m, = even
3 _ — —
uy, =0, for m, = odd or m, = odd

The time reversal symmetry requires that

Uy, =T Uy T

Ui g =(—) =™ (ul 7! 4 uZ,7?) (B106)
ul? =0, for m, = even and my = even
For PSG
Z2BrYr73 % (B107)
the 180° rotation symmetry requires that
(=)t = (=) it
or
ud, =0, for m, = even or m, = even
ub?3 =0, for m, = odd and m, = odd
The time reversal symmetry requires that
Uy, =T Uy T2
The ansatz has a form
Uiitrm =(=)"" (U, T+ g, %) (B108)
uy? =0, for m, = odd and m, = odd

We find that there are 52 different Z5 spin liquids in
the neighborhood of the SU(2)-gapless state Eq. (30).
Those Z5 spin liquids can be constructed through wu;;.

5. Symmetric perturbations around the
SU(2)-linear state SU2Bn0

In this subsection, we would like to consider the sym-
metric perturbations around the SU(2)-linear ansatz E-
q. (31), which describes a SU2Bn0 spin liquid. The in-
variant gauge group is G = SU(2). The PSG of the
ansatz is generated by

G (3) =(=)" g, Gy(i) =gy
Gp, (1) =(=)" gpa Gp, (1) =(=)"gpy
Gp,,(#) =(=)*"gpay  Gr(i) =(=)'gr  (B109)



where sy pa.py,poy, 7 € SU(2).

First let us consider the symmetric perturbations that
do not break the SU(2) gauge structure. To have the
SU(2) gauge structure and the symmetries, the pertur-
bations must be invariant under PSG in Eq. (B109). The
translation symmetry require the perturbations to have
a form

Ui it = (—)=™vould, 0 (B110)

The 180° rotation symmetry P, P, and the time reversal
symmetry T require that

(_)(iﬁmm)my((;ugn)T :(—)immyéugn(—)m
—oud =oud (=)™

Thus the symmetric ansatz with PSG Eq. (B109) are
given by

i m =() 0 (B111)
ud =0, for m = even

The above represent most general ansatz around the
SU(2)-linear state that do not break any symmetries and
do not change the quantum order in the state.

To obtain other symmetric perturbations around the
SU(2)-linear state SU2Bn0, we can use the mapping E-
q. (A112) and Eq. (A113). We first note that the PSG’s
that describe the spin liquids around the SU(2)-linear
state can be obtained from those around the SU(2)-
gapless state SU2An0. This is because mapping de-
scribed by Eq. (A112) maps the SU2An0 PSG Eq. (B29)
to the SU2Bn0 PSG Eq. (B109). Using this results, we
can obtain all the PSG’s that describe the spin liquids in
the neighborhood of the SU(2)-linear state. The SU2An0
PSG for the SU(2)-gapless state have 16 different sub-
groups with IGG=U(1) (see Eq. (B40) - Eq. (B43)) and
58 subgroups with IGG=Z; (see Eq. (B62) - Eq. (B88)).
Therefore, the SU2Bn0 PSG of the SU(2)-linear state
also have 16 different subgroups with IGG=U(1) and 58
subgroups with IGG=25 (see Eq. (B62) - Eq. (B83)).

The 16 subgroups with IGG=U(1) can be obtained
from Eq. (B40) - Eq. (B43) through the mapping E-

q. (A112). They are UIBT?70[70 71][7°, 71] ( which is
gauge equivalent to U1B7079[70, Tl][797 T1]):
Gu(i) = (—)""g3(0:),  Gy(i) = gs(0,) (B112)
(—)“Gp,(3) = g3(6pe)  (=)*Gr(3) = ga(Or), i7"

93(Opay), i7%

(=)="Gp,,(3) =
U1Brt T+[T 7Y, L)

Gu(i) = (=) g3(0:), Gy(3) = g3(6,) (B113)
(—)=Gp,(3) =it (=)'Gr(i) = gs(0r), i7"
(= ) 0

T
()5Gr, (@) =it (=) G, (0) = gs(6pmy). i7"

53
[0, TJJ U1Cro 7'+Tl7'+ and U1C72 T0T1T0

G, (3) = ir% (B114)
(=)!Gr(i) = g3(0r), i'"
(_)izinPIy ("’) = gS(Gp:ry)v iTepzy

= 70 (B115)

Gy(3)
(—=)*Gr(3) = gs(Op), ir""
(_)izinsz (1) = 93(9pwy)7 irPrev

The labels for the last two equations are obtained by
making a gauge transformation to put G., in a more
standard form (see Eq. (B123) and Eq. (B124)).

