THE SIMPLE GROUP J_{4}
byDAVID JOHII BENSONResearch Scholar of
Trinity College Cambridge
A Dissertation
submitted for the Degree of
Doctor of Philosophy
at the
University of Cambridgre
England
April 1981

PREFACE

I declare that this dissertation is my own original work except where mention is made to the contrary in the text. All work done in collaboration with others is explicitely declared on the next page. Moreover I declare that no substantially similar work is being or has been submitted for any degree, dioloma or other qualification at any other University.

I would like to thank my supervisor Professor J.G.Thompson for his help and encouragement; also Dr. J.H.Conway for many interesting conversations.

My thanks are also due to the Science Research Council, without whose financial support I could not have undertaken this research, and Trinity College, Cambridge, who bestowed upon me the privileges and emoluments of a research scholar.

Declaration of Originality

This dissertation is partly work done in collabacation with S.Norton, R.Parker, J.Conway and J.Thackray, and partly work done on my own. Attributions are as follows:

Chapter 1 : Only the last section of this is my own work. The rest is due to R.T.Curtis and J.Conway.

Chapter 2 : This is mainly due to J.Conway although Theorem 2.3 is my own.

Chapter 3 : This is mostly my own work.

Chapter 4 : The first three sections are my own work, while the last section is a description of a notation due to Conway.

Chapter 5 : This is entirely my own work.

Chapter 6 : This describes joint work of Norton, Parker, Conway, Thackray and myself culminating in the proof of the existence of the simple group J_{4}.

Chapter 7 : This is my own work.

Por further details see pages 4 to 6 of the
introduction.

Contents

0. Introduction 1
1. The MOG for M_{24} 7
Some Subgroups of M_{24} 9
Modules and Cohomology for M_{24} over $G F(2)$ 13
2. The Subgroup H of shape $2^{1+12} \cdot 3 M_{22} \cdot 2$ 16Classification of Vectors and Isotropicsubspaces in $\bar{E}=O_{2}(H) /\langle z\rangle$23
Notation for elements of H 26
3. The Subgroup M of shape $2^{11} \mathrm{M}_{24}$ 27
The Dictionary 31
Conjugacy Classes of Involution in M and their fusion in J_{4} 35
Conjugacy Classes of Involution in H and their fusion in J_{4} 37
4. The 'Pentad' Subgroup P of shape
$2^{3+12}\left(S_{5} \times I_{3}(2)\right)$ 41
The Centralizer of an Element of Order 7 42
The Centralizer of an Element of Order 5 43
The structure of $O_{2}(P)$ and notation for elements of P 44
5. The Subgroup I of shape $2^{10} \mathrm{I}_{5}(2)$ 49
CODA Larghetto :
The Smith-Ronan Diagram for J_{4} 58
6. The Constriction of J_{4} via the 112-dimensional
2-modular Representation \triangle61
Computer Techniques for ModularRepresentations of Finite Groups65
The Group Game; the Centralizer of an
Involution 70
The Actions of H, M, P and L on Δ;75
Two Generators for $G=\langle M, H\rangle$ 76
Splitting the Skew-square of Δ; the
Neighbourhood of a Vector 78
The Proof that G is Isomorphic to J_{4} 80
7. The Geometry of Δ; a Presentation for J_{4}
by Generators and Relators 83
One-functions and Nought-functions 85
The Last Relator; the Group \hat{G} 87
The Pentad; the M-orbit T of Trio cosets 93
The H-orbit Θ of Hexad cosets 95
The M-orbit S of Sextet cosets 97
The Action of I; the H-orbit Φ of
Big-Octad cosets 100
The H-orbit Ψ of Little-Octad cosets 106
The M-orbit Z of Sextet-line cosets 108
The H-orbit Δ of Duad cosets 111
The H-orbit Ξ of Big-Syntheme cosets 113
The remaining H-orbits Σ, Γ, X and Λ, and M-orbits F, N and L 114
Index of Notation 126
Appendices
A. The Character Table of J_{4} in Atlas Notetion 127
B. Two generators for J_{4} 129
C. Rank of $1+x$ for x a representative ofeach conjugacy class of element of J_{4} inthe 112 -dimensional representation over GF(2) 132
D. Some elements of J_{4} written in the notations for those of H, M, P and L in which they lie 134
E. Orbits of M, H and $D=M \cap H$ on right cosets of M in J_{4} 142
F. Generating sets for the stabilizers in M and H of representatives of the orbits of these groups on the cosets of M 144
G. The 2 -modular Character Tables of$M_{22}, M_{22} 2,3 M_{22}$ and $3 M_{22} 2$ in'Atlas' Notation159
References 160

Tables and Figures

Table	Page	Figure	Page
1	8	1	8
2	10	2	11
3	21	3	11
4	22	4	11
5	23	5	25
6	24	6	29
7	24	7	44
8	34	8	45
9	36-7	9	54
10	40	10	58
11	44	11	58
12	45	12	58
13	52	13	59
14	75	14	59
15	100	15	59
		16	63
		17	63

Chapter 0 Introduction

One of the most useful tools in Mathematics and Theoretical Physics is the study of an object from the point of view of its group of symmetries. Thus for example Galois in the last century proved the insolubility of the general quintic equation by radicals, by looking at the symmetry groups of field extensions; and more recently Lie Groups have played an enormous part in the theory of fundamental particles in Physics.
Groups can be broken down into basic building blocks called simple groups (under some basic assumptions satisfied by most interesting groups including all finite groups and all Lie groups) so that structure theory breaks down naturally into two parts :

1) What are the simple groups ?
2) How are they glued together to make an arbitrary group ?
There are many questions for which an answer to 1) and some induction argument gives the full answer, but 2) is in general more intractable than 1).
For compact Lie groups, the answers to both 1) and 2) were fully worked out earlier this century by Cartan, Weyl, etc.
For finite groups the situation is more complicated. Work on the classification of finite simple groups is still in progress, and a general description of the present state of the theory can be found in [1]. The second question is only tractable in restricted situations.

The currently known finite simple groups, which are thought to comprise at least most, if not all, of the possible ones, are :
(i) The Alternating Groups \mathcal{A}_{n} for $n \geqslant 5$
(ii) The Chevalley Groups Chev(p^{n})
(iii) The twisted Chevalley Groups $\mathbf{r}_{\text {Chev }}\left(\mathrm{p}^{\mathrm{n}}\right)$
(iv) 26 Sporadic Groups, not fitting into classes (i) - (iii)

Classes (ii) and (iii) are the finite analogues of the compact Lie groups.

Of the 26 Sporadic groups, at the beginning of
$\$ 980$ two had not been proven to exist, namely F_{1} the 'Monster' (so called because of its enormous size - it has $2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ elements) and Janko's fourth group J_{4}. However, in January Robert L. Griess announced that he had constructed the Monster and that his construction had been carried out entirely by hand, and in February, S.Norton, R.Parker, J.Conway, J.Thackray and I completed our proof of the existence of J_{4} using a computer (see [4]). It is the latter group which I wish to discuss in this dissertation.

In the process of trying to classify finite simple groups with a 'large' extraspecial 2-subgroup (an extraspecial p-subgroup E is large in G if $E=O_{p}\left(C_{G}\left(E^{\prime}\right)\right)$ and $\left.C_{G}(E) \leqslant E\right)$, Janko [2] conjectured the existence of a new sporadic group J_{4}. In particular, he proved that given a finite simple group G satisfying :

Eypothesis A

The centralizer of some involution $C_{G}(z)=H$ is of shape $2^{1+12} \cdot 3 \mathrm{M}_{22} \cdot 2$ with $\mathrm{O}_{2}(\mathrm{H})$ extraspecial and containing its centralizer, and modulo $\langle z\rangle$, H splits over $\mathrm{O}_{2}(\mathrm{H})$, with as complement the triple cover of M_{22} with the outer automorphism adjoined. (a group is of SHAPE A.B or $A B$ when it has a normal subgroup of shape A with quotient of shape B; names of groups are shapes; an elementary abelian group of order p^{n} has shape p^{n}; a special group whose centre has order p^{m} and index p^{n} has shape p^{m+n}, etc.)
then G satisfies a list of properties including :
(i) $|G|=2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
(11) A Sylow 2-subgroup of G possesses exactly one elementary abelian subgroup of order 2^{11} and the normalizer of such a subgroup is a split extension of shape $2^{11} M_{24}$ where the action of M_{24} on the elementary abelian subgroup is the same as on the even portion of the dual of the Golay Code.

(iii) G possesses exactly one conjugacy-class of

self-centralizing elementary abelian subgroups of order 2^{10}, and the normalizer of such a subgroup is a split extension of shape $2^{10} \mathrm{I}_{5}$ (2) where the action of I_{5} (2) on the elementary abelian subgroup is the same as the action on the skew-square (i.e. exterior second power) of a natural 5-dimensional module.
(iv) G possesses a special 2-subgroup of shape 2^{3+12} whose normalizer is of shape $2^{3+12}\left(S_{5} \times L_{3}(2)\right)$. This group does not split over its 0_{2}, but does contain subgroups isomorphic to S_{5} and $I_{3}(2)$. It contains
the Sylow 5-normalizer in G of shape $5.4 \times 2^{3} \mathrm{I}_{3}(2)$ (with the $2^{3} \mathrm{I}_{3}(2)$ non-split) and the 7-normalizer of shape $7.3 \mathrm{X} \mathrm{S}_{5}$.
(v) For $p=23,29,31,37$ and 43, a Sylow p-subgroup is self-centralizing with normalizers of shape 23.22 , $29.28,31.10,37.12$ and 43.14 respectively (all Frobenius groups). Sylow 3- and 11-subgroups are extraspecial with normalizers of shape $3^{1+2} .8 .2$ (semidihedral 2-subgroup of order 16) and $11^{1+2}\left(5 \times 25_{4}\right)$ ($2 \mathrm{~S}_{4}$ non-split) respectively.
(vi) G possesses $P G I_{2}(23)$ as a subgroup.
(vii) The character table of G is known and was determined in Cambridge in 1975 by J.Conway, S.Norton, J.Thompson and D.Hunt (see Appendix A).

In January 1980 , Thompson and Norton showed that a simple group satisfying these conditions is unique, using character-theoretic methods (before the existence proof was completed) and so I shall say that any group satisfying the above conditions is 'isomorphic to J_{4} '.

In this dissertation, I shall develop notations for working inside J_{4}, give the existence proof, and provide a presentation for J_{4} by generators and relators. I shall use [2] and the character table of J_{4} as my starting point.

Complete familiarity with the Mathieu groups will be assumed, although I have spent Chapter 1 developing

Curtis' MOG for M_{24}. The approach given is a recent unpublished one due to Conway:

In Chapters 2, 3, 4 and 5, I take an 'incident' set of representatives (in the sense of Smith and Ronan [11], see the CODA after Chapter 5) H, M, P and I of the four conjugacy classes of maximal 2-local subgroups of J_{4} and develop notations for working with them, fiven that J_{4} exists.

Chapter 2 gives a notation for working inside the maximal 2-local $H=C_{J_{4}}(z)$ of shape $2^{1+12} \cdot 3 M_{22} \cdot 2$ described in Hypothesis A above. The notation is mostly due to Conway.

In Chapter 3 a particular representative M is chosen of the conjugacy class of maximel 2-locals of shape $2^{11} \mathrm{M}_{24}$ described in (ii) above and the 'dictionary' is developed between the notations for elements of $M \cap H$ as elements of M and as elements of H. Some elementary consequences of this dictionary are then investigated, for use later on. This chapter is mostly my own work.

Chapter 4 describes a particular representative P of the class of maximal 2-locals of shape $2^{3+12}\left(S_{5} \times I_{3}(2)\right)$ described in (iv) above, and describes the notation due to Conway for elements of this. This notation is not used again but is included for the sake of completeness.

In Chapter 5 a representative I is chosen of the class of maximal 2-locals of shape $2^{10} I_{5}(2)$ described in (iii) above, and a particularly good complement for $O_{2}(L)$ in L is found. This chapter is my own work.

Chapter 6 describes the construction by Norton, Parker and Thackray of a pair of 112×112 matrices over $G F(2)$ generating J_{4}, some of the methods developed by Parker and Thackray for dealing with 2-modular representations on a computer, and the proof by Norton, Parker, Conway, Thackray and myself that the group generated by these matrices is indeed isomorphic to J_{4}. The main heavy computer work in this proof is involved in showing that the skew-square of the 112-dimensional representation has an invariant subspace of dimension 4995.

In chapter 7 , further details of the geometry of the 112-dimensional representation are investigated, and a presentation for J_{4} by generators and relators is proven. This presentation consists of adding two relators to the amalgamated product of a copy of M with a copy of H via their intersection $D=M \cap H$. It is conceptually easy to see what these relators are doing : one comes from the subgroup P described in chapter 4, and the other involves a subgroup $\mathrm{PGI}_{2}(23)$ intersecting M in a subgroup $I_{2}(23)$ (c.f. (vi) above). The work of this chapter can easily be modified to give a proof that the 112-dimensional matrices described in chapter 6 generate a group isomorphic to J_{4}, independent of the finding of the invariant subspace of the skew-square of the representation. This chapter is my own work.

Chapter 1 The MOG for M_{24}
Since the notations we have developed for working inside J_{4} depend heavily on use of R.T.Curtis' MOG (Miracle Octad Generator) for M_{24} (see [3]), a few words about this are in order.

Let $\operatorname{GF}(4)=\{0,1, \omega, \bar{\omega}\}$ with the usual multiplication and addition.

Definition The HEXACODE is the self-dual code in $(\operatorname{GF}(4))^{6}$ generated by the following code-words :

$$
\begin{array}{ll}
& (\omega \bar{\omega} \omega \bar{\omega} \omega \bar{\omega}) \\
& (\omega \bar{\omega} \bar{\omega} \omega \bar{\omega} \omega) \\
& (\bar{\omega} \omega \omega \bar{\omega} \bar{\omega} \omega) \\
\text { and } \quad(\bar{\omega} \omega \bar{\omega} \omega \omega \bar{\omega})
\end{array}
$$

Since these words add up to zero and clearly satisfy no other linear relations, the code generated has dimension 3 .

Definition An AUTOMORPHISM of the Hexacode is a semilinear transformation of the form :
(multiplication of each coठrdinate by a non-zero element of
GF(4)) . (permutation of the six coठrdinates) . (field
automorphism (possibly trivial))
preserving the set of codewords.
There is a visible automorphism group $3\left(\mathrm{~S}_{2} \mathcal{Z} S_{3}\right)$ given by multiplications by field elements followed by permutations preserving the given grouping of the six cobrdinates into three sets of two, followed by the field automorphism for odd cobrdinate permutations.

It is clear that every code-word is equivalent under the action of this group to one of :

(00	00 00)	1 word
(01	01 w ${ }^{\text {a }}$)	36 words
00	11 11)	9 words
ज	$\omega \bar{\omega} \omega \bar{\omega}$	12 words
11	$\omega \omega \overline{\omega w) ~}$	6 words
		64 w

Adjoining another automorphism, e. g. :
(multiplication by (11 $111 \bar{\omega} \omega)$) . (permutation by (......))

- (field automorphism)
we have a non-split group $3 S_{6}$ acting as the full automorphism group of the code.

Now we use the Hexacode to build up a binary code in $(\operatorname{GF}(2))^{24}=\{$ subsets of $\Omega\}$ where Ω is a set of 24 objects arranged in a 4×6 array :

Pigure 1

A subset is designated by a set of stars in the appropriate

Addition of subsets is given by :

$$
A+B=(A \cup B) \backslash(A \cap B)
$$

The six cobrdinates of the hexacode are put into correspondence with the six columns of this array, and elements of GF(4) are given 'Interpretations' as subsets of a column as follows :

Definition The EVEN and ODD interpretations of elements of GF(4) as subsets of a column are as in the table below :

Now let \mathcal{G} be the code in \{subsets of Ω \} given as follows :
\{ hexacode words given the FVEN interpretation in each column PLUS all elements from an even number of columns \} U \{ hexacode words given the ODD interpretation in each column PLUS all elements from an odd number of columns \}
(PLUS in the sense of vector space addition as given above)
e.g.

and

Then G has dimension 12 , and it is easy to check that it is self-dual and that the words of minimal weight hove weight 8. Thus \mathcal{C} is the binary Golay Code and has the Mathieu group M_{24} acting on it.

Definition The arrangement of 24 points in the above $4 X 6$ array with the code \mathcal{G} defined on them and M_{24} acting on them is called the MOG (Miracle Octad Generator).
(Note that our MOG differs from Curtis' in [3] by transposition of the left-hand pair of columns)

Definition The 8 and 12 element subsets in G are called (special) OCTADS and DODECADS respectively. A partitioning of Ω into six four-element subsets (tetrads) such that any two form an octad is called a SEXTET. A partitioning of Ω into three disjoint octads is called a TRIO.

The sets of eight points into which figure 1 is divided are called the BRICKS of the MOG, and they form a trio called the BRICK TRIO. The columns of the MOG form a sextet called the VERTICAL SEXTET.

Some subgroups of M_{24} (see [3])

The Sextet Group

The automorphisms in M_{24} Pixing a sextet form a group of shape $2^{6} \cdot 3 S_{6}$, which for the vertical sextet is generated by :
(1) Automorphisms of the hexacode lifted to its action on

at the top of the previous page.
(These automorphisms form a group of shape $3 S_{6}$)
(ii) Codewords in the hexacode with the interpretation :

e. g. $\left[\begin{array}{ll}\vdots & 1 \\ \vdots & 1 \\ 1\end{array}\right](1)$ corresponds to the codeword (01 $\left.01 \omega \bar{\omega}\right)$

These form an elementary abelian subgroup of order 2^{6} normalised by the $3 S_{6}$ of (i).

The Octad Group

The stabilizer of an octad is a group of shape $2^{4} \mathcal{A}_{8}=2^{4} L_{4}(2)$ which for the left-hand octad (i.e. the left-hand brick) acts as follows : (i) The normel 2^{4} is

and gives the right-hand square (i. e. the complement of the left-hand brick) the structure of an affine 4-space over GF(2) on which it acts as affine translations.
(ii) Stabilizing a point in the right-hand square (we usually use the top-left point) we get a complementary $\mathcal{A}_{8} \cong L_{4}(2)$ acting as A_{8} on the leit-hand brick and as $I_{4}(2)$ on the right-hand square as a 4-dimensional vector space over $G F(2)$.

The Trio Group

The stabilizer of a trio is of shape $2^{6}\left(S_{3} X L_{3}(2)\right)$ acting as follows in the case of the brick trio :
(1) The normal 2^{6} is

This gives each of the three bricks the structure of an
affine 3 -space over $G F(2)$ on which it acts as 3 affine translations whose sum is zero.
(ii) Complementary to this there is a subgroup $S_{3} \times L_{2}(7)$ (note that $I_{3}(2) \cong L_{2}(7)$) where the S_{3} permutes the bricks "bodily" and the $I_{2}(7)$ acts similarly in each brick, preserving the projective line structure given by the numbering :

There is also a subgroup $L_{3}(2)$ of the trio group acting as $I_{2}(7)$ on one of the bricks and as an $L_{3}(2)$ stabilizing a point in each of the other two bricks. However, this does not extend to an $S_{3} \times I_{3}(2)$.

$$
I_{2}(23)
$$

In order to display the subgroup $L_{2}(23)$ we use a STANDARD NUMBERING of the points of the MOG diagram with the symbols $\infty, 0,1$, . . , 22 as follows :

| ∞ | 0 | 22 | 1 | 11 | 2 | |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 3 | 15 | 12 | 21 | 13 | 7 | |
| 6 | 5 | 18 | 20 | 4 | 10 | |
| 9 | 19 | 8 | 14 | 16 | 17 | |\quad Figure 3

and then the $I_{2}(23)$ preserving the projective line structure given by this labelling is contained inside M_{24}, though note that $P G L_{2}(23)$ is not.
(Note that this numbering is different to that used in [j])

$$
\mathrm{M}_{22 \cdot 2}
$$

We usually take $M_{22} \cdot 2$ to be the subgroup of M_{24} fixing $\{0, \infty\}$ setwise, and write MOG diagrams for $M_{22} \cdot 2$ with these points partitioned off thus :

It is important that we observe this convention because we shall be dealing with two subgroups of J_{4} of shapes $2^{1+12} \cdot 3 M_{22} \cdot 2$ and $2^{11} . M_{24}$ whose elements must not be confused.

The intersection of an octad for M_{24} with $\Omega \backslash\{0, \infty\}$ is called a (special) HEXAD, HEPTAD or OCTAD for $M_{22} \cdot 2$ depending on its cardinality; similarly the intersection of a dodecad with $\Omega \backslash\{0, \infty\}$ is called a DECAD, HENDECAD or DODECAD.

Given a hexad for $\mathrm{M}_{22} \cdot 2$, the remaining 16 points have a natural structure as a symplectic space of dimension 4 over GF(2). 4 division of this into four isotropic planes (2-spaces) corresponds to a pair of points in the hexad. So the stabilizer of such a BEXAD + PLANE is a group of shape $2^{2}\left(\mathrm{~S}_{4} \times 2\right)$.

If g and φ are two disjoint hexads for $M_{22 \cdot 2}$, then Stab $_{M_{22} .2}(\theta) \cap \operatorname{Stab}_{M_{22} .2}(\varphi)$ is a group isomorphic to S_{6}, and the permutation actions of this group on the points of θ and of φ are inequivalent, and related by the outer automorphism of S_{6}. Thus points in θ correspond to totals in φ and duads in θ correspond to synthemes in φ, and Vice-versa (see [9]).

Modules and cohomology for M_{24} over GF(2)
As a 12-dimensional module for M_{24}, the Golay code \mathcal{G} has a unique non-trivial invariant submodule $\langle\Omega\rangle$ which has dimension 1. $P_{6}=G /\langle\Omega\rangle$ is an irreducible module of dimension 11 for M_{24}. $\boldsymbol{C}^{*}=\{$ subsets of $\Omega\} / \zeta$ is a 12 -dimensional module dual to 6 , having an irreducible 11-dimensional submodule $\varrho \varrho^{*}=\{$ even subsets of $\Omega\} / b$.

The skew-square b^{2-} of G, of dimension 66 , is a uniserial module with three composition factors:
$\langle\Omega\rangle_{\wedge} \ell$ is an invariant 11 -dimensional submodule isomorphic to γb, with quotient $\gamma b^{2-}=b^{2-} /\left(\langle\Omega\rangle_{\wedge} b\right) \cong(P b)^{2-}$, and $S G^{2-}=\left\langle c_{1} \wedge c_{2}: c_{1}, c_{2} \subseteq \Omega\right.$ and $\left.c_{1} \cap c_{2}=\varnothing\right\rangle$ 18 an invariant 55-dimensional submodule containing $\langle\Omega\rangle_{\wedge} b$. PSb ${ }^{2-}=S b^{2-} /\left(\langle\Omega\rangle_{\wedge} \boldsymbol{b}\right)$ is an irreducible 44-dimensional module. The dual $\gamma S\left(\mathscr{C}^{*}\right)^{2-}$ can be built in a similar way.

Lemma 1 A split extension J of $6 *$ by M_{24} has a unique conjugacy class of complements for $\mathrm{O}_{2}(\mathrm{~J})$.

Proof Let K_{1} and K_{2} be two such complements. Choose an element y_{1} of order 23 in $J / O_{2}(J)$. Then the two representatives of J_{1} in K_{1} and K_{2} are conjugate by an element of $\mathrm{O}_{2}(\mathrm{~J})$, by Sylow's theorem, so we may suppose they are the same. Let y_{2} be an element of order 11 in $J / O_{2}(J)$ normalizing y_{1}. Then the representatives of y_{2} in K_{1} and K_{2} differ by an element of $\mathrm{O}_{2}(\mathrm{~J})$ centralizing y_{1}, and hence centralizing y_{2}. Thus since the two representatives of y_{2} both have order 11 , they must be equal. Now take an element y_{3} of order 10 normalizing J_{2} in $\mathrm{J} / \mathrm{O}_{2}(\mathrm{~J})$. The representatives of y_{3} in K_{1} and K_{2} differ by an element of $\mathrm{O}_{2}(J)$ centralizing y_{2}, and have the same order, and hence are either equal or differ by the duad fixed by y_{2}. In the latter case, conjugating by the monad fixed by y_{1} fixes the representatives of y_{1} and y_{2}, and sends one
representative of y_{3} to the other. Since $J / O_{2}(J)$ is generated by y_{1}, y_{2} and y_{3} this means that we have found an element of $O_{2}(J)$ conjugating K_{1} to K_{2}. //

Corollary 1 A split extension J^{\prime} of $S C^{*}$ by M_{24} has two conjugacy classes of complements for $\mathrm{O}_{2}(\mathrm{~J})$), conjugate by an outer automorphism of J^{\prime} (corresponding to an odd element of $\mathrm{O}_{2}(\mathrm{~J})$). "

Warning J_{4} has a subgroup M (see chapter 3) isomorphic to the J^{\prime} above, and the two classes of complements are not conjugate in J_{4}. They do not even have the same conjugacy class fusion maps with respect to J_{4}.

Corollary 2 There is a unique isomorphism type of uniserial module of dimension 12 for M_{24} having an 11 -dimensional submodule isomorphic to $S l^{*}$. i.e. $\operatorname{Dim} \operatorname{Ext}^{1}\left(S b^{*}, 1\right)=1$.

Lemma 2 The split extension $2^{6} S_{6}$ of the natural permutation module by S_{6} has a unique conjugacy class of subgroups of shape $2 \times S_{6}$.

Proof This follows from a similar argument to that in Lemma 1 using a Sylow 3-subgroup and a transposition mixing the two orbits of it.
Theorem Let R be the sextet group of shape $2^{12} \cdot 2^{6} \cdot 3 S_{6}$ in the group J defined in Lemma 1 . Then
(1) there is exactly one conjugacy class of subgroups of shape $2 \times\left(2^{6} \cdot 35_{6}\right)$ supplementing $O_{2}(\mathrm{~J})$ in R;
(ii) any such supplement has a unique subgroup of index 2 complementing $\mathrm{O}_{2}(\mathrm{~J})$ in R and contained in some complement to $\mathrm{O}_{2}(\mathrm{~J})$ in J . Such a subgroup is contained in exactly two such complements conjugate by the involution in $Z(R)$.

Proof First, all supplements to $O_{2}(R)$ in R of shape $2 \times 3 S_{6}$ are conjugate, since any such is a supplement to $O_{2}(S)$ in S where S is the normalizer in R of a Sylow 3-subgroup of $O_{2,3}(R)$, having shape $\left(2^{6} \times 3\right) . S_{6}$, and all such are conjugate by Lemma 2.

Now take such a supplementary subgroup R_{1} of shape $2 \times 3 S_{6}$. Then $\left[O_{2}(R), O_{3}\left(R_{1}\right)\right]$ is an extraspecial group of shape 2^{1+12}, and modulo the centre it decomposes as the direct sum of two different (dual) irreducible modules for R_{1} so that there is a unique such decomposition. Thus such a supplement to $O_{2}(R)$ extends uniquely to a supplement of shape $2 \times\left(2^{6} \cdot 3 S_{6}\right)$ to $O_{2}(J)$ in R, and all such supplements are hence conjugate, thus proving (i).

Since a complement to $\mathrm{O}_{2}(\mathrm{~J})$ in J does contain a complement to $\mathrm{O}_{2}(\mathrm{~J})$ in R, and the centralizer of the latter is the unique vector in $\mathrm{O}_{2}(\mathrm{~J})$ fixed by R, (ii) follows. \%

Corollary Let R^{\prime} be the sextet group of shape $2^{11} \cdot 2^{6} \cdot 3 S_{6}$ in the group J^{\prime} defined in corollary 1 to lemma 1. Then
(i) there are exactly two conjugacy classes of subgroups of shape $2 \times\left(2^{6} \cdot 3 S_{6}\right)$ supplementing $O_{2}\left(J^{\prime}\right)$ in R^{\prime};
(ii) any such supplement has. a unique subgroup of index 2 complementing $0_{2}\left(J^{\prime}\right)$ in J^{\prime}. Such a subgroup is contained in exactly two such complements conjugate by the involution in $2\left(\mathrm{R}^{\prime}\right)$. //

Under the action of $R^{\prime}, \mathrm{O}_{2}\left(\mathrm{~J}^{\prime}\right)$ reduces uniserially with two proper invariant submodules :
(i) the sextet as an element of $S \ell^{*}$ forms an invariant 1-dimensional submodule ;
(ii) the PARITY submodule for the sextet group is defined as the collection of all elements of $S l^{*}$ intersecting each tetrad of the sextet with the same parity (i.e. all evenly or all oddly). This is well-defined since every element of 6 hits each tetrad with the same parity. This submodule has dimension 7 .

