
KERNEL EIGENVOICE SPEAKERADAPTATION
byHO KA-LUNG

A Thesis Submitted toThe Hong Kong University of S
ien
e and Te
hnologyin Partial Ful�llment of the Requirements forthe Degree of Master of Philosophyin Computer S
ien
eAugust 2003, Hong Kong

Copyright 

 by Ho Ka-lung 2003



Authorization
I hereby de
lare that I am the sole author of the thesis.I authorize the Hong Kong University of S
ien
e and Te
hnology to lend thisthesis to other institutions or individuals for the purpose of s
holarly resear
h.I further authorize the Hong Kong University of S
ien
e and Te
hnology toreprodu
e the thesis by photo
opying or by other means, in total or in part, at therequest of other institutions or individuals for the purpose of s
holarly resear
h.

HO KA-LUNG

ii



KERNEL EIGENVOICE SPEAKERADAPTATIONbyHO KA-LUNGThis is to 
ertify that I have examined the above M.Phil. thesisand have found that it is 
omplete and satisfa
tory in all respe
ts,and that any and all revisions required bythe thesis examination 
ommittee have been made.

DR. BRIAN MAK, THESIS SUPERVISOR
PROF. LIONEL NI, HEAD OF DEPARTMENTDepartment of Computer S
ien
e18 August 2003iii



ACKNOWLEDGMENTSFirst of all, I would like to express my sin
ere gratitude to Dr. Brian Mak for hissupervision throughout my MPhil study and to Dr. James Kwok for his valuablesuggestions in the kernel methods.I am also very grateful to the LASTRE group. With the guidan
e of Dr.Brian Mak and Dr. Manhung Siu in the QEF and ASTRI proje
ts, I was openedto the �eld of spee
h re
ognition and gained a great deal of hands-on experien
e.It helps me a lot on my resear
h.Finally, I would like to express my thanks to my 
olleagues of LASTRE groupin
luding Wilson Tam, Arthur Chan, Ivan Chan, Fran
o Chong, Karen Leung,Jimmy Wong and Mimi Ng, who tea
h me a lot in these two years.

iv



TABLE OF CONTENTSTitle Page iAuthorization Page iiSignature Page iiiA
knowledgments ivTable of Contents vList of Figures viiiList of Tables xAbstra
t xiChapter 1 Introdu
tion 11.1 Ba
kground 11.2 Outline of the thesis 2Chapter 2 Literature Review 42.1 SD modeling versus SI modeling 42.2 Speaker adaptation 52.3 From PCA to eigenfa
e and eigenvoi
e 72.4 Kernel methods 92.5 Summary of the evolution 10Chapter 3 Conventional Eigenvoi
e 123.1 Idea of eigenvoi
e 123.2 Introdu
tion of parameter spa
es 133.3 Conventional eigenvoi
e adaptation 143.4 Experimental setup 173.5 Conventional eigenvoi
e adaptation experiment 21
v



Chapter 4 Kernel Eigenvoi
e 234.1 Revisit the de�nition of parameter spa
es 234.2 Overview of KEV 244.3 KPCA 254.4 Composite Kernels 274.5 KEV adaptation 284.6 Kernels 304.6.1 Gaussian kernel 314.6.2 Polynomial kernel 324.6.3 Contour plots 344.7 Time 
omplexity 354.8 KEV adaptation experiment 36Chapter 5 Robust KEV 395.1 Robust KEV 1 - addition approa
h 395.2 Robust KEV 2 - interpolation approa
h 405.3 Robust EV 415.4 Experimental results 42Chapter 6 Further Investigation 466.1 KEV versus 
onventional adaptation methods 466.2 Signi�
ant tests 466.3 Analysis of the eigenve
tors 47Chapter 7 Con
lusion and Future Work 527.1 Contribution 527.2 Con
lusion 527.3 Future work 53Referen
es 56Appendix A Proofs for KPCA 62A.1Proof of 
entering of 
ovarian
e matrix 62A.2 Proof of the normalizing fa
tor used in KPCA 62Appendix B Derivation for Original Kernel Eigenvoi
e 64B.1 Derivation of & 0r'r(ot) 64B.2 Derivation of & 0r&r 65vi



Appendix C Derivation for Robust KEV 1 - Addition 67C.1 Derivation of & 0r'r(ot) 67Appendix D Derivation for Robust KEV 2 - Interpolation 69D.1Derivation of & 0r'r(ot) 69Appendix E Pra
ti
al Speed-up Methods in KEV 71Appendix F Signi�
an
e Tests 73

vii



LIST OF FIGURES2.1 Input spa
e of the toy problem 92.2 Feature spa
e of the toy problem 102.3 Summary of the evolution 113.1 Illustration of various parameter spa
es used in EV 143.2 De�ning adaptation-sets and test-sets 193.3 Illustration of prototype of the HMMs 193.4 Illustration of the training approa
h A 203.5 Illustration of the training approa
h B 203.6 Comparison of the two suggested training approa
hes for eigen-voi
e adaptation 213.7 Comparison of the 
ovarian
e approa
h and the 
orrelation ap-proa
h in 
onventional eigenvoi
e adaptation 224.1 Illustration of parameter spa
es used in KEV 234.2 Contour plot of the linear PCA 344.3 Contour plot of the KPCA - Gaussian kernel 354.4 Contour plot of the KPCA - polynomial kernel in power 2 354.5 Contour plot of the KPCA - polynomial kernel in power 3 354.6 Tuning result of beta value for Gaussian kernel 364.7 Comparison of the Gaussian kernel and polynomial kernel 374.8 Summary of the re
ognition results of the base KEV adaptation 385.1 Comparison of the re
ognition results of the base EV and robustEV adaptations in 2-se
ond adaptation-set 425.2 Comparison of the re
ognition results of the base EV and robustEV adaptations in 4-se
ond adaptation-set 435.3 Comparison of the re
ognition results of the base EV and robustEV adaptations in 10-se
ond adaptation-set 435.4 Comparison of the re
ognition results of the base KEV and robustKEV adaptations in 2-se
ond adaptation-set 445.5 Comparison of the re
ognition results of the base KEV and robustKEV adaptations in 4-se
ond adaptation-set 445.6 Comparison of the re
ognition results of the base KEV and robustKEV adaptations in 10-se
ond adaptation-set 456.1 Comparison of the various adaptation methods 476.2 S
atter plot of the training-set of EV 48viii



6.3 S
atter plot of the training-set of EV 496.4 S
atter plot of the test-set of EV 506.5 S
atter plot of the training-set of KEV 506.6 S
atter plot of the test-set of KEV 51

ix



LIST OF TABLES2.1 Comparison of the three main model-based adaptation methods 63.1 Summary of the two steps in eigenvoi
e-family adaptation 133.2 Detailed information of the adaptation sets 186.1 Comparison of re
ognition a

ura
ies of various adaptation meth-ods 46E.1 Comparison of the CPU time and the a

ura
y of the 3 proposedapproximation methods to exponential fun
tion with the build-inone 72F.1 Signi�
an
e Tests on 2-se
ond adaptation data 74F.2 Signi�
an
e Tests on 4-se
ond adaptation data 75F.3 Signi�
an
e Tests on 10-se
ond adaptation data 76

x



KERNEL EIGENVOICE SPEAKERADAPTATIONbyHO KA-LUNGDepartment of Computer S
ien
eThe Hong Kong University of S
ien
e and Te
hnology
ABSTRACTSpee
h re
ognition is a powerful and widely used te
hnology nowadays. How-ever, its performan
e is not robust enough due to variations in spee
h introdu
edby the operating environment, noises (their type and energy) and inter-speakerdi�eren
es.Speaker adaptation is an important te
hnology to �ne-tune either featuresor spee
h models for the mis-mat
h due to inter-speaker variation. In the lastde
ade, eigenvoi
e (EV) speaker adaptation has been developed. It makes useof the prior knowledge of training speakers to provide a fast adaptation algo-rithm (in other words, only a small amount of adaptation data is needed). In-spired by the kernel eigenfa
e idea in fa
e re
ognition, kernel eigenvoi
e (KEV)is proposed. KEV is a non-linear generalization to EV. This in
orporates KernelPrin
ipal Component Analysis (KPCA), a non-linear version of Prin
ipal Compo-nent Analysis (PCA), to 
apture the higher order 
orrelations in order to furtherexplore the speaker spa
e and enhan
e re
ognition performan
e. The major dif-�
ulty is that through KEV adaptation, the adapted speaker model is estimatedin the kernel feature spa
e whi
h may not have an exa
t pre-image in the inputspeaker-superve
tor spa
e, yet observation likelihoods are 
omputed in the a
ous-ti
 observation spa
e for both adaptation and re
ognition. Composite kernel isxi



proposed to solve the problem.Experimental investigation on TIDIGITS 
orpus, an English digits re
ognitiontask, using 4 se
onds of adaptation data shows that KEV adaptation gives a 21%relative improvement over the speaker-independent (SI) model, a 25% relativeimprovement over MLLR adaptation and a 32% relative improvement over EVadaptation. When the speaker-adapted models from KEV are interpolated withthe SI model, the relative improvements in
rease to 32% over SI model, 35% overMLLR adaptation, and 31% over similarly interpolated EV adaptation.
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CHAPTER 1INTRODUCTION1.1 Ba
kgroundSpee
h re
ognition is a very powerful te
hnology that is widely used nowadays.Examples in
lude voi
e-a
tivated phone-dialing (VAD) by AT&T Wireless, Nokiaand Motorola, voi
e-
ontrolled personal digital assistant (PDA) by Palm, voi
e-
ontrolled in-
ar musi
 system by Sony, voi
e-operated light swit
h by VOS Sys-tems, 
omputer assisted language learning (CALL) and so on. In addition, a
all 
enter with intera
tive voi
e response (IVR) is an important appli
ation ofspee
h re
ognition. This is used in various domains in
luding 
redit/debit 
ardenquiries, international travel bookings and pro
essing insuran
e details and itshowed huge business values. All these examples show the potential and impor-tan
e of spee
h re
ognition te
hnology.However, inter-speaker di�eren
es is an important bottlene
k to further im-provement on the a

ura
y of spee
h re
ognition. To 
ounter these problems,various kinds of speaker normalization and speaker adaptation methods havebeen proposed. Feature-based adaptation (or normalization) aims to redu
e theundesired variations in the features while model-based adaptation aims to mod-ify the a
ousti
 models to optimize on a 
ertain amount of data of a given speaker.Among the various adaptation methods, eigenvoi
e adaptation (EV) is a well-known method to extra
t inter-speaker variations su
h as gender, age and a

entfrom a set of training speakers by Prin
ipal Component Analysis (PCA). By as-suming any speakers to be a linear 
ombination of eigenve
tors with a set ofweights. A speaker-adapted model is obtained by �nding the weights by maxi-mizing the expe
ted log likelihood of the given adaptation data.
1



In this thesis, we propose a novel non-linear extension to EV, whi
h we 
allKernel Eigenvoi
e (KEV) by utilizing kernel methods. The hypothesis is thatthe use of linear PCA in EV may not be best to 
apture the inter-speaker vari-ations. In fa
t, EV is a spe
ial 
ase of KEV using a linear kernel. By using thekernel tri
k, KEV uses KPCA, performing linear PCA in the high dimensionalfeature spa
e, to enhan
es its 
apability in non-linearity without an expli
it non-linear optimization. The main diÆ
ulty is how to express the adaptation algo-rithm in the observation spa
e using the non-linear information in the featurespa
e. Our solution is to 
ompute kernel PCA using 
omposite kernels.
1.2 Outline of the thesisIn 
hapter 2, the idea of speaker-dependent (SD) and speaker-independent (SI)modeling are dis
ussed. It is followed by the evolution of KEV from speakeradaptation, eigenfa
e, eigenvoi
e and kernel methods.In 
hapter 3, 
onventional eigenvoi
e is introdu
ed. A dis
ussion of its obje
-tives and a brief 
omparison between EV and Cluster Adaptive Training (CAT)[17℄ will be given. The outline of the EV algorithm follows. The general experi-mental setup is stated and two variations of spee
h model training methods areintrodu
ed and dis
ussed. This 
hapter ends with a 
omparison of the re
ognitionresults on EV.In 
hapter 4, the KPCA algorithm and the kernel eigenvoi
e adaptation aredeveloped. The 
hallenge of KEV and its proposed solution are investigated. TheKEV algorithm for Gaussian kernel and polynomial kernel are presented. Thetime 
omplexity of the algorithm as well as the re
ognition results on KEV aredis
ussed.Robust EV and KEV are introdu
ed in 
hapter 5. The motivation, re-formulation and the experimental results are also presented. In 
hapter 6, a
omparison among EV, KEV and 
onventional adaptation te
hniques in
luding2



MLLR and MAP is presented. A brief dis
ussion of the signi�
an
e tests arein
luded. Then, the relationship between the eigenve
tors and speakers' 
hara
-teristi
s is analyzed. The 
on
lusion and future work are dis
ussed in the last
hapter.