After obtaining the PSG’s, we can construct the ansatz
which are invariant under those PSG’s. We note that for
the above PSG’s the time reversal symmetry T requires
that

—Uj im =T Ui im0y (—)™
ar :TO7 iTl
and the 180° rotation symmetry P, P, requires that

Ui =g ()™ =l (B116)

—i—m,

When G,(i) = i(— in‘gm, G y(1) = it I has a for-

m Ui jrm = (=)™ (ud, 70 + (—)*ud, ). Eq. (B116)
reduces to

ud, =0, if m, = even and my = even

ud, =0, if m, = odd and m, = odd
When Go(i) = (=)"gs(0z), Gy(i) = g3(0y), ui; has a
form w; jym = (=)™ (ud 70 + w3 73). Eq. (B116) re-
duces to

ud =0, if m, = even and m, = even

ul, =0, if m, = odd or m, = odd

Using the above results, we find that all the symmetric
spin liquids around the SU(2)-linear state Eq. (31) that
break the SU(2) gauge structure to a U(1) gauge struc-
ture can be divided into 12 classes. They are given by
U1Cn0[n, 1]n:

Uit = () (W7 + ()il )
(B117)
=0, if m = even
(@) =i(-)ivr’,  Gy(i) = ir",
(—)=Gp,(3) =g3(0pa), (=) G, (i) = g3(0y).
' ,(8) =93(Opay), iT"rr (=)*Gr(i) = g3(r);



U1Cn0[n, z]1:

i = (=) (W70 + (<)oud, )

(B118)
ud =0, if m = even
u =0, if m, = odd or my = odd
Ga(1) :i(_)ingmv Gy(3) = i,
()= Gp, (1) =g3(Opa), (=) Cp,(3) = g3(0py),
(=)= Gp,, (1) =g3(Opay), ir%%  (=)'Gr(i) =ir"T;

U1C11[n, z]n:

i = (<) (0,70 + (—)oud, )

U1C11[n, z]a:

Ui = (=) (070 + (=)l )

(B120)
ud =0, if m = even
ul, =0, if m, = odd or m, = odd
Ga(i) = ( )’yTe Gy(3) = ir",
(=) Gp,(4) =i (=) Gp, (i) = i,
(*)izinsz(l) :93( pry)a irPrev (=)'Gr(3) = ir?T;
U1B00]0, 1]1:
Ui itm = (=)™ (ud, 70 +ud, %) (B121)
ud =0, if m = even
ud, =0, if m, = odd or m, = odd

Ga(2)
(=)Gp,(9)
(=)"Gp,,(49)

(=)' g3(0z),
93(0pa),

93(Opay), i%

Gy(2) = g3(0y),
(=) yGP (1) = 93(91774)7
(-)iGr(i) = it

U1Bz1[0, 1]x:
Ui it = (=)™ (ud, 70 +ud, %) (B122)
ud =0, if m = even
u3 =0, if m, = odd or m, = odd
Ga (i) =(— )”’93(9 ), Gy(d) = gs(0y),

(=)=Gp, (3) =70

x

(=)™ Gp,,(49)

()G, (0) = ir,
()iGr(i) = ir""

=93( pa:y), Oy

Using the gauge transformation W; = g3((—)%x/4) we

o4

can change Eq. (B114) and Eq. (B115) to

0

G, =ir’=, Gy =11,
Gp, :(_)izg?)(em)a pr = (_)inS(epy)v
ini i isy
Gr,, =(=)""g3(((2)" = (=)") + bpay),

(
(=)gs (=) + (<)) + bpay i,
(

Gr =(=)gs(0r), (=)= g3(0r)it" (B123)
G, =i’ Gy =irf,
Gp, =(=)%r%=, Gp, =it
Gr,, =(2) " gs(((2)" = (2)*) T + bpmy),
(=) ga (=) + (=)) + by )iT",
Gr =(=)’gs(0r), (=)' gs(Or)it! (B124)

We note that

(=) ga(((=)" = (=)") ] +bpa)

=(=)"g5((=)*F + Oy (B125)
and
<7>izivgg<<<f>iy +(2))F + o)

Thus the above two sets of PSG’s are labeled by
U1CT2 [0, 71][72, 73] and U1Cri7i[r2,71][r0, 71]
respectlvely (See Eq. (74) - Eq. (78)) We also note
that the PSG UlC7'07'07'1 70 is gauge equivalent to
U1Cro 7'27'_&0 Using the gauge transformation W; =
g3(—(=)*m/8) we can change Eq. (B123) and Eq. (B124)
to

Gy =itl, G, =ir%
Gp, =(=)"03(0pz) Gp, = (=)"gs(0py)
. . . T .
Gr,, =(=)""g5((5)™ = (=)") 7 + Onay), 93(Opay )i,

Gr =(=)g3(67), (=) gs((—)*m/4)ir’ (B127)
Gy =it G, =it
. 17T 1 . ,L7T 1
Gp, =ig3(bpe + (=) )7 Gp, =igs(lpy — (=)* )7
. . LT .

