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Matrix Multiplication via Arithmetic Progressions

DON COPPERSMITH and SHMUEL WINOGRAD

Department of Mathematical Sciences
* : ) IBM Research Division
Thomas J. Wadtson Research Center
P.O. Box 218
Yorktown Heights, New York 10598, U.S.A.

(Received 17 May 1987)

We present a new method for accelerating matrix multiplication asymptotically. This
work builds on recent ideas of Volker Strassen, by using a basic trilinear form which
is not a matrix product. We make novel use of the Salem-Spencer Theorem, which
gives a fairly dense sct of integers with no three-term arithmetic progression. Qur
resulting matrix exponent 1s 2.376.

N

1. lntroduction.'

A matrix multiplication algorithm _is usually built as follows. First an algorithm for a small matrix
problem is developed. Then a tensor product construction produces from it an algoritflm for
multiplying large matrices. Several times over the last two decades, the ground rules for con-
structing the basic algorithm have been relaxed, and with more care in the tensor product con-
struction, it has been shown how to use thesc more lenient basic constructions to still give efficient
algorithms for multiplying large matrices.

Recently Strassen (1986) found a new relaxation of the ground rules. His basic trilinear algo-
rithm computes a trilinear form which is not a matrix product at all.‘ In this trilinear form, the
variables -are collected into blocks. The block structure (the arrangement of the blocks) is that
of a matrix product, and the fine structure (the arrangement of variables within individual blocks)
is also thqt of a matrix product, but the overall structure is not, becausc the fine structures of
different blocks are incompatible. After taking a tcnsor power of this trilincar form, Strassen op-
erates on the block structure (that of a large matrix product) to reduce it to several block scalar
multiplicéltions. Each block scalar multiplication s itself a matrix product (the fine structure), so
that he has several disjoint matrix products (sharing no variables). e can then apply Schénhage’s
7 -theorem to obtain an estimate of the matrix exponent o:
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252 D. Coppersmith and S. Winograd

w <2479,

. Here we follow Strassen’s lead. We use a basic trilinear algorithm closely related to Strassen’s.
The block structure of our trilinear form is not a matrix product, although the fine structure still
is. We use a combinatorial thcorem of Salem and Spencer (1942), which gives a fairly dense set
of integers containing no three-term arithmetic progression. We hash the indices of the blocks

- of variables to integers, and sct to zero any block of variables not mapping to the Salem-Spencer
set. We do this in such a way that if the product X 1 Y[J]Z [K]‘is contained in our trilinear form,
then the hash values bx(/), by{/), bz(K) form an arithmetic progression. So for any product of
nonzero blocks X[l] )’[J]Z[K] in our trilinear form, we will get by(/) = by{(J/) = bz(K). We choose
parameters so that on average each nonzero block of variables is contained in at most one nonzero
block product XU]Y[J]Z[K], and set to zero some blocks of variables to ensure that this condi-

tion holds absolutely, not just on average. Then, as Strassen, we have several disjoint matrix

products, and can apply Schénhage’s 7-theorem to obtain our exponent

w < 2.376.

The rest of the paper is organized as follows. In Section 2 we review Schénhage's
-theorem. In Section 3 we present Strassen’s construction. Section 4 contains the results of the
Salem-Spencer theorem. Scction 5 presents an outline of the present construction. In Section 6
we present an example of our construction, which gives an exponent of 2.404. The version pre-
- sented in Section 7 uses exactly the same idcas, but is complicated by more terms and more in-
dices; this gives an improvement to of 2.388. Section 8 introduces yet more comp]icaicd
techniques which achieve a slightly better estimate of 2.376. Scction 9 céntains some related ideas
that were not as effective in reducing the exponent. We make miscellancous remarks in Scction
0. N

Finally, Section 11 shows how the existence of a certain combinatorial constrﬁction would
yield @ = 2. We cannot tell whether this construction can be realized.

Earlier versions of this paper appeared as Coppersmith and Winograd (1986) and (1987).

Readers unfamiliar with previous work in matrix multiplication are referred to the exccllent

survey by Victor Pan (1984).
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2. Schonhage’s Theorem
The basic results from “classical” matrix multiplication can be summarized by Schénhage's
r-theorem: '
Theorem (Schonhage): Assume given a field F, coefficients % ik, b ﬁj.k,h. & Ykih, ¢ in F(4)

(the field of rational functions in a single indeterminate 3 ), and polynomials jé, over F, such that

et

£=1 \iy,h k.h k.ih
_/Mp ny Pa
g (k) (Iz (h)
SRR 1A ) Bl )
i=lj=lk=
is an identity i (h) ) h) A Th !/
Y in X' yig 2k, ,, en given ¢ >0, onc can construct an algorithm to multiply

N x N square matrices in ()(N ) operations, where 1 satisfies,
L= Z(mh”hf’h)T‘ A 0
h

We will also write the error term as (1), so that the hypothesis becomes

L
Z (Z % j.h, fxl,/ >< Z ﬂ/,k h, /yj k )( Z Viedh, fzk i ) Z( xl(;)yj(’l?zl(cht)> + O(1).
SR ij.k )

£=1\ijh k. kih h

Less formally, the hypothesis is a trilincar algorithm, using /. bilinear multfplications to (ap-
proximately) compute simultancously several independent matrix products, of dimension
my, X ny times ny x py, (written < my, ny, pp>). The superscript (A) indicates which matrix the
variable belongs to. ’

In such a situation, we define the matrix exponent obtained from the construction as w = 3z.

Note: Here we have presented Schénhage’s ‘Theorem in its trilinear forr-n, which will make

our construction easier 1o describe. The bilinear version assumes I, rank-1 bilinear forms
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h h
My= (Z“i.}',h, {’-"i(,/‘)></z Bk, {’yj(.k)>’ ¢=12.,L

ijh kb

connected by identities

' p L

h h) (h .

‘ vi(,k) = le'(,l' )yj(,k) = Zyk.i.h. {zM[ + 0(].), 1< ny, k Sph.
- j=1 =1

That is, one forms L bilinear products, each of which is a linear combination of x-variables times

(r)

a linear combination of p-variables, and expresses the answers v;;” as linear combinations of these
products, up to terms of order . The answers v,-('z) arc viewed as duals to the variables z,gl[) in the
trilinear presentation, and in fact the bilinear presentation is obtained from the trilinear onc by

(h)

identifying coefficients of z; ; in both sides of the equation.

