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KERNEL EIGENVOICE SPEAKER
ADAPTATION

by

HO KA-LUNG

Department of Computer Science

The Hong Kong University of Science and Technology

ABSTRACT

Speech recognition is a powerful and widely used technology nowadays. How-
ever, its performance is not robust enough due to variations in speech introduced
by the operating environment, noises (their type and energy) and inter-speaker
differences.

Speaker adaptation is an important technology to fine-tune either features
or speech models for the mis-match due to inter-speaker variation. In the last
decade, eigenvoice (EV) speaker adaptation has been developed. It makes use
of the prior knowledge of training speakers to provide a fast adaptation algo-
rithm (in other words, only a small amount of adaptation data is needed). In-
spired by the kernel eigenface idea in face recognition, kernel eigenvoice (KEV)
is proposed. KEV is a non-linear generalization to EV. This incorporates Kernel
Principal Component Analysis (KPCA), a non-linear version of Principal Compo-
nent Analysis (PCA), to capture the higher order correlations in order to further
explore the speaker space and enhance recognition performance. The major dif-
ficulty is that through KEV adaptation, the adapted speaker model is estimated
in the kernel feature space which may not have an exact pre-image in the input
speaker-supervector space, yet observation likelihoods are computed in the acous-

tic observation space for both adaptation and recognition. Composite kernel is

xi



proposed to solve the problem.

Experimental investigation on TIDIGITS corpus, an English digits recognition
task, using 4 seconds of adaptation data shows that KEV adaptation gives a 21%
relative improvement over the speaker-independent (SI) model, a 25% relative
improvement over MLLR adaptation and a 32% relative improvement over EV
adaptation. When the speaker-adapted models from KEV are interpolated with
the SI model, the relative improvements increase to 32% over SI model, 35% over

MLLR adaptation, and 31% over similarly interpolated EV adaptation.
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CHAPTER 1

INTRODUCTION

1.1 Background

Speech recognition is a very powerful technology that is widely used nowadays.
Examples include voice-activated phone-dialing (VAD) by AT& T Wireless, Nokia
and Motorola, voice-controlled personal digital assistant (PDA) by Palm, voice-
controlled in-car music system by Sony, voice-operated light switch by VOS Sys-
tems, computer assisted language learning (CALL) and so on. In addition, a
call center with interactive voice response (IVR) is an important application of
speech recognition. This is used in various domains including credit/debit card
enquiries, international travel bookings and processing insurance details and it
showed huge business values. All these examples show the potential and impor-

tance of speech recognition technology.

However, inter-speaker differences is an important bottleneck to further im-
provement on the accuracy of speech recognition. To counter these problems,
various kinds of speaker normalization and speaker adaptation methods have
been proposed. Feature-based adaptation (or normalization) aims to reduce the
undesired variations in the features while model-based adaptation aims to mod-

ify the acoustic models to optimize on a certain amount of data of a given speaker.

Among the various adaptation methods, eigenvoice adaptation (EV) is a well-
known method to extract inter-speaker variations such as gender, age and accent
from a set of training speakers by Principal Component Analysis (PCA). By as-
suming any speakers to be a linear combination of eigenvectors with a set of
weights. A speaker-adapted model is obtained by finding the weights by maxi-
mizing the expected log likelihood of the given adaptation data.



In this thesis, we propose a novel non-linear extension to EV, which we call
Kernel Eigenvoice (KEV) by utilizing kernel methods. The hypothesis is that
the use of linear PCA in EV may not be best to capture the inter-speaker vari-
ations. In fact, EV is a special case of KEV using a linear kernel. By using the
kernel trick, KEV uses KPCA, performing linear PCA in the high dimensional
feature space, to enhances its capability in non-linearity without an explicit non-
linear optimization. The main difficulty is how to express the adaptation algo-
rithm in the observation space using the non-linear information in the feature

space. Our solution is to compute kernel PCA using composite kernels.

1.2 Outline of the thesis

In chapter 2, the idea of speaker-dependent (SD) and speaker-independent (SI)
modeling are discussed. It is followed by the evolution of KEV from speaker

adaptation, eigenface, eigenvoice and kernel methods.

In chapter 3, conventional eigenvoice is introduced. A discussion of its objec-
tives and a brief comparison between EV and Cluster Adaptive Training (CAT)
[17] will be given. The outline of the EV algorithm follows. The general experi-
mental setup is stated and two variations of speech model training methods are
introduced and discussed. This chapter ends with a comparison of the recognition

results on EV.