Gr., =(=)""g5((5)™ = (=)") 7 + Onay), 93(Opay )i,
Gr =(=)'g3(0r), (=) gs((—)'m/4)ir’ (B128)
Then we can use the gauge transformation W; = (i7!)?



to change Eq. (B127) and Eq. (B128) to

G =g3((=)02),

Gr, =g3((=)"0p0)

Gr,, =(=) " ga((2)" = (2)") T + () 0z,
93((=) Opay )iT",

Gr =(=)gs((=)*0r), ()" g3((—)*Or)ir"*

(B130)

We can use a gauge transformation W; =
(it1)tg3(—(—)7/8)gs((—)ivm/4) to simplify the ansatz
Eq. (B117) - Eq. (B120). After the gauge transfor-
mation, the IGG is given by {g3((—)*0)}. The ansatz
has a form u;i4m = ul, 7t + u2,7% for m = odd and
Ui ibm = ul, 70 + ud 73 for m = even. We find the
ansatz Eq. (B117) - Eq. (B120) become

1.1 2 2
U j+m =Up, T+ Uy, T

Um =0, for m = even (B131)

Go =g3((=)'02), Gy = gs((=)70,)

Gr, =93((=)'0p) G, = 95((=)'6))

Gr,, =(=)"ga((2) = (2)") T + (=) 0z,
93((=) by, )it

Gr =(—)*g3((—)"6r)

1 .1 2 2 3 .3
Uj 44m =Up, T+ Up, T° + Uy, T

up, #0, for m, = even and m,, = odd
uy, 20, for m, = odd and m, = even
ul, #0, for m, = even and m, = even (B132)

Gy = g3((—)*0,)
GPy = 93((_)191774)

Go =g5((—)"0.),
Gr, =g3((—)*0pa)

Gr., =() " gs((4) = ()") ] + () 0wy,
93((=) 6pa )i,
Gr =(=)"gs((~)0r)ir"

95

11 2 2
Ug 44m Uy, T+ Uy, T

us? =0, for m = even (B133)
Go =g5((—)"0z), Gy = g5((—)'0,)
Gp, =(=)"g5((=)*pa)iT"
Gp, =(=)"g3((=)"0py )i
Gr,, =(=)*g5(((=) = (2)") ] + (=) 6y,
95((—)pu )i,
Gr =(=)'g3((=)"0r)
Uj 44+m :uinrl + u3n7'2 + ufnTS
Uy, #0, for m, = even and m,, = odd
u2, #0, for m, = odd and m,, = even
ud, #0, for m, = even and m, = even (B134)
Go =g5((—)"0z), Gy = g5((—)'0,)
Gp, =(=)"g3((=)"Opa)it!,
Gp, =(=)"g3((=)Opy )it
Gr,, =(=)""ga(()" = (5)") ] + (=) bp).

93((=) 0pay )iT"?

=(=)"vg3((—)*0r)ir"

In Eq. (B132), Eq. (B133) and Eq. (B134) we have made
additional gauge transformation (712 712)— > (71, 72).
Using the mapping Eq. (A112), we can obtain all the
PSG’s for the Zs symmetric spin liquids near the SU(2)-
linear state from the 58 Z5 PSG’s obtained in the last
subsection for the SU(2)-gapless state. We note that,
under the mapping Eq. (A112), a Zs PSG labeled by
Z2Aabed will be mapped into a PSG labeled by Z2Babed
and a Zs PSG labeled by Z2Babcd will be mapped into
a PSG labeled by Z2Aabed. In the following, we will list
all the 58 Zy PSG’s for the spin liquids near the SU(2)
linear spin liquid. We will also construct ansatz for those

Gr

PSG’s. First let us consider PSG’s of form Z2B.... For
those PSG’s the ansatz can be written as
Ug 34+m = (_)izmyum (B135)