3



CHAPTER 2LITERATURE REVIEW2.1 SD modeling versus SI modelingIn spee
h re
ognition, a
ousti
 modeling 
an be divided into two methods, thatis, speaker-dependent (SD) modeling and speaker-independent (SI) modeling. SDmodeling means that an a
ousti
 model is trained by data from a spe
i�
 speakerwhile SI modeling means that an a
ousti
 model is trained by data from all speak-ers.There are pros and 
ons in both SD and SI modeling. For SD modeling, theadvantage is that a well-trained SD model is usually better than a well-trained SImodel for the training speaker. [29℄ states that the error rate of an SD model isabout one third of the error rate of an SI model. In [29℄, the author explains that`phonemes do not o

upy absolute positions in a
ousti
 spa
e, but are per
eivedrelative to ea
h other`. As all speakers are used to train an SI model, its proba-bility distribution of phonemes in an SI model spreads out. In te
hni
al words,if Gaussian is used to model the distribution, it be
omes 
atter with larger vari-an
e. An illustrative example is that `One person's "ow" in "about" may soundlike another person's "oo" in "room".` In other words, the relative position ofphonemes in a
ousti
 spa
e is weakened in an SI model. The disadvantage is thatan SD model gives a very tough 
onstraint on the appli
ation sin
e it is usable bythe training speaker only. This means that ea
h user needs to have his/her ownSD model. The amount of data for training a robust SD model is more than 5minutes of spee
h data (depending on the domain and the 
omplexity required).It is a 
ompletely user-unfriendly idea.For SI modeling, its importan
e is that a fairly good a
ousti
 model 
an bea
hieved for all people in general. Any user 
an utilize this model immediately.Re
ording spee
h and training an a
ousti
 model for ea
h new user is no longer4



ne
essary. Although it makes spee
h re
ognition more user-friendly, there are twodrawba
ks. Firstly, the distribution of data 
ould a�e
t or be biased toward somegroups of people. So, it is important to keep everything as balan
ed as possible inthe training-set and the evaluation-set, su
h as gender, a

ent and age group inorder to ensure the performan
e is not biased on some fa
tors. Se
ondly, sin
e themodeling te
hnique has to deal with the variations among speakers, 
omplexityof the a
ousti
 model should be higher. For example, the number of mixturesof HMMs in SI modeling should be higher than that in SD in order to a
hievethe same a

ura
y. This means that the de
oding speed in SI is usually slowerthan the in SD. Although the 
omplexity of HMMs partially gives the 
apa
ityfor des
ribing the variations in speakers, the mixture design does not dire
tlya

ount for speaker variation.It is true that the SI approa
h is dominant in a
ousti
 modeling. However,speaker variations 
ause a bottlene
k in the re
ognition a

ura
y. Therefore, ifa 
ertain amount of speaker-spe
i�
 data (adaptation data) is available, 
an wemake use of it to improve a
ousti
 models? This leads to speaker adaptationresear
h.
2.2 Speaker adaptationAs introdu
ed in Se
tion 1.1, speaker adaptation 
an be divided into two 
lasses,whi
h are feature-based adaptation and model-based adaptation. Vo
al-tra
tnormalization (VTLN) [13℄ is one feature-based example, whi
h is a parametri
method used to normalize the e�e
t introdu
ed by the variations of the vo
al tra
tlength of speakers. As stated in [49℄, its major limitation is that it is ineÆ
ient tohave phone-level or word-level 
ontrol in a feature-based adaptation. For exam-ple, if the adaptation is realized by a transformation, this transformation has tobe applied to all observable frames. In 
ontrast, a model-based adaptation allowsa transformation to be applied to observable frames whi
h belong to vowels whileanother transformation is applied to observable frames whi
h belong to fri
atives.The three most 
ommon model-based adaptations are the Maximum Likeli-5



hood Linear Regression (MLLR) [34℄, the Maximum a Posterior (MAP) adapta-tion [33℄ and eigenvoi
e (EV) adaptation [29, 30, 28, 27℄.Instead of giving the details of the adaptation algorithms, the 
omparison ishighlighted. In MAP adaptation, large amounts of adaptation data as well as the
overage of the parameters are important. Rarely seen parameters 
ould resultin poor performan
e. The rate of 
onvergen
e to an SD model is slow. In MLLRadaptation, using blo
k diagonal or full transformation with a regression 
lass treemakes it 
exible and tunable. However, insuÆ
ient adaptation data 
ould resultin a poorly estimated transformation matrix leading to poor re
ognition a

ura
y.In eigenvoi
e adaptation, the major idea is to make use of a priori knowledge ofspeaker information. By applying PCA on training speakers, eigenvoi
es areobtained. They des
ribe inter-speaker variations. Speaker spa
e is spanned bythe �rst few eigenvoi
es. There is a set of weights for ea
h unseen speaker and ea
hweight 
orresponds to ea
h eigenvoi
e. Speaker-adapted model is found within thespeaker spa
e by obtaining the set of weights in the adaptation pro
ess. Furtherdis
ussion of EV 
ontinues in 
hapter 3.MAP MLLR eigenvoi
eAmount of Large Medium SmalladaptationdataConvergen
e Yes Yes Noto SD modelRate of Slow Fast FastsaturationOthers dependent on 
exible: regression, model speakeron the 
lass tree, variationsdistribution blo
k diagonal dire
tlyof data transformationTable 2.1: Comparison of the three main model-based adaptation methodsEV is espe
ially suitable for small amounts of adaptation data. It models thespeaker variations dire
tly, but it does not ne
essarily 
onverge to an SD model.Empiri
al results show that improvement saturates qui
kly, meaning that beyonda 
ertain limit, more adaptation data would not give further improvement. The
omparison is summarized as in Table 2.1.6



2.3 From PCA to eigenfa
e and eigenvoi
eThe story of kernel eigenvoi
e starts from one of the most famous linear transfor-mation methods whi
h is the PCA [23℄. It is a simple but powerful method that
an be used for dimensionality redu
tion or redundan
y redu
tion, de-
orrelationof data, feature extra
tion and so on. PCA guarantees that the mean square ofre
onstru
tion error is minimized. It is a se
ond order method that only makesuse of information in 
orrelation or 
ovarian
e of multi-dimensional data.In 
onventional fa
e re
ognition methods, fa
ial features in
luding eyeballs,nose, mouth and head shape are dete
ted for fa
e identi�
ation. In 1992, Turkand Pentland [46℄ �rst proposed the eigenfa
e. It is a novel unsupervised way tode
ouple fa
es into basis-fa
es by PCA. Any fa
e is then expressed as a linear
ombination of the eigenfa
es so that the dimension is redu
ed substantially. Thedete
tion and identi�
ation of human fa
es be
omes a simple pattern re
ognitiontask in the eigenfa
e spa
e.Two main streams of extension to the eigenfa
es are available. The �rststream is the work on statisti
al analysis methods other than PCA. In [19℄, in-stead of using PCA, it was proposed to use Fisher representation to enhan
e thedis
rimination power; this is 
alled �sherfa
e. Other variations su
h as the useof Independent Component Analysis (ICA) on fa
e re
ognition was investigatedin [3℄. The se
ond stream of extension is that instead of applying the statisti
alanalysis methods on the pixels of the image dire
tly, other spa
es are explored.Eigenhill and eigenedge was investigated in [54℄ while eigenmotion was investi-gated in [55℄.In the spee
h domain, speaker identi�
ation and re
ognition is a dire
t anal-ogy to fa
e re
ognition tasks while speaker adaptation is a 
losely related prob-lem. Speaker adaptation using an eigen-de
omposition te
hnique, 
alled eigen-voi
e, was �rst proposed in [29℄. In [30, 28, 27℄, the maximum-likelihood eigen-de
omposition (MLED) estimator for Gaussian mean adaptation was outlined.Experiments on isolated English letter re
ognition showed en
ouraging results.Later, the use of eigenvoi
e in speaker identi�
ation and re
ognition was also7



explored in [44℄.Similar to eigenfa
es, the extension of eigenvoi
e 
an be divided into fourstreams. The �rst stream is an extension of the statisti
al analysis. In [38℄,the PCA-based eigenvoi
e adaptation was extended to the Linear Dis
riminantAnalysis (LDA) transformation and pie
ewise linear 
onstraints. In [22℄, bothPCA and ICA were used to analyze the speaker variability. It was found thatthe �rst two ICA 
omponents 
orresponded to gender and a

ent respe
tivelywhile the �rst PCA 
omponent 
orresponded to gender only. In [15℄, instead ofusing the maximum likelihood for eigenvoi
e adaptation, eigenvoi
e was used forspeaker 
lustering. HMM sets were trained for ea
h speaker 
luster and a paral-lel re
ognition s
heme for 
hoosing the maximum HMM s
ore was adopted. These
ond stream extends the s
ope of eigenvoi
e. It means that instead of apply-ing statisti
al analysis on 
ovarian
e or 
orrelation of the means of HMM sets,other targets are explored. In [8℄ and [48℄, the eigenspa
e-based MLLR approa
hwas introdu
ed. PCA was applied to the MLLR transformation matrix. In [9℄,the eigenspa
e-based MAP linear regression approa
h was proposed. In [10℄, theidea of eigenroom was introdu
ed. Adaptation was used to deal with the mis-mat
h mostly due to room reverberation. The third stream extends the eigenvoi
efamily te
hnique suitable for the migration from small vo
abulary tasks to largevo
abulary 
ontinuous spee
h re
ognition (LVCSR). In [38℄, the �rst experimentson relatively large 
orpus Wall Street Journal di
tation tasks were done, whi
ha
hieved a 15% relative improvement. In [31℄, the use of eigen-
entroid plus deltatree (EDT) for a 
ompa
t 
ontext-dependent eigenvoi
e modeling was proposed.The fourth stream investigates the 
ombination of the eigenvoi
e approa
h withother 
onventional adaptation approa
hes. This is due to the fa
t that eigenvoi
eis only good at a small amounts of adaptation data. When the amount of adap-tation data in
reases, 
onventional approa
hes su
h as MLLR and MAP are moreadvantageous. Related dis
ussions were presented in [7℄ and [9℄.
8