In chapter 4, the KPCA algorithm and the kernel eigenvoice adaptation are
developed. The challenge of KEV and its proposed solution are investigated. The
KEV algorithm for Gaussian kernel and polynomial kernel are presented. The
time complexity of the algorithm as well as the recognition results on KEV are

discussed.

Robust EV and KEV are introduced in chapter 5. The motivation, re-
formulation and the experimental results are also presented. In chapter 6, a

comparison among EV, KEV and conventional adaptation techniques including



MLLR and MAP is presented. A brief discussion of the significance tests are
included. Then, the relationship between the eigenvectors and speakers’ charac-
teristics is analyzed. The conclusion and future work are discussed in the last

chapter.



CHAPTER 2

LITERATURE REVIEW

2.1 SD modeling versus SI modeling

In speech recognition, acoustic modeling can be divided into two methods, that
is, speaker-dependent (SD) modeling and speaker-independent (ST) modeling. SD
modeling means that an acoustic model is trained by data from a specific speaker
while ST modeling means that an acoustic model is trained by data from all speak-

ers.

There are pros and cons in both SD and SI modeling. For SD modeling, the
advantage is that a well-trained SD model is usually better than a well-trained SI
model for the training speaker. [29] states that the error rate of an SD model is
about one third of the error rate of an SI model. In [29], the author explains that
‘phonemes do not occupy absolute positions in acoustic space, but are perceived
relative to each other‘. As all speakers are used to train an SI model, its proba-
bility distribution of phonemes in an SI model spreads out. In technical words,
if Gaussian is used to model the distribution, it becomes flatter with larger vari-
ance. An illustrative example is that ‘One person’s "ow” in "about” may sound
like another person’s ”00” in "room”.‘ In other words, the relative position of
phonemes in acoustic space is weakened in an ST model. The disadvantage is that
an SD model gives a very tough constraint on the application since it is usable by
the training speaker only. This means that each user needs to have his/her own
SD model. The amount of data for training a robust SD model is more than 5
minutes of speech data (depending on the domain and the complexity required).

It is a completely user-unfriendly idea.

For SI modeling, its importance is that a fairly good acoustic model can be
achieved for all people in general. Any user can utilize this model immediately.
Recording speech and training an acoustic model for each new user is no longer

4



necessary. Although it makes speech recognition more user-friendly, there are two
drawbacks. Firstly, the distribution of data could affect or be biased toward some
groups of people. So, it is important to keep everything as balanced as possible in
the training-set and the evaluation-set, such as gender, accent and age group in
order to ensure the performance is not biased on some factors. Secondly, since the
modeling technique has to deal with the variations among speakers, complexity
of the acoustic model should be higher. For example, the number of mixtures
of HMMs in SI modeling should be higher than that in SD in order to achieve
the same accuracy. This means that the decoding speed in SI is usually slower
than the in SD. Although the complexity of HMMs partially gives the capacity
for describing the variations in speakers, the mixture design does not directly

account for speaker variation.

It is true that the SI approach is dominant in acoustic modeling. However,
speaker variations cause a bottleneck in the recognition accuracy. Therefore, if
a certain amount of speaker-specific data (adaptation data) is available, can we
make use of it to improve acoustic models? This leads to speaker adaptation

research.

2.2 Speaker adaptation

As introduced in Section 1.1, speaker adaptation can be divided into two classes,
which are feature-based adaptation and model-based adaptation. Vocal-tract
normalization (VTLN) [13] is one feature-based example, which is a parametric
method used to normalize the effect introduced by the variations of the vocal tract
length of speakers. As stated in [49], its major limitation is that it is inefficient to
have phone-level or word-level control in a feature-based adaptation. For exam-
ple, if the adaptation is realized by a transformation, this transformation has to
be applied to all observable frames. In contrast, a model-based adaptation allows
a transformation to be applied to observable frames which belong to vowels while

another transformation is applied to observable frames which belong to fricatives.

The three most common model-based adaptations are the Maximum Likeli-

5



hood Linear Regression (MLLR) [34], the Maximum a Posterior (MAP) adapta-
tion [33] and eigenvoice (EV) adaptation [29, 30, 28, 27].