Chapter 2 The Subgroup H of shape $2^{1+12} \cdot 3 M_{22} \cdot 2$

In this chapter we develop a notation for working inside the subgroup $\mathrm{H}=\mathrm{C}_{J_{4}}(\mathrm{z})$ of shape $2^{1+12} \cdot 3 M_{22} \cdot 2$ satisfying Hypothesis A on P. 2 . Mostly the notation does not distinguish between an element and its product with z, so that a certain amount of information is lost, but we can usually get around this difficulty when it matters.

First, let us examine the structure of $\bar{H}=H /\langle z\rangle$. This is a split extension of $\bar{E}=E /\langle z\rangle=O_{2}(H) /\langle z\rangle$ by a complement $\bar{F}=F /\langle z\rangle$ of shape $3 M_{22} \cdot 2$. Janko proved in [2] that $F_{0}=F^{\prime}$ is a proper cover $6 \mathrm{M}_{22}$. (But note that contrary to the title of [2] the full covering group of M_{22} is in fact of shape $12 M_{22}$ and not $6 \mathrm{M}_{22}$, as was discovered in Summer 1979)

Looking at the 2-modular character table of $3 \mathrm{M}_{22} .2$ we see that there is a unique faithful 12-dimensional module over GF(2) and that this has the structure of a six-dimensional module over GF(4) with $\mathrm{O}_{3}(\overline{\mathrm{~F}})$ acting as scalar multiplications. The outer half of $3 M_{22} \cdot 2$ acts semilinearly; the inner half linearly. (\dagger)

Let $\langle w\rangle=O_{3}(F)$ so that $C_{H}(w)=F$, and let conjugation by w in E represent multiplication by $\omega \in G F(4)$, i. e. $\omega y=y^{w}$.

Since $E=O_{2}(H)$ has an automorphism of order 3 induced by w whose centralizer in E is $\langle z\rangle, E$ is of type 2_{+}^{1+12} (in. a central product of 6 copies of the Quaternion group Q_{Q})

Represent passage from E to $\bar{E}=E /\langle z\rangle$ by $x \rightarrow \tilde{\mathbf{x}}$. Then the unitary structure on $\overline{\mathrm{E}}$ preserved by $\overline{\mathrm{F}}$ can be obtained as follows from the extraspeciality of E and the GF(4)-structure resulting from conjugation by w :

Let $\rho:\langle z\rangle \quad G F(2) \subset G F(4)$ be given by $\begin{array}{ll}I & -0 \\ & z \rightarrow 1\end{array}$
and define $\tilde{x} \cdot \tilde{y}=\rho([x, \omega y])+w \rho([x, y])$
Note that it doesn't matter which inverse images are taken for \tilde{x} and \tilde{y} since $\langle z\rangle$ is central.
(\dagger) See $A_{\text {ppendix }} G$

Lemma 2.1
(1) defines a unitary structure on \bar{E}.

Proof

$$
\begin{aligned}
& \tilde{\mathbf{x}} \cdot \omega \tilde{\mathbf{y}}+\bar{\omega}(\tilde{\mathbf{x}} \cdot \tilde{y})= \rho([x, \bar{\omega} y])+\omega \rho([x, \omega y]) \\
& \quad+\bar{\omega} \rho([x, \omega y])+\rho([x, y]) \\
&=\rho([x, y]+[x, \omega y]+[x, \bar{\omega} y]) \\
&=0 \\
& \Rightarrow \quad \tilde{x} \cdot \omega \tilde{y}= \bar{\omega}(\tilde{x} \cdot \tilde{y}) . \\
& \text { Similarly } \quad \omega \tilde{x} \cdot \tilde{y}=\omega(\tilde{x} \cdot \tilde{y}) .
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\mathbf{x}} \cdot(\tilde{y}+\tilde{z})= & \rho([x, \omega(y+z)])+\omega \rho([x, y+z]) \\
= & \rho([x, \omega y])+\rho([x, \omega z])+\omega \rho([x, y]) \\
& \quad+\omega \rho([x, z]) \\
= & \tilde{\mathbf{x}} \cdot \tilde{\mathbf{y}}+\tilde{\mathbf{x}} \cdot \tilde{\mathbf{z}} .
\end{aligned}
$$

Similarly $(\tilde{x}+\tilde{\mathbf{y}}) \cdot \tilde{\mathbf{z}}=\tilde{\mathbf{x}} \cdot \tilde{\mathbf{z}}+\tilde{\mathbf{y}} \cdot \tilde{\mathbf{z}} \cdot$

$$
\text { Note that since }\langle x, w\rangle \cong\left\{\begin{array}{l}
Q_{8} \circ 3=2 A_{4} \\
2^{3} \cdot 3=2 X A_{4} \\
2^{2} \cdot 3=A_{4}
\end{array}\right. \text { or }
$$

we have $\tilde{x} \cdot \tilde{\tilde{x}}=\left[x, x^{w}\right]=x^{2}$
so that vectors of norm 0 are involutions while those of norm 1 are elements of order 4 .

Thus the inverse image in E of an isotropic subspace in \bar{E} is the same thing as an elementary abe.,ian subgroup of E containing z and invariant under w. If X is such, then $[X, W$] is a complement for $\langle z\rangle$ in X, natural given our choice of F.

More generally, if X is any elementary abelian subgroup of B containing z then $[\mathrm{X}, \mathrm{w}]^{\mathbf{N}}=\left\{w^{2} x w^{2} x w^{2}: x \in \mathbb{X}\right\}$ is such a complement for $\langle z\rangle$ in X (see also P. 26)

We express vectors in \bar{E} using a 2×3 array of colrdinates $\left[\begin{array}{lll}\lambda_{1} \lambda_{2} & \lambda_{3} \\ \lambda_{2} & \lambda_{3} & \lambda_{6}\end{array}\right.$ with $\lambda_{i} \in G F(4)$, and inner product :

$$
\left[\begin{array}{l}
\lambda_{1} \lambda_{2} \lambda_{3} \\
\lambda_{4} \lambda_{5} \lambda_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
\mu_{1} \mu_{4} \mu_{5} \\
\mu_{4} \mu_{5} \mu_{8}
\end{array}\right]=\lambda_{1} \bar{\mu}_{4}+\lambda_{2} \bar{\mu}_{5}+\lambda_{3} \bar{\mu}_{6}+\lambda_{4} \bar{\mu}_{1}+\lambda_{5} \bar{\mu}_{2}+\lambda_{6} \bar{\mu}_{3} .
$$

When writing down elements of \vec{F} as 6 X o ratrices over GF(4) we shall think of these vectors as row vectors $\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{*} \lambda_{5} \lambda_{0}\right)$.

Can we find 22 objects in \bar{E} which are permuted by $\overline{\mathrm{F}}$ in the same way as the natural permutation representation of $\bar{F} /\langle\bar{w}\rangle$ $\cong \operatorname{Aut}\left(\mathrm{M}_{22}\right)$ on 22 points ?

To answer this question, we look for subgroups of $\overline{\mathrm{E}}$ invariant under the action of $3 \mathrm{M}_{21} \cong \mathrm{SL}_{3}(4)$, and find that the module $\overline{\mathrm{E}}$ reduces uniserially with a unique 3-dimensional irreducible submodule with irreducible (and dual) 3-dimensional quotient. Since the induced action on this submodule is the natural action of $\mathrm{SI}_{3}(4)$, it must be an isotropic subspace of $\overline{\mathrm{E}}$.

Let W_{i} be the isotropic 3-space in \bar{E} stabilized by $\operatorname{Stab}_{\bar{F}}(i)$ for $i \in \Omega \backslash\{0, \infty\}$.

Lemma 2.2

$$
\operatorname{Dim}\left(W_{i} \cap W_{j}\right)=1 \quad \text { for } i \neq j
$$

and $\operatorname{Dim}\left(W_{i} \cap W_{j} \cap W_{k}\right)=0$ for $i \neq j \neq k \neq i$
Proof
First we note that since \bar{F} is 3 -transitive on $\Omega \backslash\{0, \infty\}$, these numbers are independent of choice of i, j and k.

Certainly $0 \leqslant \operatorname{Dim}\left(W_{i} \cap W_{j}\right) \leqslant 2$.
If $\operatorname{Dim}\left(W_{i} \cap W_{j}\right)=0$ then $\operatorname{Stab}_{\bar{F}}(1, j) \leqslant \operatorname{Stab}_{\Gamma U_{6}}(2)\left(W_{i}, W_{j}\right)=\{1\}$, a contradiction. If $\operatorname{Dim}\left(W_{i} \cap W_{j}\right)=2$ then $\left\langle W_{i}, W_{j}\right\rangle$ has dimension 4, and either $W_{i} \cap w_{j}=w_{i} \cap w_{k} \quad \forall i \neq j \neq k \neq i$ in which case $\bigcap_{i=1}^{22}\left(w_{i}\right)$ would be an invariant 2-dimensional subspace, or $W_{i} \cap W_{j} \neq W_{i} \cap W_{k}$ $\forall 1 \neq j \neq k \neq i$ in which case $\left\langle W_{1}, W_{j}\right\rangle \supseteq W_{k}$ by dimension counting, and so $\left\langle W_{i}: 1 \leq i \leqslant 22\right\rangle$ is an invariant 4-dimensional subspace.

Thus $\operatorname{Dim}\left(W_{1} \cap W_{j}\right)=1$ for $i \neq j$.
If $\operatorname{Dim}\left(W_{i} \cap W_{j} \cap W_{k}\right)=1$ for $i \neq j \neq k \neq 1$ then $\bigcap_{i=1}^{22}\left(W_{i}\right)$ would be an invariant 1 -dimensional subspace .

Thus $\operatorname{Dim}\left(W_{i} \cap W_{j} \cap W_{k}\right)=0$ for $i \neq j \neq k \neq i$.
Theorem 2.3
Given a 6-dimensional unitary space over GF(4) and a set of isotropic 3 -spaces of maximal size subject to the conditions :
(1) Any two intersect in a 1-dimensional space
(ii) Any three intersect trivially
then there are 22 such subspaces in the set, and the setwise stabilizer of this configuration in $\Gamma \mathrm{U}_{6}(2)$ is a group isomorphic to the triple cover of M_{22} extended by the outer automorphism.

Proof

W.I.O.g. we may take the space to be $\overline{\mathrm{E}}$.

Let $\left\{X_{i}: 1 \leqslant 1 \leqslant n\right\}$ be the collection of subspaces and let $\left\{W_{1}: 1 \leqslant i \leqslant 22\right\}$ be the 22 subspaces defined above.
(*) Since an 1sotropic 3-space has only 21 isotropic 1-spaces in it, we must have $n \leqslant 22$, which with the lemma shows that $n=22$. I shall find an element of $\Gamma U_{6}(2)$ taking $X_{i} \rightarrow W_{i}, 1 \leqslant 1 \leqslant 22$, after possibly renumbering some of the X_{i}.

Since $\Gamma \mathrm{U}_{6}(2)$ is transitive on isotropic 3 -spaces, we may suppose $X_{1}=W_{1}$.

Since $\operatorname{Stab}_{\Gamma \mathrm{T}_{6}}(2)\left(W_{1}\right)$, of shape $2^{12} \mathrm{SI}_{3}(4) \cdot \mathrm{S}_{3}=2^{12} \Gamma \mathrm{I}_{3}(4)$ acts transitively on isotropic 3-spaces intersecting W_{1} in a 1-space, we may suppose $X_{2}=W_{2}$.

Since $\operatorname{Stab}_{\Gamma U_{6}(2)}\left(W_{1}\right) \cap \operatorname{Stab}_{\Gamma U_{6}(2)}\left(W_{2}\right)$ of shape $2^{6} .2^{4}\left(3^{2} \times \mathrm{SL}_{2}(4)\right) .2$ acts transitively on isotropic 3-spaces intersecting W_{1} in a 1-space, W_{2} in a 1 -space and $W_{1} \cap W_{2}$ in a 0 -space, we may suppose that $X_{3}=W_{3}$.

Now $\bigcap_{i=1,2,3}\left(\operatorname{Stab}_{\Gamma_{U_{6}}(2)}\left(W_{i}\right)\right)$, of shape $2^{2+4} \cdot 3^{2} \cdot 2$, has 2 orbits on subspaces X intersecting W_{i} in a 1 -space and $W_{i} \cap W_{f}$
in a 0 -space for each pair $i \neq j \in\{1,2,3\}$, distinguished by whether $W_{1} \cap \mathrm{x} \leqslant\left\langle W_{1} \cap W_{2}, W_{1} \cap W_{3}\right\rangle \quad($ orbit 1$)$ or not (orbit 2)
(this condition is in fact symmetric in W_{1}, W_{2}, W_{3}).
By the remark (*) on the previous page, precisely 3 of the W_{i} and 3 of the X_{i} for $i \notin\{1,2,3\}$ are in orbit 1 and 16 are in orbit 2.

By the transitivity properties of Aut $\left(M_{22}\right)$ this means that $\{1,2,3\}$ together with the 3 i's for which W_{i} is in orbit 1 form a hexad for M_{22} which must therefore be $\{1,2,3,5,14,17\}$. Thus by applying a suitable element of $\bigcap_{i=1,2,3}\left(\operatorname{Stab}_{\Gamma U_{6}}(2)\left(W_{i}\right)\right)$ and by renumbering some X_{i} in orbit 1 as X_{5} we may suppose that $W_{5}=X_{5}$.

Next we see that $\prod_{i=1,2,3,5}\left(\operatorname{Stab}_{\Gamma U_{6}(2)}\left(W_{i}\right)\right)$ of shape $2^{1+4} \cdot 3.2$ is transitive i=1,2,3,5 the elements of orbit 1 apart from W_{5}, so by renumbering some $X_{i}, i \neq 5$ from orbit 1 as X_{14} and applying some element of this stabilizer we may take $X_{14}=W_{14}$; ther after relabelling the final X_{i} of orbit 1 as X_{17} we automatically have $\mathrm{X}_{17}=W_{17}$ 。

Finally

$$
\prod_{i=1,2,3,5,14,17}\left(\operatorname{Stab}_{\Gamma U_{6}}(2)^{\left.\left(W_{1}\right)\right)} \text { of order } 2^{6}\right. \text { is }
$$

simply transitive on the 2^{6} possibilities for choice of a subspace satisfying the requivements (i) and (ii) for intersections with the $W_{i}, i \in\{1,2,3,5,14,17\}$ and having fixed one, the other 15 are determined. Thus we ray renumber the X_{i} for $i \notin\{1,2,3,5,14,17\}$ and apply a suitable element of the above stabilizer so that $X_{i}=W_{i}, 1 \leqslant 1 \leqslant 22$.

Thus by the above theorem, the following is a valid layout for the subspaces of \bar{E} corresponding to the points of $\Omega \backslash\{0, \infty\}$:

∞	0	$\begin{array}{lll} x y z \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & \text { S S S } \\ & \text { X Y Z } \end{aligned}$	$\begin{aligned} & S S_{1} S_{2} \\ & X Y_{1} Z_{2} \end{aligned}$	$\begin{aligned} & S_{2} S_{1} S \\ & X_{2} Y_{1} Z \end{aligned}$
$x_{2}{ }^{\text {y }} \mathrm{z}$	$x_{1} y z$	$\times 00$	S Y Z	S $\mathrm{Y}_{1} \mathrm{Z}_{2}$	$S_{2} Y_{1} Z$
$\mathrm{X}_{2} \mathrm{Y} 2$	$X_{1} Y^{2}$	0 yz	IS S	$\mathrm{X} \mathrm{S}_{1} \mathrm{~S}_{2}$	$\mathrm{X}_{2} \mathrm{~S}_{1} \mathrm{~S}$
x $\mathrm{y}_{2} \mathrm{z}$	$x y_{1} z$	0 y 0	X 32	$\mathrm{X} \mathrm{S}, \mathrm{z}_{2}$	$\mathrm{X}_{2} \mathrm{~S}_{1} \mathrm{Z}$
$\mathrm{X} \mathrm{I}_{2} \mathrm{Z}$	$X y_{1} Z$	$\times 0 \mathrm{z}$	S Y S	S $\mathrm{Y}_{1} \mathrm{~S}_{2}$	$S_{2} Y_{1} S$
$\mathrm{y} \mathrm{z}_{2}$	x y z_{1}	00 z	X Y ${ }^{\text {S }}$	$X Y_{1} S_{2}$	$X_{2} Y_{1} S$
$\mathbf{X I} \mathrm{z}_{2}$	X Y ${ }_{1}$	x y 0	S S 2	S $\mathrm{S}_{1} \mathrm{z}_{2}$	$\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{Z}$

Table 3

The notation for 3-dimensional subspaces of \bar{E} is as follows :
x, y and z are general elements of GF(4)

$$
\begin{array}{ll}
\mathbf{X}=\mathbf{y}+\mathbf{z} & Y=x+z \\
Z=x+y & S=x+y+z
\end{array}
$$

A subscript 1 signifies multiplication by $w \in G F(4)$
and a subscript 2 signifies multiplication by $\bar{\omega} \in G F(4)$
Thus for example :
$\left[\begin{array}{lll}\bar{x} & y_{2} Z \\ \bar{X} & Y_{2} & Z\end{array}\right.$ is the subspace spanned by $\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & \bar{w} & 1\end{array}\right]\left[\begin{array}{lll}0 & \bar{w} & 0 \\ 1 & 0 & 1\end{array}\right.$ and $\begin{array}{lll}0 & 0 & 1 \\ 1 & \bar{w} & 0\end{array}$
$\left[\begin{array}{l}X_{2} I_{1} S \\
S_{2} S_{1} Z\end{array}\right]$ is the subspace spanned by \(\left[\begin{array}{lll}0 \& \omega \& 1

\bar{\omega} \& \omega \& 1\end{array}\right]\), | $\bar{\omega}$ | 0 | 1 |
| :--- | :--- | :--- |
| $\bar{\omega}$ | ω | 1 | and \(\left[\begin{array}{lll}\bar{\omega} \& \omega \& 1

\bar{\omega} \& \omega \& 0\end{array}\right]\)

We Eive a list of a few useful cobrdinate transformations on \bar{E} effected by elements of \bar{F} and their action on the MOG for H :

Cobrd. Transformation	Effect on H's MOG
field aut. $\omega \rightarrow \bar{\omega}$ $\begin{aligned} & \operatorname{diag}\left(\begin{array}{llll} 1 & \omega & \bar{\omega} \\ 1 & \omega & \bar{\omega} \end{array}\right) \\ & \left(\begin{array}{llllll} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \end{aligned}$	$\begin{gathered} \text { (see also } \\ \text { p. } 56 \text {) } \end{gathered}$

Table 4

Classification of vectors and isotropic subspaces in $\overline{\mathrm{E}}=\mathrm{O}_{2}(\mathrm{H}) /\langle z\rangle$
Having obtained Table 3, it is easy enough to verify the following classifications :

Vectors

Under the action of H, E has 3 classes of involution, with z in a class of its own and $y \sim y z$ for each $y \nmid\langle z\rangle$, and one class of elements of order 4, whose stabilizers in $\bar{F} /\langle\bar{w}\rangle$ are as given in the following table :

elts	vectors	1-spaces	norm	Stabilizer in $\mathrm{M}_{22} \cdot 2$	$\begin{aligned} & \mathrm{J}_{4} \text {-class } \\ & \text { (see p. } 35 \text {) } \end{aligned}$
(z) 1	\sim	-	0	$\mathrm{M}_{22} \cdot 2$	2A
1386	693	231	0	$\begin{aligned} & 2^{4}\left(\mathrm{~S}_{5} \times 2\right)=2 \text {-point } \\ & \text { stabilizer (EDGE group) } \end{aligned}$	$)^{2 A}$
2772	1386	462	0	$\begin{aligned} & 2^{4} \mathrm{PGL}_{2}(5)=\text { stabilizer } \\ & \text { of hexad }+ \text { total on it } \\ & \text { (TOTAL group) [9] } \end{aligned}$	2B
4032	2016	672	1	$\mathrm{PGL}_{2}(11)=\text { stabilizer }$ of pair of disjoint dodecads (DUUM group)	4A
8191	${ }^{13}-1$				

Table 5

Isotropic 2-spaces

There are three classes of these under the action of H, which contain the following numbers of EDGE-type and TOTAL-type 1-spaces and have the following stabilizers :

number	edge 1-spaces	total 1-spaces	Stabilizer in $M_{22} \cdot 2$
462	5	0	$2^{4} S_{5}=$ stabilizer of hexad + included point
1155	3	2	$2^{4}\left(S_{4} \times 2\right)=$ stabilizer of hexad + syntheme on it
4620	1	4	$2^{2}\left(S_{4} \times 2\right)=$ stabilizer of hexad + plane (see p.12)

Table 6

Isotropic 3-spaces

There are four classes of these under the action of H , which contain the following numbers of EDGE-type and TOTAL-type 1-spaces and have the following stabilizers :

number	edge 1-spaces	total 1-spaces	Stabilizer in $M_{22} \cdot 2$
22	21	0	$M_{21} \cdot 2=$ POINT stabilizer
77	15	6	$2^{4} S_{6}=$ HEXAD stabilizer
462	5	16	$2^{4} S_{5}=$ stabilizer of hexad + included point
330	7	14	$2^{3}\left(\mathrm{I}_{3}(2) \mathrm{X} 2\right)=$ OCTAD stabilizer

Table 7

The containments between the isotropic subspaces are given in the following diagram :

Isotropic	Isotropic	Isotropic
1-spaces	2-spaces	3-spaces

where this means, for example, that there are 330 octad type isotropic 3-spaces, each of which contains 7 syntheme type and 14 hexad + plane type isotropic 2-spaces.

Notation for elements of H

From p. 17 we see that given an isotropic vector \tilde{x} in $\overline{\mathrm{E}}$, there is a canonical inverse image $w^{2} x w^{2} x w^{2}$ in E. We shall denote this inverse image with a subscript 0 and the other one with a subscript 1. For norm 1 vectors there is no good notation for distinguishing the inverse images.

Thus for example $\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}$ is a well-defined element of order
2 in E, and $\left.\left\{\begin{array}{lll}x & y & z \\ x & y & z\end{array}\right]_{x+y+z}: x+y+z \in G F(2)\right\}$ is a
well-defined elementary abelian subgroup of E of order 2^{5} not containing z.

For elements of F, the action on the MOG gives the element up to multiplication by an element of $Z(F)=\langle w z\rangle$. Sometimes the J_{4}-class of an element well-defines which representative it 1s, and then we append the class as a subscript. (See p. 37 for a description of the J_{4}-classes of involutions in H)

For example, $\begin{array}{rll}\therefore \therefore & = & = \\ \therefore & = & \text { 二 }\end{array}$ is a well-defined element of F.
A general element of H can then be written down (in exactly two ways) as the product of an element of E and an element of F.

is a well-defined element of H .
Sometimes we shall write down elements of H without vorrying about which of the two representatives is concerned.

Chapter 3 The subgroup M of shape $2^{11} M_{24}$
Janko [2] tells us how to find a subgroup M of J_{4} of shape $2^{11} M_{24}$:

Choose a hexad for F (we choose the left-hand hexad $\theta=\square: \square$) and let L_{0} be its stabilizer in F, of shape $6.2^{4} S_{6}$. Let

an elementary abelian group of order 2^{5}, and let $E_{1}=C_{E}\left(U_{1}\right)$, the hexad-type isotropic 3-space $\left[\begin{array}{lll}x & y & z \\ x & y & z\end{array}\right]$ for the left-hand hexad 0 , an elementary abelian subgroup of order 2^{7}. Then letting $V=E_{1} U_{1}$, ∇ is an elementary abelian group of order ${ }^{*} 2^{11}$ whose normalizer $M=N_{J_{4}}(V)$ is a split extension of shape $2^{11} M_{24}$ where the action of M_{24} on ∇ is the same as on $S e^{*}$.

Now $D=N_{H}(V)=H \cap M$ is the hexad stabilizer in H of shape $2^{1+12} \cdot 3 \cdot 2^{4} \mathrm{~S}_{6}$ so that D / V has shape $2^{6} \cdot 3 \mathrm{~S}_{6}$, and is thus the sextet stabilizer in M / ∇. We are free to choose that this is the vertical sextet for M's MOG (see p. 9), and we are free to

Prom the analysis on $\mathbf{p} .15$ we know that there are two conjugacy classes of supplements of shape $2 X\left(2^{6} \cdot 3 S_{6}\right)$ to V in D, and that each has a subgroup of index two contained in exactly two complements to V in M, conjugate by z. Representatives of the two classes are :
(1) Let 1 be a point of H's MOG not in θ, so that W_{i} is an isotropic 3-space in \bar{E} whose inverse image \hat{W}_{i} is an elementary abelian subgroup of E of order 2^{7}, of point type (see p.24): Then \hat{W}_{i} Stab $_{I_{0}}\left(\hat{W}_{i}\right)$ is such a supplement giving 2 complementary M_{24} s of POINT type .
(ii) Let φ be a hexad of H's MOG disjoint from θ, and let \hat{W}_{φ} be the inverse image in E of the isotropic 3-space W_{φ} in \bar{E} corresponding to φ, of hexad type (see p.24). Then $\hat{W}_{\varphi} \operatorname{Stab}_{L_{0}}\left(\hat{W}_{\varphi}\right)$ is such a supplement giving 2 complementary M_{24} s of HEXAD type.

Any complement to V in M is then of HEXAD or POINT type depending on whether its intersection with H fixes a hexad or a point in the right-hand square of $H^{*} s$ MOG.

Let K be one of the two complements to V in M of hexad type extending the complement for $\langle z\rangle$ in $\hat{W}_{\varphi} S \operatorname{tab}_{L_{0}}\left(\hat{W}_{\varphi}\right)$

Comparing the submodules of ∇ that we know under the action of D / V (i.e. $\langle z\rangle$ and E_{1}) with the list on $p .15$ we see that z is the vertical sextet $\begin{array}{llll}x_{0} & \square & \because \\ x & \text { and } & E_{1} \text { is the }\end{array}$ PARITY submodule for the vertical sextet. Thus E_{1} has 36 duad vectors and 91 sextet vectors, so that mod $\langle z\rangle$ there are 6 w-orbits of duads and 15 w-orbits of sextets. Looking at table 7 we see that a duad in $E_{1} \bmod \langle z\rangle$ is a total type vector in \bar{E} and a sextet in $E_{1} \bmod \langle z\rangle$ is an edge type vector in \bar{E}. Thus a total on the hexad θ in H's MOG corresponds to a column of the vertical sextet for M's MOG, and so the six points in ϑ are in duality with the six columns of the vertical sextet for M via the outer automorphism of S_{6}. Thus, looking back at p. 12 we see that the points of φ are in one-one correspondence with the columns of M's MOG.

We still have the freedom of choice of this correspondence, and 80 for reasons which will become apparent in Chapters 4 and 5 , we choose the following correspondence :

H's MOG

M's MOG

Figure 6

Having chosen this correspondence, the choice of which way round to identify $\langle w\rangle$ with $\langle\underset{\sim i d i d i d}{ }\rangle$ is determined, since from table 4 we have
acts on M's MOG as

So the only freedom we have left in determining the names in H for elements of the sextet group $2^{11} \cdot 2^{6} \cdot 3 S_{6}$ in M is conjugation by w.