3. Strassen’s construction

Strassen has found a new relaxation of the ground rules for the construction of the basic algo-
rithm, that is, he has relaxcd the hypotheses of the thcorem. A key element in his construction
is the observation that, using the ability to multiply a pair of N x N matrices, one can

“approximately” (in the 4 sensc) multiply (3/4)1\’2 pairs of independent scalars, that is, compute
(314N ,

> xpzi+ o) @

i=1 .

where all the x;, y;, z arc independent. Namely, setting

g=[B2WN + 1],

and multiplying each variable in

N N N '
Z Z Z X0 ik i

i=1j=1k=1

by an appropriate power of 4, one obtains

NN XN 2 2 .. 2 .
ZZZ(W’V +21]>()’j;/<)~/ +2](k~g))(2k',-l(k_g) +2(k—8)1)= Z % 9ix7i + O,

i=lj=1k=1 i+j+k=g
1<ij k<N

since the exponent of 1,

i+ 20+ 70+ 2k -

is zero when i+ j+ k=ga
the third k=g — i —j, eacl
(314N ] triples (ijik), 1<
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.
S5+ ) (o

i=1
q
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since the exponent of 1,
.2 o 2 , 2 . . 2
P42+ +2jk—g)+(k—g) Ak —gi=(i+j+k—g)°,

is zero when i+ j + k = g and is positive otherwise. Since any two indices i, uniquely determine

the third k = g — i —j, each variable x;; is involved in at most one product. There are about

[(3/4)N ] triples (ij,k), 1 <ijk <N, i+j+ k=g. Call this the matrix-to-scalar construction.
Strassen - uses the following basic trilinear identity, related to Victor Pan’s “trilinear

aggregation” (1978):

) q
(x(gz] + ).x,-[]])(y(gl] + lyl-[z])(zil—l) + (x(gz] [I] ( Z )
1 . fag

= Z(x[]] []]Z + x(gz]yi[z]zi) + O(4).

_Ipge

~

&)

This gives a basic algorithm, using ¢ + 1 multiplications to compute a block inner product:

Z(x[ ] [1]2 +x[2] [2]2)+0())

The superscripts denote indices in the block inner product, and are uniquely determined by the
subscript indices. We can label x; and xg with different superscripts because they are different
variables; similarly p; and . But the z-variables are involved in both blocks. They are shared.
This is the new complication in the basic a]gonthm This algorithm does not in itself represent
a matrix product.

(If we tried to represcnt this algorithm as a matrix product, we would find that since all the
variables z; are associated with the samc p-variable y(g ] they must all hzive the same k-index.
But since they are all associated with the same x-variable x(‘)?], they must all have the same i-in-
dex.)

The first block, Zx[l] [1 ] j» TEpresents a matrix product of size < ¢,1,1>. A ¢ x | matrix
(column vector) x is mulhplled by a 1 x 1 matrix (scalar) yg to yield a ¢ x | matrix (column vector)
v, which is dual to the vector z. In the sccond block, Zx[ ] [ ]z represents a’ matrix product of
size <1,1,¢>. A | x | matrix (scalar) X is mulhphcd by a I x ¢ matrix (row vector) y to yield
a 1 x g matrix (row vector) v, which is again dual to the vector z. The difficulty comes when we

try to add the two blocks. The indices i of v are “schizophrenic”: they don’t know whclhcr to
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behave as row indices or as column indices. Strassen’s construction gives a way out of this diffi-

culty.

Take Construction (3) and the two constructions gotten by cyclic permutations of the vari-

ables x0,2, and tensor them together, to get an algorithm requiring (g + 1)3 multiplications to

compute

[1,00 (L1 (1] [2,00 [1,1) [1,2], (1,17 [1.2] (2,07 . _[21] [1.2] [2,2]
2: (xi,/',O Y0 k20, + Xijk Yok 200"+ Xij0 Y00k Zijk "+ Xijk YOOk Zig0  +
i k=1

(1,21 [2.1] [1.17 = [22] [2.1]2[1'g]+ [1,2] [2.2] [2,1]

[2,2] [2,2] [2.2]
+X0,,0 Vigk “Zi0k * X0k Vijk Zp, X040 Vi0,k

ik~ X0,k Vi0k Zij,0 ) + O(%).

This is a block 2 x 2 matrix product (indicated by the superscripts). Within each block is a smaller

[1,1] [1,2] [2,1]

matrix product; for example the third block is the matrix product Xij0 VOO K Zijk )

q
(
. ' . . . 2 k=1
which can be interpreted as a matrix product of size < ¢, 1,¢>:

q
Z X(if) 00Kk (i)
ijk=1

with (i) acting as the /-index (shared by x and z and taking on q2 valués), 0 acting as the J-index,
and & acting as the K-index.

“Taking the Nl‘h tensor power of this algorithm, one gets an algorithm, requiring (¢ + 1)3N
multiplications, and producing a block 2N« N matrix product, each block of which is a matrix
product of some size <m,np> where mnp = q3N. Applying the matrix-to-scalar construction
to the block structure, one then obtains (3/4)(2N)2 independent matrix products, each of some size

<m,np> where mnp = q3N. Applying the r-theorem, one gets

wsdy (g0 =2V

Taking N roots and letting N grow, the (3/4) becomes insignificant, and we have

w<3r, (g+1)° =227

Letting ¢ = 5, Strassen obtains

o < log(6°/2%)/ log § = logg54=2.4785,

>

T
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4. The Salem-Spencer Theorem

We will use the following theorem of Salem and Spencer (1942);.see a%so Behrend (1946).
Theorem (Salem and Spencer): Given £ >0, there exists MszZC/ ¢ such that Jor al M >M,,

. b—e . . .
there is a set B of M' > M~ ° distinct integers

O0<by<by<—<by<M|2

with no three terms in an arithmetic progression:

for b, b

We will be considering the ring Z 3 of integers modulo M, where M is odd. Because the ele-
ments of the Salem-Spencer set satisfy 0 < b; < M/2,"no three can form an arithmetic progression
mod M:

for by by be B, b+ b=2b,mod M iff b=b=b, )

5. New Consfruction: Outline

Previous authors in this field have exhibited their algorithms directly, but we will have to rely on
hashing and counting arguments to show the existence of a suitable algorithm. We start with a
modification of Strassen’s starting algorithm, producing 3 (instead of 2) block products. We take
the 3N tensor power, yielding 33N =27 block products. We will show that we can choose
about (27/4)N out of these 27" products, which are independent in the sense that a given block
XU], Y[J], or Z[K]

of variables will occur in at most one of our chosen products, and strongly

independent in the sense that for any block product X [rJY[J]Z (K] in the original tensor power
which is not in our chosen set, at lcast onc of its blocks of variables (X[l], Y[J] or Z[K]) will be
absent from our chosen block products. Thus, by setting to 7ero any variables not in our chosen
block products, we will set to zero all other products in the original tensor power. Once we have
done that, we will use Schonhage’s z-theorem to provide an estimate of .

By indirect arguments we will show the existence of the strongly independent set of block
products. We will start with a hash function from the sct of block indices to the set of integers
mod M (Z 3¢), in such a way that if X 1 Y[J]Z (K] appears in the tensor power, the hashed indices
bx(D), by(/), bz(K) form a threc-term arithmetic progression. We will use the Salem-Spencer

theorem to control the existence of such arithmetic progressions. Finally, among the large class
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of hash functions available, a counting argument will show that at least one of them has the de-

sired performance.