2.4 Kernel methodsOn top of the various statisti
al analysis methods su
h as PCA, LDA, ICA, ker-nel methods have been developing at a fast pa
e in the last de
ade. The ideaof kernel methods was dis
ussed thoroughly in [3℄. A simple example borrowedfrom it (the example is the same although the �gures are re-generated) to showthe power of high dimension in Figures 2.1 and 2.2.
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Figure 2.1: Input spa
e of the toy problem (Dimension 1 and 2 
orrespond to x1and x2 respe
tively)In Figure 2.1, there are some data points with two dimensions in two 
lassesin the input spa
e whi
h is not linearly separable. If there is a mapping ' :(x1; x2)! (x1; x2; x21 + x22), data points from input spa
e 
an map to the featurespa
e as shown in Figure 2.2 where 
lass 1 and 
lass 2 are linearly separable.However, as the observation dimension in
reases, the possible 
ombinationsof high dimension representation in
rease exponentially. It is not a good ideato have an expli
it form. Therefore, if the dot produ
t in the feature spa
e isgiven by k(x1; x2) = D'(x1); '(x2)E and the algorithm is expressed in terms of dotprodu
t, then, we 
an perform the algorithm in high dimensional feature spa
eusing dot produ
ts without knowing the expli
it form of the mapping.9
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Figure 2.2: Feature spa
e of the toy problem (Dimension 1, 2 and 3 
orrespondto x1, x2 and x21 + x22 respe
tively)In [3℄, the Kernel Prin
ipal Component Analysis (KPCA) was introdu
ed.The main 
on
ept is to map the input spa
e to a feature spa
e of higher dimen-sion and linear PCA is performed in the feature spa
e. Re
ently, KPCA is appliedto fa
e re
ognition to take into a

ount higher order 
orrelations [53, 26℄ and themethod is 
alled kernel eigenfa
e. Later, the Fisher Linear Dis
riminant (FLD)was explored in the work of [51℄.
2.5 Summary of the evolutionThe summary of the evolution is shown in Figure 2.3. In the party of linear algo-rithms, it starts from PCA, following the development of eigenfa
e and eigenvoi
efor fa
e re
ognition and speaker adaptation respe
tively. Similarly, in the partyof non-linear algorithms, KPCA �rst evolved from PCA. It was followed by thestudy of kernel eigenfa
e and 
urrently proposed kernel eigenvoi
e in this thesis.

10
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CHAPTER 3CONVENTIONAL EIGENVOICE3.1 Idea of eigenvoi
eFollowing the dis
ussion in Se
tion 2.1, one may wonder if it is possible to esti-mate an SD model with a very small amount of data. The idea of EV is seededfrom this question. One trivial but important observation is that some speakersare similar. An unseen speaker 
an be inferred from a similar one from trainingspeakers. This situation exists in the eigenfa
e resear
h too. As dis
ussed in [46℄,it is true that humans' fa
es usually have two eyes, two ears, a nose and a mouth.They are 
ommon in many aspe
ts although they may di�er in fa
e shape or theirrelative positions. It inspires resear
hers to try to redu
e free parameters fromall pixels of fa
es to the weight parameters on eigenfa
es.If we have many speakers in the training set, we 
an pre-train a lot of SDmodels from various kinds of referen
e speakers. A simple method is to use theadaptation data of a new speaker to pi
k the 
losest SD model as the adaptedmodel. The main short
oming of the method is that it demands a huge amountof speakers. In addition, an SD model from a similar speaker in training-set isusually not good enough for speakers in an unseen test-set.A modi�
ation of the last method is to assume that any speaker model is aweighted sum of the training speaker model. This in
reases the speaker spa
eso that it is more likely that a good model exists in this sear
h spa
e. However,as the number of training speakers in
rease, the number of parameters in
reasesand more adaptation data is required.Thus, there is a need to redu
e the number of parameters so as to redu
ethe requirement of adaptation data. One way to do this is through 
lustering ofspeakers, as in CAT [17℄. Another way is to perform eigen-de
omposition on the12



data to extra
t the prin
ipal 
omponents, whi
h is the eigenvoi
e. Any speakermodel is represented as a linear 
ombination of the eigenvoi
es in the eigenspa
e.In short, eigenvoi
e adaptation 
an be divided into two main steps, whi
h arede�ning the speaker spa
e and sear
hing for a good speaker model. This is givenin Table 3.1. step 1 { step 2 {de�ning speaker spa
e sear
hing for a good speaker modelCAT by 
lustering maximum likelihoodeigenvoi
e PCA maximum likelihoodTable 3.1: Summary of the two steps in eigenvoi
e-family adaptation3.2 Introdu
tion of parameter spa
esSeveral parameter spa
es are used in EV at di�erent stages. Three of them areintrodu
ed for 
larity in this se
tion, whi
h are the observation spa
e, superve
-tor spa
e and eigenspa
e. The idea is summarized in Figure 3.1 and they areelaborated below.1. Observation spa
eThis is the a
ousti
 feature spa
e after feature extra
tion in step one ofFigure 3.1. For example, an a
ousti
 observation ve
tor used in this thesis
onsists of 12 mel-frequen
y 
epstral 
oeÆ
ients (MFCC) and the normal-ized energy from ea
h spee
h frame. It is a 13-dimensional spa
e.2. Superve
tor spa
e (or speaker input spa
e)A superve
tor is formed by 
on
atenating the means of HMM states asshown in step two of Figure 3.1. Superve
tors de�ne the input spa
e instep three with dimension of:dim(superve
tor spa
e)= (number of HMMs) x (number of states per HMM) *(dimension of the observation spa
e)In all experiments in this thesis, the number of HMMs is 11 while the13
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1Figure 3.1: Illustration of various parameter spa
es used in EV (1) Features areextra
ted from raw spee
h �les whi
h de�nes the input spa
e. (2) Means ofstates of HMMs are 
on
atenated. (3) Superve
tors de�ne the input spa
e. (4)Eigenspa
e is obtained by applying PCA on the input spa
e.number of states per HMM is 16. Therefore, the dimension of superve
torspa
e is 2288.3. Eigenspa
e (in order to distinguish the eigenspa
e found in KEV, it is
alled 
onventional eigenspa
e)It is the spa
e after eigen-de
omposition on the superve
tor spa
e as shownin step four. Only the �rst few eigenve
tors with the largest eigenvalues are
hosen usually so that its dimension is mu
h less than that of the superve
torspa
e. It is used in 
onventional eigenvoi
e.3.3 Conventional eigenvoi
e adaptationIn the 
onventional eigenvoi
e, the Gaussian mean ve
tors of all HMM states of aspeaker are 
on
atenated in a given order to form the speaker superve
tor. There-fore, if �r is the rth Gaussian mean ve
tor, then � is the 
on
atenated speakersuperve
tor in Equation 3.1.
14



� = 26666666664
�1�2...�r...�R
37777777775 (3.1)

PCA is performed on the 
ovarian
e matrix or 
orrelation matrix of thespeaker superve
tors to extra
t the eigenve
tors. These eigenve
tors are 
alledeigenvoi
es. It is also in the form in Equation 3.1. Any speaker superve
tor isassumed to be a linear 
ombination of the eigenvoi
es as in equation 3.2 and 3.3for 
ovarian
e and 
orrelation approa
h respe
tively.� When 
ovarian
e matrix is used for eigen-de
omposition, the unseen speakersuperve
tor s is de�ned ass� �e = MXm=1wmems = �e+ MXm=1wmem (3.2)where �e is the mean of eigenve
tors and wm is the weight of the mth eigen-ve
tor. The set of weights are unknown variables and ea
h speaker has hisown set of weights.� When 
orrelation matrix is used, the di�eren
e is that ea
h dimension isnormalized before eigen-de
omposition. It be
omes:Z�1(s� �e) = MXm=1wmems = �e + MXm=1wmZem= �e + MXm=1wm~em (3.3)15



where Z = 26664 �1 0 � � � 00 �2 � � � 0... ... . . . ...0 0 0 �D 37775where �d is the standard deviation of the dth 
omponent in the superve
tors,and ~em = ZemThus, determining the speaker-adapted model for a new speaker means �nd-ing his/her eigenvoi
es weights. This 
an be done by maximizing the likelihoodof his/her adaptation data. Sin
e the state sequen
e is a hidden variable, ex-pe
tation maximization (EM) is used for optimization. The auxiliary fun
tion isde�ned as the expe
ted log likelihood and is given by:Q(w) = Q� +Qa +Qb(w) (3.4)where Q� = RXr=1 
1(r) log(�r)Qa = RXp;r=1 T�1Xt=1 �t(p; r) log(apr)Qb(w) = RXr=1 TXt=1 
t(r) log�br(ot)� (3.5)Q�, Qa and Qb(w) 
orresponds to the initial probability, transition probabilityand observation probability; �r is the initial probability of state r; 
t(r) is theposterior probability of observation o being at state r at time t; �t(p; r) is theposterior probability of observation o being at state p at time t and at state r attime t+ 1; br is the Gaussian pdf of the rth state after re-estimation and ot is anobservation frame at time t.Sin
e Q� and Qa are independent of wj, they 
an be ignored in the weightsestimation. For simpli
ity, we only 
onsider Qb(w) as the auxiliary fun
tion inthe rest of the thesis. It is expanded as:16



Qb(w) = RXr=1 TXt=1 
t(r)hd1 log(2�) +Cr + jjsr � otjj2Cri (3.6)where Cr is the 
ovarian
e matrix of the Gaussian at state r; sr is the newspeaker's mean ve
tor de�ned in Equations 3.2 or 3.3.In EV, sr 
an be expressed in terms of weights wm and they are unknown. Bydi�erentiating Qb(w) with respe
t to ea
h wj for j = 1 � � �M , a set of M linearequations with M variables are obtained. This problem is analyti
ally solvable.They are des
ribed as follows.� For the 
ovarian
e 
ase:�Qb�wj = � RXr=1 TXt=1 
tre0jrC�1r (sr � ot)= � RXr=1 TXt=1 
tre0jrC�1r ���er + MXm=1wmemr�� ot� (3.7)Set �Qw�wj = 0,RXr=1 TXt=1 
tre0jrC�1r (ot � �er) = RXr=1 TXt=1 
tr� MXm=1wme0jrC�1r emr� (3.8)� For the 
orrelation 
ase, the solution is the same as the one in 
ovarian
e
ase ex
ept that ejr is repla
ed by ~ejr as follows:RXr=1 TXt=1 
tr~e0jrC�1r (ot � �er) = RXr=1 TXt=1 
tr� MXm=1wm~e0jrC�1r ~emr� (3.9)3.4 Experimental setupTI-digits 
orpus [35℄ is the target 
orpus for investigation. It is a 
lean 
onne
teddigit 
orpus sampled at 20KHz. There are 163 speakers for ea
h of the standardtraining-set and test-set. There are about 77 utteran
es for ea
h speaker. Theyare in various length ranging from one to seven digits. Speakers are from 2217