From the definition of the correspondence in Pigure 6, we see that since the total type vector $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$ in \vec{E}_{1} corresponds to the point D of φ by hexad duality in $M_{22} \cdot 2$, it is a pair of disjoint duad vectors in V living in column D. Thus we may choose that

Now from table 4 we see that the element of F of order 3 acting on \bar{E} as the linear transformation $\xrightarrow{\square}$ has
effect $\downarrow \downarrow \downarrow \downarrow \downarrow$ on H^{\prime} 's $M O G$, and hence acts as
$(A)(B)(C)(D E F)$ on φ, and hence on the columns of M's MOG.
Moreover, the element commutes with w and so it is $\underset{i n}{\square}: \neq \mathrm{w}^{\mathrm{n}}$
for some n. It also commutes with the field automorphism $\omega \leftrightarrow \bar{\omega}$, which acts as $(A B)(C)(D)(E)(F)$ on φ from table 4 , and is

So conjugating (1) by this we see that

and

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]_{0}=\left[\begin{array}{l|l|l|}
\because & \ddots & \ddots \\
\because & \ddots & \ddots \\
& * \\
\hline
\end{array}\right.
$$

Thus $\left.\begin{array}{l}\lambda \mu \nu \\ \lambda \mu \nu\end{array}\right]_{0}$ is the element of V formed by giving
($000 \lambda \mu \nu$) the even interpretation of table 1 (see p. 8).

Notation Every element of M has a unique expression of the form (element of V).(element of K) . We write an element as a set of stars together with a permutation on the same MOG diagram, with the understanding that the product is taken with the element of V first, followed by the element of K.

The Dictionary

In order to be able freely to translate back and forth between the names of elements of D as elements of M and as elements of H, we break it up into four parts :
(i) E_{1} of shape 2^{7}
(ii) $O_{2}(K \cap D)$ of shape 2^{6}
(iii) $\mathrm{O}_{2}\left(\mathrm{C}_{\mathrm{D}}(\mathrm{w})\right)$ of shape 2^{5}
and
(iv) $C_{K}(w)$ of shape $3 S_{6}$.

Every element of D has exactly two expressions as a product (element of E_{1}). (element of $\mathrm{O}_{2}(\mathrm{~K} \cap \mathrm{D})$). (element of $\mathrm{O}_{2}\left(\mathrm{C}_{\mathrm{D}}(\mathrm{w})\right.$)). (element of $\left.C_{K}(w)\right)$. Notice that E is generated by (i) and (i1), V is generated by (i) and (iii), $K \cap D$ is generated by (ii) and (iv), and $F \cap D$ is generated by (iii) and (iv).

We dealt with translation of elements of E_{1} in the last section, so we now deal with (ii), (iii) and (iv).
(ii) Elements of $\mathrm{O}_{2}(\mathrm{~K} \cap \mathrm{D})$:
$O_{2}(K \cap D)=\left[\begin{array}{lll}0 & 0 & 0 \\ x & y & z\end{array}\right]$; so what permutation in K is $\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}$?
It commutes with (i. e. is orthogonal to) $\left[\begin{array}{lll}0 & \lambda & \mu \\ 0 & \lambda & \mu\end{array}\right]$ and
$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]_{0}$, which are b^{*} sets in the last two columns intersecting

the vertical sextet group. Thus it must be | 1 | 1 | $\ddots:$ |
| :--- | :--- | :--- |
| 1 | 1 | 1 |$|: 口$.

Conjugating by the element of order 3 acting on \bar{E} as
the linear transformation $\xrightarrow[\rightarrow]{\rightarrow \rightarrow \infty}$, as before, we get :

$$
\left.\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]_{0}=\text { fill: } 1: 1: 1: 1:\right]
$$

and

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array} 0_{0}=\left[\begin{array}{ll}
1 & \vdots \\
1 & :
\end{array}\right]\right.
$$

Thus $\left[\begin{array}{lll}0 & 0 & 0 \\ \lambda & \mu & \nu\end{array}\right]_{0}$ is the permutation in the 0_{2} of the
vertical sextet group in K given by the hexacode word (? ? ? $\lambda \mu \nu$) as described at the top of p. 10 , where the question-marks are pilled in in the unique possible way to make a hexacode word (see p. 7).
e. g. \(\left.\begin{array}{lll}0 \& 0 \& 0

1 \& \omega \& \bar{w}

0\end{array}=\)| \vdots | 1 |
| :--- | :--- |
| \vdots | 1 |
| \vdots | 1 |
| | 1 | \right\rvert\,

(iii) Elements of $O_{2}\left(C_{D}(w)\right)=U_{1}$:

These lie in F, and their effect on H's MOG are as affine translations of the right-hand square :

In M these are the G^{*} sets lying in the top row of the MOG .

The correspondence is as follows :
Given such an affine translation, there is a unique cycle lying inside φ. From the correspondence in figure 6, this corresponds to a pair of columns of M's MOG. The two representatives in ∇ of this element $\bmod \langle z\rangle=\left\langle{ }^{*}\right.$
duad in the top row, and its complementary tetrad in the top row. e. g.

and

(see the next section for a description of the J_{4} classes of involutions in M and H)
(iv) Elements of $C_{K}(w)$:
$C_{K}(w)$ has shape $3 S_{6}$, lies in F, and is of index 2 in $\operatorname{Stab}_{F}(\theta, \varphi)$. This means that the image of an element of $C_{K}(w)$ in $F /\langle W z\rangle$ depends only on the permutation effected on the six columns of M's MOG . Given this permutation, to find the image in $F /\langle w z\rangle$, fill in the corresponding permutation on the hexad φ via the correspondence given in figure 6, and fill out in the unique possible way to an element of $\operatorname{Stab}_{F /\langle w z\rangle}(9, \varphi)$.

e. g. | \therefore | $=$ | \vdots |
| :--- | :--- | :--- |
| \vdots | \in | $C_{K}(w)$ effects the permutation |

$(A)(B)(C D)(E)(F)$, and hence has image \square
hexad φ, which completes to the element $\left.\begin{array}{|l|l|l|}\hline- & \times \\ 11 & \vdots & \times \\ \hline\end{array}\right] \in F /\langle w z\rangle$,
and is hence the element $\triangle X[\because$ in F. (again see the
next section)

We summarize the translation process given by this dictionary in the following table :

Table 8

Now that we have this dictionary at our disposal, we may freely translate back and forth between names for elements of D as elements of M and as elements of H. The process consists of breaking the element up as a product of elements of (i), (ii), (iii) and (iv), translating each separately via the dictionary, and then multiplying back up again.
e. g.

(Note that $\because *=* \rightarrow *$ has class $2 B$ from the next
section)

Conjugacy classes of involution in M and their

fusion in J_{4}

Janko [2] gives the involution fusion pattern in J_{4}. However, we shall need to know the answer more explicitely in terms of our notations for M and H.

Since z is defined to be in class 2A, all sextets in V are in class $2 A$. Duads in V are in class 2B. Translating a couple of these which happen to lie in E we see that edge-type elements in E are in class 2 A whereas total-type elements are in class 2B. (see p. 23)

We need to examine the classes of elements in M under conjugation by K, since this corresponds to possible 'shapes' for our diagrams for elements. It turns out that
every such class has a representative in E, so that the J_{4}-classes are as in the following table :

Table 9
(continued on next page)

Representative of K -class in M	Name as element of E	J_{4}-class
$t_{11}=6(1) 496$	[0 0 0 $\bar{\omega}$ ω	2B
	$\left[\begin{array}{lll}0 & \omega & \\ \omega & 0 & 0\end{array}\right]$	$2 B$
$t_{13}=69696146$	0 $\frac{1}{\omega}$ 1 ω	2 A
$t_{14}=0.969$	$\left[\begin{array}{lll}0 & 1 & \omega \\ \bar{\omega} & \bar{\omega} & 1\end{array}\right.$ 。	$2 B$

$\frac{\text { Table } 9}{(\text { continued) }}$

Under the action of V, these fuse as follows:

$$
t_{3} \sim t_{5} \sim t_{6} \quad t_{4} \sim t_{8} \quad t_{9} \sim t_{11} \sim t_{12}
$$

so that M has 9 conjugacy classes of involution.

Conjugacy classes of involution in H and their

fusion in J_{4}

Now we can use the dictionary to give the same
information for H, choosing a representative in D from each class of involution in H.

Case 1 Elements of E :

These have already been dealt with, and we have

$$
\begin{aligned}
& s_{1}=z \text { has class } 2 A \\
& s_{2}=\text { edge vector }\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array} \text { has class } 2 A\right. \\
& s_{3}=\text { total vector } \begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array} \text { has class } 2 B
\end{aligned}
$$

First work mod $\langle z\rangle$. The element | $\dot{j} \mid$ | 11 | |
| :--- | :--- | :--- |
| \vdots | 1 | 11 | has effect

$\square 1$ on \vec{E}
(see table 4) so that

$$
C_{E}\left(\left[\begin{array}{ll}
\vdots & 1 \\
\vdots & 11 \\
11
\end{array}\right]\right)=\left[\begin{array}{l}
\lambda_{1} \lambda_{2} \lambda_{3} \\
\lambda_{0} \lambda_{2} \lambda_{3}
\end{array}\right]
$$

and conjugating \because| | 1 | 11 |
| :--- | :--- | :--- |
| \because | 1 | by an element of E adds on a |

vector

Thus mod $\langle\mathrm{z}\rangle$ there are 3 classes of this shape :

Do the involutary preimages of these in H fuse ?

These are respectively of class $2 B$ and $2 A$.
The two involutary preimages of $\left.\left[\begin{array}{ll}1 & 0 \\ 10 & 0 \\ 10 & 0\end{array}\right] \cdot \begin{array}{lll|l}\therefore & 1 & 11 \\ 1 & 11 \\ \hline\end{array}\right]$ are conjugate by $\left[\begin{array}{lll}0 & 0 & 0 \\ \omega & 0 & 0\end{array}\right]_{0}$ in F. Let s_{6} be the preimage

Similarly the two involutary preimages of $\left[\begin{array}{ll}0 & 0 \\ 100\end{array}\right] .\left[\begin{array}{ll}\square 11 & 1 \\ \therefore & 11\end{array} 1\right.$ are conjugate by $\left[\begin{array}{ll}\omega & 00 \\ \omega & 0\end{array}\right]_{0}$ in H. Let s_{7} be the preimage

First work mod $\langle z\rangle$. This time all three elements of
 and they are conjugate via w. So choose the one acting on \bar{E} as the field automorphism $\omega \leftrightarrow \bar{\omega}$ (see table 4). Its centralizer in \bar{E} is the set of all vectors with entries in $G F(2)=\{0,1\}$. Conjugating by $x \in \bar{E}$ adds on a vector $x+\bar{x}$, and vectors of this form span the centralizer of our element in \bar{E}, so that all involutions of shape (element of E of norm 0)

are conjugate mod $\langle z\rangle$.
The two preimages in F are, as elements of M,

8_{8} is in class 2 A whereas s_{9} is in class $2 B$.

Case 4 Elements of shape (element of E of norm 0)

First work mod $\langle z\rangle$. Again $2 l l$ three elements of \bar{F}

conjugate via w. So choose the one acting on \bar{E} as .!! followed by the field automorphism $\omega \leftrightarrow \bar{\omega}$.

The centralizer of this element in \bar{E} is $\left[\begin{array}{lll}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{4} & \bar{\lambda}_{2} & \bar{\lambda}_{3}\end{array}\right.$ with $\lambda_{1}, \lambda_{4} \in G F(2)$. Conjugating by an element of \bar{E} adds a vector $\left[\begin{array}{l}\mu_{1} \mu_{2} \mu_{4} \\ \mu_{4} \mu_{2} \tilde{H}_{4}\end{array}\right]$ with $\mu_{1}, \mu_{4} \in \operatorname{GF}(2)$ and so all such
elements are conjugate in \bar{H} ．
The two preimages of our element in H are conjugate by $\left[\begin{array}{lll}0 & 0 & w \\ 0 & 0 & \omega\end{array}\right]_{0}$ as can be checked by looking at these elements
 an element of M ，of class $2 B$ ．

Thus H has 10 conjugacy classes of involution as displayed in the following table ：

Representative of class in H	Name as element of M	J_{4}－class
$5_{1}=z$		$2 A$
$s_{2}=\left[\begin{array}{l}00 \\ 100 \\ 100\end{array}\right.$	$\left.\begin{array}{\|l\|l\|l\|}\hline 11 & 1 & : \\ 11 & 11\end{array}\right]$	2 A
$s_{3}=1 \begin{aligned} & 100 \\ & 000\end{aligned}$	\because $:$	2B
$S_{4}=\left[\begin{array}{lll}11 & 1 \\ 11 & 11\end{array}\right]_{28}$		$2 B$
$S_{5}=\left[\begin{array}{llll}\square & 1 & 11 \\ \square & 11 & 11\end{array}\right.$	［＊＊＊＊＊	2 A
$5_{6}=\left[\begin{array}{l}100 \\ 000\end{array} \square_{0} 1111110\right.$		$2 A$
	［111110＊＊	$2 B$
	\bar{X} 1 1 $1 i$	2 A
	可洨䜦	$2 B$
		2B

Table 10

Chapter 4 The 'Pentad' Subgroup P of shape $2^{3+12}\left(S_{5} X_{3}(2)\right)$
Looking again at [2] we find a recipe for obtaining in J_{4} a subgroup of shape $2^{3+12}\left(S_{5} \times \mathrm{I}_{3}(2)\right)$. In this chapter, I shall develop a notation for working inside this subgroup, and investigate the Slow 5-normalizer and Sylow 7-normalizer in J_{4}, which lie inside this subgroup.

Let T be the trio group in M of shape $2^{11} \cdot 2^{6}\left(S_{3} X I_{3}(2)\right)$ for the brick trio (see p.9-10). Then $Z\left(O_{2}(T)\right.$) $=V_{1} \leqslant V$ has order 2^{3}, and the 'Pentad' group $P=N_{J_{4}}(V)$ has shape $2^{3+12}\left(S_{5} X L_{3}(2)\right)$ with $O_{2}(P)$ special (see p. 3).

Looking at V_{1} in H , we find that it is the inverse image in E of an isotropic 1 -space in \bar{E}, namely $\left[\begin{array}{lll}0 & \lambda & \lambda \\ 0 & \lambda & \lambda\end{array}\right]$

a 1 -space of edge type for the edge $\{3,15\}=$| - | \because | \because |
| :--- | :--- | :--- |
| \because | \because | |

Thus $N_{H}\left(\nabla_{1}\right)$ is the sextet group of shape $2^{1+12} \cdot 3 \cdot 2^{4}\left(S_{5} \times 2\right)$ for the square sextet

Thus

$$
\begin{aligned}
& P \cap M=N_{M}\left(V_{1}\right)=m \text { has shape }\left\{\begin{array}{l}
2^{11} \cdot 2^{6}\left(S_{3} X I_{3}(2)\right) \text { in } M \\
2^{3+12}\left(S_{4} X I_{3}(2)\right) \text { in } P
\end{array}\right. \\
& P \cap H=N_{H}\left(V_{1}\right) \text { has shape }\left\{\begin{array}{l}
2^{1+12} \cdot 3 \cdot 2^{4}\left(S_{5} X 2\right) \text { in } H \\
2^{3+12}\left(S_{5} X 2^{2} I_{2}(2)\right) \text { in } P
\end{array}\right.
\end{aligned}
$$

and $\quad P=\langle P \cap M, P \cap H\rangle$.

The centralizer of an element of order 7 (c.f. p. 4)
Let $x_{7}=\left[\sqrt{n}\left[\begin{array}{l}\sqrt{j} \\ N\end{array} \in M \cap P\right.\right.$ 。
Then $C_{M}\left(x_{7}\right)=\left\langle x_{7}\right\rangle \quad X$

$$
=\left\langle x_{7}\right\rangle \quad \mathbf{X}
$$

has shape $7 \times \mathrm{S}_{4}$.
Since $C_{J_{4}}\left(x_{7}\right)=C_{P}\left(x_{7}\right)$ has shape $7 X S_{5}$, and $H \cap P$ has index 7 in P, we must be able to find an element of order 5 in H commuting with x_{7}. Now $N_{P}\left(x_{7}\right)$ has shape $7.3 \times \mathrm{S}_{5}$ with $0_{7,3}\left(N_{P}\left(x_{7}\right)\right)=0_{7,3}\left(N_{M}\left(x_{7}\right)\right)=\left\langle x_{7}, w\right\rangle$. Thus the element of order 5 must commute with w, and hence lie in F. Now there is a unique element of order 5 in F which acts on the 5 tetrads of the square sextet for F 's MOG as and makes an S_{5} with the S_{4} we already have, namely $\quad x_{5}=$

and so we have $\left[x_{5}, x_{7}\right]=1$.

The centralizer of an element of order 5
We now have enough information to find $C_{J_{4}}\left(x_{5}\right)$ of shape $5 \times 2^{3} I_{3}(2)$ (with the $2^{3} L_{3}(2)$ non-split), since we already know that $C_{p}\left(x_{5}\right) \geqslant\left\langle x_{5}, V_{1}, w, x_{7}, r\right\rangle$
where γ is the unique representative of

commuting with x_{5} (note that the $M_{22} \cdot 2$ centralizer of an element of order 5 is of order 10)

Since $\left\langle x_{5}, V_{1}, w, x_{7}, r\right\rangle$ is already big enough, it must be the whole centralizer of x_{5}.
$C_{M}\left(x_{5}\right)$ is a non-split extension of shape $2^{3} I_{3}(2)$ and lies in the trio group T. Its action on the three bricks is :
Left-hand brick : $I_{2}(7)$ on the standard numbering $\left[\begin{array}{ll}\infty & 0 \\ 3 & 2 \\ 5 & 1 \\ 6 & 4\end{array}\right]$
on the brick .
Right-hand brick: $I_{3}(2)$ fixing ∞ and preserving the projective plane structure given by
 in the
standard numbering on the brick -

the action on the middle brick is the same as the action on the right-hand brick except that a $\zeta^{*-s e t}$ has been attached to each permutation on $\{0, \ldots, 6\}$ to give a non-split monomial group $2^{3} L_{3}(2)$ 。

Now let $\Lambda=\left\langle\overline{\bar{x}} \overline{\bar{x}} \overline{\bar{x}} \bar{x}, x_{7}\right\rangle$ of shape $L_{2}(7)$ (i. e. the elements of $T \cap K$ acting acting on each brick, preserving the standard numbering) . Then $\Lambda \cap C_{p}(\Sigma)=\left\langle x_{7}\right.$, w \rangle $=$ Stab $_{\Lambda}(\infty)$. Our notations for P will be based on the two subgroups Λ and Σ 。

The structure of $\mathrm{O}_{2}(P)$ and notation for elements of P

The action of $P / O_{2}(P)=S_{5} X I_{3}(2)$ on $O_{2}(P) / V_{1}$ is the same as on the tensor product of the two-dimensional module over $G F(4)$ ior $S_{5} \cong \sum I_{2}(4)$ written as a 4-dimensional module over $G F(2)$, with a 3-dimensional module for $L_{3}(2)$ dual to ∇_{1}. (We call elements of ∇_{1} lines and of the dual $\nabla_{1} *$ points)

Thus we should label the tetrads of the square sextet for H with the points of a projective line $\mathrm{PG}(1,4)$: We choose the numbering :

	$\bar{\omega}$	1
∞	ω	0

Figure 7

The elements of ∇_{1} are given names as follows :

Table 11
where each element of ∇_{1} is a sextet vector in V for a sextet refining the brick trio for M, labelled above by giving the pair of tetrads comprising any brick (such sextets are similar in each brick) 。

We give elements of the dual of V_{1} two interpretations, one as affine translations on a brick, and one as sets of four points on a brick (c. f. fig. 2) as follows :

Table 12

This means that lines (in ∇_{1}) and points (in $V_{1}{ }^{*}$) are incident as follows :

Figure 8

This numbering gives a 1-1 correspondence between lines and points which is respected by the group $\Lambda \cap c_{p}(\Sigma)$ but is NOT incidence preserving.

Thus we see that elements of $O_{2}(P) / \nabla_{1}$ are spanned by elements of the form $(n) \otimes(x, y), 0 \leqslant n \leqslant 6 ; x, y \in G F(4)$.
We choose a particular inverse image $n_{x y}$ in $O_{2}(P)$, of $(n) \otimes(x, y)$, as follows :

and then linearly :

$$
n_{x+x^{\prime}} y+y^{\prime}=n_{x y} \cdot n_{x^{\prime}} y^{\prime}
$$

Let $\operatorname{tr}(x)=x+\bar{x} \epsilon\{0,1\}$, and let

$$
n_{x y}=n_{x y^{\circ}} I_{n} \operatorname{tr}(x y)
$$

Then elements of P can be written in the form :
(element of ∇_{1}). (product of $\left.n_{x y}{ }^{\prime} s\right)$. (element of Σ). (element of Λ)

The multiplication rules are :
(i) $Z\left(\mathrm{O}_{2}(\mathrm{P})\right)$:

$$
\begin{array}{lr}
I_{a}^{2}=1 \quad \text { where } I_{a}, I_{b}, I_{c} \text { are three lines } \\
& \text { intersecting in a point } \\
I_{a} \cdot I_{b}=I_{c} &
\end{array}
$$

(ii) $O_{2}(P)$:

$$
\begin{aligned}
& n_{x y} \cdot n_{x^{\prime}} y^{\prime}=n_{x+x^{\prime}} y+y^{\prime} \\
& m_{x y} \cdot n_{x y}=r_{x y} \cdot I_{a} \operatorname{tr}(x y) \\
& \text { where (} m, n, r \text {) are } 3 \text { points lying } \\
& \text { on line a } \\
& {\left[m_{x} y^{\prime}, n_{x^{\prime}} y^{\prime}\right]=I_{a} \operatorname{tr}\left|\begin{array}{ll}
x & y \\
x^{\prime} & y^{\prime}
\end{array}\right|} \\
& \text { where } a \text { is the line joining } \\
& m \text { and } n
\end{aligned}
$$

> (iii) Action of Λ on $O_{2}(P):$
> Let $\lambda \in \Lambda$. Then
> $\left(I_{a}\right)^{\lambda}=I_{b}$ where $\lambda: a \rightarrow b$ as lines $\left(n_{x y}\right)^{\lambda}=m_{x y}$ where $\lambda: n \rightarrow$ as points
> (iv) Action of Σ on $O_{2}(P):$
> Let $\sigma \in \Sigma$. Then
> $\left(I_{a}\right)^{\sigma}=I_{a}$
> $\left(n_{x}^{*}\right)^{\sigma}=n_{x^{\prime}}^{*} y^{\prime}$
> where $\sigma:(x, y)-\left(x^{\prime}, y^{\prime}\right)$
> as an element of $\Sigma I_{2}(4)$
(v) $[\Sigma, \Omega]$:

$$
\begin{aligned}
& {[\sigma, \lambda]=} n-\frac{a c}{} \text { bd } \\
& \text { where } \lambda: \infty \rightarrow n \\
& \text { and } \sigma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):(1,0) \rightarrow(a, b) \\
&(0,1) \rightarrow(c, d)
\end{aligned}
$$

Remark

Let $M \underset{D}{*} H$ be the free amalgamated product of groups isomorphic to M and H with the vertical sextet group in M identified with the left-hand hexad group in H via the dictionary of Chapter 2 (i.e. D as a subgroup of each identified). Let $M \underset{D}{\sim} H$ be the quotient of this by the $\left\langle\left[\overline{x_{5}, x_{7}}\right]\right\rangle$
normal closure of the element $\left[x_{5}, x_{7}\right]$. Then there is a surjective map

$$
\frac{M_{D}^{\#} H}{\left.\left\langle x_{5}, x_{7}\right]\right\rangle} \rightarrow J_{4}
$$

given in the obvious way. We shall be investigating the kernel of this map in Chapter 8 , but for the moment, let us remark that $\langle M \cap P$, H $\cap P\rangle$, as a subgroup of $M \underset{D}{*} H$ $\left\langle\left[\overline{x_{5}, x_{7}}\right]\right\rangle$ is isomorphic to P; i.e. that all relations in P follow from the dictionary of $p .31$ and the fact that x_{5} commutes with x_{7}. This follows easily from the fact that $O_{2}(P) \leqslant D$.

Chapter 5 The subgroup L of shape $2^{10} I_{5}(2)$

Looking once more at [2] we find a recipe for obtaining in J_{4} a subgroup of shape $2^{10} L_{5}(2)$. In this chapter I shall investigate this subgroup and its intersections with M, E and P.

Let $A_{0} \leq V$ be the subgroup of even $C^{*-s e t s}$ with a representative contained in the left-hand octad

so that $\left|A_{0}\right|=2^{6}$. Then $N_{M}\left(A_{0}\right)$ is the octad group in M of shape $2^{11} \cdot 2^{4} I_{4}(2)$ (see $p .10$) and $C_{K}\left(A_{0}\right)$ has order 2^{4} and consists of affine translations of the right-hand square. Let $A=A_{0} C_{K}\left(A_{0}\right)$ so that A is elementary abelian of order 2^{10}, and let $L=N_{J_{4}}(A)$. Then L is of shape $2^{10} \mathrm{I}_{5}(2), \mathrm{L}$ splits over $\mathrm{O}_{2}(\mathrm{I})$, and the action of $\mathrm{L} / \mathrm{O}_{2}(\mathrm{~L})$ on $\mathrm{O}_{2}(\mathrm{~L})$ is irreducible and is the same as the action on the skew-square of a natural 5-dimensional irreducible module.

Looking at A in H, we find that $A \cap E$ has order 2^{7}, and is the inverse image in E of the isotropic 3-space $\left.\begin{array}{l}x y z \\ x y z\end{array}\right]$ in \bar{E} of octad type for the 'middle' octad

has order 2^{4}, and $A=\langle A \cap E, A \cap F\rangle$.

Thus $N_{H}(A)$ is the octad group of shape $2^{1+12} \cdot 3 \cdot 2^{3}\left(L_{3}(2) \times 2\right)$ for the middle octad of H's MOG.

As a subgroup of P, A is

$$
\left\langle\nabla_{1},\left\{n_{x y}: x, y \in\{0,1\}\right\},(\omega \leftrightarrow \bar{\omega}) \in \Sigma\right\rangle
$$

so that $N_{P}(A)$ is the inverse image in P of the centralizer in $P / O_{2}(P)$ of the field automorphism $(\omega \leftrightarrow \bar{\omega})$ and has shape $2^{3+12}\left(\left(S_{3} \times 2\right) X I_{3}(2)\right)$ in P.

So we have :

$$
\text { I } \cap M=N_{M}(A) \text { has shape } \begin{cases}2^{10} \cdot 2^{4} I_{4}(2) & \text { in } M \\ 2^{10} \cdot 2^{4} I_{4}(2) & \text { in } I\end{cases}
$$

$$
\text { (but note that the two subgroups } A \text { and }
$$

$$
\text { I } \cap \mathrm{V} \text { of size } 2^{10} \text { are not the same) }
$$

$I \cap H=N_{H}(A)$ has shape $\begin{cases}2^{1+12} \cdot 3 \cdot 2^{3}\left(I_{3}(2) \times 2\right) & \text { in } H \\ 2^{10} \cdot 2^{6}\left(L_{2}(2) \times I_{3}(2)\right) & \text { in } L\end{cases}$
$I \cap P=N_{P}(A)$ has shape $\begin{cases}2^{3+12}\left(\left(2 X S_{3}\right) X I_{3}(2)\right) & \text { in } P \\ 2^{10} \cdot 2^{6}\left(I_{3}(2) X I_{2}(2)\right) & \text { in } I\end{cases}$

We shall find a nice basis with respect to which we shall write elements of $\mathrm{L} / \mathrm{O}_{2}(\mathrm{I})$ as 5 X 5 matrices in such a way that the intersections with M, H and P are three of the four maximal parabolics defined by the upper triangular matrices with respect to this basis. Then we shall find a particular complement to $O_{2}(L)$ in L, in order to be able to write elements of L in the form

$$
\text { (sum of wedge-products) . } 5 \text { X } 5 \text { matrix . }
$$

Looking at A_{0} as a module for $N_{M}(A) / A$ we see that it is isomorphic to the skew-square of $C_{K}\left(A_{0}\right)$. The rule for finding the wedge-product of two different involutions λ and μ of $C_{K}\left(A_{0}\right)$ as an element of A_{0} is as follows :

The orbits of $\langle\lambda, \mu\rangle$ of length four are congruent mod 6 , and define a $\zeta^{*}-$ set $\lambda 0 \mu$ in A_{0} (we denote this wedge product by a circle to distinguish it from the wedge-product \wedge from W X W to A to be defined later)

To which conjugacy class in J_{4} do elements of A belong ?
From the analysis on p. 35-37 we see that :
(1) elements of $C_{K}\left(A_{0}\right)$ are in class $2 A$
(ii) duads in A_{0} are in class $2 B$
(iii) sextets in A_{0} are in class $2 A$
(iv) elements of the form
sextet s in A_{0}. element λ of $C_{K}\left(A_{0}\right)$
are in class $\begin{cases}2 A & \text { if } \exists \mu \in C_{K}\left(A_{0}\right) s . t . \\ 2 B & \text { otherwise }\end{cases}$
(v) elements of the form
duad in A_{0}. element of $C_{K}\left(A_{0}\right)$ are in class $2 B$

Thus if we let $W=\langle a, b, c, d, e\rangle$ be an abstract 5-dimensional space over $G F(2)$ so that W^{2-}, the skew-square of W, is ten-dimensional (we write wedge-products in W^{2-} with a \wedge) then we can identify W^{2-} with A via:
a 0
b

c

0
d

0

ヘ

a

b

c

Table 13

and with this identification we find that for

$$
\lambda \cdot \mu \in\langle a, b, c, d\rangle, \lambda_{\wedge} \mu=\left(\lambda_{\wedge} e\right) \circ(\mu \wedge e)
$$

and so an element of A is in class 2A if it is a simple wedge-product class $2 B$ otherwise.