6. New Construction: Easy Case

Start with a modification of Strassen’s basic algorithm (3); see also Pan (1978). We use ¢+ 2

multiplications:

q
ZA_z(x[EO] + 1x,~[‘])(y,§°] + Ayi[l])(z(go] + lz[l])

i=1
S 4 AT (A 2T (A 2T AY)
+ (7 =) (M0 @)

(X(EO]}’i[ I]Zim + xi[l]ngJZ[[l] + xi[l]yi[l]z(g(]]) +0(}).

©)

e

_
1l
—

We have brought the factors ,1—3, (,1—3 - q).—z) outside in order to reflect the symmetry.
Note. This is equivalent to the bilinear algorithm

M= (0 + O+ M), =20

My = (42 23 PG4 2550)
Mz = (47)(3")

N I 1 1 5 BN S S A N TR R R O N L PP

["]—Zx[‘] bl Zz M= 2 My + (370 = 27 )Myp + O

i=1

where vJU] is the dual to the variable zj[n, and the equivalence is gotten by identifying coefficients
of z[n in both sides of (5).

The x-variables break into two blocks: X[ 12 {x[o]} and X[]:| {x 1[1], ,x‘gll}. Similarly
the y-variables break into blocks )_’[ ] and Y[l], and the z-variables into blocks Z [ and 7 []].
When we zere a block XU] (resp. YU], Z[K]), we will set to zero all x - (resp. y-, z-) variables

with the given index pattern.
" Fix £>0. Select N large enough so that the M defined below will exceed M, from the

Salem-Spencer Theorem.

e g e e e+ T e

Take the 3N th ensor po’
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1._
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AL
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so that
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[7]

Take the 3N th tensor power of Construction (5). Each variable x; - in the tensor power will
be the tensor product of 3N variables xj[n, one from each of 3N copies of the original algorithm.
Its subscript i will be a vector of length 3N with entries in {0, 1, ..., g}, made up of the 3N sub-
scripts j. Its superscript [7] will be a vector of length 3N with entries in {0, 1}, made up of the
3N superscripts [J]. As before, [/] is uniquely determined by i.

Set to zero all variables xi[I] | ce‘ﬁt those for which J has exactly N indices of 0 and exactly

2N
Al
B. Select random integers 0 < wi<M,j=0,1,..3N. For each superscript [ € {0, 1}3N, compute

2N indices of 1; similarly y- and z \;}n’a\ les. Set M = 2( ) + 1. Construct a Salem-Spencer set

a hash as follows. For each of the 3N index positions j, let I denotc the j'h element of / (either

0 or 1). Define

i

3N
by(D = lewj{ mod M)
j=1

3N
by =wy + Z.ijj( mod M)
j=1

3N
bAK) = (wo + 2~ Kj)wj>/2 (mod M).

J=1

Since M is odd, division by 2 is well defined. ,
Notice that for any blocks X[l], YU],Z[K] whose product XU]Y[UZ[K] appears in the

computed trilinear form, we have

by(D+ b)) = 2b(K)=0 mod M. ' (6)

This follows by considering the contribution of each w;, noticing that in the basic construction

L+ Ji+K=2
for each of the three terms x&o]y,-[]]zi[]], xi[l]y(golzi[l], xi[I]yiU]z(gO]. )
Set to zero all blocks X 7 for which by(/) is not in B. Similarly set to zero all blocks )’[-J] for
which by{J) is not in B, and blocks Z[KJ for which bAK) is not in B. Then for any nonzero term
XU] y/11K] ‘

remaining in our construction, we have

by(l) + by(d) = 2bAK)mod M,  by(l), b)), bAK) € B,

so that



e
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byll) = bytd) = bAK),
by the properties of B.

For each element b € B in the Salem-Spencer set, make a list of triples (X U], Y[J], zZ I:K‘l) of

compatible nonzero blocks, with by(l) = b)) =bAK)y=b. (A block X £) is the set of q2N var-
[

jables xj/ © with nonzero indices in 2N specified places, that is, sharing a common superscript /.

I ZIK

A nonzero block is one which has not yei been set to zero. Blocks X {7 are com-
patible if the locations of their zero indices are pairwise disjoint.) For each triple
(0.4 [1], Y[n, VA [KJ) on the list, if it shares a block (say Z[K]) with another triple
X U’], YU'], V4 [K]) occurring earlier in the list, we set to zero one of the other blocks (say
‘Y[J]),' and thus eliminate this triple. (If each of X U], Y[J], zZ Lk is shared with previous triples,
we will end up eliminating at least two triples by zeroing one block of variables.) |

For a fixed element b € B, the expected number of triples in the list, before pruning, is
3N -2
(N,N,N)M :

Here\( N%V N) represents the number of compatible triples (X U], Y[J], zZ [K]) and the M 2 fe-
presents the probability of the (independent) events by(/) = b and by(/) = b. (If both hold, then
b#(K) = b follows.) That is, for fixed blocks XU], Y[n, and fixed integer bmod M, if we ran-

domize the values wg, wy, .. , W3N, then

1 -2

Prob{by(l) = byl/) = b} = Prob{by(l) = ByProb{by) = b) = Yy T Yoy

since the sums by(/) and by(J) involve different random variables. The expected number of
compatible triples (X [l], Y[J], VA [KJ) with by(l) = b)) = bAK) = b is the sum of these proba-
bilities (M _2) over the ( N’B}i,v N) possible triples. We do not need independence among triples,
since the expected value of a sum of random variables is the sum of their expected values, re-

gardless of independence.
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3N 3
H=(]HM (N’N,N/
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Again ( N?,{Z N) counts the compatible .triples (X U], Y[J],Z[K]). The binomial coefficient
( ]3’ N) —1 counts the blocks ¥’} compatible with Z LK] (other than Y[n itself). The factor
1/2°  eliminates duplicate entries (0.8 [’], Y[n, z [K]), X [I'], Y[JI], Z [K])) and
@9, YU ZIKY - Ty Z2UKY) The factor M7 is the probability of the independent
events b(K) = b, by(/) = b, by{J') = b. They are independent even if indices are equal (J' =),

because of the presence of the random variable wg.

~

The expected number of pairs of triples sharing YU], or sharing X U], is the same. -

Suppose we eliminate a block (Y [J]) because of a pair of triples
@ty 20 Uy ZIKD) haring a Z-block. 1f L triples (not yet eliminated)
share this Y-block, then setting YU] to zero eliminates these L triples, while eliminating at least

L +1 pairs, namely all those sharing YU], and at least the pair sharing ZUG. Since

2
12' + 12 L, we eliminate at least as many pairs as triples. Thus:

Lemma. The expected number of triples remaining on each list, after pruning, is at least

N\, .2 N N 3
(N,N,N)M - (3/2)<N,N,N)|:<N,N) - IJM

3N 2 @
= (1/4) (N,N,N)M—— .
The expected number of triples remaining on all lists, after pruning, is at least
: 3N\, -2 )
¢ H= (/M ( NN, N)M . ®)

This expectation H is an average over the choices of wj There is a choice of w; which achieves

at least H; fix such a choice. »
o Our algorithm computes at least /{ block scalar products X U]Y [J]Z [K], The fine structure

of each block scalar product is in fact a matrix product of size
N N N
<49 .9 ,9 >,
and all the variables are disjoint (by the Salem-Spencer property). From the z-theorem we obtain

o<y @+ > (1/4)M’(N%IN>M—2q3NTN.