Instead of giving the details of the adaptation algorithms, the comparison is
highlighted. In MAP adaptation, large amounts of adaptation data as well as the
coverage of the parameters are important. Rarely seen parameters could result
in poor performance. The rate of convergence to an SD model is slow. In MLLR
adaptation, using block diagonal or full transformation with a regression class tree
makes it flexible and tunable. However, insufficient adaptation data could result
in a poorly estimated transformation matrix leading to poor recognition accuracy.
In eigenvoice adaptation, the major idea is to make use of a priori knowledge of
speaker information. By applying PCA on training speakers, eigenvoices are
obtained. They describe inter-speaker variations. Speaker space is spanned by
the first few eigenvoices. There is a set of weights for each unseen speaker and each
weight corresponds to each eigenvoice. Speaker-adapted model is found within the
speaker space by obtaining the set of weights in the adaptation process. Further

discussion of EV continues in chapter 3.

MAP MLLR eigenvoice
Amount of Large Medium Small
adaptation
data
Convergence Yes Yes No
to SD model
Rate of Slow Fast Fast
saturation
Others dependent on | flexible: regression, | model speaker
on the class tree, variations
distribution block diagonal directly
of data transformation

Table 2.1: Comparison of the three main model-based adaptation methods

EV is especially suitable for small amounts of adaptation data. It models the
speaker variations directly, but it does not necessarily converge to an SD model.
Empirical results show that improvement saturates quickly, meaning that beyond
a certain limit, more adaptation data would not give further improvement. The

comparison is summarized as in Table 2.1.



2.3 From PCA to eigenface and eigenvoice

The story of kernel eigenvoice starts from one of the most famous linear transfor-
mation methods which is the PCA [23]. It is a simple but powerful method that
can be used for dimensionality reduction or redundancy reduction, de-correlation
of data, feature extraction and so on. PCA guarantees that the mean square of
reconstruction error is minimized. It is a second order method that only makes

use of information in correlation or covariance of multi-dimensional data.

In conventional face recognition methods, facial features including eyeballs,
nose, mouth and head shape are detected for face identification. In 1992, Turk
and Pentland [46] first proposed the eigenface. It is a novel unsupervised way to
decouple faces into basis-faces by PCA. Any face is then expressed as a linear
combination of the eigenfaces so that the dimension is reduced substantially. The
detection and identification of human faces becomes a simple pattern recognition

task in the eigenface space.

Two main streams of extension to the eigenfaces are available. The first
stream is the work on statistical analysis methods other than PCA. In [19], in-
stead of using PCA, it was proposed to use Fisher representation to enhance the
discrimination power; this is called fisherface. Other variations such as the use
of Independent Component Analysis (ICA) on face recognition was investigated
in [3]. The second stream of extension is that instead of applying the statistical
analysis methods on the pixels of the image directly, other spaces are explored.
Eigenhill and eigenedge was investigated in [54] while eigenmotion was investi-

gated in [55].

In the speech domain, speaker identification and recognition is a direct anal-
ogy to face recognition tasks while speaker adaptation is a closely related prob-
lem. Speaker adaptation using an eigen-decomposition technique, called eigen-
voice, was first proposed in [29]. In [30, 28, 27|, the maximum-likelihood eigen-
decomposition (MLED) estimator for Gaussian mean adaptation was outlined.
Experiments on isolated English letter recognition showed encouraging results.

Later, the use of eigenvoice in speaker identification and recognition was also
7



explored in [44].

Similar to eigenfaces, the extension of eigenvoice can be divided into four
streams. The first stream is an extension of the statistical analysis. In [38],
the PCA-based eigenvoice adaptation was extended to the Linear Discriminant
Analysis (LDA) transformation and piecewise linear constraints. In [22], both
PCA and ICA were used to analyze the speaker variability. It was found that
the first two ICA components corresponded to gender and accent respectively
while the first PCA component corresponded to gender only. In [15], instead of
using the maximum likelihood for eigenvoice adaptation, eigenvoice was used for
speaker clustering. HMM sets were trained for each speaker cluster and a paral-
lel recognition scheme for choosing the maximum HMM score was adopted. The
second stream extends the scope of eigenvoice. It means that instead of apply-
ing statistical analysis on covariance or correlation of the means of HMM sets,
other targets are explored. In [8] and [48], the eigenspace-based MLLR approach
was introduced. PCA was applied to the MLLR transformation matrix. In [9],
the eigenspace-based MAP linear regression approach was proposed. In [10], the
idea of eigenroom was introduced. Adaptation was used to deal with the mis-
match mostly due to room reverberation. The third stream extends the eigenvoice
family technique suitable for the migration from small vocabulary tasks to large
vocabulary continuous speech recognition (LVCSR). In [38], the first experiments
on relatively large corpus Wall Street Journal dictation tasks were done, which
achieved a 15% relative improvement. In [31], the use of eigen-centroid plus delta
tree (EDT) for a compact context-dependent eigenvoice modeling was proposed.
The fourth stream investigates the combination of the eigenvoice approach with
other conventional adaptation approaches. This is due to the fact that eigenvoice
is only good at a small amounts of adaptation data. When the amount of adap-
tation data increases, conventional approaches such as MLLR and MAP are more

advantageous. Related discussions were presented in [7] and [9].