Lemma 5.1
If X is a vector-space over a field having all
square roots, and $\operatorname{dim}(X) \neq 4$, then every automorphism of \mathbf{x}^{2-} preserving the set of wedge-products is the skew-square of an element of $\Gamma L(X)$.

Proof We examine the subspaces of X^{2-} such that every element is a wedge-product of elements of X . Such a subspace corresponds to a collection of 2 -spaces in X such that if X_{0} and X_{1} are in the collection then $\operatorname{dim}\left(X_{0} \cap X_{1}\right)=1$, and every subspace Y with $X_{0} \cap X_{1}<Y<\left\langle X_{0}, X_{1}\right\rangle$ is also a member of the collection.

The possible structures of such collections of subspaces,
for given dimension of subspace of X^{2-}, are by induction as follows :

Let $M(X)$ be the collection of subspaces of x^{2-} of maximal dimension such that every element is a wedge-product of elements of X, so that we have shown that if $\operatorname{dim} X \geqslant 5$ then every element of $M(X)$ has dimension dim $X-1$ and is of the form $X_{0} \wedge X$ for a uniquely determined 1 - space X_{0}.

Assume now that dim $\bar{X} \geqslant 5$.
Three 1-spaces X_{0}, X_{1} and X_{2} lie in a 2-space iff

$$
\operatorname{dim}\left(\left(x_{0} \wedge x\right) \cap\left(X_{1} \wedge x\right) \cap\left(X_{2} \wedge x\right)\right)=1
$$

Thus am automorphism ρ of X^{2-} preserving the collection of wedge-products determines a permutation of the 1-spaces preserving whether three such lie in a $2-$ space. Hence there is an element of $\operatorname{PrL}(X)$ determining the same permutation. Choose a preimage ε for this in $\Gamma L(X)$ and look at $\rho^{-1} \varepsilon^{2-}$.

This fixes each element of $M(x)$, and hence fixes each intersection of a pair of elements of $M(x)$. But these are precisely the 1-spaces of wedge-products.

This is enough to show that $\rho^{-1} \varepsilon^{2-}$ is a scalar transformation λ I. Then $\rho=(\sqrt{\lambda} \varepsilon)^{2-}$.

Thus the result is proven for dim $X \geqslant 5$. The result is clear for $\operatorname{dim} \mathbf{X} \leqslant 3$, and is false for $\operatorname{dim} \bar{X}=4$. (take the skew-square of a duality for example)

Thus we have a well-defined action of $\mathrm{I} / \mathrm{O}_{2}(\mathrm{~L})$ on W, and can hence write elements of $L / O_{2}(L)$ as 55 matrices acting on W as the space of row vectors. The groups $(M \cap L) / O_{2}(L),(H \cap L) / O_{2}(L)$ and $(P \cap L) / O_{2}(L)$ are as follows :

We now attack the problem of a complement for $\mathrm{O}_{2}(\mathrm{~L})$
in L. We notice that $O_{2}(L)$ has a natural conjugacy class of complements in $L \cap M$, a representative of which is $C_{K}\left(A_{0}\right)\{\infty, 22\}$ where $\{\infty, 22\}$ is a duad in V. Can we extend this to a complement for $\mathrm{O}_{2}(\mathrm{I})$ in L ?

Lemma 5.2

I_{5} (2) has the following presentation by generators and relations :

$$
\begin{aligned}
&\left\langle a_{1}, b_{i}, 1 \leqslant i \leqslant 4\right.\left.\left\lvert\, \begin{array}{l}
\left(a_{i} a_{j}\right)^{n}=1 \\
\\
\left(b_{i} b_{j}\right)^{n}=1
\end{array}\right.\right\} n= \begin{cases}1 \text { if }|i-j|=0 \\
4 & \text { if }|i-j|=1 \\
2 & \text { if }|i-j| \geqslant 2\end{cases} \\
&\left(a_{i} b_{j}\right)^{n}=1 \quad n=\left\{\begin{array}{lll}
3 & \text { if } & i=j \\
2 & \text { if } & i \neq j
\end{array}\right. \\
&\left(a_{i} b_{i} a_{i+1}\right)^{3}=\left(b_{i+1} b_{i} a_{i+1}\right)^{3}=\left(b_{i+1} a_{i} a_{i+1}\right)^{3} \\
&=1 \text { for each } 1 \leqslant i \leqslant 3
\end{aligned}
$$

Proof These relations are satisfied by

$$
\begin{aligned}
& a_{1}=\left(\begin{array}{l}
10000 \\
11000 \\
00100 \\
00010 \\
00001
\end{array}\right) \quad a_{2}=\left(\begin{array}{l}
10000 \\
01000 \\
01100 \\
00010 \\
00001
\end{array}\right) a_{3}=\left(\begin{array}{l}
10000 \\
01000 \\
00100 \\
00110 \\
00001
\end{array}\right) a_{4}=\left(\begin{array}{l}
10000 \\
01000 \\
00100 \\
00010 \\
00011
\end{array}\right) \\
& b_{1}=\left(\begin{array}{l}
11000 \\
01000 \\
00100 \\
00010 \\
00001
\end{array}\right) \quad b_{2}=\left(\begin{array}{l}
10000 \\
01100 \\
00100 \\
00010 \\
00001
\end{array}\right) \quad b_{3}=\left(\begin{array}{l}
10000 \\
01000 \\
00110 \\
00010 \\
00001
\end{array}\right) b_{4}=\left(\begin{array}{l}
10000 \\
01000 \\
00100 \\
00011 \\
00001
\end{array}\right)
\end{aligned}
$$

and successive coset enumerations of the $2^{r+1}-1$ coset of
$\left\langle a_{i}, b_{i}, 1 \leqslant i \leqslant r-1, a_{r}\right\rangle$ in $\left\langle a_{i}, b_{i}, 1 \leqslant i \leqslant r\right\rangle$
and the 2^{r+1} cosets of $\left\langle a_{i}, b_{i}, 1 \leqslant i \leqslant r\right\rangle$ in $\left\langle a_{i}, b_{i}, 1 \leqslant 1 \leqslant r, a_{r+1}\right\rangle$ show that these relations are sufficient.

Theorem 5.3

The following elements of M and H generate a complement L_{1} for $O_{2}(I)$ in I :

Proof

Taking these as the a_{i} and b_{i} of the lemma, we see that each of the given relations is either satisfied in M or H , or is the relation :

$$
\left[\alpha,\left[\begin{array}{l}
x \\
11
\end{array}\right]=\left[\begin{array}{c}
\because \\
=
\end{array}\right]=1\right.
$$

This relation holds in the pentad group, as is easily checked.

Remark

The proof of the theorem shows that in the group $M_{D}^{*} H$
$\left\langle\left[\overline{x_{5}, x_{7}}\right]\right\rangle$
described on $p .48$ the subgroup $\langle M \cap L, H \cap L\rangle$ is isomorphic to the group L described in this chapter; i.e. all relations in I follow from the dictionary of p. 31 and the fact that x_{5} commutes with x_{7}.

Having the complement L_{1}, we now have a notation for elements of L as
(element of $\mathrm{O}_{2}(\mathrm{~L})$). (element of L_{1})
i. e. 88
(sum of wedge-products).(5 X 5 matrix)

The reader is now referred to Appendix D where many useful elements of J_{4} are written in the notations for those of M, H, P and L in which they lie.

CODA Larghetto

The Smith-Ronan Diagram for J_{4}

In [11], Smith and Ronan investigate diagrams for groups 'of GF(2) type' . These are supposed to be an extension of the Dynkin Diagram notation for Chevalley Groups over GF(2) . The nodes of the diagram represent an 'incident' set of maximal 2-local subgroups in such a way that suppressing a particular node and all the edges leading from it leaves the diagram for the quotient of that maximal 2-local by its O_{2}. For example, the following is their diagram for M_{24} :

In their notation, a missing node is one which cannot be suppressed, and which magically reappears when certain of the other nodes have been suppressed. Thus it might be better to re-draw the above diagram as

Figure 11
SEXTET
with the rule that a trapped node cannot be suppressed.
Then the diagram for $3 S_{6}$ would be

In this notation the diagram for $M_{22} \cdot 2$ is

that for $3 M_{22} \cdot 2$ is

and finally the diagram for J_{4} is

The notions of incidence involved in these diagrams were used as a guide to the choice of notations for H, M, P and L; in H we choose an incident hexad, sextet and octad to define $H \cap M, H \cap P$ and $H \cap L$, and in M we choose an incident sextet, trio and octad to define $M \cap E, M \cap P$ and $M \cap L$. Then the notations for P
and L follow naturally.
In the Chevalley groups, not only can we choose an incident set of maximal 2-locals, but we can also choose an 'incident' set of Levi Complements in these maximal 2-locals. Corresponding to this, our 'complements' $F<H, K<M, \Lambda$ and $\Sigma<P$ and $I_{1}<L$ seem to be incident in a similar way.
(Other examples of trapped nodes are :

$$
F_{i_{24}} \cdot 2
$$

and perhaps a little more far-fetched are :

Chapter 6 The construction of J 4 Via the
112-dimensional 2-modular representation \triangle
In this chapter, I shall describe the construction by Norton, Parker and Thackray of a pair of 112 X 112 matrices over $G P(2)$ generating J_{4} (see [6]), some of the methods developed by Parker and Thackray (see [7]) for dealing with 2-modular representations on a computer, and the proof by Norton, Parker, Conway, Thackray and myself that the group generated by these matrices is indeed isomorphic to J_{4}. In the next chapter I shall develop more of the internal structure of the module.

When the ordinary character table of J_{4} had been produced in Cambridge in 1975, it was seen that the smallest ordinary character degree was 1333, and that even that was irrational, so that it would be quite difficult to construct the group via this ordinary representation. Hence Thompson decided to examine the possibilities for a modular representation of small degree. By restricting to various subgroups, he showed that for $p \neq 2$, there could be no non-trivial p-modular representation of degree less than 1333, and that for $p=2$, the smallest possibility was a (self-dual) 112-dimensional representation over GF(2). Thus he made :

Conjecture 1

J_{4} has a representation of degree 112 over GF(2).

The problem was then to try to construct a pair of 112 X 112 matrices over $G F(2)$ generating this representation of J_{4}. To do this, it was necessary to find a moderately large subgroup of odd characteristic. Looking again at the ordinary character table of J_{4}, it was seen that $\left|U_{3}(11)\right|$
divides $\left|J_{4}\right|$, and that a set of apparently consistent character restrictions from J_{4} to $\mathrm{U}_{3}(11)$ could be written down . Thus we have :

Conjecture 2

J_{4} has a subgroup U isomorphic to $l l_{3}(11)$

Suppose J_{4} exists and sutisfies conjectures 1 and 2. Under the action of U, the 112-dimensional module \triangle would have to be uniserial $1+110+1$, with a unique invariant 1-dimensional submodule Δ_{1}^{U} and a unique invariant 111-dimensional submodule $\Delta_{111}^{\mathrm{U}} ; \Delta_{111}^{\mathrm{U}} / \Delta_{1}^{\mathrm{U}}$ lifts to characteristic 0.
(Notation : when Δ has a unique invariant submodule of dimension n under the action of a group X, we denote this submodule by Δ_{n}^{X})

An element of order 11 in the centre of a Sylow 11-subgroup acts fixed point freely on $\Delta_{111}^{U} / \Delta_{1}^{U}$, and hence has a unique fixed point on Δ / Δ_{1}^{U}. Thus this module is a quotient of the permutation module on the cosets of a Sylow 11 -normalizer (i.e. on isotropic vectors). It turns out that the kernel is generated by fixed points on even elements of the module. Thus $\triangle / \Delta_{1}^{U}$ can easily be built as matrices. Moreover, Δ_{111}^{U} is dual to this module. Since $\Delta_{111}^{U} / \Delta{ }_{1}^{U}$ is self-dual, it is then possible to choose bases so that the matrices for these two modules agree in 110 rows and columns. Gluing them together leaves only one bit of the resulting matrices unresolved :

Figure 16

Since the group of all matrices obtained by filling in this bit in both possible ways is a group of shape $U_{3}(11) \times 2$, choosing an odd order generating set resolves the ambiguity.

Now we need an extra element to complete this to a representation of J_{4}. This was done by enlarging the Sylow 11-normalizer :

Under the action of the J_{4} Sylow 11-normalizer, \triangle decomposes as a direct sum of a 110-dimensional module and a 2-dimensional module (with S_{3} action on the latter). Restricting to the subgroup of shape $11^{1+2} .5$, the 110 -space becomes a 55-space over GF(4). Thus we can find a matrix of order 3 normalizing this subgroup in the required way, by the methods described in the next section, and then all such matrices can be obtained from this one by multiplication by a GF(4)-scalar matrix.

Thus very few possibilities were found for a set of generating matrices for J_{4}. All but one of these possibilities was rejected immediately by taking random products of the
generating matrices and finding an element whose order is not the order of an element of J_{4}.

Thus we were left with a particular set of generating matrices for a group which we believed to be isomorphic to J_{4}. The problem was then to prove that this was indeed the case. Before I give this proof, I shall discuss the computer techniques used to verify certain facts about the module needed in the proof.

Computer Techniques for Modular Representations of

Finite Groups

This section is a brief description of a body of techniques developed by Richard Parker and Jon Thackray for dealing with modular representations of finite groups on a computer (see [7] for further details). These work in principle for any finite field, but have so far been implemented only over GF(2), where the techniques are most efficient.

A group representation is stored as a set of non-singular matrices generating the group. Since we mostly deal with groups which can be generated by two matrices, the programmes have been written to store a group representation as a pair of matrices. All vectors considered are row vectors acted on the right by matrices.

The basic operations defined on matrices and vectors are the following :
(i) Rank
(ii) Addition
(iii) Multiplication
(iv) Inversion
(v) Transposition
(vi) Tensor Product
(vii) Exterior Powers Etc.
(viii) Null Space
(ix) 'Invariant Subspace'
(x) 'Standard Base'
(xi) Top Left
(xii) Split
and a few more technical operations.

Only the last five of these need explanation.

Null space :

This takes as input a singular matrix say of nullity n , and gives as output a non-singular matrix the first n rows of which give a basis for the null space, and the rest of which complete this to a basis for the whole space.

Invariant Subspace :

This takes as input a pair of matrices and a vector. It then finds the submodule generated by the vector under the action of the matrices, and gives as output the dimension n of this space, and a matrix the first n rows of which give a basis for the subspace and the rest of which complete this to a basis for the whole space.

Standard Base :

This takes as input a pair of matrices and a vector not in any proper invariant subspace. The output is a matrix whose rows form a basis obtained in a standard way from the input. (i.e. conjugating the input by a matrix will have the effect of conjugating the output by the same matrix.)

Top Left :

This takes as input a matrix and an integer n, and gives as output the top-left $n \times n$ portion of the matrix.

Split :

This takes as input two matrices and a vector. It finds the submodule generated by the vector under the action of the matrices, and outputs the two group elements in the two new representations : submodule and quotient module.

With the above tools, the complete lattice of submodules for a representation may be found as follows :
(i) The nullity trick :

The basic observation here is that a 'random' element of the group algebra as a matrix in a given representation over a finite field is quite likely to have small non-zero nullity. This is at its best over GF(2) and gets worse for bigger fields. (For example for an absolutely irreducible representation over $G F(2)$ the probability of a random matrix having nullity 1 is about 0.56 , over $G F(3)$ about 0.42 , and over $G F(5)$ about 0.24 . For a reducible representation the probabilities are not much different, unless the representation is really a representation over a larger field of the same characteristic, written over the small field. Then the nullities are all divisible by the degree of the field extension.)

Now suppose we are given a reducible representation and we wish to find an invariant submodule. The first step is to take random elements of the group algebra in the representation until one is found of small non-zero nullity. The next step is to take the non-zero null vectors of this element one by one and find the invariant subspace generated by each under the action of the group. Since it is quite likely that the element has nullity in a proper submodule if there is one, this means that a proper invariant subspace will be found after a few tries like this. We may then extract the submodule and quotient module as new matrix representations of the group.
(11) The irreducibility test :

Having applied the nullity trick to a representation and not found an invariant subspace, we may wish to try to prove that the representation is irreducible. To do this, again we take random elements of the group algebra in the representation until we find one of small non-zero nullity (preferably nullity 1), and then we take all its non-zero null vectors and ind the submodule generated by each under the action of the group. If in each case the whole space is found to be the answer, we repeat the procedure with the transpose of the matrix and the transpose inverse of the generators of the group. If the whole space is again found to be the answer in each case, we know that the representation is irreducible.

(iii) Isomorphism types; fingerprints :

Having obtained the composition factors of the module, we wish to know which are isomorphic. The first and obvious remark is that modules of different dimensions are nonisomorphic. Secondly, a quick and easy test for non-isomorphism is to find an element of the group algebra with different nullities in the two representations. Thus we try to find a short list of test-elements of the group algebra, so that the 'fingerprint' of a module - i.e. the set of nullities of the test-elements - is enough to ascertain the isomorphism type.

The method for proving that two modules are isomorphic is as follows:

Pirst, we find an element of the group algebra of small non-zero nullity (again preferably nullity 1) in the representations (the nullities had better be the same !) . Then we take a particular null vector in the first representation
and find the standard base (see above) with respect to this vector. Doing the same for each null vector in the other representation, we find either that :
(a) there is a null vector such that expressing the matrices for each representation with respect to the standard bases for these null vectors, the two representations have identical matrices, in which case the representations are isomorphic, or
(b) no such null vector has this property, in which case the representations are non-isomorphic.
(iv) Non-existence of composition factors :

In order to show that an irreducible module A is not a composition factor of a module B, it is sufficient to find an element of the group algebra having greater nullity on A than on B.
(v) The Lattice of Submodules :

We now know the isomorohism types of all the composition factors, and wish to know the lattice of submodules. For this It is enough to be able to tell what are the bottom constituents of a module (i.e. the socle) and then to 'peel off' bottom constituents one at a time. To find all submodules of our representation B isomorphic to a particular irreducible module A, we find an element of the group algebra having non-zero nullity on A and small nullity on B. We then take each of the null vectors of this element on the representation B, and for each one we find the invariant submodule generated by it under the action of the group. The number of times the submodule generated is isomorphic to A tells us the number of copies of A there are in the socle of B, if we know

```
the correct field of definition of A (i.e. if we know the
centralizer ring of A ) .
```

There are also many short-cuts for decreasing the amount of work needed, and so far these have made the methods usable for representations of dimensions up to about 10000 .

The Group Game; the Centralizer of an Involution

In its strictest sense, the group game is the following : There are two players, A and B . A thinks of a group and gives B a list of symbols for generators. B may then ask A for the symbol for any word in A's generators. The only restriction on A is that if he names the same element twice he must use the same symbol. B's task is to find out vhat group A is thinking of.

Example :

A gives B the list a_{1}, a_{2}	
B's question	$A^{\prime} s$ answer
$a_{1} a_{1}$	a_{3}
$a_{3} a_{3}$	a_{3}
$a_{2} a_{2}$	a_{3}
$a_{1} a_{2}$	a_{4}
$a_{4} a_{4} a_{4} a_{4} a_{4} a_{4}$	a_{4}

At this point B deduces that A is thinking of the dihedral group of order 10 .

Our problein with J_{4} was very similar, with the computer as player A and us as player B, except that we could obtain information inadmissible to the group game player. For example, if $1+x$ has different rank from $1+y$, then x is not conjugate to \bar{y}. (For each conjugacy class of element x in J_{4}, the rank of $1+x$ in the representation Δ is given in Appendix C, after the existence has been proven)

Our tasks were to show :
(1) The centralizer of some involution z in the group generated by our matrices has the form given in Hypothesis A on p. 3
(ii) The group generated by our matrices is simple.

Then by the characterization given in Janko [2] the group generated would be proven to be J_{4}.

Inside the group game, there is a quick and easy method for finding a subgroup of the centralizer of an involution x , which is probably the whole of $0^{2 \prime}(C(x))$, as follows :

First, randomly multiply elements together until an element of even order is obtained, and then take a suitable power of it in order to obtain an involution x. Repeat the process to obtain another involution y, preferably not conjugate to x. Then $\langle x, y\rangle$ is a dihedral group, and if $x y$ has even order $2 n$ (which it does if $x \not x y$) then $(x y)^{n}$ is an involution commuting with x. Repeating this process with conjugates of y or with other random involutions, soon the whole of $0^{2 \prime}(C(x))$ will be obtained. However, there is never a guarantee that it has all been found.

In our group of matrices, we found an involution z with $\operatorname{Rank}(1+z)=50$, and found by the above method a group H centralizing it. It was thus suspected that H was of the form given in Hypothesis A on p. 3 . The action of H on a suitable composition factor of Δ under this action was used to identify $\mathrm{H} / \mathrm{O}_{2,3}(\mathrm{H})^{(t)}$ with Hut $\left(M_{22}\right)$. A supplement F of shape $6 M_{22} .2$ to $O_{2}(H)$ in H waw then found by the following method, which is again a group game technique :

Take an element $w \in \mathrm{O}_{2,3}(\mathrm{H})$ of order 3 (ie. an element of order 3 acting trivially on the above composition factor) and define $F=N_{H}(w)$. Given an involution t in $H \backslash H^{\prime}$, either $w^{t}=w^{-1}$, in which case $t \in F$, or $w^{t}=x w^{-1}$ with $x \in O_{2}(H)$. In the
(f) ie. a quotient of H which will later turn out to be $\mathrm{H} / \mathrm{O}_{2,3}(\mathrm{H})$. The same comment applies to the rest of this and the next paragraph.
latter case $\langle t, w, z\rangle /\langle z\rangle \cong S_{4}$ with t acting as (01)(2)(3) and w as (0)(123). Thus $t w t w^{2} t$ is an element of F equivalent to t modulo $0_{2,3}(H)$. F is generated by elements of this form.

Next, Todd's presentation of M_{22} given in [10] was used to prove by generators and relators that H really is as in Hypothesis A. Thus the notation developed in Chapter 2 can be used to describe elements of H.

As the next step, two involutions of total type (see p. 23) lying in the subgroup E_{1} of $\mathrm{O}_{2}(\mathrm{H})$ (see p. 27) were taken, and again by the above method, subgroups of their centralizers were found. By means of looking at the action of the group M generated by these on an invariant submodule of \triangle of dimension 12 under this action, this group M was identified with the group of shape $2^{11} \mathrm{M}_{24}$ described in (ii) on p. 3 , and again Todd's presentation of M_{24} was used to prove by generators and relators that M really is isomorphic to the group described there. Notation for M was chosen in such a way that the dictionary of p. 31 held, and this dictionary was explicitely verified on the computer. Thus the rest of the analysis of Chapter 3 holds in the group of matrices $G=\langle M, H\rangle$.

Next, the relation $\left[x_{5}, x_{7}\right]=1$ (see p. 42) was verified, so that our group G is a quotient of the group M $\underset{\mathrm{D}}{\mathrm{D}}$ (defined on p .48 . Thus by the remarks on p .48 and $\left\langle\left[x_{5}, x_{7}\right]\right\rangle$
p. 57 there are subgroups P and L of the shapes described in chapters 4 and 5 , intersecting M and H in the ways described there.

In fact we also checked on the computer directly by generators and relators using the presentation given in [12] that the elements given on p. 56 do indeed generate a subgroup isomorphic to $I_{5}(2)$, since this fact is used in our proof that G is isomorphic to J_{4}.

The Actions of H, M, P and I on \triangle; Sacred Vectors

The methods of p. 65-70 were used to show that under the action of each of H, M, P and L, \triangle reduces almost uniserially, as illustrated in the following diagrams :

H	M	\mathbf{P}	\pm
10	1	4181	$1 \oplus 5$
30	$\overline{11}\left(S e^{*}\right)$	$4_{2} \otimes 3_{p}$	$\overline{10}$
10 ¢ 12	$\overline{44}\left(\mathrm{PS}\left(G^{*}\right)^{2}\right)$	$(1 \otimes X) \oplus\left(4, \otimes 3_{1}\right)$	$\overline{40}$
	$44\left(P S C^{2-}\right)$	$4_{2} \otimes 8$	40
30	11 (PC)	$(1 \otimes X) \oplus\left(4, \otimes 3_{p}\right)$	10
10	1	$4_{2} \otimes 3_{1}$	$1 \oplus 5$
		$41 \otimes 1$	

Table 14
These diagrams indicate all submodules, and the numbers are dimensions of composition factors. Bars indicate duality, so that $\overline{10}$ denotes a module dual to 10 . For example, this means that under the action of H, there are invariant submodules of dimensions $10,40,50,52,60,62,72$ and 102 (exactly one of each). See p. 62 for the notation for these submodules.

Por P, any irreducible module is the tensor product of one for S_{5} and one for $I_{3}(2)$. For S_{5}, the module 4_{1} is the deleted permutation module on 5 points, and 4_{2} is the doubly deleted permutation module on 6 points. For $I_{3}(2), J_{1}$ (lines) is a module isomorphic to the module $Z\left(\mathrm{O}_{2}(\mathrm{P})\right.$), and 3_{p} (points) is the dual of this module (see p. 45).

I is a self-dual uniserial module for $L_{3}(2)$ with diagram:

$$
\begin{aligned}
& 3_{p} \\
& 3_{1} \\
& 3_{p} \\
& 3_{1}
\end{aligned}
$$

Under the action of M, we see that there is a unique non-zero fixed vector \boldsymbol{v}_{∞}. We shall call the images of v_{∞} under the group G the 'sacred vectors' .