diale
t regions of USA with ages ranging from six to seventy. In the 
orpus itis, by default, divided into four main groups, whi
h are girl, boy, woman and man.Adaptation experiments were done with di�erent amounts of adaptation data.Three of them are investigated, whi
h are 2-se
ond, 4-se
ond and 10-se
ondadaptation-sets. The detailed information is provided by Table 3.2.Name Number of digits Duration Duration (without silen
e)2-se
ond 5 3.0 s 2.1 s4-se
ond 10 5.5 s 4.1 s10-se
ond 20 13.0 s 9.6 sTable 3.2: Detailed information of the adaptation sets (The third 
olumn is there
orded duration and the fourth 
olumn is the spee
h duration without silen
ea

ording to the for
e alignment by the SI model.)For ea
h testing speaker, their data are divided into �ve mutually ex
lusivesets (e.g., A, B, C, D, E) as in Figure 3.2. A random subset (depending on theamounts of adaptation data) of one set is used for adaptation while the remainingfour sets are used for testing ea
h time. Sets are rotated and tested repeatedly�ve times. (It means that, subset of "A" is used for adaptation and "B", "C","D" and "E" are used for testing for the �rst time. Subset of "B" is used foradaptation and "A", "C", "D" and "E" are used for testing in the se
ond timeand so on.) In ea
h subset, the length of the utteran
es is kept balan
ed. Super-vised adaptation is adopted.In the feature extra
tion, an a
ousti
 ve
tor 
onsisting of 12 MFCCs and thenormalized energy is extra
ted from ea
h spee
h frame of 25ms at ea
h 10ms.HMM is used for a
ousti
 modeling. The prototypes of the HMMs are illustratedin Figure 3.3 Sixteen (real) states left-to-right HMMs are used for modeling elevendigits (in
luding "one", "two", ..., "nine", "oh" and "zero"). Three (real) statesleft-to-right HMM (with a skip ar
 from state one to state three and a loop-ba
kar
 from state three to state one) is used for modeling silen
e. One (real) stateHMM is used for modeling an optional short pause. For simpli
ity, only sin-gle mixture Gaussian is used for ea
h state of HMMs. These settings are usedthroughout all the experiments. Sin
e the dimension of observation spa
e is 1318
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Figure 3.2: De�ning adaptation-sets and test-sets (Original set is divided into5 sets denoted by square. A subset is random sampled from ea
h of the 5 setsdenoted by 
ir
le.)and there are 11 digits with 16 states, the resulted dimension in superve
tor is13 � 11 � 16 = 2288.
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Figure 3.3: Illustration of prototype of the HMMs (the small 
ir
le represents anull state while the large 
ir
le represents a real state. There are 16 real statesfor ea
h digit HMM.)In training the SI model and the SD models for eigenvoi
e, two approa
hesare investigated:� Training approa
h A (Illustrated in Figure 3.4)The SI model and the SD models are trained independently using the 
at-start pro
edure. The means of the SD models are then used for eigen-19



de
omposition. In addition to eigenve
tors, varian
es, transition probabilitymatri
es, silen
e (SIL) and short pause (SP) HMMs from SI model are usedfor eigenvoi
e adaptation. This is the simplest approa
h. One drawba
k ofthis approa
h is that there may be a mismat
h between the SD models andthe borrowed quantities.
SD models

SI model

PCA
EV/KEV

adaptation

means of

digits

SIL, SP, variances and

transition probability matrix of digits

train from

flat start

train from

flat start

Figure 3.4: Illustration of the training approa
h A (SI and SD models are trainedindependently)� Training approa
h B (Illustrated in Figure 3.5)The SI model is trained �rst. It is 
opied as the initialization for SD modelsinstead of a 
at-start initialization. In HMM parameters re-estimation inSD models, only the means of digit HMMs are updated. The SIL, SP, vari-an
es and transition probability matri
es are identi
al to the 
orrespondingone in SI. These spe
ially trained SD models are used for eigenvoi
e adap-tation.The advantage of this method is that it ensures SIL, SP and digit HMMsmat
h. Sin
e only one set of SIL and SP as well as the varian
es andtransition probability 
an be used in the adapted model, the ones from theSI model are generally good for all speakers. If SD models share them in theexpe
ted maximization (EM) re-estimation of the means, it ensures their
onsisten
e.
SI model SD models PCA

EV/KEV

adaptation

copy and
re−estimate
means of
digits only

train from

flat start digits

means of

SIL, SP, variances and transition probability matrix of digitsFigure 3.5: Illustration of the training approa
h B (SI and SD share SIL, SP,varian
es and transition probability matri
es of digits)
20



3.5 Conventional eigenvoi
e adaptation experi-mentThe �rst experiment 
ompares the two proposed training approa
hes des
ribedin 3.4. Eigenvoi
e adaptation using 
ovarian
e matrix for eigen-de
omposition is
ondu
ted. Only 10-se
ond of adaptation-set is used. The results are shown inFigure 3.6. It shows that approa
h B is better than approa
h A and is used inthe rest of the thesis.

94

94.5

95

95.5

96

96.5

97

1 2 3 4 5

re
co

g
n
it

io
n
 a

cc
u
ra

cy
 (

%
)

number of eigenvoices

Approach A 
Approach B 

Figure 3.6: Comparison of the two suggested training approa
hes for eigenvoi
eadaptationThe se
ond experiment 
ompares the 
ovarian
e and 
orrelation approa
hesin 
onventional eigenvoi
e adaptation. Various amounts of adaptation data (2-se
ond and 10-se
ond adaptation- sets) and numbers of eigenve
tors (1-5) aretried. The baseline is the a

ura
y of the SI model, whi
h is 96.25%. The resultsare plotted in Figure 3.7.Firstly, by 
omparing the 
orrelation approa
h and the 
ovarian
e approa
h,the 
orrelation one is better than the 
ovarian
e one for using one or two eigen-voi
es. It 
ould be explained that in the 
orrelation approa
h, 
omponents arenormalized before PCA. It then avoids some 
omponents with large dominating21
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Figure 3.7: Comparison of the 
ovarian
e approa
h and the 
orrelation approa
hin 
onventional eigenvoi
e adaptationvalues. Se
ondly, we �nd that the 
onventional eigenvoi
e is worse than the base-line SI model. It re
e
ts that the linearity assumption in EV may not be goodenough for all tasks. This is also an important motivation for proposing KEV.
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CHAPTER 4KERNEL EIGENVOICE4.1 Revisit the de�nition of parameter spa
esBefore introdu
ing the KEV, two more parameter spa
es are introdu
ed in addi-tion to the spa
es dis
ussed in Se
tion 3.2, whi
h are speaker feature spa
e andkernel eigenspa
e. These ideas are illustrated in Figure 4.1.
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Figure 4.1: Illustration of parameter spa
es used in KEV (1) Things inside dottedregion is the same as EV. (2) '(x) is a mapping to a high dimensional featurespa
e. (3) KPCA is used to �nd the kernel eigenspa
e.The basi
 idea behind kernel methods is that if a fun
tion '(x) exists, thespeaker input spa
e 
an be mapped to a high dimensional feature spa
e in a non-linear manner in step two of Figure 4.1. However, '(x) does not ne
essarily existand it is, in fa
t, undesirable to work with '(x) expli
itly be
ause both expressing23



and 
omputing the high dimensional ve
tors is very expensive. Therefore, if akernel fun
tion is de�ned as the dot produ
t of ve
tors in the feature spa
e, thenany linear algorithm that works on dot produ
ts is equivalent to a non-linearalgorithm in the input spa
e.Similar to EV, there is a spa
e 
alled kernel eigenspa
e in step three of Figure4.1. This is the spa
e after eigen-de
omposition in the feature spa
e, whi
h isfound by PCA in the feature spa
e. It is des
ribed by a set of orthogonal ve
torsin the feature spa
e with eigenvalues in sorted order, whi
h represent the vari-an
es in the 
orresponding eigenve
tors. So, the �rst few eigenve
tors with thelargest eigenvalues are 
hosen to des
ribe the kernel eigenspa
e. This guaranteesto minimize the re-
onstru
tion error in the feature spa
e.Remember that the observation spa
e has dimension D0 whi
h is the smallestone. The input speaker spa
e (of dimension D1) is then the 
on
atenation ofGaussian means and D0 � D1. The feature spa
e (of dimension D2) is a highdimensional spa
e mapped from the input speaker spa
e and usually D1 � D2.The eigenspa
e (of dimension D3) and the kernel eigenspa
e (of dimension D4)is the "most useful" subspa
e in the input speaker spa
e and the feature spa
erespe
tively.In summary, 8><>: D0 � D1 � D2D3 � D1D4 � D24.2 Overview of KEVOne of the 
ru
ial limitations of 
onventional eigenvoi
e adaptation is that unseenspeakers are assumed to be a linear 
ombination of eigenvoi
es. However, a linear
onstraint may not be good enough. Therefore, in
orporating non-linearity isdesired. In [3℄, KPCA was proposed. This is used to extra
t 
omponents in anon-linear manner in the feature spa
e. The KEV makes use of the KPCA for
omponents extra
tion and kernel tri
k is used in the adaptation algorithm whi
h24



is dis
ussed in the rest of this se
tion. The overall idea in
ludes four main stepsas follows:1. De�ne kernel fun
tionA kernel fun
tion in the input spa
e de�nes the dot produ
t of two datain the feature spa
e. Di�erent kernel fun
tions represent di�erent forms ofnon-linearity. A kernel matrix gives the similarity measure between ea
hpair of training ve
tors. The element in the ith row and the jth 
olumn isthe dot produ
t between the ith sample and the jth sample in the dataset.In this thesis, Gaussian kernel and polynomial kernel were studied.2. KPCAPrin
ipal 
omponents are derived from the kernel matrix (whi
h is de�nedin step 1) by KPCA. The details of the algorithmwill be dis
ussed in Se
tion4.3.3. Express speaker ve
tor and distan
eThe feature ve
tor of a new speaker is expressed as a linear 
ombination ofthe eigenve
tors in the feature spa
e while the distan
e in the input spa
eis expressed in terms of dot produ
ts in the feature spa
e using the kerneltri
k.4. ML estimation of eigenvoi
e weightsSimilar to the EV, the expe
ted log-likelihood is maximized on a set ofspeaker-spe
i�
 adaptation data. Due to the non-linearity, there is no ana-lyti
al solution and gradient-based numeri
al methods are used. The Gen-eralized Expe
tation Maximization (GEM) is used instead of EM.4.3 KPCAThe idea of KPCA is to perform PCA algorithm in terms of dot produ
ts inthe feature spa
e so that kernel tri
ks 
an be used. The detailed derivation anddis
ussion of the KPCA 
an be found in [3℄. Here is a summary of the majorsteps. 25



� Let fun
tion ' be the mapping from the input spa
e to the feature spa
e,~' be its 
entered version and �' be the mean of the training ve
tors in thefeature spa
e. In PCA (or KPCA), the 
entered 
ovarian
e is needed andit is given by the following (the proof is given in A.1 of appendix A):~C = HCH (4.1)where H = I� 1N 110 and 1 = [11:::1℄0.� The 
entered 
ovarian
e matrix ~C is de�ned as:~C = 1N NXn=1 ~'(xn) ~'(xn)0= 1N ~�x~�0x (4.2)for n = 1 � � �N , xn is the nth training speaker superve
tor and ~�x =� ~'(x1); � � � ; ~'(xN )�.� In [3℄, it is shown that all eigenve
tors um lies in the span of training ve
tors~'(x1); � � � ; ~'(xN). Then, um = NXn=1�mn ~'(xn)= ~�x�mu = ~�x� (4.3)where �mn is the nth element of ve
tor �m and � = ��1; � � � ;�N�.� Eigenvalue problem in the high dimensional spa
e is presented as:~Cv = �v1N ~�x ~�0x~�x� = �~�x� (4.4)where � are the eigenvalues 
orresponding to the eigenve
tors v.26