Use Stirling’s approximation to obtain
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4+ 2)3N > cN_1/2+€33N2_2N(1+£)q3N1N,

. . . . . th .
where c is a constant. Letting £ go to zero and N to infinity, and taking N roots, we obtain

@+2° 2312

3
wS3‘rS10gq<w—>.

Setting g = 8 we obtain

o < 1ogg(4000/27) < 2.40364. ' ©)

7. New Construction: Complicated Version.

In this section and the sequel, we will improve the exponent to 2.388 and then 2.376, by using the
same ideas as in the previous section, on more complicated starting algorithms.

Begin with the basic algorithm:
Zl [°]+1x[1])(y[03+,1y[1])( [0]+lz[1])

(e 2 (0 4 2 (4 25 )

TR T 1 D) 0
q

_Z(x[O] [11, [1] [1] [0] [1]+x[1]yl[1] [0])

[0] [0] (2]

IOINORE RO RO NOTOIPYY
The subscripts now form three classes: {0}, {g+ 1}, and {I, 2; .-+ 9}, which will again be denoted
i. Again the subscripts uniquely determine the superscripts (block indices).

Take the 3N"" power of this construction. Set L = [BN] (greatest integer), where  will be
determined later. Set to zero all blocks of variables except those whose superscripts contain ex-
actly N + L indices of 0, 2N — 2L indices of 1, and L indices of 2.

Set

N+L \( 2N-2L
M= 2(L,L,N - L> (N ~LN- L) +1

Let I; pick out the j'h inde
any block of variables witl

in the Salem-Spencer s

by(D) = byl) = bAK) = b,
For a given block Z (X

N+L 2N
LLN—LJ\N-,

since the N + L indices of
(2in/, 0in J),and N— L
to N — L instances of (1 i
of 2in K all have (0 in /, (
as before and leaves a con:s

We have M’ lists, each
31
(1/4) (L,L,L,N L

entries, all having indepen
instances of (2,0,0) as (x -
Each entry corresponds to

< gNL N -

Thus our equation is

@ +2°N = (1M

SCN(—1+3E/2)[7
B

Letting ¢ tend to zero and

g+2’> 5
g1+ 4

For ¢=6, § = 0.048, we

o < 31 < 2.38719.
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Let I; pick out the jth index of [ as before. Define bx(/), by(J), b(K) as before, and set to zero
any block of variables with by(I) (resp. by{J), b(K)) not in the Salem-Spencer set. For each b
in the Salem-Spencer set, make a list of triples (X U], Y[J], V4 [K]) of blocks, with
by(l} = by{J) = bz K) = b, and eliminate entries with duplicated blocks.

For a given block Z[lq, the number of pairs of blocks (X U], Y[n) compatible with Z[K] is

N+L 2N =2L
LIN—-LJ\N—-LN-L)

since the N + L indices of 0 in K correspond to L instances of (0in /, 2in J), L instances of
(2in 1, 0in J), and N — L instances of (1 in /, 1 in J); the 2N — 2L indices of 1 in K correspond
to N — L instances of (1 in /, 0in J) and N — L instances of (0 in /, 1 in J); and the L instances
of 2in K all have (0 in /, 0 in J). Since M is twice this size, the elimination of duplicates proceeds
as before and leaves a constant fraction of the triples intact.

We have M’ lists, each with (on average) at least
3N -2.
(114 <L,L,L,N ~LN-LN- L)M

entries, all having independent variables. (The multinomial coefficient indicates that there are L
instances of (2,0,0) as (x —; y - z- )indices, L of (0,2,0), L of (0,0,2), N— L of (1,1,0), etc.).
Each entry corresponds to a matrix product of sizc

<ML NL N-L

Thus our equation is

N ) 3N —2 3N—L)r
(g+27 = (1/HM (L,L,L,N ~LN=LN- L)M q )
(—l+3s/2)|: 27 ' }N 3IN(1=B)1y eN
~cN — q .
Bl p' - 2p* 2

Letting ¢ tend to zero and N to infinity, and taking N th roots, we get

27 30-p)

3
g+2)y = q
[+65 _ 25228

8P+ p)

For g =6, = 0.048, we find

w < 37t < 2.38719.

1
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8. Coupling the Weights

So far we have assumed that the weights w; are independent random variables. In this section

we will make them dependent: essentially Waj_| =Wy One consequenée is that the randomness
arguments need to be redone. The advantage is that we are able to gain higher estimates of the
“value” of various pieces.

It will be convenient to have a notion of the “value” of a trilinear form (or trilinear algorithm).
We define the “value” ¥V, of a trilinear form A in terms of the matrix products it can simulate.
Suppose the matrix exponent is @ = 3. Suppose that a tensor power of 4 can be reduced (by

substitution of variables) to the approximate computation of several matrix products:

A®Ni (—D<mh,nh,ph>. -
h

Then we say
1
Vo) 2 (Z(mhnmhf) .
h

We also symmetrize: if = is the cyclic permutation of the variables x,p,z in a trilinear form A, then

we define
V() = (V(A@rA@x ) .

It is immediate that “value” is super-multiplicative:

VAA®B) = V,(4) x V(B),

where “A®B" indicates the tensor product. “Value” is also super-additive:

VAA®B) 2 V,(A) + V(B),

where “A®B” indicates that 4 and B share no variables. If 4 reduces to B then

V(A) = V,(B).

For those familiar with Strassen’s paper (1986), this notion of value V_ is intermediate between

Strassen’s O and his R.

We will use this notion to analyze a more complicated version of our present construction,

which will yield the exponent of 2.376.

We start with the tensor

variables):
2 q (0]
q+2° = > (g
(k=1
+X
! [2]
+ Z(XO'q
i=1
+x
+x
! (2]
+ Z ( xq+
k=1
+ x
+ X
(4.
+ (xq+
+ X
+ X

We have divided the (¢ + 2
() 0
X =

Xt - LI
PONFNC N

+1,00 Xk s
3 3 3
A= G a6
4 4
X[ 1_ {X¢£+]1,q+1}~

Here i,k denote indices that
[1,0]

have been 2-vectors: x;
Notice that if X/1yL]

I+J+K=4

The trilinear form can be w
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We start with the tensor square of Construction (10), but we relabel the superscripts (regroup

variables):

(17 [23 1]

[2] [0] [2]

q
2 01 [2]_[2 17 [11 [2 11 [11_[2
(¢+2" - Z (x(g,o]yigklzigk] + x(g.k]oViFO ]ZiFk] +X0kVikz0" + xiFO]y(g,k]ziEk] T Xk Vo0 %k t+

ik=1
21 [11.[1 1] [2] [1 21 11 21 [2]. [0
xi[ ]y[; ]Zil.: ] l xiF ]yi[ ]5[ ] ' x,[ ]yiF ]Z[,] xiF ]ylF ]Z[,])

q
2 1.0 01 [3]1 [1 0] [11_[3
+ Z( x(g,q]+ 1}’50 ]ZE()] + x(;,()]yigq;li- 1 ZiFo] + x&o]y.-’fo ]Zinll +
i=1 -