2.4 Kernel methods

On top of the various statistical analysis methods such as PCA, LDA, ICA, ker-
nel methods have been developing at a fast pace in the last decade. The idea
of kernel methods was discussed thoroughly in [3]. A simple example borrowed
from it (the example is the same although the figures are re-generated) to show

the power of high dimension in Figures 2.1 and 2.2.

]5 T T T T T
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10 | T O e B
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o S e o o
- ++ + N
-10 I o+
-15 1 1 1 1 1
15 10 -5 0 5 10 15

Dimension 1

Figure 2.1: Input space of the toy problem (Dimension 1 and 2 correspond to z;
and x5 respectively)

In Figure 2.1, there are some data points with two dimensions in two classes
in the input space which is not linearly separable. If there is a mapping ¢ :
(1,19) = (21,9, 22 + 22), data points from input space can map to the feature

space as shown in Figure 2.2 where class 1 and class 2 are linearly separable.

However, as the observation dimension increases, the possible combinations
of high dimension representation increase exponentially. It is not a good idea
to have an explicit form. Therefore, if the dot product in the feature space is
given by k(xy,z5) = <<p(:c1), gp(x2)> and the algorithm is expressed in terms of dot
product, then, we can perform the algorithm in high dimensional feature space
using dot products without knowing the explicit form of the mapping.
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Figure 2.2: Feature space of the toy problem (Dimension 1, 2 and 3 correspond
to z1, To and x? + 3 respectively)

In [3], the Kernel Principal Component Analysis (KPCA) was introduced.
The main concept is to map the input space to a feature space of higher dimen-
sion and linear PCA is performed in the feature space. Recently, KPCA is applied
to face recognition to take into account higher order correlations [53, 26] and the
method is called kernel eigenface. Later, the Fisher Linear Discriminant (FLD)

was explored in the work of [51].

2.5 Summary of the evolution

The summary of the evolution is shown in Figure 2.3. In the party of linear algo-
rithms, it starts from PCA, following the development of eigenface and eigenvoice
for face recognition and speaker adaptation respectively. Similarly, in the party
of non-linear algorithms, KPCA first evolved from PCA. It was followed by the

study of kernel eigenface and currently proposed kernel eigenvoice in this thesis.

10
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CHAPTER 3

CONVENTIONAL EIGENVOICE
3.1 Idea of eigenvoice

Following the discussion in Section 2.1, one may wonder if it is possible to esti-
mate an SD model with a very small amount of data. The idea of EV is seeded
from this question. One trivial but important observation is that some speakers
are similar. An unseen speaker can be inferred from a similar one from training
speakers. This situation exists in the eigenface research too. As discussed in [46],
it is true that humans’ faces usually have two eyes, two ears, a nose and a mouth.
They are common in many aspects although they may differ in face shape or their
relative positions. It inspires researchers to try to reduce free parameters from

all pixels of faces to the weight parameters on eigenfaces.

If we have many speakers in the training set, we can pre-train a lot of SD
models from various kinds of reference speakers. A simple method is to use the
adaptation data of a new speaker to pick the closest SD model as the adapted
model. The main shortcoming of the method is that it demands a huge amount
of speakers. In addition, an SD model from a similar speaker in training-set is

usually not good enough for speakers in an unseen test-set.

A modification of the last method is to assume that any speaker model is a
weighted sum of the training speaker model. This increases the speaker space
so that it is more likely that a good model exists in this search space. However,
as the number of training speakers increase, the number of parameters increases

and more adaptation data is required.

Thus, there is a need to reduce the number of parameters so as to reduce
the requirement of adaptation data. One way to do this is through clustering of

speakers, as in CAT [17]. Another way is to perform eigen-decomposition on the

12



data to extract the principal components, which is the eigenvoice. Any speaker

model is represented as a linear combination of the eigenvoices in the eigenspace.