By multiplying ~�0x to both sides of Equation 4.4, it be
omes~K ~K� = N� ~K� (4.5)where ~K = ~�0x~�x and it is shown that a problem in ~K� = N�� yields allsolution of Equation 4.5 (proved in [11℄, Lemma 21.1.3).� Eigenve
tor vm is normalized to be a unit ve
tor. Then, it be
omes:vm = NXn=1 �mnp�m ~'(xn) (4.6)(The proof of the normalizing fa
tor is given in A.2 of appendix A).Then, performing eigen-de
omposition on the kernel matrix ~K gives � and �,whi
h des
ribe the eigenve
tors in the feature spa
e.
4.4 Composite KernelsIn EV, speaker superve
tor s is splitted into 
onstituents sr for 
al
ulating thedistan
e between a given Gaussian and an observation frame jjsr � otjj2 requiredby the 
omputation of expe
ted log likelihood. In KEV, sin
e speaker superve
toris de�ned in the feature spa
e only and there is no exa
t pre-image ba
k to theinput spa
e, so we need to transform the observation ot to the feature spa
e too.Then, we 
an 
ompute their dot produ
t in the feature spa
e and the Manhalonbisdistan
e 
an be expressed in terms of the dot produ
t. But, in this pro
ess, itneeds the dot produ
t between 
ertain segment of a superve
tor and anotherve
tor (observation). If the whole superve
tor is put to a single Gaussian kernelin KPCA. Then, we 
an only obtain the dot produ
t between the whole speakersuperve
tor and another superve
tor. This raises a 
hallenge in KEV. Compositekernel is the proposed solution. Ea
h Gaussian 
onstituent is mapped to itshigh dimensional spa
e by a base kernel and the 
omposite kernel is de�ned inEquation 4.7.

k(xi;xj) = k 264 xi1...xiR 375 ; 264 xi1...xiR 375!27



= 264 '1(xi1)...'R(xiR)3750 264 '1(xj1)...'R(xjR) 375= RXr=1 kr(xir;xjr) (4.7)Any kernels, su
h as Gaussian kernel, polynomial kernel 
an be 
hosen asa base kernel. They are dis
ussed in Se
tion 4.6. The 
omposite kernel is thesummation of the base kernel and it is used for KPCA. In addition, sin
e ea
h
onstituent maps to the high dimensional feature spa
e by its base kernel, thespeaker superve
tor in the feature spa
e 
an be splitted into 
onstituents for bothadaptation and re
ognition. A similar idea to 
omposite kernel is dis
ussed in [39℄.
4.5 KEV adaptationThe adaptation algorithm of KEV is the same as the 
onventional one ex
eptthat the Manhalonbis distan
e measure is repla
ed by one expressed in terms ofdot produ
ts in the feature spa
e. In short, there are three major steps. Firstly,the auxiliary fun
tion is expressed as the dot produ
ts. Se
ondly, the parameters(weight) is initialized. Thirdly, generalized expe
tation maximization (GEM) isadopted for optimization. The details are as follows:1. Expression of the auxiliary fun
tionSimilar to the 
onventional eigenvoi
e, the auxiliary fun
tion is de�ned asthe expe
ted likelihood and it is further expressed in terms of weights ofeigenve
tors and dot produ
ts in the feature spa
e. (The detailed derivationfor Gaussian kernel and polynomial kernel are presented in Se
tion 4.6.)Qb(w) = �12 RXr=1 TXt=1 
tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr! (4.8)where sr is the r-
onstituent of the speaker s (the speaker to be adapted),whi
h is de�ned to be a linear 
ombination of the eigenve
tors in the feature28



spa
e. ~& = MXm=1wmvmSin
e the new speaker s is not found in the input spa
e but only its image& in the feature spa
e is estimated as a linear 
ombination of the kerneleigenvoi
es and ~&isits
enteredversion:By Equation 4.6, ~& = MXm=1 NXn=1 wm�mnp�m ~'(xn)= 2664 PMm=1PNn=1 wm�mnp�m ~'1(xn1)...PMm=1PNn=1 wm�mnp�m ~'R(xnR) 3775 (4.9)2. GEMDue to the non-linearity in KEV, no 
lose form solution to the weights.Then, GEM is used instead of EM. In the M step of GEM, gradient as
entis used for improving the likelihood. The weights are updated by:w(n) = w(n� 1) + �(n)Q0jw=w(n�1) (4.10)whereQ0 = ��Qb�w1 �Qb�w2 � � � �Qb�wm � and�Qb�wj = �12 PRr=1PTt=1 
tr ��wj jjsr � otjj2Cr and�(n) is the learning rate at nthiteration3. InitializationThe weights are required to be initialized before the �rst iteration in theGEM. The SI model is a good 
hoi
e for initialization due to its robustness.Therefore, it is suggested that the SI model is proje
ted to ea
h utilizedeigenve
tor as initialization. The initial values of weights are derived asfollows: 29



be
ause v0ivj = ( 1 if i = j;0 if i 6= j:
v0m ~'(x(SI)) = v0m MXm=1w(SI)m vm= w(SI)m (v0mvm)= w(SI)mSo, w(SI)m = v0m ~'(x(SI))= NXn=1 �mnp�m ~'(xn)0 ~'(x(SI))= NXn=1 �mnp�m h'(xn)� �'i0h'(x(SI))� �'i= NXn=1 �mnp�m �k(xn;x(SI)) + 1N2 NXp=1 NXq=1 k(xp;xq)�1N NXp=1�k(xn;xp) + k(x(SI);xp)�� (4.11)However, it is noti
ed that the initialization in this proje
tion method is notidenti
al to the SI model be
ause there is proje
tion loss. This observation
auses further investigation in Chapter 5.4.6 KernelsThere are various types of kernel [20℄ su
h as Gaussian radial basis fun
tion(RBF) kernel (or in this thesis, simply 
all Gaussian kernel), polynomial kernel,exponential kernel and �sher kernel.Two types of kernel are evaluated in this thesis, whi
h are Gaussian kerneland polynomial kernel.
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4.6.1 Gaussian kernel1. De�nitionGaussian kernel is de�ned as follows:kr(xi;xj) = e��r(xi�xj)0Cr�1(xi�xj) (4.12)where �r is a tunable parameter.2. Dot produ
t in an unseen speaker and its derivativeThe dot produ
t between an observation and the 
orresponding 
onstituentof an unseen speaker superve
tor ( & 0r'r(ot) ) is expressed in terms of thedot produ
t between the observation and the 
orresponding 
onstituent ofthe training speakers ( kr(xnr; ot) ) and their weights.By B.2, & 0r'r(ot) = A(r; t) + MXm=1wmB(m; r; t)By B.3, its derivative is: �& 0r'r(ot)�wj = B(j; r; t)where A(r; t) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�3. Expression of distan
e measureThen, the distan
e measure jjxnr�otjj2Cr is expressed in terms of kr(xnr; ot)as follows:jjsr � otjj2Cr = � 1�r log & 0r'r(ot)= � 1�r log�A(r; t) + MXm=1wmB(m; r; t)� (4.13)31



4. Expression of the auxiliary fun
tionThe auxiliary fun
tion is expressed in terms of kr(xnr; ot) as follows:Qb(w) = �12 RXr=1 TXt=1 
tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr!= �12 RXr=1 TXt=1 
tr d1 log(2�) + log jCrj �1�r log�A(r; t) + MXm=1wmB(m; r; t)�! (4.14)5. The �rst derivative is:�Qb(w)�wj = 12 RXr=1 TXt=1 
tr�r ��wj & 0r'r(ot)& 0r'r(ot)= 12 RXr=1 TXt=1 
tr�r B(j; r; t)& 0r'r(ot) (4.15)4.6.2 Polynomial kernel1. De�nitionPolynomial kernel is de�ned as follows:kr(xi;xj) = (x0iC�1r xj + 1)d (4.16)where d is the polynomial degree.2. Dot produ
t in an unseen speaker and its derivativeIn addition to & 0r'r(ot) and �&0r'r(ot)�wj mentioned in subse
tion 4.6.1, item 2,& 0r&r and �&0r&r�wj are expressed as follows:By B.4,& 0r&r = MXm=1 MXm0=1wmwm0D(m;m0; r) + MXm=1wmE(m; r) + F (r)By B.5, �& 0r&r�wj = E(j; r) + MXm=1 2wmD(m; j; r)32



whereD(m;m0; r) = NXn=1 NXn0=1 �mn�m0n0p�m�m0�kr(xnr;xn0r)� 1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i+ F (r)E(m; r) = 2 NXn=1 �mnp�m � 1N NXi=1 kr(xnr;xir)� F (r)�F (r) = 1N2 NXi=1 NXj=1 kr(xir;xjr)3. Expression of distan
e measureThen, the distan
e measure is expressed in terms of & 0r&r and & 0r'r(ot) as:jjsr � otjj2Cr = jjsrjj2Cr + jjotjj2Cr � s0rC�1r ot � o0tC�1r sr (4.17)wherejjsrjj2Cr = s0rC�1r sr = h& 0r&ri 1d � 1s0rC�1r ot = o0tC�1r sr = h& 0r'r(ot)i 1d � 1(Sin
e it is assumed that Cr is a symmetri
 matrix, s0rC�1r ot = o0tC�1r sr.)So, jjsr � otjj2Cr = h& 0r&ri 1d + jjotjj2Cr � 2h& 0r'r(ot)i 1d + 1 (4.18)4. Expression of the auxiliary fun
tionThe auxiliary fun
tion is expressed in terms of & 0r&r and & 0r'r(ot) as follows:Qb(w) = �12 RXr=1 TXt=1 
tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr!= �12 RXr=1 TXt=1 
tr d1 log(2�) + log jCrj+h& 0r&ri 1d + jjotjj2Cr � 2h& 0r'r(ot)i 1d + 1! (4.19)33



5. The �rst derivative is:�Qb(w)�wj = � 12d RXr=1 TXt=1 
tr�& 0r&( 1d�1)r ��wj & 0r&r �2& 0r'r(ot)( 1d�1) ��wj & 0r'r(ot)�= � 12d RXr=1 TXt=1 
tr�& 0r&( 1d�1)r �E(j; r) + MXm=1 2wmD(m; j; r)��2& 0r'r(ot)( 1d�1)B(j; r; t)� (4.20)4.6.3 Contour plotsIn order to have a feeling of the output of the KPCA, some 
ontour plots on dif-ferent kernels are presented in order to 
ompare with the linear PCA. It 
ontainsdata points in the original input spa
e and 
ontour lines, whi
h mean prin
ipal
omponent values are 
onstant along the line and they are orthogonal to theeigenve
tors. A toy example with 3 Gaussian 
lusters in two dimensions is pre-sented, whi
h is provided by [24℄. The 
ontour plots 
orresponding to the �rst feweigenve
tors of the linear kernel (equivalent to linear PCA), the Gaussian kerneland the polynomial kernel (of degree three and four) are presented in Figures 4.2,4.3, 4.4 and 4.5 respe
tively. There are two non-zero eigenve
tors for the linearkernel and three non-zero eigenve
tors for the polynomial kernel.
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Figure 4.2: Contour plot of the linear PCA (The x-axis and y-axis are the di-mension 1 and 2 respe
tively)
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Figure 4.3: Contour plot of the KPCA - Gaussian kernel (K(xi;xj) = e� (xi�xj )20:1 )
−1 0 1