3] [01[1 13.[2] 0 1] [0]_[3
+ xinJ+ 1y5.o]z£o] + x.'Fo ]}’(g,q]+ 1 ZiFOJ + xx’FO ]J’(g,olzigqll +

3 11 [0 11.[3 0 11 [1].[2
+ x,-FqufFo ]Z(g,o] + xiFO]yquletg,ol + xiFO ]yil,:OJZ(E.q]+l )

q
2 17 [t 3 0] [t 3 1]_[o0
+ Z ( xt§+]l .ﬂVtg.k]Zfl):,k] + x<5+]1 .ky(g.O]Z(g.k] + x¢§+]1 ,onlg.k]zﬂ[,()] +
k=1

01 (31 N 11121 [ 17 [31 _[o
+ x&,o]y§+]1 ,kztg,k] + x&,k]ygﬂl ,ozth(] + x&.k]ygﬂn ,kz(g.ol +

01 [11.[3 13 [0]_[3 17 [11.[2
+ x(g,o]y(g,k]zqtgl &t x(g.k]y(g.ﬂ]zq[+]] &t x(g,k]yg,k]2§+]1 0 )

4 0]_[0 2 2 0 2 0] [2
+ ( xq[+]1 g+ ly(g.O]z(g,O] + x§+]1 .Oy(g,q]+ 1 Ztg,()] + X«§+]1 ‘,Oytg.ojz('):.q]+l +

2 2 0 0] [4 (] o] 2 2
+ JC(5,q]+1yq[+]1 .025,0] + x&o]y§+]1 .q+12(§.0] + xo[,o]y§+]1 ,Oz(g,q]+l +

{21 [0] [2] {01 [2] [2] [0} [0]_[4]
+ X0,g+170,0 Zg+1,0 + X0.070,4+1%5+1,0 + X0,070,0 Zg+1,g+1 )

We have divided the (g + 2)2 x-variables into five blocks:

X o)
LRI I e)

P X0 K
X {xﬁ]l 0 xfzf], xg.?ﬂ }
Xl {xﬁ]l Jo XEL}
D O et )

(1n

Here ik denote indices that range from 1 to ¢. In the original tensor square, the superscripts would

[1.0]

have been 2-vectors: x;g" ~- We have added the two elements to form a single superscript: x,-%].

Notice that if X U]Y [J]Z [K] appears in the trilinear form, then

[+J+K=A4.

The trilinear form can be written in block form as:
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uMe )
I+J+K=4

There are four types of terms in this trilinear form.

0 4 0] [0] [4
ONMOPIC TN OO o B @

This is a matrix product of sizc < 1,1,1 >, whose “value” is 1. There are three such terms:
X[OJY[O]ZH], X[OJY[4]Z[0], X[4] Y[U]Z[O]_

0] [11.,[3 0] [11.03 0] [1].[3
XUy 1701 Z [O]Jﬁ[o] [q]+1+zx[o]y§k]zg+]1k b

i=1

This is a matrix product of size < 1,1,2¢ > (i.e. a scalar x('):%] times the vector <yl[0],y[ ] >). Its

“value” is (2¢). There are six such terms: X[O]YU]ZD], X[O]YD]Z[I],

fIIy000,03] (13,031,000 4031001001 (31,011,000

0,0Yg+1,0%0,¢+1 1 X0,050 q+l X0,0Vik %

9
101,021,023 _ [0] (21 [2] (o] [2] [2] 0+ Z fo] [21 [13] ©
k=1

i,

This is another matrix product, of size < 1,1, q2 +2 >, with “value” (q2 +2)T. There are three

such terms: X[O] Y[z]Z [2], X[ZJ Y[O]Z[Z], X[Z] Y[z]Z [0].

1 1 2 1 i 2 1 2
LUy, 02] ,[, LU Zx(gkj},“] I
= k=1 (d)
N Z QLI Z NORGEC]
ik=1 . iJk=1 .

There are three such terms: XUJ Y[l]Z[z], X[]]Y[z]ZD], XD]Y[]]Z[,]. In the lemma at the

end of this section, we will find that, if ¢>3, the “value” of this term is at least

9@ +2)

23 7 13

Take the N tensor
ap 0<¢€ <4, be positive

4

4
Z ap=1, Z fu
£=0
Let A, be integer approxim:
4 4
Yap=N, e
£=0 =0

Retain only those blocks of

#UlL<j<N, ;=1

setting the others to zero, w
Let M’ be the number
We have

]

0<

{ng,n} 1—

£4+m+

MII =

where {np,, ,} range over p

Z"f,m,n =4
m,n

Z"{’,m,n =Ay
Zn

Z"f,m,n =4
£m

and the only nonzero valu

in (12) is maximized at

~
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Take the N tensor power of Construction (11), where N is divisible by 3. Let
ap, 0<¢ <4, be positive real numbers (determined below) such that

4

4
Yap=1, > tap=ap3.

=0 =0

Let A, be integer approximations to agN such that

4
> =N, D edp=angs.
£=0 =0

Retain only those blocks of variables (X U], Y[J], VA [K]) such that

#UIL<j<N, L=¢}=4,,

. . Jgh . (e
setting the others to zero, where as before I; picks out the jl index position.

Let M be the number of nonzero triples (XU], Y[J], Z[K]) containing a given block XU].

We have
i
[T 22
M= 0<¢£<4 , (12)
{"{,m,n} 1—1 nf.m.n!
f+m+n=4
where {n¢ m,n} Tange over partitions of N such that

Z"f,m,n =dy
mn
Z"(’.m,n =4,
fn
Z”f.m,n =4,
‘m

and the only nonzero values of Mg mp OCCUr With € +m+n=4, 0<¢,mn<4. The simmand

in (12) is maximized at
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Negmon = Yémn

A
70,0,4 = Y0,40 = ¥400=9

A
Y0,1,3 = 70,31 =¥1,83= Y1307 ¥30,1 7 ¥310% b

I
7022=7Y202=7220=¢
A
N12=121=r211=9 3
A
Ag=2a+2b +¢
A A
Ay =2b+2d
A A
A2 =2c+d
A
Ay=2b
Ag=a.

In later calculations we will approximate M'’ by its largest term, times a polynomial NPin N.
Set M = 2M"" + 1. Construct the Salem-Spencer set. Choose random weights w;,, 0<j<N.

Compute the hash as before, with a minor change (4 replacing 2) in the definition on the z-indices:

N
by = ) [w;mod M

=1

N
by{y=wy + Z‘/JWJ mod M
j=1

N
bAK) = [wo +> - Kj)wj:|/2 mod M.

j=1

Retain only those variables mapping into B, setting others to zero. As before, a nonzero triple
X[I] YU‘]Z[K:| remaining in the trilinear form will have by(l) = by(J)=bzK) e B.