In the following we consider the constraint imposed by
the 180° rotation symmetry and the time reversal sym-

metry.
For PSG
ZZB[TO 7'2, 73 T_?_] [7' 7'5]7'0
Z2Br3 30 (B136)

the 180° rotation symmetry generated by P,P, requires
that

()t = ()™ () e



or
0 _ - —
Uy, =0, for my = even and m, = even
ub?3 =0, for m, = odd or m, = odd

The time reversal symmetry T requires that
— U, =Um (=)™
The above two equations give us
Ui igm =(=)" " up, 7
ud =0,

m

12,3 _
Uy ” =0,

(B137)

for m = even

for my = odd or my = odd
For PSG

7287373 701,230

Z2B[T+T+,Ti7ﬂ 0,1,3.0 (B138)

the 180° rotation symmetry requires that

(_)ixmyum _ (_)(iw+m1)myuin

or

0 _
Uy, =0,

12,3 _
Uy =0,

for Mgy = even or m, = even

for m, = odd and m, = odd

The time reversal symmetry requires that

— U, =Up (=)™

The above two equations give us

Ui igrm =(—)"" (g, 7'+ U, T+ g, )

1,23 _ _
Uy, " =0, for m = even

(B139)

For PSG

Z2Brrriri?rY (B140)

the 180° rotation symmetry requires that
(7)iwmyum _ (7)m(7)(iw+mw)my7_3uin7_3

or

w012 0,

™ for m, = even and m, = even
3 _
u,, =0,

for my = odd or m, = odd
The time reversal symmetry requires that
—Um =Um (=)™

We find

g () (70 4 by 4 1, 7?)

udb? =0, for m = even (B141)

o6

For PSG

Z2B[T 7'+, 3 Tf_] 0.1,3.3

Z2Br! ri 7012378 (B142)

the 180° rotation symmetry requires that

()t = ()OI,

or
0 _ — —
Uy, =0, for my = even and m, = even
up??® =0, for m, = odd or m, = odd

The time reversal symmetry requires that
Uy, =T Uy T3 (=)™

The ansatz has a form

Wi iym =(—=)=" (w0, 70 +ub, Tt +ul, 77 (B143)
ud =0, for m = even
ul? =0, for m, = odd or m, = odd
For PSG’s
Z2Br3 3373
Z2Brl 1 70123,3
Z2B[r) 7, 3|08 8 (B144)

the 180° rotation symmetry requires that

(_)immyum — (_)(iz+mz)myuin

or
ud, =0, for m, = even or m, = even

™m I x Yy
up2® =0, for m, = odd and m, = odd

The time reversal symmetry requires that
— U, :T3um73(—)m

The ansatz has a form

Us itm =(=)=mv (ub, 7t +u, T Ul ) (B145)
ud, =0, for m = even
uk? =0, for m, = odd or m, = odd
For PSG
Z2Brl 31273 (B146)

the 180° rotation symmetry requires that

()t = () () A 7
or
912 =0, for m, = even and m, = even
ud, =0, for m, = odd or m, = odd



The time reversal symmetry requires that

gy, =T Uy 73 (=)™

We get
Ui ipm =(=)"" (uQ, 70 + ub, Tt +ul, 7)) (B147)
ud. =0, for m = even
ul? =0, for m, = even or my = even
For PSG’s
72873 73 70:1.3 i
Z2B7'1 1 0,1,2,3 3
+
ZQBTO 0 0,1,3 3)_
Z2BtiT} : L (B148)
the 180° rotation symmetry requires that
(=)™t = (=)0 ]
or
ud =0, for m, = even or my = even
up2® =0, for m, = odd and m, = odd
The time reversal symmetry requires that
Uy, =T Uy T°
The ansatz has a form
i m =(=)= (b + k) (B149)
uk? =0, for m, = odd and m,, = odd

There are six PSG’s of form Z2A... whose ansatz have
a form

(B150)

Ui i4+m = Um

o7

The first two are

Z2A[rE 72 w2l (B151)
Their ansatz have a form Eq. (B94). For PSG
Z2A7) 07370 (B152)
the ansatz have a form Eq. (B92). For
ZQA[T T+, Ti72]T12T_?_ (B153)

the 180° rotation and the time reversal symmetries re-
quire that

Uy =T U T2 (=)™ = 0l
Uy =T Uy T2

which gives us

Ui 5+m zuinTl + u,2_n7'2
ul? =0, for m = even (B154)
For PSG
2247879773 (B155)

the ansatz has a form Eq. (B100).

In summary, we find that there are 12 classes of per-
turbations around the SU(2)-linear spin liquid that break
the SU(2) gauge structure down to a U(1) gauge struc-
ture, and there are 58 classes of perturbations that break
the SU(2) gauge structure down to a Z, gauge structure.
The resulting U(1) and Zs spin liquids can be construct-
ed through u;;.
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