−0.5

0

0.5

1

1.5
Eigenvalue=4.222

−1 0 1
−0.5

0

0.5

1

1.5
Eigenvalue=0.583

−1 0 1
−0.5

0

0.5

1

1.5
Eigenvalue=0.734
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Figure 4.5: Contour plot of the KPCA - polynomial kernel in power 3(K(xi;xj) = (x0ixj)3)4.7 Time 
omplexityIn both the adaptation algorithm and the re
ognition algorithm, the 
al
ulationof the dot produ
t dominates the 
omputation. Therefore, they are 
hosen as themeasure of the time 
omplexity of the algorithm. For the kernel 
omputation inboth the Gaussian kernel and the polynomial kernel, it is essential to 
omputekr(xnr; ot) in adaptation (for n = 1 � � �N , r = 1 � � �R and t = 1 � � �T ) so thatits time 
omplexity is O(NRT ) (where N is the number of training speakers, Ris the total number of states in the HMMs and T is the number of frames in35



the utteran
es. In re
ognition, without pruning, its overall time 
omplexity isO(NRT ) again.
4.8 KEV adaptation experimentIn Gaussian kernel, � is a tunable parameter (all �r equal to a single � in theexperiment). For tuning, 10 speakers are sampled from the training-set. Around4 se
onds of adaptation data are sele
ted for ea
h speaker. KEV is performed onseveral beta values. The re
ognition a

ura
y against beta value is then plotted.The tuning results are in �gure 4.6 and � = 0:0005 is the best and it is 
hosenfor the rest of the experiments.
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betaFigure 4.6: Tuning result of beta value for Gaussian kernelThe Gaussian kernel and the polynomial kernel with power three were adopted.Only 10-se
ond adaptation-set were done for 
omparison. This is shown in Figure4.7. The results show that the Gaussian kernel was better than the polynomialkernel when the number of eigenvoi
es is more than one. A possible reason isthat the model we used is HMM where ea
h state is in the form of Gaussian. AGaussian kernel is then a reasonable 
hoi
e for KEV.36
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Figure 4.7: Comparison of the Gaussian kernel and polynomial kernelThrough the previous experiment, it is believed that Gaussian kernel is areasonably good 
hoi
e for KEV. Although it is possible that other kernels 
ouldgive even better results, the fo
us of this thesis is on the framework of KEV.Therefore, the Gaussian kernel is taken for further investigation for the rest ofthis paper. In Figure 4.8, it shows that the KEV on 2-se
ond, 4-se
ond and10-se
ond adaptation-set with various number of eigenvoi
es from one to ten.The results show that the base KEV outperforms the SI model when thenumber of eigenvoi
es ex
eed two. The relative error rate redu
tion (ERR) ofthe base KEV from SI model is 16%, 21% and 21% for 2-se
ond, 4-se
ond and10-se
ond adaptation-sets respe
tively while the ERR of the base KEV frombase EV is 28%, 32% and 32% for 2-se
ond, 4-se
ond and 10-se
ond adaptation-sets respe
tively. There are two observations. Firstly, the KEV with only oneeigenvoi
e is the worst. This is due to the fa
t that there are too few parametersfor estimation and there is a proje
tion loss from the SI model in the initialization.Due to this weakness, some solutions are proposed and dis
ussed in Chapter 5.Se
ondly, it is noti
ed that the re
ognition a

ura
y saturates qui
kly as thenumber of eigenvoi
es in
reases.
37
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CHAPTER 5ROBUST KEV5.1 Robust KEV 1 - addition approa
hThe major weakness of KEV is that it does not guarantee that the eigenspa
espanned 
ontains a speaker model not worse than the SI one (in terms of likeli-hood) for the given adaptation data, espe
ially when the number of eigenve
torsde
reases (smaller the eigenspa
e spanned). It is possible that some unseen speak-ers in test-sets who 
annot be well represented by a 
ombination of the eigenvoi
es.The speaker-adapted model 
an then perform worse than the SI-model.The �rst proposal is to in
lude the SI superve
tor in the optimization. Itmeans that, in addition to the kernel eigenspa
e obtained by KPCA, the SIsuperve
tor is treated as a 
ompulsory 
omponent. It 
ould ensure the result inoptimization is not worse than the SI one (in terms of the likelihood).A speaker superve
tor is de�ned as:~& = ~'(x(SI)) + MXm=1 NXn=1 wm�mnp�m ~'(xn) (5.1)By equation C.2,jjsr � otjj2 = � 1�r log�kr(x(SI)r ; ot) + MXm=1wmB(m; r; t)�By equation C.3, �&0r'r(ot)�wj is the same as the one in base KEV. Then, the �rstderivative of Qb(w) also remains un
hanged too. The initialization of both KEVhas to be modi�ed as follows:wi = ( 0 for i = 1 � � �M1 for i = 039



5.2 Robust KEV 2 - interpolation approa
hIn proposal 1, adding the SI model is, in fa
t, a spe
i�
 
ase of interpolation.Therefore, an extension to an interpolation was proposed and investigated. Thereare four modi�
ations, whi
h are the de�nition of the speaker superve
tor, dis-tan
e expression, the �rst derivative of the auxiliary fun
tion for the gradientas
ent and weights initialization.� De�nition of the speaker superve
torA speaker superve
tor is de�ned as an interpolation between the SI modeland the KEV-adapted model:~& = w0 ~'(x(SI)) + (1� w0) MXm=1 NXn=1 wm�mnp�m ~'(xn) (5.2)� Distan
e expressionThe distan
e expression be
omes:jjsr � otjj2Cr = � 1�r log�& 0r'r(ot)�where & 0r'r(ot) = w0kr(x(SI)r ; ot)+ (1�w0)hA(r; t)+PMm=1 wmB(m; r; t)i byD.3.� The �rst derivative of the auxiliary fun
tionBy 4.15, for i = 0 � � �M ,�Qb(w)�wi = 12 RXr=1 TXt=1 
tr�r ��wi & 0r'r(ot)& 0r'r(ot)By D.4 and D.5,�& 0r'r(ot)�w0 = kr(x(SI)r ; ot)� A(r; t)� MXm=1wmB(m; r; t)�& 0r'r(ot)�wj = (1� w0)B(j; r; t)40



where A(r; t) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�By substituting D.4 into 4.15 and D.5 into 4.15,�Qb(w)�w0 = 12 RXr=1 TXt=1 
tr�r kr(x(SI)r ; ot)� A(r; t)�PMm=1wmB(m; r; t)& 0r'r(ot) (5.3)�Qb(w)�wj = 12 RXr=1 TXt=1 
tr�r (1� w0)B(j; r; t)& 0r'r(ot) (5.4)� Weights initializationThe initialization of weights wj (for j = 1 � � �M) is the same as the one inbase KEV (proje
tion method) and the weight wo is initialized to be 0:5.5.3 Robust EVTo have a fair 
omparison on the EV and KEV, a robust EV is proposed. Similarto the KEV, we have the "addition" approa
h and the "interpolation" approa
h.� robust EV 1 - addition approa
hThe speaker de�nition is modi�ed as in equation 5.5.s = x(SI) + MXm=1wm~em (5.5)After di�erentiate Qb with respe
t to wj and set it zero, the solution be-
omes:RXr=1 TXt=1 
tr~e0jrC�1r (ot � x(SI)) = RXr=1 TXt=1 
tr� MXm=1wm~e0mrC�1r ~ejr� (5.6)� robust EV 2 - interpolation approa
hThe speaker de�nition is:s = w0x(SI) + (1� w0)��er + MXm=1wmemr� (5.7)41



After di�erentiate Qb with respe
t to wj and set it zero, the solution be-
omes:RXr=1 TXt=1 
tr~e0jrC�1r �ot�(1�w0)�er�w0x(SI)� = RXr=1 TXt=1 
tr� MXm=1wm~e0mrC�1r ~ejr�(5.8)The weights wj (for j = 1 � � �M) are solved analyti
ally while w0 is simplyfound exhaustively.5.4 Experimental resultsSin
e it does not guarantee that the base KEV is better than the SI one in termsof likelihood, two solutions are proposed in the last two se
tions. Experimentsare 
ondu
ted in 2-se
ond, 4-se
ond and 10-se
ond adaptation-sets. Compar-isons of re
ognition results of the base KEV and the two suggested methods aresummarized in Figures 5.4, 5.5 and 5.6 respe
tively.
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Figure 5.1: Comparison of the re
ognition results of the base EV and robust EVadaptations in 2-se
ond adaptation-setThese �gures show that both proposed modi�
ations outperform the baseKEV while the robust KEV 2, whi
h interpolates the SI superve
tor with theKEV one, is the best. The robust KEV 2 is slightly better than the robust KEV42
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Figure 5.2: Comparison of the re
ognition results of the base EV and robust EVadaptations in 4-se
ond adaptation-set
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CHAPTER 6FURTHER INVESTIGATION6.1 KEV versus 
onventional adaptation meth-odsIn this 
hapter, KEV is 
ompared with 
onventional adaptation methods in
lud-ing MAP and MLLR. For MLLR adaptation, a global transformation matrix isestimated sin
e it is 
ondu
ted with small amounts of adaptation data. MLLRwith a full transformation matrix or a diagonal transformation matrix are tried.In MAP adaptation, there is a ba
k-o� s
aling fa
tor. Various values are triedand the best results are presented. For KEV, the best results (among experi-ments on di�erent numbers of eigenve
tors) are summarized. The 
omparison ispresented in Figure 6.1. All the above experiments are done under supervised
onditions.amount of MLLR MAP base robust base robustadaptation data full diag. EV EV 2 KEV KEV 22s 96.16% 96.16% 95.50% 95.61% 96.26% 96.85% 97.28%4s 96.06% 96.15% 95.63% 95.65% 96.26% 97.05% 97.44%10s 97.56% 96.24% 96.47% 95.67% 96.27% 97.05% 97.50%Table 6.1: Comparison of re
ognition a

ura
ies of various adaptation methodsOverall, MAP gives the worst performan
e due to the fa
t that MAP re-quires a lot of adaptation data. The MLLR gives good results in a 10-se
ondadaptation-set. However, all three variations of KEV outperform both MAP andMLLR in 2-se
ond and 4-se
ond adaptation-sets. This shows that KEV is goodin rapid speaker adaptation. Out of the three variations, robust KEV 2, whi
hin
orporates the SI model by interpolation, is found to be the best.6.2 Signi�
ant testsSe
tion 6.1 shows that KEV gives promising results in small amounts of adapta-tion data. However, when 
omparing several adaptation methods, it is important46
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Figure 6.1: Comparison of the various adaptation methodsto understand how signi�
ant the performan
e gains are between one system andanother. Therefore, signi�
an
e tests are done. A software for signi�
an
e test bythe National Institute of Standards and Te
hnology (NIST) is used. A two-tail5% signi�
ant level is used. The results are shown in Table F.1, F.2 and F.3 inappendix F.6.3 Analysis of the eigenve
torsIn both EV and KEV, it is expe
ted that the extra
ted 
omponents represent
ertain kinds of inter-speaker variations su
h as gender, age, a