After the usual pruning, we have approximatcly

N
Ay, Ay, A3, A3, A4

triples of blocks (X U], YU], Z [lq) remaining. For a good portion of these triples (at least a

fraction N7 of the total) the N indices j-——- 1,2,...,N will contéjn about yp ., instances of
X 4 Y[m]Z ["}. So the value of each triple of blocks is about

07912 1 + 2
= 29%(¢* +2° 14

Thus our auxiliary equation it
2N -p
(g+2" =N ( Ag, £

AN

We want to choose a, b, ¢,
A A

34 +6b +3¢+3d =)

and with A, defined by (13).
In fact, letting a=aN,

we get

2
(4+2 = -
(2a + 2b +
We wish to minimize t with
3G+ 6b +3c+3d=
ab,c,d>0
g=3, gel.

We find that

I
=

.000233

012506
.102546

.205542

<

I
o

[~ WR TR~ R
o
S

gives an exponent of

o < 31 < 2.375477.
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. N
113,34

012N 1@ + 27 1226 + ')

A A A
6th, 2 3 31, 3 d
=29 @+ 1497 g + 2T

Thus our auxiliary equation is

IN_ - N 61b, 2 310, 31 3 a
@+ =N ”(AO, Ay Ay As, A4)(2q) RECAES M MO ) i

A Fa)
We want to choose 3, b, 3, d to maximize the right-hand side, subject to
A A A A
3a+6b+3¢+3d=N,

and with A, defined by (13).
In fact, letting a= an, ll;z bN, ¢ = chN, 2: dN, 'letting N grow and taking Nth roots,

we get

6th, 2 . 315., 31, 3 d
29) " (q"+2) " [4¢" (q" + )]
Qa+2b+2 2 Y E0p 4 ogy® Tz 4 ¥+

2
(9+2) = —.
26 @°

We wish to minimize = with respect to @, b, &, d, g, subject to

3a+6b+3c+3d=1
ab,e,d>0
923, gqeZ.

We find that

= 0.000233

0.012506
0.102546

.205542

gives an exponent of

w < 31 < 2.375477.
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DISCUSSION

Here we essentially set Wy 1= 295, when we grouped together into one block the variables
xi&l,], xfl]:’lk], and similar groupings for the other blocks. Other linear dependences among the w;

remain to be investigated, including:

W3 2 =W3; | = W3

or

PROOF OF THE LEMMA

Lemma. Assume q = 3. The “value” V, of the trilinear form

q q

[1,0] [1.,0]_[0.2] [6,11 [0,17_[2.0]
X0 V0 AWg+1t L X0k Yok Zg+10t
i=1 k=1

q q
{1,0] [0,1] [1,1] {0,1] [1,0] [1.1]

+ Z X0 Yok Gkt Z X0k Vi0 Zik

ik=1 ik=1

is at least 22/3q1(q37 + 2)1/3.

Note: The superscripts are different from those in the application of this lemma, but they are
still uniquely determined by the subscripts.

Proof. Take the 2N th tensor power. Retain only thése X-blocks with exactly N indices of
[1,0] and N of [0,1]. Retain only those Y-blocks with exactly N indices of [1,0] and N of [0,1].
Retain those Z-blocks with exactly L indices of [2,0], exactly L of [0,2], and 2G = 2N — 2L of
[1,1], where

L=[3—12-—N] and G=N-—1L.
q +2

The number of X-blocks is <2]c\’) The number of nonzero triples (X ] Y[J]Z [K]) containing
a given X-block is

(5

The same numbers hold for
Set

L+ G\2

m=4("

Construct a Salem-Spencer
B. Eliminate instances wher
ples. '

2N
There are (L,L,ZG) Z

Counting only those with b
2G\,,-1_ 1 [2G)
(=55,

A calculation shows that H
This is, in Strassen’s ter
consisting of matrix produc
2L

In short, we have ( L

The auxiliary equation is:

2N 2N
vV, (L,L,20>['

2N
O 2\
LLLL(ZG)Z
3N
3N (2N)

Vi 6
L7QG)°N
2N 3Nz(N

~2""gq (L)
Selecting
L __ 2
L+G 431+2

maximizes this estimate at
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The same numbers hold for” ¥-blocks, but not Z-blocks; see below.
Set

L+GY2
m=a(tt Y

Construct a Salem-Spencer set B, define a hash as before, and set to zero blocks not hashing into
B. Eliminate instances where an X-block or a Y-block is shared among two or more nonzero tri-
ples.

There are L,‘Iz,},\IIZG Z-blocks, and to each there are initially (ZGG ) triples (X ] Y[J]Z [K])‘
Counting only those with by{/) = by{/) = b(K) we have about

(=401

A calculation shows that H > > 1if G/L > 3.41.

H

This is, in Strassen’s terminology, a C-tensor over < 1, H,1 >, where C is the class of tensors

consisting of matrix products < m,np > with mnp = (42)2(‘( )2L 4G+2L.

In short, we have (21%2-22(?) disjoint objects, each of which is a C-tensor over < 1,H,1 > .

The auxiliary equation is:

VTZN’: (Lil\;a)[ ((2:)) ]2/3 FA0+2Ly

2N 26
- 2N [ (26) GoL GOLT ]2/3q(4c+21,)1

LAt e6®C | 6% anPaV
N 2N+L, N
R C.\) (6G+3L)yr _ 2 N 3Nt 3Gt
T Lr6) NN [ L6
222N43N1< )2 “q 31)('
Selecting
3t
L _ 2 G -_49
L+G q31+2 L+G q3T+2

maximizes this estimate at
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22Nq3N‘t(q3t + 2)N

and, taking 3N th roots with N large,

2/3

V.2 234 + 2",

Finally, the estimate

G q3'r
T = T > 341

is ensured if ¢ > 3, since 37 > 2.

9. Related schemes

We developed a few other techniques on the way to the present paper. While these did not lead

to a lower matrix exponent, they may be of interest when applied some other starting algorithm.
ASYMMETRIC VERSION

The first technique we present is an asymmetric version of the technique presented in the
previous two sections. We start with an asymmetric basic algorithm, with a block structure and
a fine structure. After a suitable tensor power, instead of pulling out several block scalar products
(whose fine structure is that of matrix products), we will instead pull out several block vector
products. In Strassen’s terminology, we will be developing several C-tensors over < 1,/{,1 > for
some large value of /1. This is made possible by the Salem-Spencer Theorem, as before. We then
use Strassen’s machinery to estimate the value of these C-tensors over < 1,H,1 >.