Under the action of $K, \Delta_{12}^{M} \cong \mathcal{G}$, so that we may identify vectors in this with octads, dodecads, etc.

$$
\text { Two Generators for } G=\langle M, H\rangle
$$

Lemma $G=\left\langle g_{1}, g_{2}\right\rangle$, where

$$
g_{1}=
$$

Proof Certainly $\langle M, H\rangle \supseteq\left\langle g_{1}, g_{2}\right\rangle$, so we must prove that $\langle M, H\rangle \subseteq\left\langle g_{1}, g_{2}\right\rangle$. We prove this in five stages :
(i) $K=\left\langle g_{1}{ }^{2}, g_{2}^{5}\right\rangle$:
$g_{1}{ }^{2} \in K$, and since $\left[x_{5}, x_{7}\right]=1, g_{2}^{5}=x_{7}^{5} \in K . W e$ examine the set of maximal subgroups of M_{24} which are transitive and have order divisible by 7 . There are the trio group of shape $2^{6}\left(S_{3} X I_{3}(2)\right)$ and the octern group of shape $L_{3}(2)$. We see firstly that x_{7} is in only one trio group, namely that for the brick trio, and that $g_{\mathcal{q}}{ }^{2}$ is not in this. Secondly, in the octern group the set of fixed points of an element of order 7 is a set of imprimitivity whereas this does not hold for the fixed points of x_{7}.

```
in \(\left\langle g_{1}{ }^{2}, g_{2}{ }^{5}\right\rangle\).
    (ii) \(F^{\prime}=\left\langle g_{1}, g_{2}^{7}\right\rangle:\)
    \(g_{1} \in F^{\prime}\), and since \(\left[x_{5}, x_{7}\right]=1, g_{2}^{7}=x_{5}{ }^{3} \in F^{\prime}\).
    \(\left\langle g_{1}, g_{2}{ }^{7}\right\rangle\) is transitive on the 22 points, whereas all
proper subgroups of \(M_{22}\) are intransitive.
    (iii) \(M=\left\langle g_{1}, g_{2}^{5}\right\rangle\) :
\(g_{1}{ }^{3}=z \in V\), which is an irreducible module for \(K\).
    (iv) \(E \leqslant\left\langle g_{1}, g_{2}\right\rangle\) since \(E \leqslant M\).
    (v) \(H \leqslant\left\langle g_{1}, g_{2}\right\rangle\) since \(M\) contains elements in the
outer half of \(F\) 。
```

These generators g_{1} and g_{2} are shown in appendix B 。

Splitting the skew-square of Δ; the neighbourhood of a vector

The most important step in the proof that G is isomorphic to J_{4} was the finding of an invariant submodule of the skew-square Δ^{2-} of Δ under the action of the two generators g_{1} and g_{2}. This took the computer about 100 min . of central processing unit time, and produced an invariant submodule $\Delta \frac{2-}{4995}$ of dimension $4995\left(\Delta^{2-}\right.$ has dimension 6216) generated by a vector in $\Delta_{1}^{M} \wedge \Delta_{12}^{M}$.

Definition Given a subspace X of Δ, we define the NEIGHBOURHOOD of X by

$$
\mathcal{P}(x)=\left\{w \in \Delta: \forall v \in X, \quad w \wedge \nabla \in \Delta_{4995}^{2-}\right\}
$$

and the neighbourhood of a vector is the neighbourhood of the 1-dimensional space spanned by it.

The neighbourhood of a subspace X is clearly invariant under $\operatorname{Stab}_{G}(X)$.

The following facts needed in the proof that G is isomorphic to J_{4} were verified by computer :
(i) $\mathcal{P}(\Delta \underset{1}{M})=\Delta_{12}^{M}$
(ii) The non-zero vector in Δ_{1}^{I} is an octad vector in
Δ_{12}^{M} (for the left - hand octad)
(iii) $\mathcal{A}\left(\Delta \Delta_{1}^{I}\right)=\Delta \frac{I}{6}$
(iv) If v is a dodecad vector in Δ_{12}^{M} then $\mathcal{N}(v)$
has dimension 2 .

$$
\text { (v) } \quad \Delta_{16}^{I} \leqslant \Delta_{56}^{M}
$$

(vi) If w_{1}, w_{2} and w_{3} are three octad vectors in Δ_{12}^{M} for disjoint octads then $\mathscr{M}\left(w_{1}\right) \cap \mathscr{N}\left(w_{2}\right) \cap \mathscr{N}\left(w_{3}\right)$ has dimension 2 , and consists of v_{∞}, another sacred vector in $\Delta_{56}^{M} \backslash \Delta_{12}^{M}$ called the TRIO vector $f_{1}\left(w_{1}, w_{2}, w_{3}\right)$ (see p. 93) and a non-sacred vector.
(vii) An orthogonal form on Δ was found which is invariant under the action of g_{1} and g_{2}.

The structure of these facts will become clearer in the next chapter.

As an example of how these facts were proven, we showed (iii) to be true by showing that $\mathscr{N}\left(\Delta_{1}^{L}\right)$ contains some element of $\Delta_{6}^{L} \backslash \Delta \frac{I}{1}$ and does not contain some element of $\Delta_{16}^{\mathrm{I}} \backslash \Delta \frac{\mathrm{I}}{6}$. Then since $\mathscr{N}(\Delta \underset{1}{\mathrm{I}})$ is I-invariant, it must be Δ_{6}^{I}.

The proof that G is isomorphic to J_{4}

Stage $1 \quad C_{G}\left(v_{\infty}\right)=M:$
First, $C_{G}\left(\nabla_{\infty}\right)$ fixes Δ_{12}^{M} setwise by (i). If ∇ and V^{\prime} are respectively an octad vector and a dodecad vector in Δ_{12}^{M}, facts (ii), (iii) and (iv) above show that

$$
\operatorname{dim} \mathscr{N}(\nabla) \neq \operatorname{dim} \mathscr{N}\left(\nabla^{\prime}\right)
$$

Thus octad vectors in Δ_{12}^{M} are really different from dodecad vectors under the action of $C_{G}\left(\nabla_{\infty}\right)$, and hence this acts as M_{24} on $\Delta{ }_{12}^{M} / \Delta_{1}^{M} \cong P G$. Hence the action on Δ_{12}^{M} is at most $2^{11} M_{24}$, and so it is sufficient to show that $C_{G}\left(\Delta_{12}^{M}\right)$ is trivial.

First we observe that $\operatorname{Fix}_{\Delta}\left(\mathrm{C}_{G}\left(\Delta_{12}^{M}\right)\right)$ is a subspace of Δ invariant under M. Now $C_{G}\left(\Delta{ }_{12}^{M}\right)$ stabilizes $\mathcal{N}\left(w_{1}\right) \cap \mathcal{N}\left(w_{2}\right) \cap \mathcal{N}\left(w_{3}\right)$ where w_{1}, w_{2} and w_{3} are three octad vectors in Δ_{12}^{M} for disjoint octads, and hence by (vi) above, it stabilizes the trio vector $f_{1}\left(w_{1}, w_{2}, w_{3}\right)$ so that $C_{G}\left(\Delta_{12}^{M}\right) \leqslant C_{G}\left(\Delta_{56}^{M}\right) \leqslant C_{G}\left(\Delta_{16}^{I}\right)$ by (v).

If $y \in C_{G}\left(\Delta_{16}^{L}\right)$ then y stabilizes v_{∞} and so $\exists x \in M$ suck that the action of x on Δ_{12}^{M} is the same as that of y. But then $y^{-1} \in C_{G}\left(\Delta_{12}^{M}\right) \leqslant C_{G}\left(\Delta_{16}^{L}\right)$ so that $x \in C_{M}\left(\Delta{ }_{16}^{I}\right)=\{1\}$. Hence $y \in C_{G}\left(\Delta{ }_{12}^{M}\right)$.

Thus we have $C_{G}\left(\Delta_{12}^{M}\right)=C_{G}\left(\Delta_{16}^{L}\right)$, so that $F_{i x}\left(C_{G}\left(\Delta{ }_{12}^{M}\right)\right)$ is invariant under both M and L. But looking on p. 75 we see that this implies that it is the whole of Δ. Thus $C_{G}\left(\Delta_{12}^{M}\right)=\{1\}$ as required.

Stage 2 Since $\mathrm{Fix}\left(\mathrm{O}_{2}(\mathrm{M})\right.$) is invariant under M , it must be Δ_{1}^{M}. Thus the orbits of $O_{2}(M)$ on sacred vectors are all of even length except $\left\{\nabla_{\infty}\right\}$ and so there are oddly many sacred vectors. Hence a Sylow 2-subgroup of M is a Sylow 2-subgroup of G.

Stage $3 C_{G}(z)=H:$

$$
\begin{aligned}
& \text { (recall that }\langle z\rangle=2(H) \text {) } \\
& (1+z)^{2}=0 \text {, so } \operatorname{Ker}(1+z) / \operatorname{Im}(1+z) \text { is invariant }
\end{aligned}
$$

under $C_{G}(z)$. Since $\operatorname{Rank}(1+z)=50$,

$$
\operatorname{dim}(\operatorname{Ker}(1+z) / \operatorname{Im}(1+z))=12
$$

$$
\text { (c.p.p. } 75 \text {) }
$$

and the action of H on this is as $3 M_{22} \cdot 2$. But

$$
\begin{aligned}
& \text { For every } X \text { with } 3 M_{22} \cdot 2<X \leqslant S p_{12}(2) \text {, } \\
& \text { the order of a Sylow 2-subgroup of } X \text { is } \\
& \text { greater than the order of a Sylow 2-subgroup } \\
& \text { of } 3 M_{22^{\circ}} \quad \text { (see footnote (f) on sext page) }
\end{aligned}
$$

so that the action of $C_{G}(z)$ on it is just $3 M_{22} \cdot 2$.
Now consider a minimal normal subgroup of the kernel of this action, mod $\langle z\rangle$. If it is a direct product of isomorphic non-abelian simple groups, then the Sylow 2-subgroup is elementary abelian of order 2^{12} and the automorphism group contains $3 \mathrm{M}_{22} .2$, which is clearly absurd. If it is an elementary abelian group of odd order then Δ decomposes as a direct sum of at least two eigenspaces under the action of this group, each of which is invariant under the action of H, again absurd. Thus $O_{2}(H /\langle z\rangle)$ is the unique minimal normal subgroup.

Thus any odd order chief factor of $C_{G}(z) /\langle z\rangle$ acts
on $\mathrm{O}_{2}(\mathrm{H} /\langle\mathrm{z}\rangle)$ non-trivially, so that by (*) we have $H i=C_{G}(z)$ as required.

Stage $4 \quad G$ is simple :

Suppose N is a minimal normal subgroup of G. Since there are no normal subgroups of M and H intersecting $M \cap H$ in the same way, either $N \geqslant\langle M, H\rangle=G$, or $\mathbb{N} \cap M=N \cap H=\{1\}$. But then N has odd order, and is hence elementary abelian, and again Δ decomposes as a direct sum of at least two eigenspaces of N, a contradiction, since $O_{2}(M)$ has a 1-dinensional fixed space.

Thus by the characterization of Janko [2], G is isomorphic to J_{4}.
p. $81(t)$: The representation of $C_{G}(z)$ on $K e_{s}(i+z) / I m_{\Delta}(1+z)$
is symplectic for the following reason: fact (vii) gives an isomorphism $\Delta \cong \Delta^{*}$, and hence $K_{e_{\Delta}}(i+z) / \operatorname{Im}_{\Delta}(1+z) \cong \operatorname{Ker}_{\Delta^{*}}(i+z) / \operatorname{Im}_{\Delta^{*}}(1+z)$

$$
\cong\left(\operatorname{Ker}_{\Delta}(1+z) / I m_{\Delta}(1+z)\right)^{*}
$$

Where are many ways of proving the fact (*).

For example, one could look at the list of groups with Sylow 2-subgreups of size 2^{8} and containing $3 M_{22} \cdot 2$, and having \& 12 -Dimensional 2-modular representation.

Chapter 7

The Geometry of Δ; a Presentation for J_{4} by Generators and Relators

Since the stabilizer of ∇_{∞} is exactly M, the sacred vectors are in one-one correspondence with the right cosets of M in G (throughout this chapter the word coset will automatically mean right coset) so that there are exactly 173067389 of them. In this chapter I shall investigate further properties of the module Δ from the point of view of the geometry of the set of sacred vectors at the same time as making an abstract coset enumeration for the cosets of M in a group \hat{G} defined below on $p .89$ by generators and relators, with the aim of proving that $\hat{G} \cong G$. Thus many of the arguments in this chapter have two simultaneous contexts. This is merely a device for saving having to write down the same arguments twice, and I hope this does not cause too much confusion.

For the purpose of the detailed analysis of stabilizers needed in this chapter I need a technical definition :

Definition

For $X_{1}, X_{2} \leqslant X$ finite groups, define

$$
\begin{array}{r}
m\left(x_{1}, x_{2}\right)=\left\{N \leqslant x_{1} \mid N<N^{\prime} \leqslant x_{1} \Rightarrow\right. \\
\left.N \cap x_{2}<N^{\prime} \cap x_{2}\right\}
\end{array}
$$

Lemma 7.1
(i) $M\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\left\{\mathrm{N} \leqslant \mathrm{X}_{1}\right\} \Leftrightarrow \mathrm{X}_{1} \leqslant \mathrm{X}_{2}$

$$
\text { (ii) } m\left(x_{1}, x_{2}\right)=\left\{x_{1}\right\} \Leftrightarrow x_{1} \cap x_{2}=\{1\}
$$

```
(iii) \(x_{2} \leqslant x_{3} \Rightarrow m\left(x_{1}, x_{2}\right) \subseteq m\left(x_{1}, x_{3}\right)\)
(iv) \(x_{1} \leqslant x_{3} \Rightarrow m\left(x_{1}, x_{2}\right)=\left\{N \cap x_{1} \mid N \in M\left(x_{3}, x_{2}\right)\right\}\)
    (v) If \(X_{3} \leqslant\left\langle X_{1}, X_{2}\right\rangle\) then
        \(N / x_{3} \in M\left(x_{1} / x_{3}, x_{2} / x_{3}\right) \quad \Rightarrow N \in M\left(x_{1}, x_{2}\right)\)
    (vi) If \(G\) acts on a set \(S\), and \(x \in S\), suppose
        \(I \subseteq \operatorname{Stab}_{X_{1}}(x)\) and
            \(\left\langle y, \operatorname{stab}_{x_{1} \cap x_{2}}(x)\right\rangle \in M\left(x_{1}, x_{2}\right)\).
        Then
        \(\left\langle Y, \operatorname{Stab}_{X_{1} \cap X_{2}}(x)\right\rangle=\operatorname{Stab}_{X_{1}}(x)\).
```


Proof

Clear

Part (∇i) of this lemma will be used repeatedly 。

One-functions and Nought-functions
Under the action of $M / \dot{O}_{2}(M), \Delta{ }_{12}^{M} / \Delta{ }_{1}^{M} \cong \gamma \wp$ (see p. 13). Let $\psi: P \mathscr{C} X S \mathscr{Q}^{*} \rightarrow G F(2)$ be the bilinear map establishing duality between $\gamma \mathcal{C}$ and $S Q^{*}$; i.e. $\psi(x, y)=|\hat{x} \cap \hat{y}|(\bmod 2)$ where \hat{x} and \hat{y} are subsets of Ω representing x and y. Then $O_{2}(M)$ acts on $\Delta \frac{M}{12}$ by

$$
x: y \mapsto y+\psi(x, y) \cdot v_{\infty}
$$

Now let $P: \zeta \rightarrow \Delta \frac{M}{12}$ be a linear function such that

commutes.

There are 2^{12} such functions, since the difference between two is a linear function from b to $\Delta{ }_{1}^{M}$, i.e. an element of b^{*}. For 2^{11} of these, $f(\Omega)=v_{\infty}$, and these are called the one-functions. For the remaining $2^{11}, f(\Omega)=0$, and these are called the nought-functions.
$g \in M$ with image $\bar{g} \in M_{24}$ acts on the set of such f's Via

and the stabilizer of a particular such function f is a complement to $O_{2}(M)$ in M. The two types of complement given in this way (c.f. p. 14) are called one-type complements and nought-type complements. It turns out that a hexad-type complement (see p. 28) is the same as a one-type complement and a point-type is the same as a nought-type. Thus our complement F corresponds to a particular one-function f_{1}. The other $f^{\prime} s$ are then of the form $f_{1}{ }^{I}$ where $x \in \Omega$ and $|x|$ is odd for a nought-function and even for a one-function.

The last relator ; the group

Let x_{23} be the element of order 23 in K acting as the permutation $x-x+1$ on M 's $M O G$, and let x_{11} be the element of order 11 in K acting as $x \mapsto 2 x$ and hence normalizing x_{23}. Let f be the element of G of order 2 normalizing x_{23} and centralizing x_{11} (the Sylow 23-normalizer in J_{4} is Frobenius of shape 23.22). Then Janko [2] has shown that

$$
\mathcal{J}=\left(M \cap M^{f}\right)\langle f\rangle \cong P G I_{2}(23)
$$

with $\Omega \cap M \cong L_{2}(23)$. (f is the element $x--x$)
Thus $\nabla_{\infty}{ }^{f}$ is a sacred vector with $\operatorname{Stab}_{M}\left(\nabla_{\infty}^{f}\right)=\Pi \cap M$. So $J \cap M$ has a two-dimensional fixed space, and $v_{\infty}{ }^{f}$ iies outside Δ_{111}^{M}. The image of ∇_{∞}^{f} in $\Delta / \Delta_{100}^{M}$ is an odd $\zeta^{*-s e t}$ stabilized by $Л \cap M$, i.e. $\{\infty\}$, and hence $Л \cap M$ lies in the nought-type complement corresponding to this C^{*}-set.

The element f was constructed by computer, and in particular it was shown that

$$
1=m_{1} h_{1} m_{2} h_{2} m_{3} h_{3} m_{4}
$$

where :

$$
\begin{aligned}
& h_{1}=\alpha=a, 1-1 / 2 \\
& m_{2}=\left(\infty 151481 \begin{array}{lllllll}
& 17 & 11 & 21 & 4 & 22
\end{array}\right)\left(\begin{array}{ll}
1 & 7
\end{array}\right) \\
& \text { (0 } 18610201213316 \text { 5) (9 19) } \\
& h_{2}=x_{5}{ }^{3} \in F
\end{aligned}
$$

$$
\begin{aligned}
& h_{3}=\left[(\infty)\left(\begin{array}{lllllllllll}
1 & 9 & 11 & 3 & 21 & 10 & 18 & 5 & 14 & 17 & 7
\end{array}\right) \quad\right]_{22 A} \in F \\
& \text { (0) (2 } 15221613126204819)
\end{aligned}
$$

and 1 is an involution in class $2 B$.

Letting f be this element of the group $M \underset{D}{*} H$ defined on p. 48 , we see that G is a quotient of the group

$$
\hat{G}=\frac{M \stackrel{\#}{j} H}{\left\langle\left[x_{5}, x_{7}\right], 5^{-1} x_{23}{ }^{f x_{23}}\right\rangle}
$$

In the rest of this chapter I shall show that this is in fact a presentation for J_{4}; i.e. that

Theorem 7.2

The surjection $\hat{G} \rightarrow G$ is an isomorphism.
If required, Todd's presentation [10] for the Mathieu Groups may be used to make this into an explicit presentation by generators and relators, but I see no point in writing down the details.

I shall use the same symbols for cosets of M in \hat{G} as for sacred vectors, so that for example v_{∞} is the identity coset of M. Each coset/sacred vector will have two names, one as an element of an M-orbit and one as an element of an H-orbit. My arguments will be phrased in terms of cosets, but will apply both to cosets and sacred vectors. The relationship between the set of sacred vectors and the linear structure of Δ is discussed in square brackets after the relevant cosets have been investigated abstractly. Thus these parts may be omitted without hindering the analysis of \hat{G} and the proof of theorem 7.2 .

By the remarks on p. 48 and p. $57, \hat{G}$ has subgroups P and L of the shapes given in chapters 4 and 5 intersecting M and H in the way described there.

It is clear from the analysis on p. 35-40 that M and H contain the fusion of involutions in M and H so that in \widehat{G}, there are at least two classes $2 A$ and $2 B$ of involutions such that every involution of M and of H is in one of these classes in the way shown in Tables 9 and 10 .

We may use the language of nought-functions and one-functions for the subgroup M of \hat{G}, since M still has a faithful representation of dimension 12 isomorphic to the module \triangle_{12}^{M} for M as a subgroup of G.

The idea of the argument for proving that $\hat{G} \cong G$ is as follows :

The map $\hat{G} \rightarrow G$ induces a map from the set \hat{J} of cosets of M in \hat{G} to the set \mathcal{J} of sacred vectors. It is sufficient to prove that this map is injective.

A character-theoretic calculation shows that under the actions of H and M, the set f falls into respectively 9 and 7 orbits. The intersection of an M-orbit with an H-orbit decomposes as a union of orbits of $D=M \cap H$, of which there are 36 altogether. Appendix E , due to S.Norton [6] , shows how these intersections of orbits decompose, in each case as a union of at most two D-orbits.

What I shall do is to find a set of 7 particular elements of \hat{J} representing the 7 M-orbits on J, and show that their \hat{G}-stabilizer is at least as big as the G-stabilizer of their image in Λ, and lisewise for the 9 H-orbits. This will be by a process of going backwards and forewards between M - and H-orbits. For example, we may take an element of an M-orbit, and find its H-stabilizer by the process of taking the $M \cap H-$ stabilizer and using one of the extra relations if necessary to complete this to the whole H-stabilizer. If the resulting group is in M (H, M) then we may conclude by Lemma 7.1 (vi) that the whole of the $H-$ stabilizer of this coset has been found, and that it is the same in \hat{G} as it is in G. The method will become clearer when you see it in practice. This produces for us two sets of 173067389 cosets of M in \hat{G}, the first closed under multiplication by elements of M and the second closed under multiplication by elements of H. Thus all that remains is to identify the two sets with each other, so that $|\hat{G}: M|=173067389$. This will complete the proof that $\hat{G} \cong G$.

To make the identifications, we proceed as follows. Each of the two collections of cosets falls into 36 orbits under D. If we can show that one element of a D-orbit in the one set is the same as one element of a D-orbit in the other set, the whole orbits are automatically identified. Thus we must check 36 identifications. Some of these will follow from the definition of the coset, and the rest will follow from the relation $\left[x_{5}, x_{7}\right]=1$, as will be seen (c.f. p.lo4 where the first example of an
' $x_{5}-x_{7}$ square' occurs). Thus the tables in Appendices E and F will be verified.

To convert this into an abstract proof of the existence of J_{4}, the following extra verifications are necessary :
(i) The subgroup D of M really is isomorphic to the subgroup D of H. This is not clear from the analysis of Chapter 3 , but shouldn't be too difficult to prove. (ii) The D-stabilizers of a representative of each of the 36 D-orbits are the same in the two sets of cosets. For some of these this follows from definition, but for the rest an explicit check is necessary.

Then J_{4} will have been constructed as a group of permutations of 173 067-389 objects.

The Pentad ; the M-orbit T of Trio cosets

Since $|P: P \cap M|=5, \nabla_{\infty}$ has 5 images under P, which are permuted like the 5 tetrads in Pigure 7 (p. 44). Thus we label these cosets $\nabla_{\infty}, \nabla_{0}, \nabla_{1}, \nabla_{\omega}$ and $\nabla_{\bar{\omega}}$, and they form a 'Pentad' on which the Pentad group P acts.
[The space spanned by these vectors is invariant under P, and hence from $p .75$ we see that it is Δ_{4}^{P}. Thus

$$
\left.v_{\infty}+v_{0}+v_{1}+v_{\omega}+v_{\bar{\omega}}=0 \quad-(1) \quad\right]
$$

Let α be the element of P with action $(\infty)(1)(w)(\bar{w})$ on $P G(1,4)$ defined on p. 56 . Then $\nabla_{\infty} \alpha=\nabla_{0}$, and so $\operatorname{Stab}_{M \cap P}\left(\nabla_{0}\right)=M \cap(M \cap P)^{\alpha}$ is a group of shape $2^{9} \cdot 2^{6}\left(S_{3} X I_{3}(2)\right)$ generated by the even C^{*}-sets in V hitting each octad of the brick trio evenly, and the trio group in K for the brick trio.

Since $\operatorname{Stab}_{M \cap P}\left(\nabla_{0}\right) \in M(M, P)$, we see by lemma 7.1 (vi) that $\operatorname{Stab}_{M}\left(\nabla_{0}\right)=\operatorname{Stab}_{M \cap P}\left(v_{0}\right)$.

Thus the M-orbit of ∇_{0} consists of $2^{2} .3795$ cosets called the TRIO cosets (c.f. p. 79) and that such a coset is determined by a trio on $M^{\prime \prime s}$ MOG and a one-function $\mathbf{1}$, where two one functions determine the same coset iff they are conjugate by a $b^{*}-$ set in V hitting each of the octads of the trio evenly.

We write $f(a, b, c)$ for the trio coset defined by the trio $\{a, b, c\}$ and the one-function f. We denote by $f^{a, b}(a, b, c)$ the trio coset determined by the same trio

\{a,b,c \} but by a one-function conjugate to f by a 6^{*}-set hitting the octads a and b oddly and c evenly. Thus while $f^{a, b}$ is not a well-defined one-function, $f^{a, b}(a, b, c)$ is a well-defined trio vector. So for example labelling the brick trio as | 1 | $\bar{\omega}$ | ω |
| :--- | :--- | :--- | we have

$$
\begin{aligned}
& \nabla_{0}=f_{1}(\text { brick trio })=f_{1}(1, \bar{\omega}, \omega) \\
& \nabla_{1}=f_{1} \bar{\omega}, \omega(1, \bar{\omega}, \omega) \\
& \nabla_{\omega}=f_{1}^{1, \bar{\omega}}(1, \bar{\omega}, \omega) \\
& \nabla_{\bar{\omega}}=f_{1}^{1, \omega}(1, \bar{\omega}, \omega)
\end{aligned}
$$

[On the computer it was checked that $\nabla_{0} \in \Delta{ }_{56}^{M}$, so that all trio vectors are in Δ_{56}^{M}. In particular, $\triangle_{1}^{M} \leqslant \Delta_{4}^{P} \leqslant \Delta_{56}^{M}$.

Since the vectors $f(a, b, c)$ and $f^{a, b}(a, b, c)$
are conjugate by an element of $\mathrm{O}_{2}(\mathrm{M})$, they must have the same image in $\Delta_{56}^{M} / \Delta_{12}^{M}$, and hence

$$
f(a, b, c)+f^{a, b}(a, b, c) \in \Delta_{12}^{M} .
$$

Its image in $\Delta_{12}^{M} / \Delta_{1}^{M}$ is stabilized by Stab ${ }_{M}(c)$, and so since it cannot be v_{∞} (or else $f^{a, b}(a, b, c)=f^{b, c}(a, b, c)$) it must be $f(c)$ or $f(c)+\nabla_{\infty}$. If it were $f(c)+\nabla_{\infty}$, then $f^{b, c}(a, b, c)+f^{a, c}(a, b, c)=f(a)+f(b)$ $=f(c)+\nabla_{\infty}$, which implies that $\nabla_{0}+\nabla_{1}+\nabla_{\omega}+\nabla_{\omega}=0$, contradicting the known structure of Δ_{4}^{P}. Hence we have

$$
\left.f(a, b, c)+f^{a, b}(a, b, c)=f(c)-(2) \quad\right]
$$

The H-orbit Θ of Hexad cosets

Since $|\mathrm{H}: \mathrm{H} \cap \mathrm{M}|=77$, ∇_{∞} has 77 images under H. The stabilizer of such a coset is the stabilizer of a hexad ρ for H's MOG, and we write this coset as $\Theta(\rho)$. Thus for example

Since $\alpha \in H$, we see that
$\Theta \cap T:$
Thus the 60 hexad cosets for hexads intersecting the hexad θ in two points (these hexads clearly form a D-orbit) are the same as the 60 trio cosets for the 15 trios incident with (i.e. made up of pairs of tetrads of) the vertical sextet for M's MOG . The rule for translation is as follows :

Rule Θ - T :

The hexad intersects θ in a duad, which determines a syntteme on φ (see pp. 12, 27 and 28) and hence a trio refining the vertical sextet for M 's MOG, via the correspondence in figure 6 on p. 29. The other four points of the hexad either miss φ, in which case the trio coset is f_{1} (trio), or intersects it in one of the duads of the syntheme, in which case if the other two duads determine octads a and b of the trio, the coset is $f_{1}{ }^{a, b}\left(t_{r i o}\right)$.