In short, eigenvoice adaptation can be divided into two main steps, which are
defining the speaker space and searching for a good speaker model. This is given

in Table 3.1.

step 1 — step 2 —
defining speaker space | searching for a good speaker model
CAT by clustering maximum likelihood
eigenvoice PCA maximum likelihood

Table 3.1: Summary of the two steps in eigenvoice-family adaptation

3.2 Introduction of parameter spaces

Several parameter spaces are used in EV at different stages. Three of them are
introduced for clarity in this section, which are the observation space, supervec-
tor space and eigenspace. The idea is summarized in Figure 3.1 and they are

elaborated below.

1. Observation space
This is the acoustic feature space after feature extraction in step one of
Figure 3.1. For example, an acoustic observation vector used in this thesis
consists of 12 mel-frequency cepstral coefficients (MFCC) and the normal-

ized energy from each speech frame. It is a 13-dimensional space.

2. Supervector space (or speaker input space)
A supervector is formed by concatenating the means of HMM states as
shown in step two of Figure 3.1. Supervectors define the input space in
step three with dimension of:
dim(supervector space)

= (number of HMMs) x (number of states per HMM) *
(dimension of the observation space)

In all experiments in this thesis, the number of HMMs is 11 while the
13
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Figure 3.1: Tllustration of various parameter spaces used in EV (1) Features are
extracted from raw speech files which defines the input space. (2) Means of
states of HMMs are concatenated. (3) Supervectors define the input space. (4)
Eigenspace is obtained by applying PCA on the input space.

number of states per HMM is 16. Therefore, the dimension of supervector

space is 2288.

3. Eigenspace (in order to distinguish the eigenspace found in KEV, it is
called conventional eigenspace)
It is the space after eigen-decomposition on the supervector space as shown
in step four. Only the first few eigenvectors with the largest eigenvalues are
chosen usually so that its dimension is much less than that of the supervector

space. It is used in conventional eigenvoice.

3.3 Conventional eigenvoice adaptation

In the conventional eigenvoice, the Gaussian mean vectors of all HMM states of a
speaker are concatenated in a given order to form the speaker supervector. There-
fore, if p, is the 7" Gaussian mean vector, then p is the concatenated speaker

supervector in Equation 3.1.

14
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PCA is performed on the covariance matrix or correlation matrix of the
speaker supervectors to extract the eigenvectors. These eigenvectors are called
eigenvoices. It is also in the form in Equation 3.1. Any speaker supervector is

assumed to be a linear combination of the eigenvoices as in equation 3.2 and 3.3

for covariance and correlation approach respectively.

e When covariance matrix is used for eigen-decomposition, the unseen speaker

supervector s is defined as

M
s—e = Z Wim€m
m=1
M
S = €4+ ) wpen (3.2)
m=1

where € is the mean of eigenvectors and w,, is the weight of the m'* eigen-
vector. The set of weights are unknown variables and each speaker has his

own set of weights.

e When correlation matrix is used, the difference is that each dimension is

normalized before eigen-decomposition. It becomes:

M
Z'(s—e) = ) wnmen

15



o 0 - 0
0 o9 - 0

where Z = . :

0 0 0 op

where o, is the standard deviation of the d"* component in the supervectors,

and e,, = Ze,,

Thus, determining the speaker-adapted model for a new speaker means find-
ing his/her eigenvoices weights. This can be done by maximizing the likelihood
of his/her adaptation data. Since the state sequence is a hidden variable, ex-
pectation maximization (EM) is used for optimization. The auxiliary function is

defined as the expected log likelihood and is given by:

Q(W) =Qr+ Q.+ Qb(w) (34)

where

Qr = ;71(T)10g(7rr)

R T-1

Q= 3 &p.r)log(ay)

Qu(w) = ZZ () 10g(b; (01)) (3.5)

Qr, Q. and Qy(w) corresponds to the initial probability, transition probability
and observation probability; , is the initial probability of state r; ,(r) is the
posterior probability of observation o being at state r at time t; &(p,r) is the
posterior probability of observation o being at state p at time ¢ and at state r at
time t + 1; b, is the Gaussian pdf of the r" state after re-estimation and o, is an

observation frame at time ¢.

Since @) and @), are independent of w;, they can be ignored in the weights
estimation. For simplicity, we only consider Qy(w) as the auxiliary function in

the rest of the thesis. It is expanded as:
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ZZ% r)[di log(27) + C, + |Is, — o[/, ] (3.6)

1t=1

where C, is the covariance matrix of the Gaussian at state r; s, is the new

speaker’s mean vector defined in Equations 3.2 or 3.3.

In EV, s, can be expressed in terms of weights w,,, and they are unknown. By
differentiating Q,(w) with respect to each w; for j = 1---M, a set of M linear
equations with M variables are obtained. This problem is analytically solvable.