We illustrate with a basic algorithm closely related to Strassen’s. It uses ¢ + 1 multiplications.

q
S ™+ o+ P + @ hod™eld - A
=]

q
= > e B LI 0 + o,

i=1

(14)

Later we will determine real numbers «, § >0 with 2« + 8 =1. Choose ¢ small and N “large
enough”. Set

L=[«N], G=N-2

Construct a Salem-Spencer

Take the N " yensor pov
having exactly G + L indice
and 2L indices of 1. Select
and set to zero any variabl

(X[r], Y[J],‘Z[KJ) whose p
bx(D) = by() = b(K)

Any X-block X is com
correspond to indices of 1 1

dices of 2 in K, .and L 1

bAK) = bx(l) is about 1/2
Y-block. Similarly,
(X[I], Y[J], Z[lq),(X[II], ]

is involved in at most one !
We do not make such a

in a large number of triples

(X[]h], Y[Jh], Z[K]),

For a given Z-block, the e
2L\,
w= (P

As before, given two blo

by(l) = bz(K) and by(I") =

in the number of triples (b
0’2 = (%)(M_l —A
Then Chebyshev’s inequal;

Prob(#blocks < p —
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L=[aN], G=N-2L, M=2(L'ZG)+1.

Construct a Salem-Spencer set B using this value of M.

Take the N tensor power of Construction (10). Set to zero all blocks except: X - or Y-blocks
having exactly G + L indices of 0 and L indices of 1, and Z-blocks having exactly G indices of 2
and 2L indices of 1. Select random integers wg, wy, ..., wy mod M, compute the hash as before,
and set to zero any variable not hashing to an element of B. Then any nonzero triple of blocks

7yl

, Z[K]) whose product appears in the construction has, as before,
bx(l) = byld) = bz(K) € B.

b G) Z-blocks Zy: the L indices of 1in / all

correspond to indices of 1 in K, while of the G + L indices of 0-in I, exactly G correspond to in-

Any X-block X; is compatible with exactly (

dices of 2 in K, and L to indices of 1. Thus the expected number of Z-blocks such that
bAK)=bx(I) is about 1/2. If there are more than two such Z-blocks, zero a corresponding
Y-block. Similarly, if a Y-block is involved in at least two triples
(XU], YU], Z[K]),(XU,], Y[n, Z[K']), we zero one of the X-blocks. Thus each X- or Y-block
is involved in at most one triple (XU], Y[J], Z[K]) after this pruning.

We do not make such a requirement on the Z-blocks; we allow each Z;block to be involved

in a large number of triples:

xUn yUnl UKL oy

For a given Z-block, the expected number of such triples (before pruning) is
2L\, 1
we ("

As before, given two blocks X U], X 1] compatible with a given block Zg, the events that
by(I) = b(K) and by(I') = b(K) are (pairwisc) indcpe}ldcm, so that we can estimate the variance

in the number of triples (before pruning) as

ol = (ZLL)(M“ -M73

Then Chebyshev’s inequality can be applied to say that

Prob(#blocks < p — 36) < —l% .
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For a given block Z[K] with bzK)e B, the probability of at least u— 36 triples
(X[I"‘], YU"], Z[K]) before pruning (i.e. by(l}) = by(Jy) = bz(K)) is at least 9/10. Pruning elim-
inates only a constant fraction of the triples. Together with the observation that ¢ < < u, we

obtain:

Lemma: There are constants ¢j, ¢y such that, averaging over the choice of Wi, the expécled

number of blocks Z LK with at least ¢) (2Z’>M ~1 associated triples (X [1"], Y[J”], VA [KJ) remaining

after pruning, is at least cM'M —1‘(21‘ + G
That is, we will have at least coM'M —1<2Lg G) independent objects, each of which is a

2L
L

. 2L
<mnp>withmnp=gq~".

C-tensor over < 1, Cl( )M —], 1>, where C is the class of matrix multiplication problems

Applying Strassen’s formula, we get

o<y, @+ )Y = emm”! <2Lg G)[q(zlL)M“]z/ 34

Letting ¢ shrink and N grow, and taking Nlh roots,

a“ﬁﬂ ]2/3 2t
L A L

=2a ,—fB] J2a
w<3r, @+D=2Q2x) T [2
(«+p) 7

(As a consistency check, note that the limiting case, «=0.5, =0, recovers Strassen’s formula

2/3
/41

g+1=2 , by disallowing terms containing zq+l.) Selecting ¢ = 4 and « = 0.485, we optimize

w at 2.4602. This exponent is not as good as that obtained in the previous section, but the

techniques exposed here may be more widely applicable.
“STRASSEN SQUARED”

Another possibility is to iterate Strassen’s construction. Where Strassen develops a C-tensor
over < 1,k,1 >, where C is a class of matrix products < m,n,p > for a fixed value of mnp, we in-
stead develop a D-tensor over < 1,1,k >, where D is a class of C-tensors over < I, k’,1>, with
C again a class of matrix products. »

To illustrate, start with Construction (5) from Section 5, using ¢ + 2 multiplications to obtain

. .
> vz + xyoz + xpiz) + O0).

=1

Replace 1 by 22 throughc

multiplications yield

9 9
Z Z(x().[lyijzij +x

i=lj=1

+x; 90,720 + X,

Set xp o to 0. Multiply x;,

x0,0Vi %, i Y044,

We are left with

9 9
Z z [(xO,jyi,Ozi,j +

i=1j=1

The first parenthesized ex
of matrix products < m,n
denote the class of C-ter
pressions share x-variable

machinery, we can write:

<31, (q+2)2=

3
w Slo&(—@—

Setting ¢ =19, we get 0 <

in Section 6, where the cc

We are applying the 7-the
same shape. Examining
sources of inefficiency for

we can eliminate the use
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Replace 1 by 2 throughout. Take the tensor product of this construction with itself; (g+ 2)2

multiplications yield
7 9
Z Z(xﬂ.(lyijzi,i + X007, + X0 pi70 + Xi,000,% + Xi¥0,0%,
i=lj=1

: 2
+ X 20,20 + X020, + % pioZe; + Xi 20,0 + O(A0).
Set xg g to 0. Multiply x; by 4, and multiply yg g and 7 g by 2" This kills three terms:

X0,00i% 0 XiY04%4,00  XiinZ,

We are left with

9 49

Z Z[(xoﬂi,ozi,j + X 000,75 + XipPo0%,) + (X0 pi;20 + Xiwi20 + X i 20,01 + O(A).

i=1j=1
The first parenthesized expression has the form of a C-tensor over < 1,3,1>, where C is the class
of matrix products < m,np > with mnp = q2; the second is a C-tensor over <3,1,1>. Let D.
denote the class of C-tensors over < m', ', p' > with m'n’'p’ = 3. The two parenthesized ex-
pressions share x-variables, and they fit together as a D-tensor over <1,1,2>. By Strassen’s

machinery, we can write:

w<3r, (g+2)7 =223
3
< 10gq< laxy )

Setting ¢ =9, we get o <logg(l 13/6) < 2.459. Again, this is not as profitable as the development
in Section 6, where the corresponding equation was

3
(g+2)
w Slo&(—ﬁ——)

10. Remarks

We are applying the z-theorem in a special case, namely when all the matrix products are of the
same shape. Examining the proof of the t-theorem, one finds that this eliminates some of the
sources of inefficiency for matrices of moderate size. Also, by altering the construction slightly,

we can eliminate the use of 4, another contributor to the inefficiency inherent in the t-theorem.
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Nonetheless, the large values of M dictated by the Salem-Spencer theorem still make the present
algorithm wildly impractical for any conceivable applications.