There is one such Rule for every D-orbit (Rule I - © is statement (*) above ; the M-orbit I is $\left\{\nabla_{\infty}\right\}$). I shall give these rules only when they take a fairly simple form, as these are the only cases of interest. For the rest, I shall simply give one identification; acting on this by D gives the 'rule'.
[It was checked by computer that $v_{\infty} \in \Delta \underset{10}{H}$ so that all hexad vectors are in $\triangle_{10}^{\mathrm{H}}$. The module Δ_{10}^{H} has $\mathrm{O}_{2,3}{ }^{(H)}$ in its kernel, and as a module for $\operatorname{Aut}\left(M_{22}\right)$ it is isomorphic to the module of even ζ-sets including both or none of $\{\infty, 0\}$, modulo $\langle\Omega\rangle$. Hexads as such G-sets are the same as hexads as sacred vectors.]

The M-orbit S of Sextet cosets

Let g be an element of H with $g^{g}=\varphi$. Then $S \operatorname{tab}_{D}(\Theta(\varphi))=M \cap D^{\boldsymbol{g}}$, which is a subgroup of M of shape $2^{7} \cdot 2^{6} \cdot 3 S_{6}$ and is generated by the even G^{*}-sets in V hitting each tetrad of the vertical sextet with the same parity (i.e. the PARITY subgroup E_{1} (see p. 28)), and the sextet group in K for the vertical sextet.

Since $\operatorname{Stab}_{D}(\Theta(\varphi)) \in M(M, H)$, Lemma 7.1 (vi)
shows that $\left.\operatorname{Stab}_{M}(\Theta)(\varphi)\right)=\operatorname{Stab}_{D}(\Theta(\varphi))$.
Thus the M-orbit of Θ (φ) consists of $2^{4} .1771$ cosets called the SEXTET cosets, and each is determined by a sextet on M's MOG and a one-function f, where two one-functions determine the same coset iff they are conjugate by a $G^{*}-$ set in V hitting each of the tetrads of the sextet evenly.

As on p. 93 , we write $f(u, v, w, x, y, z)$ for the sextet coset defined by the sextet $\{u, \nabla, w, x, y, z\}$ and the one-function f, and similarly define $f^{u, v}(u, v, w, x, y, z)$ to be the coset defined by the same sextet and a one-function conjugate to f by a $C^{*}-s e t$ hitting u and v oddy and w, x, y and z evenly. Thus for example

$$
\Theta(\varphi)=f_{1} \text { (vertical sextet) }
$$

$\Leftrightarrow \cap S:$

So we see that the 16 hexad cosets for hexads disjoint from 9 are the same as the 16 sextet cosets for the vertical sextet, the correspondence being given by:

Rule $\Theta-S$:
Let the hexad be φ^{x}, with x an element of U_{1} (i.e. an affine translation on the right-hand square of H's MOG - see p. 27). If $x \neq 1$, then x determines a pair of columns u, ∇ of M 's MOG as on $p .32$.

The vertical sextet coset is then

$$
\begin{aligned}
& \mathbf{f}_{1} \text { (vertical sextet) if } x=1 \\
& \mathbf{f}_{1}{ }^{u, v} \text { (vertical sextet) if } x \neq 1 .
\end{aligned}
$$

[On the computer it was checked that $\Theta(\varphi)$, and hence all sextet vectors, are in Δ_{56}^{M}, so that we have $\Delta_{4}^{P} \leqslant \Delta_{10}^{H} \leqslant \Delta_{56}^{M}$. Thus as before we have

$$
f(u, v, w, x, y, z)+f^{u, v}(u, v, w, x, y, z) \in \Delta \underbrace{M}_{i 2},
$$

and must equal either $f(u+v)$ or $f(u+v)+v_{\infty}$. Thus

$$
\begin{aligned}
f^{w, x}(u, v, w, x, y, z)+f^{Y}, z & (u, v, w, x, y, z) \\
& =f(w+x)+f(y+z) \\
& =f(u+v)+v_{\infty} .
\end{aligned}
$$

Conjugating by a \mathbb{U}^{*}-set in V hitting w and x oddly and u, v, y and z evenly, this gives

$$
\begin{aligned}
f(u, v, w, x, y, z)+f^{u}, v & (u, v, w, x, y, z) \\
& =f(u+v)+v_{\infty}-(3)
\end{aligned}
$$

Now conjugating (1) by an element of H taking the duad $\{3,15\}$ to the duad $\{2,11\}$ on $H^{\prime} s$ MOG , we see that

$$
\begin{aligned}
& \mathbf{f}_{1}(A, B, C, D, E, F)+f_{1}^{A, B}(A, B, C, D, E, F)+f_{1}^{C D}, E F(A B, C D, E F \\
& +f_{1}{ }^{C E}, D F(A B, C E, D F)+f_{1}{ }^{C F}, D E(A B, C F, D E)=0
\end{aligned}
$$

where $\{A, B, C, D, E, F\}$ is the vertical sextet for M's MOG (c.f. figure 6 , p. 29).

Combining this with (2) and (3), we get

$$
f_{1}(A B, C D, E F)+f_{1}(A B, C E, D F)+f_{1}(A B, C F, D E)=v_{\infty}
$$

and hence for any sextet $\{u, v, w, x, y, z\}$ and any one-function f,

$$
\begin{equation*}
f(u v, w x, y z)+f(u v, w y, x z)+f(u v, w z, x y)=v_{\infty} \tag{4}
\end{equation*}
$$

Now these four vectors are hexad vectors for hexads satisíying :
(1) Any two intersect in two points
(ii) Any three intersect trivially .

Since Aut (M_{22}) is transitive on such configurations,
this means that if $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ and ϑ_{4} are any four hexads satisfying (i) and (ii) above, then

$$
\begin{aligned}
& \Theta\left(\theta_{1}\right)+\Theta\left(\theta_{2}\right)+\Theta\left(\theta_{3}\right)+\Theta\left(\theta_{4}\right)=0 \\
&-(5)
\end{aligned}
$$

In particular,

$$
\begin{gathered}
\mathbf{f}_{1}^{B E}, C F(A D, B E, C F)+f_{1}(A F, B D, C E)+f_{1}(A F, B D, C E) \\
+f_{1}^{A, D}(A, B, C, D, E, F)=0,
\end{gathered}
$$

and hence using (2) and (3) and acting by elements of M, we see that for any sextet $\{u, v, w, x, y, z\}$ and any one-function \mathbf{f},

$$
\begin{aligned}
& f(u x, v y, w z)+f(u y, v z, w x)+f(u z, v x, w y) \\
& =f(u, v, w, x, y, z)+v_{\infty}-(6)
\end{aligned}
$$

[Note added in proof

It has now been shown
on the computer that the modules $S\left(\Delta \frac{\mathrm{M}}{12}\right)^{2-}$ and $\Delta_{56}^{M} / \Delta_{1}^{M}$ are conjugate by an outer automorphism of M (c.f. p. 13 and cor. 1 on p. 14)

Thus if f is a one-function, thinking of an odd C^{*}-set as an outer automorphism of M, and hence as an isomorphism between $\Delta{ }_{56}^{M} / \Delta_{1}^{M}$ and $S\left(\Delta_{12}^{M}\right)^{2-}$ we have :

$$
\begin{gathered}
f^{u}(u, v, w, x, y, z)=f(v)_{\wedge} f(w)+f(v)_{\wedge} f(x)+f(v)_{\wedge} f(y)+ \\
f(v)_{\wedge} f(z)+f(w)_{\wedge} f(x)+f(w)_{\wedge} f(y)+f(w)_{\wedge} f(z)+ \\
f(x)_{\wedge} f(y)+f(x)_{\wedge} f(z)+f(y)_{\wedge} f(z)
\end{gathered}
$$

$f^{u, v, w}(u, v, w, x, y, z)=f(u)_{\wedge} f(v)+f(u)_{\wedge} f(w)+f(v)_{\wedge} f(w)+$ $f(x)_{\wedge} f(y)+f(x)_{\wedge} f(z)+f(y)_{\wedge} f(z)$

$f^{a}(a, b, c)=f(b)_{\wedge} f(c)$

$$
f^{a, b, c}(a, b, c)=f(a)_{\wedge} f(b)+f(a) \wedge f(c)+f(b) \wedge f(c)
$$

(

Then relations (2), (3), (4) and (6) above follow immediately modulo Δ_{1}^{M}. Maybe an extension of this construction could be used as an abstract construction for the module Δ under the action of M and hence give an easy naming system for the sacred vectors. Adjoining some
further automorphism would then provide an abstract
geometric construction for J_{4}.]

The action of L; the H-orbit Φ of Big-Octad Cosets

Since $|M: M \cap I|=31, \nabla_{\infty}$ has 31 images under I corresponding to the non-zero points of W^{*}, the dual of W. Since $\alpha \in L$ (see p. 56) , $v_{\infty} \alpha=v_{0}=f_{1}$ (brick trio) is one of these. This has 30 images under $M \cap L$, namely $f_{1}{ }^{x}(\vartheta, b, c)$ for the 15 trios $\{U, b, c\}$ containing the left-hand octad θ for M's $M O G$, and $x \in I \cap V$, i.e. $f_{1}(\vartheta, b, c)$ and $f_{1}{ }^{b, c}(\vartheta, b, c)$.
[From the relations (2) and (4) on p. 94 and p. 99
we see that the set
$\left\{0, f_{1}(\vartheta), v_{\infty}, f_{1}(v)+v_{\infty}, f_{1}\left(\vartheta^{q}, b, c\right), f_{1}^{b, c}(v, b, c)\right.$, $f_{1}(\vartheta, b, c)+v_{\infty}, f_{1}^{b, c}(\Theta, b, c)+v_{\infty} \mid\{\vartheta, b, c\}$ is
a trio containing the octad $\mathcal{O}\}$
is closed under addition and invariant under I and is hence the module $\Delta \frac{I}{6}$. This decomposes as a direct sum of $\Delta{ }_{1}^{L}=\left\langle f_{1}(\theta)+v_{\infty}\right\rangle$ and $\Delta_{5}^{\mathrm{I}}=\left\{0, \mathrm{f}_{1}(\theta), \mathrm{f}_{1}(\vartheta, \mathrm{~b}, \mathrm{c})+\mathrm{v}_{\infty}\right\} \cong \mathrm{W}^{*}$, as in the following diagram :

As L-modules, $\Delta_{16}^{\mathrm{L}} / \Delta_{6}^{\mathrm{L}} \cong\left(\Delta_{5}^{\mathrm{L}}\right)^{2-}=\left(\mathrm{O}_{2}(\mathrm{I})\right)^{*}$,
the dual of the module $\mathrm{O}_{2}(\mathrm{I})$. It was checked by computer that the vector f_{1} (vertical sextet) is in Δ_{16}^{I}. The I-orbit of this vector is easily seen to be the following set :

280 sextet vectors for the 35 sextets in
which \mathcal{V} is a union of tetrads, 8 vectors for
each sextet as follows :

$$
\begin{array}{ll}
f_{1}(u, v, w, x, y, z) & 1 \\
f_{1} u, v(u, v, w, x, y, z) & 1 \\
f_{1}^{W, x}(u, v, w, x, y, z) & 6 \\
\text { (where } & u+\nabla=O)
\end{array}
$$

and 30 trio vectors for the 15 trios containing $\sigma, 2$ vectors $f_{1} \sigma, a(\sigma, a, b)$ and $\mathcal{I}_{1} \mathcal{O}, b(\mathcal{O}, a, b)$ for each such trio $\{\mathcal{V}, a, b\}$.

It can be seen that $O_{2}(L)$ fuses these vectors in pairs as follows :

$$
\begin{aligned}
& f_{1}(u, v, w, x, y, z) \sim f_{1}^{u, v}(u, v, w, x, y, z) \\
& f_{1}^{w, x}(u, v, w, x, y, z) \sim f_{1}{ }^{y, z}(u, v, w, x, y, z) \\
& f_{1} \vartheta, a(U, a, b) \sim f_{1}{ }^{U, b}(U, a, b)
\end{aligned}
$$

so that the image of this orbit in $\Delta{ }_{16}^{I} / \Delta \frac{\mathrm{L}}{6}$ is an L-invariant set of 155 vectors. L has two orbits on the non-zero vectors in this 10-dimensional module, namely 155 pure wedge-products and 868 sums of two wedge-products, and so these sacred vectors have as image the pure wedge-products in this space.

From p. 75 we see thet $\Delta{ }_{16}^{I} / \Delta{\underset{5}{L}}_{I}$ is a uniserial module of shape $\begin{array}{r}10 \\ 1\end{array}$, i.e. having unique invariant submodule $\triangle_{6}^{I} / \Delta \frac{I}{5}$. The 310 vectors above have distinct images in this space, and we can choose one vector from each pair as follows in such a way that the resulting set is invariant under our complement L_{1}, and span a 10 -dimensional subspace of $\Delta_{16}^{I} / \Delta_{5}^{I}$:

$$
\begin{aligned}
& f_{1}(u, v, w, x, y, z) \\
& f_{1}^{w, x}(u, v, w, x, y, z) \\
& f_{1} U, a(V, a, b)
\end{aligned}
$$

where the point 22 of M 's MOG
is in the tetrad w and the octad a.
So under the action of $L_{1}, \Delta{ }_{16}^{I} / \Delta \frac{I}{5}$ decomposes as a direct sum $1+10$, and complements conjugate to L_{1} are in one-one correspondence with hyperplanes in $\triangle_{16}^{\mathrm{L}} / \Delta{ }_{5}^{\mathrm{L}}$ not containing $\Delta_{6}^{\mathrm{L}} / \Delta_{5}^{\mathrm{L}}$.]

Now consider the trio coset $c_{1}=f_{1}{ }^{a, b}\binom{a}{$\hline} Then $\operatorname{Stab}_{L}\left(c_{1}\right)$ contains $A=O_{2}(L)$ and has image $\left(\begin{array}{lllll}* & 0 & * & * & * \\ * & 1 & * & * & * \\ * & 0 & * & * & * \\ * & 0 & * & * & * \\ * & 0 & * & * & *\end{array}\right)$ in $1 /$ A.

- Thus $S^{\operatorname{tab}}{ }_{\mathrm{L} \cap \mathrm{H}}\left(\mathrm{c}_{1}\right)$ is the subgroup of H of shape $2^{1+9} \cdot 1.2^{4} \mathrm{I}_{3}(2)$ generated by the centralizer in F of the element $\omega \leftrightarrow \bar{\omega}\left(\theta_{0}: D^{2}\right)$, of shape $2^{1} .2^{4} I_{3}(2)$ and the subgroup
$\left.\mathbf{E}_{\left(c_{1}\right)}=\left\{\begin{array}{l}\lambda_{1} \lambda_{2} \lambda_{3} \\ \lambda_{4} \lambda_{5} \lambda_{6}\end{array}\right]_{i} \right\rvert\, \lambda_{1}+\lambda_{5}+\lambda_{6}, \lambda_{2}+\lambda_{4}+\lambda_{6}, \lambda_{3}+\lambda_{4}+\lambda_{5}, \begin{aligned} & \text { are in } G F(2) ; i=0 \text { or } 1\}\end{aligned}$
of E of shape 2^{1+9}.
Since $\operatorname{Stab}_{L_{\cap H}}\left(c_{1}\right) \in M_{(H, L)}$, lemma 7.1 (vi) shows that $\operatorname{Stab}_{\mathrm{L}}\left(\mathrm{c}_{1}\right)=\operatorname{Stab}_{\mathrm{L} \cap \mathrm{H}}\left(\mathrm{c}_{1}\right)$. Thus the orbit of c_{1} under H consists of $2^{3} .3 .330$ cosets called the BIG-OCTAD cosets (to distinguish them from the Little-Octad cosets defined on p. 106).

Notation for Big-Octad costs :
Suppose x is another Big-Octad coset. Then for some $h \in H, x=c_{1} h$, and $\operatorname{Stab}_{H}(x)=\operatorname{Stab}_{H}\left(c_{1}\right)^{h}$. Let $h=y_{1} y_{2}$ with $y_{1} \in E$ and $y_{2} \in F$. Since $C_{F}\left(E\left(c_{1}\right)\right)=\operatorname{Stab}_{F}\left(c_{1}\right)$, the coset x is determined by $E_{\left(c_{1}\right)}{ }^{h}$ and the coset ${ }^{E}\left(c_{1}\right)^{h} \cdot y_{2}$ in E, and hence by the pair

$$
\left.\left.\left(\left(\bar{E}_{\left(c_{1}\right.}\right)^{h}\right)^{\perp},\left\langle\bar{E}_{\left(c_{1}\right.}\right)^{h}, \overline{\mathrm{y}}_{2}\right\rangle^{\perp}\right),
$$

where perps are taken in the GF(2)-orthogonal structure on \bar{E}.

$$
\text { Now } \left.\bar{E}\left(c_{1}\right)^{\mathcal{L}}=\left\{\begin{array}{lll}
\mathbf{X} & \mathbf{Y} & Z \\
\mathbf{X} & \mathbf{y} & \mathbf{z}
\end{array}\right\} \quad x, y, z \in G F(2)\right\}
$$

is the set of fixed points of the involution ($\omega \leftarrow \bar{\omega}$) in \bar{F} (acting as $\square: \square$ on H's MOG) on the octad-type 3-space in $\overline{\mathrm{E}}$ for the middle octad

Thus the Big-Octad costs are in one-one correspondence with pairs $\left(\Phi_{1}, \Phi_{2}\right)$ where Φ_{1} is the set of fixed points in an octad type 3-space of an involution in \bar{F} stabilizing the octad pointwise, and Φ_{2} is either Φ_{1} or a GF(2)-hyperplane in Φ_{1}. We write $\Phi\left(\bar{\Phi}_{1}, \Phi_{2}\right)$ for the corresponding coset. If $\Phi_{1}=\Phi_{2}$, we abbreviate $\Phi\left(\Phi_{1}, \Phi_{2}\right)$ to $\Phi\left(\Phi_{1}\right)$. Thus for example

$$
f_{1}^{a, b}\left(\begin{array}{|l|l}
\hline & \frac{a}{b} \\
\hline
\end{array}\right)=\Phi\left(\bar{E}_{\left(c_{1}\right)}\right)
$$

So we see that the $2^{3} \cdot 3.30$ Big-Octad cosets for octads disjoint from θ are the same as the $2^{2} .180$ trio cosets for trios meeting the vertical sextet $\left(4^{2} .0^{4}\right)\left(2^{4} .0^{2}\right)^{2}$ (the notation here has the obvious meaning, and is the same as the notation used by R.T.Curtis [3] (p.41-43) in his analysis of orbits of maximal subgroups of M_{24} on other maximal subgroups).

Now we produce our first example of an $' x_{5}-x_{7}$ square' (c.f. p. 91) :

Since $\left[x_{5}, x_{7}\right]=1, x_{5}{ }^{3} x_{7}{ }^{3} x_{5}{ }^{2} x_{7}{ }^{4}=1$.
Let $c_{2}=c_{1} x_{5}{ }^{2}=\Phi\left(\bar{E}\left(c_{2}\right)^{\perp}\right)$ where

$$
\left.\bar{E}_{\left(c_{2}\right)}\right)^{\perp}=\left\{\left[\begin{array}{lll}
0 & x & x \\
y & z & z
\end{array}\right]: x, y, z \in G F(2)\right\}
$$

so that c_{2} is a Big-Octad coset for the octad

Then we have

and hence $\left.\bar{\Phi}\left(\bar{E}_{\left(c_{2}\right.}\right)^{\perp}\right)=f_{1}$ (square sextet) .

玉 $\cap \mathbf{s}:$

Thus we see that the $2^{3} \cdot 3.60$ Big-Octad cosets for octads meeting θ in 4 points are the same as the $2^{4} .90$ sextet cosets for sextets meeting the vertical sextet $\left(2^{2} .0^{4}\right)^{6}$.

The H-orbit I of Little-Octad cosets

Let c_{3} be the sextet coset $f_{1}\left(\begin{array}{ll|ll|ll}u & v & w & w & w & w \\ v & u & x & x & x & x \\ v & u & y & y & y & y \\ v & u & z & z & z & z \\ \hline\end{array}\right.$
Then $\mathrm{Stab}_{\mathrm{D}}\left(\mathrm{c}_{3}\right)$ is the subgroup of H of shape $2^{0+6} \cdot 3 \cdot 2^{4} \mathrm{~S}_{4}$ generated by the octad-type subgroup $E^{E}\left(c_{3}\right)=\begin{array}{lll}X & Y & Z \\ X & y & z\end{array}{ }_{0}$
 H's MOG, and a subgroup of F of shape $3.2^{4} S_{4}$ stabilizing the middle octad and the left-hand hexad. A set of generators for this group is shown in Appendix F on p. 152, taking all but the last of the elements shown there.

$$
\begin{aligned}
& =\left(\left[\begin{array}{lll}
x & 0 & x \\
z & y & z
\end{array}\right]: x, y, z \in G F(2)\right)
\end{aligned}
$$

Then c_{4} is stabilized by $\alpha=\square$
we know that $\left[\alpha, x_{7}\right]=1$ and hence c_{3} is also stabilized by α.

Now $\left\langle\operatorname{Stab}_{D}\left(c_{3}\right), \alpha\right\rangle$ has shape $2^{0+6} \cdot 3 \cdot 2^{4} \mathrm{I}_{3}(2)$ and is in $M(\mathrm{H}, \mathrm{M})$, and hence by lemma 7.1 (Vi) $\operatorname{stab}_{H}\left(c_{3}\right)=\left\langle\operatorname{Stab}_{\mathrm{D}}\left(\mathrm{c}_{3}\right), \alpha\right\rangle$.

Thus there are $2^{7} .330$ cosets in the H-orbit of c_{3}, called the LITTLE-OCTAD cosets.

Notation for Iittle-Octad cosets :

Since $N_{H}\left(N_{H}\left(\operatorname{Stab}_{H}\left(c_{3}\right)\right)\right)=N_{H}\left(\operatorname{Stab}_{H}\left(c_{3}\right)\right)=\operatorname{Stab}_{H}\left(c_{3}\right) X\langle z\rangle$ there are two Little-Octad cosets stabilized by $\operatorname{Stab}_{H}\left(c_{3}\right)$, namely c_{3} and $c_{3} . z$, and this pair of cosets is stabilized setwise by $N_{H}\left(\mathrm{Stab}_{\mathrm{H}}\left(\mathrm{c}_{3}\right)\right)$. Similarly to the Big-Octad notation, such a pair of Little-Octad cosets is specified by a pair (Ψ_{1}, Ψ_{2}) where Ψ_{1} is an octad-type isotropic 3-space in \bar{E} and Ψ_{2} is either Ψ_{1} or a GF(2)-hyperplane in Ψ_{1}. We label this pair of cosets as $\Psi\left(\Psi_{1}, \Psi_{2}\right)$ and abbreviate this to $\Psi\left(\Psi_{1}\right)$ when $\Psi_{1}=\Psi_{2}$ 。

Thus for example

$$
\left\{c_{3}, c_{3} \cdot z\right\}=\Psi\left(\bar{E}_{\left(c_{3}\right)}\right)
$$

$\Psi \cap s:$
Thus we see that the $2^{7} .30$ Little-Octad cosets for octads disjoint from the hexad θ are the same as the $2^{4} .240$ sextet cosets for sextets hitting the vertical sertet $\left(3.1 .0^{4}\right)^{2}\left(1^{4} .0^{2}\right)^{4}$.

The M-orbit Z of Sextet-line cosets
Let $c_{5}=c_{4} x_{5}{ }^{2}=c_{3} x_{7}{ }^{3} x_{5}{ }^{2}=\Phi\left(\left[\begin{array}{ccc}0 & x & x \\ x_{2}+z & x_{1}+y & x_{2}+y\end{array}\right]: x, y, z \in G F(2)\right)$
a Big-Octad coset for the octad

Stab $_{D}\left(c_{5}\right)$ is a subgroup of M of shape $2^{4} \cdot 2^{6}\left(S_{3} X D_{8}\right)$.
A set of generators for this group is given in Appendix F on p. 146, taking all but the last of the elements shown there.

Moreover, $\left\langle\operatorname{Stab}_{D}\left(c_{5}\right), w^{x_{7}}{ }^{3}\right\rangle$, of shape $2^{4} \cdot 2^{6}\left(S_{3} \times S_{4}\right)$, is in $M(M, H)$, and hence by lemma 7.1 (vi) $\operatorname{Stab}_{M}\left(c_{5}\right)=\left\langle\operatorname{Stab}_{D}\left(c_{5}\right), w^{x_{7}^{3}}\right\rangle$ 。

Thus the M-orbit of c_{5} consists of $2^{7} .26565$ cosets called the SEXTET-IINE costs (since the stabilizer has as image in M / V the stabilizer of a line of sextets refining a trio - such sextets form a projective plane $\operatorname{PG}(2,2)$).

Since $N_{M}\left(N_{M}\left(\operatorname{Stab}_{M}\left(c_{5}\right)\right)\right)=N_{M}\left(\operatorname{Stab}_{M}\left(c_{5}\right)\right)=\left\langle\operatorname{Stab}_{M}\left(c_{5}\right), t\right\rangle$

exactly two such cosets c_{5} and $c_{5} . t$, and the setwise stabilizer of this pair of comets is $N_{M}\left(\operatorname{Stab}_{M}\left(c_{5}\right)\right)$.

Notation for Sextet-line coset :

A pair of sextet-line costs is thus determined by a line of sextets s_{1}, s_{2}, s_{3} refining a trio and a one-function P, and two such one-functions determine the same sextet-line coset ff they are conjugate by an element of the appropriate sextet-line type 5-space in V (i.e. by the appropriate conjugate of $\left\langle\operatorname{Stab}_{V}\left(c_{5}\right), t\right\rangle$). We shall write this pair of sextet-line costs as $f\left(s_{1}, s_{2}, s_{3}\right)$. We draw a sextet-line as a set of four pairs of points whose union is an octad, in such a way that the sum of any two pairs is a tetrad determining a sextet in the line. Thus for example

$$
I_{1}\left(\left[\begin{array}{ll|l|l}
1 & 2 & \ddots \\
1 & 2 & \vdots \\
3 & 4 & & \\
3 & 4 & \\
\hline
\end{array}\right)=\left\{c_{5}, c_{5} \cdot t\right\}\right.
$$

$\Phi \mathrm{O}_{\mathrm{Z}}$:

Thus the $2^{3} .3 .240$ Big-Octad cosets for octads meeting θ in two points are the same as the $2^{7} .45$ sextet-line costs for the trios incident with the vertical sextet and such that the vertical sextet is contained in the line.

Applying the relation $x_{7}{ }^{3} x_{5}{ }^{3} x_{7}{ }^{4} x_{5}{ }^{2}=1$ to

$$
\mathbf{I}_{1}\left(\begin{array}{|c|c|c|}
\hline 1 & \ddots \\
22 & \because & \because \\
33 & \ddots & \because \\
4 & & \\
\hline
\end{array}\right)=\Psi\left(\begin{array}{lll}
0 & x & x \\
y & z & z \\
\hline
\end{array}\right)
$$

as a pair of costs. Thus :

正 n Z:
The $2^{7} .60$ Little-Octad cosets for octads meeting θ in four points are the same as the $2^{7} .60$ sextet-line cosets for trios incident with the vertical sextet, and such that the vertical sextet is not contained in the line. The pairing as Little-Octad cosets is the same as the pairing as sextet-line cosets.