They are described as follows.

e For the covariance case:

a R T
8;3[? = - Z Z Vtre;rc_l(sr - Ot)
j r—11i=1
R T M
= -y %re;.rC,Tl [(er + 3 wmemr) — ot} (3.7)
r=11t=1 m=1
Set %QT? =0,
R T R T M
Y Y e, Cl o —e) =) Z%r<z wmegrcrlemr> (3.8)
r=1t=1 r=1t=1 m=1

e For the correlation case, the solution is the same as the one in covariance

case except that e;, is replaced by €;, as follows:

R R T M
’)/trél' C 1 Ot — er = Yir wmé" Cilémr 3.9
gr jr~r
m=1

r=1t=1 r=1t=1

3.4 Experimental setup

TI-digits corpus [35] is the target corpus for investigation. It is a clean connected
digit corpus sampled at 20KHz. There are 163 speakers for each of the standard
training-set and test-set. There are about 77 utterances for each speaker. They

are in various length ranging from one to seven digits. Speakers are from 22
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dialect regions of USA with ages ranging from six to seventy. In the corpus it

is, by default, divided into four main groups, which are girl, boy, woman and man.

Adaptation experiments were done with different amounts of adaptation data.
Three of them are investigated, which are 2-second, 4-second and 10-second

adaptation-sets. The detailed information is provided by Table 3.2.

Name | Number of digits | Duration | Duration (without silence)
2-second 5 3.0s 2.1

4-second 10 5.5 s 4.1
10-second 20 13.0 s 9.6 s

Table 3.2: Detailed information of the adaptation sets (The third column is the
recorded duration and the fourth column is the speech duration without silence
according to the force alignment by the SI model.)

For each testing speaker, their data are divided into five mutually exclusive
sets (e.g., A, B, C, D, E) as in Figure 3.2. A random subset (depending on the
amounts of adaptation data) of one set is used for adaptation while the remaining
four sets are used for testing each time. Sets are rotated and tested repeatedly
five times. (It means that, subset of ”A” is used for adaptation and "B”, "C”,
"D” and "E” are used for testing for the first time. Subset of "B” is used for
adaptation and "A”, 7C”, ”D” and "E” are used for testing in the second time
and so on.) In each subset, the length of the utterances is kept balanced. Super-

vised adaptation is adopted.

In the feature extraction, an acoustic vector consisting of 12 MFCCs and the
normalized energy is extracted from each speech frame of 25ms at each 10ms.
HMM is used for acoustic modeling. The prototypes of the HMMs are illustrated
in Figure 3.3 Sixteen (real) states left-to-right HMMs are used for modeling eleven
digits (including "one”, "two”, ..., "nine”, "oh” and "zero”). Three (real) states
left-to-right HMM (with a skip arc from state one to state three and a loop-back
arc from state three to state one) is used for modeling silence. One (real) state
HMM is used for modeling an optional short pause. For simplicity, only sin-
gle mixture Gaussian is used for each state of HMMs. These settings are used

throughout all the experiments. Since the dimension of observation space is 13
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original set @ @ @ @

iteration 1st 2nd 3rd 4th 5th
agapaion-set (a) () (c) (o) (&)
B |'| A |'| A ||l A 'l A
c |'| c|'| B || B |!|l B
test—set ! ! | |
D || D|/| D |/l C || C
E || E |'| E || E /| D

Figure 3.2: Defining adaptation-sets and test-sets (Original set is divided into
5 sets denoted by square. A subset is random sampled from each of the 5 sets
denoted by circle.)

and there are 11 digits with 16 states, the resulted dimension in supervector is

13 %11 %16 = 2288.

digit HMM
[ [y
OO, ORI
silence model short pause HMM

Figure 3.3: Tllustration of prototype of the HMMs (the small circle represents a
null state while the large circle represents a real state. There are 16 real states
for each digit HMM.)

In training the SI model and the SD models for eigenvoice, two approaches

are investigated:

e Training approach A (Illustrated in Figure 3.4)

The SI model and the SD models are trained independently using the flat-
start procedure. The means of the SD models are then used for eigen-
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decomposition. In addition to eigenvectors, variances, transition probability
matrices, silence (SIL) and short pause (SP) HMMs from SI model are used
for eigenvoice adaptation. This is the simplest approach. One drawback of
this approach is that there may be a mismatch between the SD models and

the borrowed quantities.

i means of EV/KEV
train from SDmodels ———— | PCA .
flat start digits adaptation
train from SI model SIL, SP, variances and
flat start transition probability matrix of digits

Figure 3.4: Tllustration of the training approach A (ST and SD models are trained

independently)

e Training approach B (Illustrated in Figure 3.5)

The SI model is trained first. It is copied as the initialization for SD models
instead of a flat-start initialization. In HMM parameters re-estimation in
SD models, only the means of digit HMMs are updated. The SIL, SP, vari-
ances and transition probability matrices are identical to the corresponding
one in SI. These specially trained SD models are used for eigenvoice adap-

tation.