A remarkable feature of the present approach is that we can use basic constructions in which
the number of x-variables is equal to the number of multiplications, as is the number of y- or
z-variables. (In Section 7, this number is g + 2.) Before Strassen’s 1986 paper, this was not pos-
sible. Coppersmith and Winograd (1982) had shown that for any basic algorithm (approximately)
computing (several) matrix products, the number of multiplications had to strictly exceed the
number of x -variables (or else y- or z-variables), except in trivial cases. ‘This had led to the ac-
celeration techniques of Coppersmith and Winograd (1982), but had also implied that one could
never achieve w =2 by starting with a fixed, finite-size basic algorithm. But now Strassen’s
techniques have removed the necessity of éiarting with a matrix product, and, coupled with the
techniques of the present paper, allow the hope of someday achieving » = 2. (See the following
section.)

An open question is a possible analogue of the Salem-Spencer theorem in characteristic two:
For a{bitrary £>0 and large enough N, do there exist subsets 4, B, C of (ZZ)N of size

N 1—¢

A =|Bl=1Cl=(2") ,such that each clement ae A, b e B, or c e Cis involved in'exactly one

relation of the form

a+b+c=0?

That is,

VaeA 3beB, ceCc a+b+c=0
VbeB Jlae A, ceC: a+b+c=0
Vce C IlaeAd, beB: a+b+c=0

With such a construction, the present techniques would become applicable to a wider class of
starting algorithms.  For example, our first algorithm involved three block products,
X[O]Y[l]Z[l], X[I]Y[O]Z[]], X[l])'[l]Z[O], so that if X[UY[J]Z[K] appeared we knew
I+J+ K=2. K in addition the block product X[OJY[O]Z[O] appeared, our condition on the

indices would become [+ J+ K=0eZ,. A characteristic-two version of the Salem-Spencer

theorem would become useful in that situation.

.

In closing, we sketch th
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11. Can We Achieve =27

In closing, we sketch the relation between a hypothetical combinatorial construction and the

. elusive

=~

Definition. An Abelian group G (with at least two elements) and a subset S of G satisfy the
no three disjoint equivoluminous subsets property if: whenever Ty, T,, T3 are three disjoint subsets

of S, not all empty, they cannot all have the same sum in G:

Yer Yo Yer Yo

se Ty seT), seTy seTy

Assume for now that we can find a sequence of pairs G,§ with the no three disjoint
equivoluminous subscts property, such that (log,|G|)/]S| approaches 0.
If the trilinear form

Xpy12 + Xgya2) + X1¥p22 + Xp¥pz) + X1¥22p + X013

had border rank 3, then by the techniques of Chapter 6 (easy case) with ¢ = 2, we could prove
o = 2. Unfortunately, this form has border rank 4. But if the n‘h tensor power of this form had
border rank 3n+o("), the same techniques would still yield w = 2. This is our goal.

We will use a Fourier transform to get a related form to have rank 3. This related form has
extra terms, which we must canccl somehow. We will multiply variables by roots of unity, take
a large tensor power, and take a Fourer transform again, and use the no three disjoint
equivoluminous subscts property to arrange the cancellation of the unwanted terms. This will

show that the nth tensor power has rank 3"+0(").

Then we will apply the techniques from this
paper to derive o = 2, given the existence of (G,S) with (log,|G|)/|S| approaching 0.

Let S={s],5,..,5,} and G satisfy the no three disjoint equivoluminous subsets property,
with & = (log,|GI)/IS].

Let ¥ and ¢ be two independent characters on G. Select i from {1,2,..,n}. Evaluate the
characters x(s), ¥/(s;), which are complex numbers of magnitude 1. Select r = r(y, ¥, 5;) to satisfy
P = xS (s).

Evaluate the following sum, where w; ranges over the three complex cube roots of 1:
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UiEZ % (xo + x(x,-)ﬂlrwfxl + r_]w,-zxz) x

;
-1 2
x (s yo + w1 + Yishraiyy) x

-1 -1 2
X (rzﬂ + Y(s) r o wzp + ‘Dizz)

We see that this has trilinear rank at most 3. By multiplying by powers of w; and summing over
w;, we are taking a three-point Fourier transform, and the terms which survive in the product are

those for which the exponent of w; is divisible by 3:
Ui = (xr122 + X022 + X10022 + X2)02) + X027 + X120) +
-1, —1
+ (x(spxgrozo) + (x(s) ¥(s) x1121) + (P (s)x222)-
We may think of this as

U; = (Good)) + x(s)Bad1; + x(s)” ¥ (s ' Bad2; + ¥(s)Bad3,

where Good, is the sum ot the first six terms (which we want), and Bad¢; are the unwanted terms.

Now take the tensor product of the various Uy

1<i<n i

® U; = ®((Good) + x(s)Badl; + x(s)” ' ¥(s) ' Bad2; + y(sBad; ).

This is the sum of 4" terms, each a tensor product of trilinear forms of the sort Good; or Bad/.

The first term,

GOOD = @Good;
i

is the one we want. For each of the other 4" —1 terms, for £=1, 2,3, let T be the set of 5; cor-
responding to those indices i for which Bad¢; is included in the product. The coefficient of this

term is

< I1 x(xi)) ( []x™ ¢<s,~)“>' ( I1 ¢(s.-))
ie Ty ie Ty ie Ty

=X<Zs,._ Zs,) x ./,<— Y s+ Zs,-).

ie T} ie Ty ie Ty ie Ty

Since the T} are disjoint and not all empty, the no three disjoint equivoluminous subsets property

implies that either the argumnent of x or the argument of ¢ is not the identity element of G.

Now sum over the variou
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Now sum over the various choices of y and . The “GOOD” term will accumulate (and get
multiplied by |G|2, which we can deal with), while all the other terms will vanish, because we are
summing over all characters y (or ) at an element of G other than the identity.

This shows that the trilinear rank of

® Good; = @ (xpn122 + Xg¥22) +X13p22 + X2 + X1¥27 + X2V12)

1<i<n I<i<n -
is no more than |G|23".

Note here that, if necessary, we can replace G by a Cartesian product of G with itself N times,
and replace S by N copies of S, one in each copy of G. A typical element of the large S will be
,...,0, 54, 0,...,0). Then &= (logy|G|)/|S| remains unchanged, and the no three disjoint
equivoluminous subsets property is inherited.

Following the arguments from Chapter 6, we would then obtain, by analogy to Equation (9),

2%33 > 27/4)2%"

6c (15)
w=3r<logy(2" x4)=2+ 6e.

With the assumption that ¢ = (log,|G|)/|S| approaches 0, this would yield » = 2.
We have not been able to determine whether there exist such pairs (G,S) with (log;|G))/|S|

approaching 0.
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