The H-orbit \triangle of Duad costs

$$
\text { Let } c_{6}=f_{1}\left(\left[\begin{array}{ll|ll|ll}
1 & 1 & 2 & 2 & 3 & 3 \\
1 & 1 & 2 & 2 & 3 & 3 \\
3 & 3 & 1 & 1 & 2 & 2 \\
3 & 3 & 1 & 1 & 2 & 2
\end{array}\right]\right. \text {, a trio coset. }
$$

Then $\mathrm{Stab}_{\mathrm{D}}\left(\mathrm{c}_{6}\right)$ is a subgroup of H of shape $2^{1+6} \cdot 1.2^{5} \mathrm{~S}_{4}$. A set of generators for this group is given in Appendix F on p.153, taking all but the last of the elements shown there.
is invariant under x_{5} 。 $\square_{2 A}$, and so c_{6} is
invariant under the image of this under x_{7}^{4}, ie. it is invariant under

and hence under $\quad \begin{array}{ccc}\omega & 0 & \bar{\omega} \\ 1 & \omega & 1\end{array} 0^{\bullet} \cdot x_{5} \cdot$
But $\left\langle S \operatorname{tab}_{D}\left(c_{6}\right),\left[\begin{array}{|ccc}\omega & 0 & \bar{\omega} \\ 1 & \omega & 1\end{array}\right]_{0} . x_{5}\right\rangle$ is a subgroup
of H of shape $2^{1+6} \cdot 1 \cdot 2^{5} S_{5}$ and lies in $M(H, M)$, and hence by lemma 7.1 (vi)

$$
\operatorname{stab}_{H}\left(c_{6}\right)=\left\langle\operatorname{stab}_{D}\left(c_{6}\right),\left[\begin{array}{ccc}
\omega & 0 & \bar{\omega} \\
1 & \omega & 1
\end{array}\right]_{0} \cdot x_{5}\right\rangle .
$$

This has as image in $\operatorname{Aut}\left(M_{22}\right)$ the duad stabilizer for the duad

So the H-orbit of c_{6} consists of $2^{6} .3 .231$ cosets called the DUAD cosets, and we have :

$\Delta \cap T:$

The $2^{6} \cdot 3.15$ duad costs for duads in the hexad θ are the same as the $2^{2} .720$ trio coset for trios hitting the vertical sextet $\left(2^{4} \cdot 0^{2}\right)^{3}$.

Now let $c_{7}=f_{1}\left(\begin{array}{ll|ll|ll}1 & 1 & 3 & 2 & 3 & 2 \\ 2 & 2 & 3 & 2 & 3 & 2 \\ 1 & 2 & 1 & 3 & 1 & 3 \\ 2 & 1 & 1 & 3 & 1 & 3\end{array}\right]$, a trio coset. By
equating $c_{7}{ }^{\alpha}$ with $c_{7} x_{7}{ }^{4}{ }^{\alpha} x_{7}{ }^{3}$ we see that :

$\Delta \cap \mathrm{Z}:$

The $2^{6} \cdot 3.120$ duad costs for duads not intersecting θ are the same as the $2^{7} .180$ sextet-line coset for trios meeting the vertical sextet $\left(4^{2} .0^{4}\right)\left(2^{4} .0^{2}\right)^{2}$ and the sextet-line in this consisting of those sextets incident with the trio which hit the vertical sextet $\left(2^{2} .0^{4}\right)^{6}$.

The H-orbit ${ }^{-}$of Big-Syntheme cosets

Let $c_{8}=f_{1}\left(\begin{array}{ll|ll|ll}1 & 2 & 3 & 3 & 3 & 3 \\ 2 & 1 & 3 & 3 & 3 & 3 \\ 2 & 1 & 2 & 2 & 2 & 2 \\ 2 & 1 & 1 & 1 & 1 & 1\end{array}\right]$, a trio coset.

Then $\operatorname{Stab}_{D}\left(c_{8}\right)$ is a subgroup of H of shape $2^{0+5} \cdot 1 \cdot 2^{4}\left(2^{3} S_{3}\right)$. A set of generators for this group is given in Appendix F on p.154. The image in $\operatorname{Aut}\left(M_{22}\right)$ of $\operatorname{Stab}_{D}\left(c_{8}\right)$ is the stabilizer of the syntheme \begin{tabular}{|l|l|l}

- \& \therefore \& \because

\hline
\end{tabular}

Since every proper subgroup of M_{22} is intransitive, $S_{t a b_{D}}\left(c_{8}\right) \in M(H, M)$, so lemma 7.1 (Vi) shows that $\operatorname{Stab}_{H}\left(c_{8}\right)=\operatorname{Stab}_{D}\left(c_{8}\right)$.
Thus the H-orbit of c_{8} consists of $2^{8} \cdot 3.1155$ cosets called the BIG-SYNTHENE cosets, and we have :

EnT:
The $2^{8} .3 .15$ Big-Syntheme cosets for the synthemes in the hexad θ are the same as the $2^{2} .2880$ trio cosets for trios cutting the vertical sextet $\left(2^{4} .0^{2}\right)\left(3.1^{5}\right)^{2}$.

Equating $c_{8}{ }^{\alpha}$ with $c_{8} x_{7}{ }^{3}{ }_{\alpha x_{7}}{ }^{4}$ we see that:
Э B :
The $2^{8} \cdot 3.180$ Big-Syntheme cosets for hexads meeting θ in two points comprising a duad of the syntheme are the same as the $2^{7} .1080$ Sextet-line cosets for trios meeting the vertical sextet $\left(4^{2} .0^{4}\right)\left(2^{4} .0^{2}\right)^{2}$ and the sextet-lines in this other than the $\left(\left(2^{2} .0^{4}\right)^{6}\right)^{3}$ one.

The remaining H-orbits Σ, Γ, X and Λ, and
M-orbits F, N and L.

Continuing in the same way, we find the following :
Let $c_{9}=f_{1}\left(\begin{array}{ll|l|l|l}u & u & u & \bar{v} & \mathbf{x} \\ \mathbf{v} & \mathbf{v} & \mathbf{u} & v & \mathbf{x} \\ \mathbf{w} & \mathbf{x} & \mathbf{z} & \mathbf{y} & \mathbf{y} \\ \mathbf{x} & \mathbf{w} & \mathbf{y} & \mathbf{z} & \mathbf{z} \\ \mathbf{z}\end{array}\right]$), a sextet coset.
Then $\operatorname{Stab}_{H}\left(c_{9}\right)=\operatorname{Stab}_{D}\left(c_{g}\right) \in M(H, M)$ is a subgroup of shape $2^{0+4} \cdot 1 \cdot 2^{4}\left(2 \mathrm{X} \mathrm{S}_{4}\right)$ generated by the elements shown on p. 155. Again the image in $\operatorname{Aut}\left(\mathrm{M}_{22}\right)$ is the stabilizer of a syntheme in θ, and the H-orbit of c_{9} consists of $2^{9} \cdot 3.1155$ costs called the LITTLE-SYNTHEME costs, forming the H-orbit Σ.

Let $c_{10}=c_{6} \cdot$ 迹 α, α, a duad coset for the
duad

- Then $\operatorname{Stab}_{M}\left(c_{10}\right)=\operatorname{Stab}_{D}\left(c_{10}\right) \in M(M, H)$
is a subgroup of shape $2^{1} \cdot 2^{6} \mathrm{PGL}_{2}(5)$ having as image in M_{24} the centralizer of the involution $\left.\begin{array}{l}{[1} \\ 11\end{array}\right](1,10)$, and generated by the elements shown on p. 148 . So the M-orbit of c_{10} consists of $2^{10} .31878$ cossets called the REGULAR -INVOLUTION costs, forming the M-orbit F.

Then $\operatorname{Stab}_{H}\left(c_{11}\right)=\operatorname{Stab}_{D}\left(c_{11}\right) \in M$ (H,M) is a subgroup of shape $1.1 .2^{4}\left(2 \mathrm{X} \mathrm{S}_{3}\right)$ generated by the elements shown on p. 158 . The image in $\operatorname{Aut}\left(\mathrm{M}_{22}\right)$ is the stabilizer of the hexagon
 in the hexad g. So the H-orbit
of c_{11} consists of $2^{13} \cdot 3.462$ cosets called the HEXAGON cosets, forming the H -orbit Λ.

Let $c_{12}=c_{5} \cdot w \cdot\left[\begin{array}{l}C \\ \square\end{array}\right]$
sextet-line coset. Then $\mathrm{Stab}_{\mathrm{D}}\left(\mathrm{c}_{12}\right)$ is generated by the elements shown on p.156. It is not inmediately clear whether this group is in $M(H, \mathrm{M})$, so we postpone further discussion of the H-orbit of c_{12} until p. 117 .

contains as a subgroup the group \bar{q} generated by all but the last of the elements shown on $p .150$. Now we use the last relation $f^{-1} x_{23}{ }^{f x_{23}}=1$ (see p. 89) to obtain a further element of $\operatorname{Stab}_{M}\left(\mathrm{c}_{13}\right)$.

First we rewrite this relator as

$$
m_{5}{ }^{h_{1} m_{2} h_{2} m_{3} h_{3}}=m_{6}
$$

where $m_{5}=$

- (6)(15 172050013412147 02111182239195101216)
and

Thus $\nabla_{\infty} h_{3}{ }^{-1} m_{3}{ }^{-1} h_{2}{ }^{-1} m_{2}{ }^{-1} h_{1}{ }^{-1}$ is stabilized by m_{5}. Writing $m_{2}{ }^{-1}$ as $x_{7}{ }^{5} \cdot \square \mid$

$$
\begin{aligned}
\nabla_{\infty} h_{3}{ }^{-1} m_{3}{ }^{-1} h_{2}{ }^{-1} m_{2}{ }^{-1} h_{1}-1 & =\Theta(\varphi) \cdot m_{3}{ }^{-1} h_{2}{ }^{-1} m_{2}{ }^{-1} h_{1}-1 \\
& =c_{3} h_{2}{ }^{-1} m_{2}{ }^{-1} h_{1}-1 \\
& =c_{12} \cdot{ }^{-1} \cdot h_{1}{ }^{-1} \\
& =c_{13} .
\end{aligned}
$$

Thus c_{13} is stabilized by $\left\langle\hat{p}, m_{5}\right\rangle$ which has shape $I_{2}(23)$, lies in the nought-type complement defined by $f_{1}\{6,13,20\}$ and stabilizes the projective line structure given by the numbering :

4	10	14	20	12	21
15	0	7	11	5	9
∞	3	13	2	6	19
16	17	18	8	22	1

(which of course differs from the standard numbering by an element of M_{24})

Now let $c_{14}=c_{13} \cdot a \cdot x_{7} \in f_{1}\left(\left[\begin{array}{l|l|l}1 & 2 \\ 2 & 3 & 4 \\ 2 & & 4\end{array}\right]\right.$, a sextet-line
coset. Then $\operatorname{Stab}_{D}\left(c_{14}\right)$ is a subgroup of H of shape $2^{0+1} \cdot 1 \cdot 2^{4} D_{8}$. A set of generators for this groun is given in Appendix F on p.157, taking all but the last element there.

But $c_{13^{x}}{ }_{7}$ is stabilized by the element

$$
\partial=\mathrm{ccm}^{\mathrm{cm}}
$$

(the image under x_{7} of the element $z \rightarrow \frac{8 z+1}{4 z-8}$ of L_{2} (23)
for the above numbering) which is

$$
\partial=\left[\begin{array}{lll}
\bar{\omega} & \bar{\omega} & 0 \\
0 & 0 & 0
\end{array}\right)_{0} \cdot\left(\begin{array}{cccccc}
1 & \bar{w} & 0 & 0 & 0 & w \\
\bar{x} & 1 & 0 & 0 & 0 & \omega \\
0 & 0 & \omega & \omega & w & 0 \\
0 & 0 & \omega & 1 & \tilde{1} & 0 \\
0 & 0 & w & 1 & 0 \\
w & w & 0 & 0 & 0 & w
\end{array}\right)_{2 A}
$$

(acting as $1:+1$
on H's MOG)
and hence the image f^{α} of this under α stabilizes c_{14}. This is the last element shown on p.157, and
$\operatorname{Stab}_{H}\left(c_{14}\right)=\left\langle\operatorname{Stab}_{D}\left(c_{14}\right), \gamma^{\alpha}\right\rangle \in M(H, M) \quad$ is a group of shape $2^{0+1} \cdot 1 \cdot 2^{4} \mathrm{~S}_{4}$. Now a $2^{8} 1^{8}$ type involution swapping 0 and ∞ on H's MOG fixes an octad pointwise, and is determined by that octad. $\operatorname{Stab}_{H}\left(c_{14}\right)$ acts on H's MOG as the stabilizer of an octad and one of the 7 pairs of points defined in this way :

Thus the H-orbit of c_{14} consists of $2^{12} \cdot 3.2310$ cosets called the OCTAD-PAIR cosets, forming the H-orbit X.

Now we see that in the group G, we have eight orbits $\Theta, \Phi, \Psi, \Delta, \Xi, \Sigma, X$ and Λ of H on the cosets of M, and a coset c_{12} not in any of them. Since from the character-theoretic calculation H has only 9 orbits on cosets of M, and" $|G: M|$ would be too small if $\operatorname{Stab}_{H}\left(c_{12}\right)>\operatorname{Stab}_{D}\left(c_{12}\right)$, we must have $\operatorname{Stab}_{H}\left(c_{12}\right)=\operatorname{Stab}_{D}\left(c_{12}\right)$ in G, and hence in \hat{G}. The image of this group in $\operatorname{Aut}\left(M_{22}\right)$ is the stabilizer of the hexad θ and the duad $\{3,15\}$ in θ. Thus the H-orbit of c_{12} consists of $2^{13} .1155$ cosets called the DUAD-HEXAD cosets, forming the H-orbit Γ.

Thus $p=\operatorname{Stab}_{D}\left(c_{13}\right)$, and $\operatorname{Stab}_{M}\left(c_{13}\right)=\left\langle p, m_{5}\right\rangle$
$\in M(\mathrm{M}, \mathrm{H})$ is a group of shape $\mathrm{L}_{2}(23)$. Thus the M-orbit of c_{13} consists of $2^{11} .40320$ cosets called the PROJECTIVE-LINE cosets, forming the M-orbit L.

Notation for projective-line cosets :

Such a coset is determined by a nought-function f and a numbering of the MOG (conjugate to the standard numbering by an element of M_{24}) on which the stabilizer acts as $I_{2}(23)$. We write this coset as f (numbering) so that for example $c_{13}=p_{1}\{6,13,20\}\left(\begin{array}{|rr|rr|rr}4 & 10 & 14 & 20 & 12 & 21 \\ 15 & 0 & 7 & 11 & 5 & 9 \\ \infty & 3 & 13 & 2 & 6 & 19 \\ 16 & 17 & 18 & 8 & 22 & 1 \\ \hline\end{array}\right)$,
and two numberings determine the same coset iff they differ by a projective special linear transformation.

Now let $c_{15} \in \Psi\left(\begin{array}{ccc}0 & x & x \\ x_{2}+z & x_{1}+y & x_{2}+y\end{array}\right]$, a Little-Octad

subgroup of M of shape $2^{0} \cdot 2^{6} \cdot 3\left(2 \times \mathrm{S}_{4}\right)$. A set of generators for this group if given in Appendix F on p. 149. Again, in the group G, we have six orbits I, T, S, Z, F and L of M on cosets of M, and a coset c_{15} not in any of them. Since the charactertheoretic calculation shows that. M has only 7 orbits on these cosets, and $|G: M|$ would be too small if $\operatorname{Stab}_{M}\left(c_{15}\right)>\operatorname{Stab}_{D}\left(c_{15}\right)$, we must have $\operatorname{Stab}_{M}\left(c_{15}\right)=\operatorname{Stab}_{H}\left(c_{15}\right)$ in G, and hence in \widehat{G}. The image of this group in M_{24} is the stabilizer of an incident trio and sextet. Thus the M-orbit of c_{15} consists of $2^{11} .26565$ cosets called the TRIO-SEXTET cosets, forming the M-orbit N.

Notation for trio-sextet coset :

Let the nought-function f_{0} be defined by $f_{0}=f_{1}\{\infty, 22,11\}$ and let K_{0} be the nought-type complement for V in M defined by f_{0}. Let Y_{0} be the stabilizer in K_{0} of the brick trio and the vertical sextet, and let Z_{0} be the subgroup of index two in Y_{0} obtained by only permitting even permutations of the six columns of $\mathrm{M} ' s \mathrm{MOG}$. Then $\mathrm{Stab}_{\mathrm{M}}\left(\mathrm{c}_{1.5}\right)=\mathrm{Z}_{\mathrm{O}} \cup\left(\mathrm{Y}_{0} \backslash \mathrm{Z}_{0}\right) \mathrm{z}$, and $N_{M}\left(\operatorname{Stab}_{M}\left(c_{15}\right)\right)=\left\langle Y_{0}, z\right\rangle$ contains $\operatorname{Stab}_{M}\left(c_{15}\right)$ to index two. So $\operatorname{Stab}_{\mathrm{M}}\left(\mathrm{C}_{15}\right)$ stabilizes two trio-sextet cosets c_{15} and $c_{15} z$. Thus a pair of trio-sextet costs is determined by an incident trio t and sextet s, and a nought-function \mathcal{P}. We write this pair of costs as $f(s, t)$. Two nought-functions determine the same pair of coset ff they are conjugate by the element of V corresponding to the sextet. Thus for example

From these definitions we have the following identifications :

$\Sigma \cap \mathrm{S}:$

The $2^{9} \cdot 3.15$ Little-Syntheme coset for synthemes in ϑ are the same as the $2^{4} .1440$ sextet costs for sextets cutting the vertical sextet $\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}$.

$\Delta \cap \mathrm{F}:$

The $2^{6} .3 .96$ Duad cosets for duads straddling θ and its complement are the same as the $2^{10} .18$ RegularInvolution cosets for involutions preserving each column of the vertical sextet.
$\Lambda \cap 2:$
The $2^{13} \cdot 3.60$ Hexagon cosets for hexagons in θ are the same as the $2^{7} .11520$ Sextet-line cosets for trios cutting the vertical sextet $\left(3.1^{5}\right)^{2}\left(2^{4} .0^{2}\right)$ and sextet Iines cutting the vertical sextet $\left(\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} \cdot 0^{2}\right)^{2}\right)^{3}$.

$\underline{x \cap 2}:$

The $2^{12} \cdot 3.90$ Octad-pair cosets for octads disjoint from θ and pairs in θ are the same as the $2^{7} .8640$ Sextet-line cosets for trios hitting the vertical sextet $\left(3.1^{5}\right)^{2}\left(2^{4} .0^{2}\right)$ and sextet lines cutting the vertical sextet $\left(\left(2.1^{2} .0^{3}\right)^{4}\left(1.0^{2}\right)^{2}\right)^{2}\left(\left(3.1 .0^{4}\right)^{2}\left(1^{4} .0^{2}\right)^{4}\right)$.

$\Gamma \cap 2:$

The $2^{13} \cdot 3.15$ Duad-hexad cosets for the hexad θ are the same as the $2^{7} .2880$ sextet-line cosets for trios hitting the vertical sextet $\left(2^{4} .0^{2}\right)^{3}$ and sextet lines hitting the vertical sextet $\left(\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}\right)^{3}$.

「nL:
The $2^{13} \cdot 3.480$ Duad-hexad cosets for hexads meeting
0 in two points, one of which is in the duad, are the same as the $2^{11} .5760$ Projective-line cosets for numberings where the tetrads of the vertical sextet all have crossratio 2 .

$\underline{\underline{T} \cap \mathbb{N}: ~}$

The $2^{7} .240$ Little-Octad cosets for octads meeting g in two points are the same as the $2^{11} .15$ Trio-Sextet cosets for the vertical sextet.

Further $x_{5}-x_{7}$ squares and $\alpha-x_{7}$ squares show the remaining identifications :

ZnF:
The $2^{8} .3 .720 \mathrm{Big}$-Syntheme cosets for hexads meeting θ in a pair which is not in the syntheme are the same as the $2^{10} .540$ Regular-involution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(2^{2} .0^{4}\right)^{6}$ and having four orbits in columns of the vertical sextet. (e.g. $\left.\begin{array}{|l|l|l|}\hline \bar{x} & 11 \\ \hline & x & 1 \\ \hline\end{array}\right)$

EnN:
The $2^{8} .3 .240$ Big-Syntheme cosets for hexads disjoint from θ are the same as the $2^{11} .90$ Trio-Sextet cosets for trios incident with the vertical sextet and sextets other than the vertical one.

「 $\cap \mathrm{N}:$

The $2^{9} \cdot 3.270$ Itttle-Syntheme cosets for hexads meeting θ in a pair which does not comprise a duad in the syntheme are the same as the $2^{11} .540$ Trio-Sextet cosets for trios hitting the vertical sextet $\left(4^{2} .0^{4}\right)\left(2^{4} .0^{2}\right)^{2}$ and sextets hitting the vertical sextet $\left(2^{2} .0^{4}\right)^{6}$.

$\underline{\Sigma \cap 2}:$

The $2^{9} \cdot 3.180$ Little-Syntheme cosets for hexads meeting 0 in two points comprising a duad of the syntheme are the same as the $2^{7} .2160$ Sextet-line cosets for trios hitting the vertical sextet $\left(2^{4} .0^{2}\right)^{3}$ and sextet lines cutting the vertical sextet $\left(\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}\right)^{2}\left(\left(2^{2} .0^{4}\right)^{6}\right)$.

$\Sigma \cap_{\mathrm{F}}:$

The 2^{9}.3.240 Little-Syntheme cosets for hexads disjoint from 9 are the same as the $2^{10} .360$ RegularInvolution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(2^{2} .0^{4}\right)^{6}$ and having no orbits in the columns of the vertical sextet.

$\Gamma \cap \mathrm{F}:$

The $2^{13} \cdot 3.360$ Duad-Hexad cosets for hexads meeting 9 in two points neither of which is in the duad are the same as the $2^{10} .8640$ Regular-Involution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(2.1^{2} \cdot 0^{3}\right)^{4}\left(1^{4} \cdot 0^{2}\right)^{2}$ and having nc orbits in the columns of the vertical sextet.

$\Gamma \cap N(1):$

The $2^{13} \cdot 3.60$ Duad-Hexad cosets for hexads meeting θ in two points comprising the duad are the same as the $2^{11} .720$ Trio-Sextet cosets for trios hitting the vertical sextet $\left(2^{4} .0^{2}\right)^{3}$ and sextets hitting the vertical one $\left(2^{2} .0^{4}\right)^{6}$.

$\Gamma \cap N(2):$

The $2^{13} \cdot 3.240$ Duad-Hexad cosets for hexads disjoint from θ are the same as the $2^{11} .2880$ Trio-Sextet cosets for trios hitting the vertical sextet $\left(2^{4} .0^{2}\right)\left(3.1^{5}\right)^{2}$ and sextets hitting the vertical one $\left(3.1 .0^{4}\right)^{2}\left(1^{4} .0^{2}\right)^{4}$.

$X \cap P_{1}:$

The $2^{12} \cdot 3 \cdot 60$ Octad-Pair cosets for octads meeting θ in four points and the pair also in θ are the same as the $2^{10} .720$ Regular-Involution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(2^{2} .0^{4}\right)^{6}$ and having 6 orbits in columns of the vertical sextet.
$X \cap F_{(2)}:$
The $2^{12} \cdot 3.360$ Octad-Pair cosets for octads meeting θ in four points and the pair disjoint from θ are the same as the $2^{10} .4320$ Regular-Involution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(3.1 .0^{4}\right)^{2}\left(1^{4} .0^{2}\right)^{4}$
$X \cap N(1):$
The $2^{12} \cdot 3.120$ Octad-Pair cosets for octads disjoint from θ and pair also disjoint from θ are the same as the $2^{11} .720$ Trio-Sextet cosets for trios hitting the vertical sextet $\left(4^{2} .0^{4}\right)\left(2^{4} .0^{2}\right)^{2}$ and sextets hitting the vertical one $\left(3.1 .0^{4}\right)^{2}\left(1^{4} .0^{2}\right)^{4}$.

$X \cap N(2):$

The $2^{12} \cdot 3.720$ Octad-Pair cosets for octads meeting θ in two points and pairs disjoint from 9 are the same as the $2^{11} .4320$ Trio-Sextet cosets for trios hitting the vertical sextet $\left(2^{4} .0^{2}\right)^{3}$ and sextets hitting the vertical one $\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}$.
$X \cap \mathrm{I}:$
The $2^{12} \cdot 3.960$ Octad-Pair cosets for octads hitting θ in two points and pairs meeting ϑ in one point are the same as the $2^{11} .5760$ Projective-line cosets for numberings where the tetrads of the vertical sextet all have cross-ratio 5 .

И $\cap_{F}^{F}:$
The $2^{13} \cdot 3.720$ Hexagon cosets for hexagons intersecting
θ in two opposite points of the hexagon are the same as the $2^{10} .17280$ Regular-Involution cosets for involutions whose centralizer fixes a sextet cutting the vertical one $\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}$ and having two orbits in columns of the vertical sextet.

```
\Lambda\capN}
    The 2 23.3.1440 Hexagon cosets for hexagons intersecting
0 in two points at distance two on the hexagon are the same
as the 2 '11.17280 Trio-Sextet cosets for trios meeting the vertical sextet \(\left(2^{4} .0^{2}\right)\left(3.1^{5}\right)^{2}\) and sextets meeting the vertical one \(\left(2.1^{2} .0^{3}\right)^{4}\left(1^{4} .0^{2}\right)^{2}\).
```


人 $\cap \mathrm{L}$ (1) :

The $2^{13} \cdot 3.960$ Hexagon cosets for hexagons disjoint from θ are the same as the $2^{11} .11520$ Projective-line cosets for the numberings where the tetrads of the vertical sextet all have cross-ratio 3 .

A $\cap \mathrm{L}$ (2) :

The $2^{13} \cdot 3.1440$ Hexagon cosets for hexagons hitting
θ in two adjacent points of the hexagon are the same as the $2^{11} .17280$ Projective-line cosets for numberings where four of the tetrads of the vertical sextet have cross-ratio 4 and the other two have cross-ratio 5 .

This completes the proof that $\hat{G} \cong G$.