The advantage of this method is that it ensures SIL, SP and digit HMMs
match. Since only one set of SIL and SP as well as the variances and
transition probability can be used in the adapted model, the ones from the
ST model are generally good for all speakers. If SD models share them in the

expected maximization (EM) re-estimation of the means, it ensures their

consistence.
copy and EV/KEV
train from re—estimate means of
P SImodel [ oansor | SD models digis PCA I~ adaptation
at star digits only

SIL, SP, variances and transition probability matrix of digits

Figure 3.5: Tllustration of the training approach B (SI and SD share SIL, SP,
variances and transition probability matrices of digits)
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3.5 Conventional eigenvoice adaptation experi-
ment

The first experiment compares the two proposed training approaches described
in 3.4. Eigenvoice adaptation using covariance matrix for eigen-decomposition is
conducted. Only 10-second of adaptation-set is used. The results are shown in
Figure 3.6. It shows that approach B is better than approach A and is used in
the rest of the thesis.

97 T T T T T
Approach A —F—
ApproachB —<—
96.5 | .
§ 96 b
)
3
3
3
& 955 M .
=
8
=
o0
g 95 F .
945 | M .
94 1 1 1 1 1

number of eigenvoices

Figure 3.6: Comparison of the two suggested training approaches for eigenvoice
adaptation

The second experiment compares the covariance and correlation approaches
in conventional eigenvoice adaptation. Various amounts of adaptation data (2-
second and 10-second adaptation- sets) and numbers of eigenvectors (1-5) are
tried. The baseline is the accuracy of the SI model, which is 96.25%. The results
are plotted in Figure 3.7.

Firstly, by comparing the correlation approach and the covariance approach,
the correlation one is better than the covariance one for using one or two eigen-
voices. It could be explained that in the correlation approach, components are
normalized before PCA. It then avoids some components with large dominating
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o8 Correlation approach (10s) —H—
Covariance approach (10s) —&—
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S o4 f —o |
Q 3
8 :
=
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+ S N
88 x S % .
1 2 3 4 5

number of eigenvoices

Figure 3.7: Comparison of the covariance approach and the correlation approach
in conventional eigenvoice adaptation

values. Secondly, we find that the conventional eigenvoice is worse than the base-
line SI model. It reflects that the linearity assumption in EV may not be good

enough for all tasks. This is also an important motivation for proposing KEV.
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CHAPTER 4

KERNEL EIGENVOICE

4.1 Revisit the definition of parameter spaces

Before introducing the KEV, two more parameter spaces are introduced in addi-
tion to the spaces discussed in Section 3.2, which are speaker feature space and

kernel eigenspace. These ideas are illustrated in Figure 4.1.

eigenspace

3 kernel eigenspace

supervector means

.
0

waveform

r\ﬁmmmﬂm
......... SV VY

feature
extraction

concatenation of
means of states

i1 of HMMs .
L observation space

feature vectors

Figure 4.1: Tllustration of parameter spaces used in KEV (1) Things inside dotted
region is the same as EV. (2) ¢(z) is a mapping to a high dimensional feature
space. (3) KPCA is used to find the kernel eigenspace.

The basic idea behind kernel methods is that if a function ¢(z) exists, the
speaker input space can be mapped to a high dimensional feature space in a non-
linear manner in step two of Figure 4.1. However, ¢(x) does not necessarily exist

and it is, in fact, undesirable to work with ¢(x) explicitly because both expressing
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and computing the high dimensional vectors is very expensive. Therefore, if a
kernel function is defined as the dot product of vectors in the feature space, then
any linear algorithm that works on dot products is equivalent to a non-linear

algorithm in the input space.

Similar to EV, there is a space called kernel eigenspace in step three of Figure
4.1. This is the space after eigen-decomposition in the feature space, which is
found by PCA in the feature space. It is described by a set of orthogonal vectors
in the feature space with eigenvalues in sorted order, which represent the vari-
ances in the corresponding eigenvectors. So, the first few eigenvectors with the
largest eigenvalues are chosen to describe the kernel eigenspace. This guarantees

to minimize the re-construction error in the feature space.