ents and so on.Therefore, in this se
tion, we try to analyze the relationship between the weightsof the 
omponents and the inter-speaker variations in a qualitative manner.First of all, there are 326 speakers in the 
orpus, 163 speakers for ea
h ofthe training-sets and test-sets. PCA and KPCA are performed on the 163 train-ing speakers for EV (base-EV with 2 eigenve
tors) and KEV (base-KEV with 8eigenve
tors) respe
tively and two sets of experiments are 
ondu
ted (the 
hosen
on�gurations give the best re
ognition a

ura
y in base-EV and base-KEV re-spe
tively). The �rst set of experiments is to proje
t the SD superve
tors of the47



training speakers on the eigenve
tors. The relationship between the proje
tedweight of the 
omponent and the inter-speaker variations are analyzed. S
attergraphs (ea
h speaker represents a point) on the �rst and se
ond weights are plot-ted. Speakers are grouped as "girl", "boy", "man" or "woman". The s
atterplot of the �rst two eigenve
tors shows whether EV and KEV 
an extra
t inter-speaker variations su

essfully.The above experiments are an ideal analysis on the 
omponents obtained byPCA and KPCA. Therefore, the se
ond set of experiments 
ompare the weightsestimated by EV and KEV adaptation against the inter-speaker variations. Al-though it is expe
ted that the 
lass 
ould be
ome more 
onfused in the test-set,it is meaningful to see if the distribution in the s
atter plot of the training-setis similar to that of the test-set. The �rst set of experiments are treated as ananalysis on the extra
tion of 
omponent while the se
ond one is treated as ananalysis on whether the adaptation 
an make use of extra
ted 
omponents.
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Figure 6.2: S
atter plot of the training-set of EVThe s
atter plot of the training-set is in Figure 6.2. It is found that "boy"and "girl" speakers are too diverse and it makes the s
atter plot un-readable. Itmeans that the �rst two eigenve
tor does not help in distinguishing boy and girl48



from man and woman. Therefore, only "man" and "woman" speakers are plottedin 6.2 (for a training-set again).
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Figure 6.3: S
atter plot of the training-set of EVIt is found that, in EV, the se
ond eigenve
tor separates the "man" and"woman" speakers ("man" is on the left while "woman" is on the right).In order to see if the adaptation is making use of this information, the s
atterplot of a test-set is plotted in Figure 6.4 (only "man" and "woman" speakers areplotted). The trend holds but it is more 
onfused in the middle.Similar to EV, the s
atter plot of the training-set and the test-set of KEV areplotted in Figures 6.5 and 6.6.It is found that the distribution of "man" and "woman" are separated 
learlyin the �rst eigenve
tors of KEV ("woman" is on the top-right 
orner and "man"is in the bottom) while the 
hildren (both "boy" and "girl" subsets) are in thetop-left 
orner. "Woman" and "kids" are slightly 
onfused. "Boy" and "girl" are
onfused a lot. That observation mat
hes the idea that 
hildren's voi
es are moresimilar to women's voi
es rather than men and 
hildren's gender is diÆ
ult todistinguish by their voi
es. 49
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atter plot of the training-set of KEV
In the study of the relationship between the four groups and the eigenve
tors,it impli
itly investigates the gender and age e�e
t in a blurred way. In addition,the e�e
t of a

ents is also studied but no 
lear 
orrelation 
an be found.50
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CHAPTER 7CONCLUSION AND FUTURE WORK7.1 ContributionWe have made several 
ontribution in this thesis. Firstly, KEV is proposed whi
his a non-linear generalization of EV. By using di�erent base kernel, it 
an handledi�erent kinds of data distribution. This enhan
es the 
apability of eigenvoi
efamily. Se
ondly, the derivation of the formula for the Gaussian kernel and poly-nomial kernel is 
ondu
ted. The major works in
lude expressing the Manhalonbisdistan
e in the input spa
e in terms of dot produ
ts in the feature spa
e. In addi-tion, if we put the whole superve
tors in a single non-linear kernel in the KPCA,dot produ
ts between 
ertain segment of a superve
tor and another ve
tor areunable to be 
al
ulated whi
h is needed by the 
omputation of Manhalonbis dis-tan
e. Therefore, the 
omposite kernel is proposed to solve this spe
i�
 problemin KEV speaker adaptation. Thirdly, due to the observation that KEV speakeradapted model does not guarantee to be better than the SI model, robust KEVis investigated, whi
h 
ombines the SI model and the KEV adapted model. It isshowed that robust KEV improves its robustness in small amount of adaptationdata. Fourthly, eigenvoi
e analysis in s
atter plot is used to study the relationshipbetween the extra
ted eigenvoi
e and the underlying inter-speaker variations. Itshows that the �rst two eigenve
tors in KEV 
aptures gender and age in this digitre
ognition task.
7.2 Con
lusionIn this thesis, EV has been revised. It is found that the 
orrelation approa
h isbetter than the 
ovarian
e approa
h be
ause it avoids some features with largedominating values. Both EV and SI model are taken for 
omparing with theKEV. However, EV does not show improvement. A possible reason is that linear52



PCA may not be e�e
tive enough for this digit re
ognition problem. This is thereason for proposing KEV. The importan
e of KEV is to generalize EV from alinear manner to a non-linear one so as to enhan
e its 
apability on di�erent prob-lems. In establishing the KEV ar
hite
ture, the major diÆ
ulty is to map thefeature spa
e eigenvoi
es to observation spa
e. Composite kernel is the proposedsolution whi
h is able to split the eigenvoi
e into 
onstituents in the featuresspa
e in order to 
ompute the likelihood whi
h is used in both the adaptationalgorithm and re
ognition algorithm.Following the investigation of kernel eigenfa
e in the development of fa
ere
ognition, KEV has been proposed as a non-linear extension of EV. The polyno-mial kernel and the Gaussian kernel have been studied. KEV using the Gaussiankernel showed promising results in a digit re
ognition task. By an observationthat both base-EV and base-KEV do not guarantee it is better than SI model interms of likelihood, two enhan
ements (addition approa
h and interpolation ap-proa
h) have been proposed on KEV. Both of them in
orporate the SI model toimprove the robustness of the adaptation. In 2-se
ond and 4-se
ond adaptationset, KEV is not only better than EV model and SI model, but also outperformsthe 
onventional adaptation approa
hes in
luding MAP and MLLR adaptation.However, as more adaptation data are available (for example, 10-se
ond adapta-tion set), MLLR be
omes better.In order to show the EV and KEV are extra
ting and utilizing some underly-ing inter-speaker variations, eigenvalues are analyzed. A

ording to the analysis,it is found that the se
ond eigenve
tors in EV dis
riminate "man" from "woman"while the �rst two eigenve
tors in KEV is highly 
orrelated with the gender andage. It 
an be used to dis
riminate "man", "woman" and "
hildren".
7.3 Future workThere are three main extensions of the 
urrent work.1. Extension to the Gaussian mixtures or 
ontext-dependent mod-53



elingIn this thesis, all the experiments are based on single Gaussian HMM. Itwould be good to extend on Gaussian mixtures or 
ontext-dependent mod-eling. However, the method 
on
atenation of means is kept, the dimensionof superve
tor be
omes huge. There is also a problem of sequen
e in Gaus-sian mixtures. A dire
t extension is to use MLLR-based eigenspa
e speakeradaptation by applying the eigen-de
omposition on the MLLR spa
e insteadof the superve
tor of the means of HMMs. There are similar investigationsin [8, 48, 31℄.2. KEV based on phone-
lassesCurrently, all units (digits or phonemes) are 
on
atenated into a singlesuperve
tor, whi
h implies a huge 
onstraint to the estimated weights.However, ea
h unit 
ould have di�erent behavior, but if we 
onsider ea
hphoneme independently, it 
ould result in insuÆ
ient data or require largeamounts of adaptation data. This would violate one of the most importantmotivations of EV or KEV. So, KEV based on phoneme-
lasses is a desirable
hoi
e. For example, people from 
ountry A and 
ountry B may pronoun
evowels in di�erent ways. Aside from that, though their pronun
iation of
onsonant are similar. We 
an then group the vowels and 
onsonants intotwo 
lusters. Weights for ea
h 
luster are estimated independently. It then
an release the 
onstraints on the weights. In order to have an automati
ar
hite
ture to form 
lusters, regression 
lass tree 
an be 
onsidered, whi
huses a Eu
lidean distan
e measure for a 
entroid splitting algorithm.3. Speed-up issuesAlthough KEV gives an en
ouraging performan
e gain, it is 
ostly in the
omputation. When performing re
ognition, it is at least N times slowerthan the 
onventional methods.Various speed-up methods are possible, whi
h 
an be sub-divided into threeareas. The �rst area is to redu
e the number of kernels to be 
omputedand it 
an be realized by sparse KPCA. or �nding an approximated pre-image in the input spa
e. The se
ond area is for saving 
omputation in theadaptation algorithm. A 
ommon approa
h is that, instead of 
omputingall de
oding paths in the adaptation, only the Viterbi path is used. This54



is due to the fa
t that the Viterbi path a

ounts for the major 
omponentin the auxiliary fun
tion. The time 
omplexity of the kernel 
omputation
an be redu
ed from O(NRT ) to O(NT ). The third area is the re
ognition
on
ern. One idea is to �nd an approximated pre-image in the input spa
e.Another idea is to use a two-pass de
oding. The SI model is used as the�rst-pass de
oding, giving the N-best latti
e. The KEV-adapted model isused as the se
ond-pass de
oding on the N-best latti
e generated in the �rst-pass. In two-pass de
oding, the �rst-pass de
oding using a less expensivemodel, prunes most of the unlikely 
andidates. The sear
h spa
e 
an beredu
ed signi�
antly by the n-best latti
e. The se
ond-pass de
oding usingan expensive model 
ould be more eÆ
ient.4. Design and sele
tion of kernel fun
tionsIn this thesis, Gaussian kernel and polynomial kernel are only 
omparedexperimentally. Deep analysis on the suitability and sele
tion of kernel areabsent, whi
h is a very interesting area of study.
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APPENDIX APROOFS FOR KPCAA.1 Proof of 
entering of 
ovarian
e matrix~Kij = ~'(xi)0 ~'(xj)= ('(xi)� �')0('(xj)� �')= '(xi)0'(xj)� 1N NXq=1'(xi)0'(xq)�1N NXp=1'(xp)0'(xj) + 1N2 NXp=1 NXq=1'(xp)0'(xq)= Kij � 1N NXq=1Kiq � 1N NXp=1Kpj + 1N2 NXp=1 NXq=1Kpq (A.1)Then, ~K = HKH (A.2)whereH = I� 1N 110 and1 = [11:::1℄0A.2 Proof of the normalizing fa
tor used in KPCAFor ea
h eigenve
tor vm, it is normalized by 
m as follows:vm = NXn=1 �mn
m ~'(xi) (A.3)By de�nition of orthonormality, for any eigenve
tor vm in the feature spa
e,62



v0mvm = 1 (A.4)By substituting A.3 into A.4, it be
omes:

2 = NXn=1 NXn0=1�mn�mn0 ~'(xn)0 ~'(xn0)= NXn=1 NXn0=1�mn�mn0Knn0= �0mK�mSin
e K�m = �m�m, 
2 = �0m�m�m= �m(�0m�m)= �m
 = q�mTherefore, vm = NXn=1 �mnp�m ~'(xi) (A.5)