Index of Notation

Ω	8	\hat{W}_{i}	27	$\mathrm{x}_{11} \quad 87$	\%	115
6	8	φ	28	P 87	c_{14}	116
86	13	K	28	Л 87	ð	116
6^{*}	13	T	41	$m_{1}, m_{2}, m_{3}, m_{4} 88$	f(projective	
$S \ell^{*}$	13	∇_{1}	41	$h_{1}, h_{2}, h_{3} \quad 88$	line)	118
Plo	13	P	41	$\hat{\mathrm{G}}$ (89	$\mathrm{f}_{0}, \mathrm{~K}_{0}, \mathrm{Y}_{0}, \mathrm{z}_{0}$	119
$S b^{2-}$	13	x_{7}	42	$\hat{J} \quad 90$	$f(\text { trio, }$	
PSe ${ }^{2-}$	13	x_{5}	42	$J \quad 90$	sextet)	119
z	16	Σ	42	$v_{0}, v_{1}, v_{\omega}, v_{\omega} 93$		
H	. 15	r	43	f (trio) 93		
E	16	Λ	43	f (sextet) 97		
E	16	${ }^{A_{0}}$	49	O 100		
E	16	A	49	$c_{1} \quad 102$		
F	16	L	49	$\Phi\left(\Phi_{1}, \Phi_{2}\right) 103$		
F	16	L_{1}	56	$\Phi\left(\Phi_{1}\right) 103$		
F_{0}	16	α	56	$c_{2} \quad 104$		
w	16	\triangle	62	$c_{3}, c_{4} 106$		
p	16	Δ_{n}^{X}	62	$\Psi\left(\Psi_{1}, \Psi_{2}\right) 107$		
w_{1}	18	G	73	$\Psi\left(\Psi_{1}\right), 107$		
M	27	∇_{∞}	76	$c_{5} \quad 108$		
θ	27	$\mathrm{g}_{1}, \mathrm{~g}_{2}$	76	f (sextet-line) 109		
I_{0}	27	$\mathcal{N}(\mathrm{x})$	78	$c_{6} \quad 111$		
0_{1}	27	$m\left(x_{1}, x_{2}\right)$	83	$c_{7} \quad 112$		
E_{1}	27	ψ	85	$c_{8} \quad 113$		
∇	27	f_{1}	86	$c_{9}, c_{10}, c_{11} 114$		
D	27	x_{23}	87	$c_{12}, c_{13}, m_{5}, m_{6} 115$		

[^0]

198 88 $A 8$ 128	48 $C C$ $A C$ $12 C$		$\begin{array}{r} B 4 \\ \text { BA } \\ B A \\ F * * \end{array}$	50 $A B$ $A 0$ $14 C$	56 98 08 $0 * *$	30 AA AA $15 A$	32 C $16 A$	160 $A A$ $A A$ $20 A$	160 AA A	42 $9 A$ 414				23 A 3 A	48 88 78 248	$4 E$ $B E$ $A E$ $A \&$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	-b7	**	67	**	0	-1	-1	-1	67	**	-2	0	-1	0	c
2	0	-**	-67	**	67	0	-1	-1	-1	**	67	-2	0	-1	\bigcirc	
1		1-2b7	**	0	, 0	0	-1	1	1	b7	**	1	0	-1	-1	-1
1	1	1 **	$-2 b 7$	0	0	0	-1	1	1	**	67	1	0	-1	-1	-1
1	1	167	**	67	**	0	0	-1	-1	67	**	1	-1	1	-1	-1
1	1	1 **	67	*	67	0	0	-1	-1	**	b7	1	-1	1	-1	-1
3	-1	-1	-1	-1	-1	0	1	2	2	-1	-1	3	1	0	1	1
-1	-1	1-67	**	$b 7$	**	0	-1	0	0	-b7	**	2	-1	0	1	1
-1	-1	1 **	-b7	**	67	0	-1	0	0	**	-b7	2	-1	0	1	1
3	-1	11	1	1	1	-1	0	0	0	1	1	3	-1	0	-1	-1
-2	0	$0 \quad 67$	**	b7	**	-1	1	2	2	-b7	*	0	0	0	0	C
-2		- **	67	*	67	-1	1	2	2	**	-b7	0	0	0	0	0
1		12	2	0	0	1	1	0	0	1	1	-3	-1	1	-1	-1
0	0	00		-2b 7	**	0	1	-1	-1	0	0	0	0	-1	0	0
0	0	00	0	*	-2b7	0	1	-1	-1	0	0	0	0	-1	0	0
2		0267	**	0	0	0	1	1	1	b7	**	-2	-1	0	0	
2		- **	2b7	0	0	0	1	1	1	**	67	-2	-1	0	0	
1		10	0	0	0	0	-1	0	0	0	0	-1	0	0	1	
1		10	0	0	0	0	-1	0	0	0	0	-1	0	0	1	
3		10	0	0	0	1	0	-1	-1	0	0	-2	1	0	-1	-1
4		00	0	0	0	2	1	2	2	0	0	3	0	0	0	
-2		00	0.0	0	0	0	0	0	0	0	0	-1	-1	-1		
-2		- 0	0	0	0	0	0	0	0	0	0	-1	-1		-2r3	
0	-2	20	0	0	0	0	0	0	0	0	0	0	-1	1	0	
0	0	0 -2	-2		0	0	0	-2	-2	-1	-1	0	1	1	0	
1	-1	$1-1$	$1-1$	1	- 1	1	0	1	1	1	1	0	0	-1	-1	-1
1	-1	1	22	0	0	-1	0	-1	-1	1	1	1	1	0	1	
-3	1	10	0	. 0	0	-1	0	1	1	0	0	5	1	0	-1	-1
-4	-2	2	11	1	: 1	0	2	0	0	-1	-1	-5	0	0	0	
-3	-1	10	0 -		0	1	-1	-1	-1	0	0	4	1	0	-1	-1
-4		0	- 0	0	0	2	-1	2	2	0	0	-2	0	0	0	
?		n	n n	- 0	0	-1	-1	2	2	0	0	-2	3	0	0	
2		0	00	0	0	-1	-1	2	2	0	0	-2	0	0	0	
1		$1-1$	1 -1		- 1	-1	0	0	0	1	1	-2	0	0	1	
0		00	00	0	0	0	0	2r5-1	*	0	0	3	-1	0	0	
0		0	0 -	0	0	0	0	*	2r5-1	0	0	3	-1	0	0	
0		0	0 -	0	0	-1	0	2r:5-1	*	0	0	1	0	0	0	
0		0	00	0	0	-1	0	*	2r5-1	0	0	1	\bigcirc	0	0	
-2	2	$2-2$	$2-2$	0	0	0	-1	2	2	1	1	-3	c	0	0	
2	2	2	11			0	0	0	0	-1	-1	1	0	0	0	0
3	-1	$1-2$	$2-2$	0	0	-1	0	-1	-1	1	1	0	0	0	-1	-1
2	-2	2	00	-2	-2	1	-1	1	1	0	0	0	0	0	0	
0		01	11		-1	0	1	2	2	-1	-1	0	c	0	0	
-3		$1-1$	$1-1$		1	1	0	-1	-1	-1	-1	3	-1	0	1	1
0		0	0		0	0	0	0	0	0	0	3	c	0	0	
0	0	00	00		0	0	0	0	0	0	0	- 3	0	0	0	
0	0	00	00		0	0	0	0	0	0	0	3	0	0	0	
0		$0-1$	1 -1		1	-1	-1	1	1	-1	-1	0	0	0	0	0
0	0	0 -1	$1-1$			1	0	-2	-2	1	1	-4	0	0	0	0
-1		10	00	0		0	0	-2	-2	0	0	-3	1	0	-1	-1
1		10	- 0		-2	0	1	-2	-2	0	0	0	0	-1	1	1
0	0	00	00		0	0	0	0	0	0	0	0	0	1	0	0
0	0	00			0	0	0	0	0	\bigcirc	0	0	0	1	0	0
	0	0 0	00		0	0	0	0	0	0	0	0	0	1	0	0
	0	00	$0 \quad 0$		0	0	1	0	0	0	0	0	0	-1	0	
	0	0 -	$0 \quad 0$	0				0				0	0	-1	0	
	0	00	00						\cdots	0	0	0		-1	0	
	- 0	02	22	0		-1	0					-4	0			
	2	21	11	-1	-1								0		0	
-1		10	0 O					2	2			0	0			
		10	00	02		1	-1	0	0	0	0					

APPENDIX B

TWO GENERATORS FOR J_{4}

0010600211101110011001110311007001110110017010001101001090000000n009000000007000000000000000000000000000000c, 0000

\qquad
$100 C 311111$
$1: 1020$
100
COCO1111101100
cocol11110
1011000600000002
10ncn11110 Cucoocnoon

 1100010101110000100000001001110110110010101101101111011000100101101001001001001611000110101001100116010010100000 $10011011010111103: 911111001001101110010100.110100011111110100110000110110000001000111011110010011010006000000000$


```
Appendix C
    Rank of 1+x for x a representative
of each conjugacy class of element of J}\mp@subsup{J}{4}{
in the 112-dimensional representation over
GF(2) .
```

$\mathrm{J}_{4} \text {-class }$ of elt. x	$\operatorname{Rank}(1+x)$	$\mathrm{J}_{4} \text {-class }$ of elt. x	$\operatorname{Rank}(1+x)$	$\mathrm{J}_{4} \text {-class }$ of elt. x	Rank ($1+\mathrm{x}$)
1 A	0	12B	100	31A	110
24	50	12 C	102	318	110
2B	56	14A	104	310	110
3A	72	14B	104	33A	112
44	80	14 C	104	33B	112
4B	80	14D	104	35A	112
4 C	84	15A	104	35B	112
5A	88	16A	104	37A	108
6A	92	20A	104	37B	108
6B	90	20B	104	37 C	108
6 C	92	21A	108	40A	108
74	96	21B	108	40B	108
7B	96	22A	110	42A	110
81	96	228	106	42B	110
8 B	96	23A	110	43A	112
8 C	96	24A	106	43B	112
10A	98	24B	106	436	112
10B	100	28A	108	44A	110
11A	110	28B	108	66A	112
11B	100	29A	112	66B	112
12A	100	30A	108		

Appendix DSome elements of J_{4} written in thenotations for those of H, M, P andI in which they lie. Elements of Hare written as the product of avector representing an element of Eand a 6 X 6 matrix representing anelement of F (c.f. p. 18), and alsothe action on H's MOG is given.

The Subgroun $E=O_{2}(H)$

H		M	P	I
diag(w)	\leftarrow		$\begin{aligned} & (\infty)(0) \\ & (142)(356) \end{aligned}$	$\left(\begin{array}{l}01000 \\ 110000 \\ 001 \\ 0000 \\ 000001\end{array}\right)$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1\end{array}\right)_{2 A}$			010	$c \wedge d$
$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]_{2 A}$	$\therefore 111$ 11 11 11		$0_{\bar{w}} 0$	$\left(a_{\wedge} b+c_{\wedge} d+\right.$ $\left.c_{\wedge} \mathrm{e}\right) \cdot\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 00010 \\ 00101\end{array}\right)$
$\left\lvert\, \begin{array}{cccccc}1 & \omega & \bar{\omega} & 0 & \omega & \bar{\omega} \\ \bar{\omega} & 1 & \omega & \bar{\omega} & 0 & w \\ \omega & \bar{\omega} & 1 & \omega & \bar{\omega} & 0 \\ 0 & \omega & \bar{\omega} & 1 & \omega & \bar{\omega} \\ \bar{\omega} & 0 & \omega & \bar{\omega} & 1 & \omega \\ \omega & \bar{\omega} & 0 & \omega & \bar{\omega} & 1\end{array} l_{2 A}\right.$		$*$ $*$ \therefore \therefore	$I_{0^{\prime}}(0 \sim)(1 \bar{\omega})$	-
$\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)_{2 A}$	$\square \therefore \square]_{2 A}$		$I_{0} \cdot(01)(w \bar{w})$	$\begin{aligned} & \left(c_{\wedge} d+d_{\wedge} e\right) . \\ & \left(\begin{array}{l} 10000 \\ 01000 \\ 00100 \\ 00010 \\ 00011 \end{array}\right) \end{aligned}$
$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array} 3 n\right.$		$\underline{i \uparrow} \mid: \rightrightarrows$	-	$\left(\begin{array}{lll} 1 & 000 & 0 \\ 01 & 000 \\ 000 & 0 \\ 001 & 0 \\ 000 & 0 \end{array}\right)$
$\left(\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0 \\ 1 & \omega & \omega & w & w & \omega \\ 1 & \omega & \omega & \bar{\omega} & \bar{\omega} & \omega \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & w & 1 & 0 \\ 0 & 0 & 0 & \omega & 1 & 0\end{array}\right]_{3 A}$		\square	$(1 \bar{\omega} \omega) \in \sum$	-
$(\omega \sim \bar{w})_{2 A}$	$\underline{E}$$\underline{E}$	\bar{y} \because \therefore $\overline{i n}$ 11	$0_{1} \quad 1 \cdot\left(\begin{array}{l}\infty \\ (23)\end{array}\right.$ (16) 45$)$	

The Subgroup $M \cap F$

H		M	P	I
$\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	(z)	蒌:	L_{0}	$a_{a}{ }^{\text {b }}$
	\leftarrow	$* * *$ $:$ \vdots \vdots \ddots	I_{4}	$a_{\wedge}{ }^{\text {c }}$
0 0wn	\leftarrow		L_{2}	$\mathrm{b}_{\wedge} \mathrm{c}$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1\end{array} 2_{2 A}\right.$	$\therefore=2=12$		$0_{1} 0$	${ }^{c} \wedge^{\text {d }}$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & d\end{array} \chi_{2}\right.$	${ }^{\therefore}$ x \therefore x		$0_{\omega} 0$	$(a \wedge b+c \wedge e)$. $\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 00010 \\ 00101\end{array}\right)$
$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 11 & 1 & 0 & 0 & 0 & 0\end{array} 2^{\prime}\right.$			${ }_{0} 1$	$c_{n} d+c_{n} e$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0\end{array}\right.$		EE	$0_{0} \omega$	$\left(a, b+c_{\wedge} d\right)$. $\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 00110 \\ 00101\end{array}\right)$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array} 0_{0}\right.$	\leftarrow		310	$\mathrm{a}_{\wedge}{ }^{\text {d }}$
	\leftarrow		$3_{\omega 0}$	$\begin{aligned} & \left(a_{\wedge} b+a_{\wedge} c+\right. \\ & \left.b \wedge c+a_{\wedge} e\right) \\ & \left(\begin{array}{l} 10000 \\ 01000 \\ 0000 \\ 00010 \\ 10001 \end{array}\right) \end{aligned}$
			Subgroup	

H		M	\mathbf{P}	L
$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right.$	\leftarrow		301	$a_{\wedge}{ }^{d}+a_{\wedge}{ }^{e}$
$\left[\begin{array}{lll} 0 & \omega & \widetilde{\omega} \\ 1 & \omega & \tilde{\omega} \end{array} 0_{0}\right.$	\leftarrow	[1111 11 11	$30 \sim$	
$\omega_{\omega}^{\omega} 00 \cdot \omega$	\leftarrow		510	$\mathrm{b}_{\wedge} \mathrm{d}$
$\left[\begin{array}{lll}\omega & \bar{\omega} & \bar{\omega} \\ \omega & \bar{\omega} & \bar{\omega}\end{array}\right]_{0}$	\leftarrow		${ }^{5}{ }_{\omega} 0$	$\begin{aligned} & (a \wedge b+a \wedge c \\ & b \wedge e) \cdot\left(\begin{array}{l} 10000 \\ 01000 \\ 00100 \\ 00010 \\ 01001 \end{array}\right) \end{aligned}$
$\left[\begin{array}{llll}\omega & 0 & w \\ \omega & 1 & \omega\end{array}\right]_{0}$	\leftarrow		${ }^{5} 01$	$b_{\wedge}{ }^{d}+b_{\lambda}{ }^{e}$
$\begin{array}{\|lll} 0 & \bar{\omega} & 1 \\ \omega & \bar{\omega} & 1 \end{array}{ }_{0}$	\leftarrow		${ }^{5} 0 \omega$	$\left(a_{\wedge} b+a, ~ c+\right.$ $b \wedge d) \cdot\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 01010 \\ 0101001\end{array}\right)$

The Subgroup $0_{2}(P)$ contd.

H		M	P	I
$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array} 2_{2 A}\right.$	\square	-	$\left({ }_{(\infty)}\right.$	$\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 00011 \\ 00001\end{array}\right)$
$\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0\end{array} 2_{2 A}\right.$	$\underbrace{-1} 8$	$\left[\begin{array}{ll}\square & \\ \square\end{array}\right.$	(01)	$\left(\begin{array}{l}10000 \\ 01000 \\ 00100 \\ 00010 \\ 00011\end{array}\right)$
$\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 1 & 1 \\ 1 & w & \omega & 1 & 1 & 1 \\ 1 & \omega & \tilde{c} & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & \omega & w \\ 0 & 0 & 0 & 0 & w & w\end{array} /_{2 A}\right.$		\%	$\sum<(1 \omega)$	-
$\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array} 2_{2 A}\right.$	-7 $\left(x_{1}\right)$ -	涼事	$(\omega \bar{\omega})$	$\mathrm{d}_{\wedge} \mathrm{e}$
$(\begin{array}{cccccc}0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & \omega & 0 & \bar{w} & 0 \\ 1 & 0 & \bar{\omega} & 0 & \omega & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & \bar{\omega} & 1 & 1 & 1 & w \\ 1 & w & 1 & 1 & 1 & \bar{\omega}\end{array} \underbrace{}_{\text {c }}$		-		-
-	-		$(\infty)(0123456)$	$\left(\begin{array}{l}11100 \\ 11000 \\ 01100 \\ 00010 \\ 00001\end{array}\right)$
diag ($\omega)_{3 A}$	\leftarrow	[idididi	$\Lambda\left\{\begin{array}{l}(\infty)(0) \\ (142)(356)\end{array}\right.$	$\left(\begin{array}{l}01000 \\ 11000 \\ 00100 \\ 00010 \\ 00001\end{array}\right.$
$\left(\begin{array}{llllll} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{array}\right)_{2 B}$			$\left(\begin{array}{l}(\infty)(16) \\ (23)(45)\end{array}\right.$	$\left(c_{n} \mathrm{e}\right) \cdot\left(\begin{array}{l}10000 \\ 11000 \\ 00100 \\ 00010 \\ 00001\end{array}\right)$
			Subgroups \sum	nd $\triangle \leqslant P$

H		M	P	L
	（z）	樓：洨：	I_{0}	$a_{n} b$
0	\leftarrow	等：	L_{4}	$\mathrm{a}_{\wedge}{ }^{\text {c }}$
$\left.0_{0 \omega w}^{0 w}\right]_{0}$	\leftarrow		L_{2}	$b_{\wedge}{ }^{\text {c }}$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]_{0}$	\leftarrow	［\times 	310	$0^{*}{ }^{\text {d }}$
$\left[\begin{array}{\|lll}\sim & 0 & \omega \\ \omega & 0 & \omega\end{array}\right]_{0}$	\leftarrow		$5_{1} 0$	$\mathrm{b}_{\wedge} \mathrm{d}$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1\end{array}\right)_{2 A}$	$\begin{aligned} & \square= \\ & \square= \\ & 2 A\end{aligned}$	（	$0_{1} 0$	$c_{\wedge}{ }^{\text {d }}$
$\begin{array}{lll} 0 & 0 & 0 \\ 1 & 1 & 1 \end{array} 0_{0}$	\leftarrow	［ $\because:$11 11 11 11	311	$\mathrm{a}_{\wedge}{ }^{\text {e }}$
${\left[\begin{array}{lll}0 & 0 & 0 \\ \omega & \omega & \omega\end{array}\right]_{0} 0}$	\leftarrow	$\because \because 69)(69]$	51.	$\mathrm{b}_{\wedge} \mathrm{e}$
$\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array} l_{2 A}\right.$	-11 10	$\begin{aligned} & \therefore== \\ & \square=\end{aligned}$	$0_{1} 1$	$\mathrm{Can}^{\mathrm{e}}$
$\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)_{2 A}$		清青	$(\omega \bar{\omega})$ $\epsilon \Sigma$	$\mathrm{d}_{\wedge}{ }^{\text {e }}$

The Subgroup $\mathrm{O}_{2}(\mathrm{~L})$

The Subgroup I_{1}

Appendix E

```
Orbits of M, H and D = M \capH
on right cosets of }M\mathrm{ in }\mp@subsup{J}{4}{
    (due to S.Norton)
```


Abstract

Appendix F

Generating sets for the stabilizers in M and H of representatives of the orbits of these groups on the cosets of M .

In each case a generating set is given in such a way that each composition factor in a suitable composition series is covered in turn.

M-Orbits

Trivial Orbit I :
One coset ∇_{∞}, stabilizer M of shape $2^{11} M_{24}$.

Trio Orbit T :
$2^{2} .3795$ cosets, representative $\nabla_{0}=f_{1}$ (brick trio).
Stabilizer shape $2^{9} \cdot 2^{6}\left(S_{3} X I_{3}(2)\right)$ generated by
even \boldsymbol{C}^{*}-sets in V hitting each octad of the brick trio evenily, and the trio group in K for the brick trio.

Sextet Orbit \mathbf{S} :
$2^{4} .1771$ cosets, representative f_{1} (vertical sextet).
Stabilizer shape $2^{7} \cdot 2^{6} \cdot 3 S_{6}$ generated by
even $6^{*-s e t s}$ in ∇ hitting each tetrad of the vertical sextet with the same parity (i.e. the parity subgroup
E_{1} (see p. 27)) and the sextet group in K for the vertical sextet.

Sextet-line Orbit z :
$2^{7} .26565$ cosets, representative

$$
c_{5}=\Phi\left(\left[\begin{array}{ccc}
0 & x & x \\
x_{2}+z & x_{1}+y & x_{2}+y
\end{array}\right]: x, y, z \in G P(2)\right) \in f_{1}\left(\left[\begin{array}{c|c}
1 & 2 \\
1 & 2 \\
3 & \ddots \\
3 & 4
\end{array}\right]\right.
$$

Stabilizer shape $2^{4} \cdot 2^{6}\left(S_{3} \not \mathrm{~S}_{4}\right)$ generated by

Regular-Involution Orbit F :
$2^{10} .31878$ cosets, representative $c_{10}=c_{6} \cdot{ }^{4}$
Stabilizer shape $2^{1} \cdot 2^{6} \mathrm{PGL}_{2}(5)$ generated by

Trio-sextet orbit N :
$2^{11} .26565$ cosets, representative $c_{15} \in$ 王 ($\left.\begin{array}{ccc}0 & x & x \\ x_{2}+z & x_{1}+y & x_{2}+y\end{array}\right)$
Stabilizer shape $2^{0} \cdot 2^{6} \cdot 3\left(2 \mathrm{X} \mathrm{S}_{4}\right)$ generated by

Projective-Line Orbit L :
$2^{11} .40320$ cosets, representative $c_{13}=c_{12} \cdot \underbrace{-}$

$$
=\mathbf{f}_{1}\{6,13,20\}\left(\begin{array}{rr|rr|rrr}
4 & 10 & 14 & 20 & 12 & 21 \\
15 & 0 & 7 & 11 & 5 & 9 \\
\infty & 3 & 13 & 2 & 6 & 19 \\
16 & 17 & 18 & 8 & 22 & 1 \\
\hline
\end{array}\right)
$$

Stabilizer shape $1 . L_{2}(23)$ generated by (transformation

M | in $\mathrm{I}_{2}(23)$ |
| :---: |
| for above |
| numbering $)$ |

(H)
numbering)

H-Orbits

Hexad Orbit Θ :
77 costs, representative $\Theta(\theta)=\nabla_{\infty}$.
Stabilizer shape $2^{1+12} \cdot 3 \cdot 2^{4} S_{6}$ generated by
E and the stabilizer in F of the hexad ϑ.
Big-Octad Orbit Φ :
$2^{3} .3 .330$ cosets, representative $c_{1}=\Phi\left(\begin{array}{lll}X & Y & z \\ x & y & z\end{array}\right]: \begin{gathered}x, y, z \\ \in G F(2)\end{gathered}$

$=\mathcal{1}_{1}{ }^{\mathrm{a}, \mathrm{b}}$| | a |
| :---: | :---: |

Stabilizer shape $2^{1+9} \cdot 1 \cdot 2^{4} L_{3}(2)$ generated by the centralizer in F of the element is $\rightarrow \bar{\omega}\left(\begin{array}{lll}\hline= & = \\ \hline & \vdots\end{array}\right]$,
of shape $2^{1} \cdot 2^{4} \Sigma_{4}(2)$ and the subgroup
$\left.{ }^{\mathbf{E}}\left(c_{1}\right)=\left\{\begin{array}{l}\lambda_{1} \lambda_{2} \lambda_{3} \\ \lambda_{4} \lambda_{5} \lambda_{6}\end{array}\right\}_{i} \right\rvert\, \lambda_{1}+\lambda_{5}+\lambda_{6}, \lambda_{2}+\lambda_{4}+\lambda_{6}, \lambda_{3}+\lambda_{4}+\lambda_{5}, \begin{aligned} & \text { are in } G F(2) ; i=0 \text { or } 1\}\end{aligned}$
of E of shape 2^{1+9}.

Ifttle－Octad Orbit $\Psi:$
$2^{7} .330$ cosets，representative $c_{3}=f_{1}\left(\left[\begin{array}{cc|c|c|c}u & v & w & w & w \\ v & u & x & x & x \\ v & u & y \\ v & u & y & y & y \\ \mathbf{v} & \mathbf{z} & z & z & z\end{array}\right)\right.$
$\left.\in \Psi\left(\begin{array}{lll}\bar{X} & \bar{Y} & z \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right)\right)$
Stabilizer shape $2^{0+6} \cdot 3.2^{4} I_{3}(2)$ generated by

2^{0+6}| H | （M） |
| :--- | :--- |
| $\left.\begin{array}{lll}X & y & Z \\ x & y & z\end{array}\right]_{0}$ | |

［1074］

四目

国国

Duad Orbit Δ :
$2^{6} .3 .231$ cosets, representative $\left.c_{6}=f_{1}\left(\begin{array}{ll|ll|ll}1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 3 & 3 \\ 3 & 3 & 1 & 1 & 2 & 2 \\ 3 & 3 & 1 & 1 & 2 & 2\end{array}\right]\right)$

Big-Syntheme Orbit ت: $2^{8} \cdot 3.1155$ cosets, representative $c_{8}=f_{1}\left(\cdot \begin{array}{lllllll}1 & 2 & 3 & 3 & 3 & 3 \\ 2 & 1 & 3 & 3 & 3 & 3 \\ 2 & 1 & 2 & 2 & 2 & 2 \\ 2 & 1 & 1 & 1 & 1 & 1\end{array}\right)$)
Stabilizer shape $2^{0+5} \cdot 1.2^{4}\left(2^{3} S_{3}\right)$ generated by H (M)
$\left.2^{0+5}\left\{\begin{array}{lll}x & y & z \\ x & y & z\end{array}\right]: x+y+z \in \in F(z)\right\}$

Iittle-Syntheme Orbit Σ :
$2^{9} \cdot 3.1155$ cosets, representative $c_{9}=f_{1}\left(\begin{array}{ll|ll|ll}u & u & u & \mathbf{u} & \mathbf{x} & \mathbf{x} \\ \mathbf{v} & \mathbf{v} & \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{x} \\ \mathbf{w} & \mathbf{x} & \mathbf{z} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{x} & \mathbf{w} & \mathbf{y} & \mathbf{z} & \mathbf{z} & \mathbf{z}\end{array}\right)$

Duad-Hexad Orbit Γ :
 Stabilizer shape $1.1 .2^{4}\left(2 \times \mathrm{S}_{4}\right)$ generated by

Octad-Pair Orbit X :

$$
2^{2^{12} \cdot 3.2310 \text { cosets, representative } c_{14}}=\begin{aligned}
& =c_{13} \cdot \alpha \cdot x_{7} \\
& \in \rho_{1}\left(\left[\begin{array}{|l|l|l}
1 & 2 & 3 \\
3 & 4 & \\
\hline
\end{array}\right]\right.
\end{aligned}
$$

Stabilizer shape $2^{0+1} \cdot 1 \cdot 2^{4} \mathrm{~S}_{4}$ generated by

H	(M)
$2^{0+1} \quad\left[\begin{array}{lll}1 & \omega & 0 \\ 1 & \omega & 0\end{array}\right.$ 。	
	(1) x

Hexagon Orbit Λ :

Stabilizer shape $1.1 .2^{4}\left(2 X S_{3}\right)$ generated by

Appendix G

The 2-modular character tables
of $M_{22}, M_{22} \cdot 2,3 M_{22}$ and $3 M_{22} .2$
in ' $\mathrm{A} t l a s^{\prime}$ notation.
(see [5])

References

[1] D.Gorenstein : "The classification of Finite Simple Groups", Bull. A.M.S. Jan 1979 Vol. 1 no. 1 pp.43-199.
[2] Z.Janko : "A New Finite Simple Group of Order 86775571046077562880 which possesses M_{24} and the Full Covering Group (sic) of M_{22} as subgroups", J. Alg. 42 (1976) 564-596.
[3] R.T.Curtis : "A New Combinatorial Approach to $\mathrm{M}_{24}{ }^{\text {n }}$, Math. Proc. Camb. Phil. Soc. 79 (1976) 25-42.
[4] S.Norton, R.Parker, J.Conway, J.Thackray and D. Benson : "The Construction of $J_{4} "$ in preparation
[5] J.Conway, S.Norton, R.Curtis and R. Parker : "An Atlas of Finite Groups" to appear.
[6] S.Norton : "The Construction of J_{4} ", Symposia of Pure Mathematics Vol.37.
[7] J.Thackray "Reduction of Modules in Nonzero Characteristic", SS 13-JGT-1 to 4 in Lecture Notes for the June/July 1979 Summer Conference on Finite Group Theory held at Santa Cruz, California.
[8] D. Benson : "A Presentation for the Simple Group $J_{4}{ }^{\prime \prime}$ in preparation.
[9] J.J.Sylvester : "Elementary Researches in the Analysis of Combinatorial Aggregation", Philosophical Hagazine, XXIV (1844) 285-296.
[10] J.A.Todd : "Abstract Definitions for the Mathieu Groups", Quart. J. Math. Oxford (2), 21 (1970), 421-4.
[11] S.D.Smith and M.A.Ronan : "2-local Geometries for some Sporadic Groups", SS7-SDS/MAR-1 to 18 in Lecture Notes for the June/Juily 1979 Summer Conference on Finite Group Theory held at Santa Cruz, California.
[12] R.Steinberg : "Lectures on Chevalley Groups", Yale University 1967, Notes prepared by J.Falkner and R.Wilson.

[^0]: Appendix A
 The character table of J_{4} in
 'Atlas' notation.
 (see [5])