63



APPENDIX BDERIVATION FOR ORIGINAL KERNELEIGENVOICEB.1 Derivation of & 0r'r(ot)& 0r'r(ot)= h( MXm=1 NXn=1 wm�mnp�m ~'r(xnr)) + �'ri0'r(ot)= �� MXm=1 NXn=1 wm�mnp�m ('r(xnr)� �'r)�+ �'r�0'r(ot)= MXm=1 NXn=1 wm�mnp�m kr(xnr; ot) + �1� MXm=1 NXn=1 wm�mnp�m � �'0r'r(ot)= �'0r'r(ot) + MXm=1wm NXn=1 �mnp�m hkr(xnr; ot)� �'0r'r(ot)i (B.1)= A(r; t) + MXm=1wmB(m; r; t) (B.2)where A(r; t) = �'0r'r(ot) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�Di�erentiate & 0r'r(ot) with respe
t to wj,�& 0r'r(ot)�wj = B(j; r; t) (B.3)
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B.2 Derivation of & 0r&r& 0r&r= �� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+ �'r�0�� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+ �'r�= � MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�0� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+2� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�0 �'r + �'0r �'r= MXm=1 NXn=1 MXm0=1 NXn0=1(wm�mnp�m ~'r(xnr))0(wm0�m0n0p�m0 ~'r(xnr)) +2 MXm=1 NXn=1 wm�mnp�m ~'r(xnr)0 �'r + �'0r �'r= MXm=1 NXn=1 MXm0=1 NXn0=1 wm�mnp�m wm0�m0n0p�m0 ~kr(xnr;xn0r) +2 MXm=1 NXn=1 wm�mnp�m ~'r(xnr)0 �'r + �'0r �'rwhere~kr(xnr;xn0r) = ~'r(xnr)0 ~'r(xn0r)= h'r(xnr � �'r)i0h'r(xn0r � �'r)i= kr(xnr;xn0r)� 1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i +1N2 NXi=1 NXj=1 kr(xir;xjr)~'r(xnr)0 �'r = ~'r(xnr)0� 1N NXi=1'r(xir)�= 1N NXi=1�'r(xnr)� �'r�0'r(xir)= 1N NXi=1'r(xnr)0'r(xir)� 1N2 NXi=1 NXj=1'r(xir)0'r(xjr)65



= 1N NXi=1 kr(xnr;xir)� 1N2 NXi=1 NXj=1 kr(xir;xjr)�'0r �'r = h 1N NXi=1'r(xir)i0h 1N NXj=1'r(xjr)i= 1N2 NXi=1 NXj=1 k(xir;xjr)So, The �nal equation is:& 0r&r = MXm=1 MXm0=1wmwm0D(m;m0; r) + MXm=1wmE(m; r) + F (r) (B.4)where D(m;m0; r) = NXn=1 NXn0=1 �mn�m0n0p�m�m0 �kr(xnr;xn0r)�1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i+ F (r)�E(m; r) = 2 NXn=1 �mnp�m � 1N NXi=1 kr(xnr;xir)� F (r))�F (r) = 1N2 NXi=1 NXj=1 kr(xir;xjr)Di�erentiate & 0r&r with respe
t to wj,�& 0r&r�wj = E(j; r) + MXm=1 2wmD(m; j; r) (B.5)
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APPENDIX CDERIVATION FOR ROBUST KEV 1 -ADDITIONC.1 Derivation of & 0r'r(ot)For robust KEV, the only di�eren
e is the de�nition of the new speaker in thefeature spa
e whi
h is as follows:~& = ~'(x(SI)) + MXm=1 NXn=1 wm�mnp�m ~'(xn)= �'(x(SI))� �'� + MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (C.1)
& 0r'r(ot)= �~&r + �'r�0'r(ot)= �� MXm=1 NXn=1 wm�mnp�m ('r(xnr)� �'r)�+ 'r(x(SI))�0'r(ot)= MXm=1 NXn=1 wm�mnp�m kr(xnr; ot)� MXm=1 NXn=1 wm�mnp�m �'0r'r(ot) + 'r(x(SI))0'r(ot)= 'r(x(SI))0'r(ot) + MXm=1wm NXn=1 �mnp�m hkr(xnr; ot)� �'0r'r(ot)i= kr(xSIr ; ot) + MXm=1wmB(m; r; t) (C.2)where A(r; t) = �'0r'r(ot) = 1N NXi=1 kr(xir; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�67



Di�erentiate & 0r'r(ot) with respe
t to wj,�& 0r'r(ot)�wj = B(j; r; t) (C.3)
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APPENDIX DDERIVATION FOR ROBUST KEV 2 -INTERPOLATIOND.1 Derivation of & 0r'r(ot)For robust KEV, the only di�eren
e is the de�nition of the new speaker in thefeature spa
e whi
h is as follows:~'(s) = w0 ~'(x(SI)) + (1� w0) MXm=1 NXn=1 wm�mnp�m ~'(xn)= w0�'(x(SI))� �'� +(1� w0) MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (D.1)
'(s) = ~'(s) + �'(s)= w0'(x(SI)) + (1� w0) �'+(1� w0) MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (D.2)

& 0r'r(ot)= �w0'r(x(SI)r ) + (1� w0) �'r +(1� w0) MXm=1 NXn=1 wm�mnp�m �'r(xnr)� �'r��0'r(ot)= w0kr(x(SI)r ; ot) + (1� w0)hA(r; t) + MXm=1wmB(m; r; t)i (D.3)where A(r; t) = �'0r'r(ot) = 1N NXn=1 kr(xnr; ot)69



B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�� Di�erentiate & 0r'r(ot) with respe
t to w0�& 0r'r(ot)�w0 = kr(x(SI)r ; ot)� A(r; t)� MXm=1wmB(m; r; t) (D.4)� Di�erentiate & 0r'r(ot) with respe
t to wj, for j = 1 � � �M ,�& 0r'r(ot)�wj = (1� w0)B(j; r; t) (D.5)
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APPENDIX EPRACTICAL SPEED-UP METHODS INKEVSome pra
ti
al methods are 
onsidered in this thesis for speed-up. The 
ompari-son of the CPU time and the a

ura
y of the lookup table, approximation methodI and II to the exponential fun
tion are summarized in Table E.1.1. PruningIn de
oding, pruning is a 
ommon approa
h for speed-up. Redu
ing thesear
h spa
e by pruning 
an dire
tly de
rease the number of distan
e mea-sure 
omputation. This 
an improve the speed.2. Lookup tableIn the distan
e 
al
ulation, exponential fun
tion is the most 
ostly part forthe Gaussian kernel. It is found that the input of the exponential fun
tionis usually within a narrow range. Therefore, pre-
omputing exponentialvalues in that range 
ould speed-up.3. S
hraudolph fast approximation method to exponential fun
tionA

ording to the [43℄, a fast and 
ompa
t method is proposed for approxi-mating the exponential fun
tion.4. Series-based approximation method to exponential fun
tionIn the 
al
ulation of the kr(sr; ot), 
omputing exponential is most 
ostly
omponent. Therefore, we �rst express exponential fun
tion as a series.Then, the input value is bound to a given range and the �rst four terms ofthe series is used as the approximation. It is de�ned in E.2. The 
omparisonof the CPU time and the absolute error for using various number of termsare stated in Table E.1.Exponential fun
tion 
an be expressed as a series whi
h is:exp(x) = 1 + x+ x22! + x33! + ::: + xnn! (E.1)71



let y = x
 where 
 > x so that �1 < y < 1exp(x) = hexp(y)i
� h1 + y + y22 + y36 i
= �1 + x�1 + x(12 + x6)��
 (E.2)if it is approximated by the �rst four terms and 
 = 2d, power fun
tionmeans d multipli
ations (d = 6 in the experiment).Therefore, the exponential fun
tion is repla
ed by 8 multipli
ations and3 additions. CPU time Relative errorBuild-in exponential fun
tion 1.3 NILLookup table 0.64 0.050%S
hraudolph fast approx. method 0.55 1.517%Series-based approx. method 0.77 0.280%Table E.1: Comparison of the CPU time and the a

ura
y of the 3 proposedapproximation methods to exponential fun
tion with the build-in oneFinally, in order to have a balan
e in minimizing the relative error and CPUtime, the lookup table approa
h is used in 
al
ulating exponential fun
tion.
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APPENDIX FSIGNIFICANCE TESTSIn the signi�
ant tests, MAP, MLLR, base-EV, robust-EV, base-KEV and robust-KEV are 
ompared. Their abbreviations are summarized as follows:b-EV : base-EVr-EV : robust-EVb-KEV : base-KEVr-KEV : robust-KEV (the interpolation one)MLLR.d : MLLR with diagonal transformation matrixMLLR.f : MLLR with full transformation matrixSI-m : SI modelingMP : Mat
hed Pair Senten
e Segment (Word Error) TestSI : Signed Paired Comparison (Speaker Word A

ura
y Rate (%)) TestWI : Wil
oxon Signed Rank (Speaker Word A

ura
y Rate (%)) TestMN : M
Nemar (Senten
e Error) Test
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MAP MLLR.f MLLR.d SI-m r-EV b-KEV r-KEVb-EV MP: MAP MP: MLLR.f MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MAP SI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MAP WI: MLLR.f WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MAP MN: MLLR.f MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMAP MP: MLLR.f MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.f WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MLLR.f MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.f MP: same MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: same WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: same MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: SI-m MN: r-EV MN: b-KEV MN: r-KEVSI-m MP: same MP: b-KEV MP: r-KEVSI: same SI: b-KEV SI: r-KEVWI: same WI: b-KEV WI: r-KEVMN: same MN: b-KEV MN: r-KEVr-EV MP: b-KEV MP: r-KEVSI: b-KEV SI: r-KEVWI: b-KEV WI: r-KEVMN: b-KEV MN: r-KEVb-KEV MP: r-KEVSI: r-KEVWI: r-KEVMN: r-KEV

TableF.1:Signi�
an
eTestson2-se
ondadaptationdata
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MLLR.f MAP MLLR.d SI-m r-EV b-KEV r-KEVb-EV MP: MLLR.f MP: MAP MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.f SI: MAP SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.f WI: MAP WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MLLR.f MN: MAP MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.f MP: same MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: same SI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: same WI: same WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MAP MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMAP MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: same MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: SI-m MN: r-EV MN: b-KEV MN: r-KEVSI-m MP: same MP: b-KEV MP: r-KEVSI: same SI: b-KEV SI: r-KEVWI: same WI: b-KEV WI: r-KEVMN: same MN: b-KEV MN: r-KEVr-EV MP: b-KEV MP: r-KEVSI: b-KEV SI: r-KEVWI: b-KEV WI: r-KEVMN: b-KEV MN: r-KEVb-KEV MP: r-KEVSI: r-KEVWI: r-KEVMN: r-KEV

TableF.2:Signi�
an
eTestson4-se
ondadaptationdata
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MLLR.d SI-m r-EV b-KEV MAP r-KEV MLLR.fb-EV MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fMLLR.d MP: same MP: same MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: same SI: same SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: same WI: same WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: same MN: same MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fSI-m MP: same MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: same SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: r-EV WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: same MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fr-EV MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fb-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: MAP SI: r-KEV SI: MLLR.fWI: MAP WI: r-KEV WI: MLLR.fMN: MAP MN: r-KEV MN: MLLR.fMAP MP: r-KEV MP: MLLR.fSI: r-KEV SI: MLLR.fWI: r-KEV WI: MLLR.fMN: r-KEV MN: MLLR.fr-KEV MP: MLLR.fSI: MLLR.fWI: MLLR.fMN: MLLR.f

TableF.3:Signi�
an
eTestson10-se
ondadaptationdata
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