Remember that the observation space has dimension Dy which is the smallest
one. The input speaker space (of dimension D;) is then the concatenation of
Gaussian means and Dy < D;. The feature space (of dimension Dy) is a high
dimensional space mapped from the input speaker space and usually D; < D,.
The eigenspace (of dimension Dj3) and the kernel eigenspace (of dimension D)
is the "most useful” subspace in the input speaker space and the feature space

respectively.

In summary,

Dy < Dy < Dy
D; < Dy
Dy < Dy

4.2 Overview of KEV

One of the crucial limitations of conventional eigenvoice adaptation is that unseen
speakers are assumed to be a linear combination of eigenvoices. However, a linear
constraint may not be good enough. Therefore, incorporating non-linearity is
desired. In [3], KPCA was proposed. This is used to extract components in a
non-linear manner in the feature space. The KEV makes use of the KPCA for

components extraction and kernel trick is used in the adaptation algorithm which
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is discussed in the rest of this section. The overall idea includes four main steps

as follows:

1. Define kernel function

A kernel function in the input space defines the dot product of two data
in the feature space. Different kernel functions represent different forms of
non-linearity. A kernel matrix gives the similarity measure between each
pair of training vectors. The element in the i"* row and the j column is
the dot product between the i** sample and the j** sample in the dataset.

In this thesis, Gaussian kernel and polynomial kernel were studied.

2. KPCA

Principal components are derived from the kernel matrix (which is defined
in step 1) by KPCA. The details of the algorithm will be discussed in Section
4.3.

3. Express speaker vector and distance

The feature vector of a new speaker is expressed as a linear combination of
the eigenvectors in the feature space while the distance in the input space
is expressed in terms of dot products in the feature space using the kernel

trick.

4. ML estimation of eigenvoice weights

Similar to the EV, the expected log-likelihood is maximized on a set of
speaker-specific adaptation data. Due to the non-linearity, there is no ana-
lytical solution and gradient-based numerical methods are used. The Gen-

eralized Expectation Maximization (GEM) is used instead of EM.

4.3 KPCA

The idea of KPCA is to perform PCA algorithm in terms of dot products in
the feature space so that kernel tricks can be used. The detailed derivation and
discussion of the KPCA can be found in [3]. Here is a summary of the major

steps.
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e Let function ¢ be the mapping from the input space to the feature space,
¢ be its centered version and @ be the mean of the training vectors in the
feature space. In PCA (or KPCA), the centered covariance is needed and

it is given by the following (the proof is given in A.1 of appendix A):
C = HCH (4.1)

where H=T1- 111" and 1 = [11...1]".

e The centered covariance matrix C is defined as:

o, (4.2)

for n = 1---N, z, is the n'" training speaker supervector and b, =

(@(Xl)a A @(XN))-

e In [3], it is shown that all eigenvectors u,, lies in the span of training vectors

@(Xl)a s, @(XN) Thena

N
u, = Zamnsa(xn)
n=1

= &,a,,
u = $,a (4.3)
where a,,, is the n'* element of vector o, and o = (cxl, cee cxN).

e Eigenvalue problem in the high dimensional space is presented as:

Cv = Av

1 = ~1 ~
Ntl)x@;@xa = Ad,a (4.4)

where A are the eigenvalues corresponding to the eigenvectors v.
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By multiplying Ci{; to both sides of Equation 4.4, it becomes

KKa = NAKa (4.5)

~) ~

where K = ® &, and it is shown that a problem in Ka = N« yields all
solution of Equation 4.5 (proved in [11], Lemma 21.1.3).

e Eigenvector v,, is normalized to be a unit vector. Then, it becomes:

o
mn_ (4.6)
Z F
(The proof of the normalizing factor is given in A.2 of appendix A).

Then, performing eigen-decomposition on the kernel matrix K gives v and A,

which describe the eigenvectors in the feature space.

4.4 Composite Kernels

In EV, speaker supervector s is splitted into constituents s, for calculating the
distance between a given Gaussian and an observation frame ||s, — o,||? required
by the computation of expected log likelihood. In KEV, since speaker supervector
is defined in the feature space only and there is no exact pre-image back to the
input space, so we need to transform the observation o; to the feature space too.
Then, we can compute their dot product in the feature space and the Manhalonbis
distance can be expressed in terms of the dot product. But, in this process, it
needs the dot product between certain segment of a supervector and another
vector (observation). If the whole supervector is put to a single Gaussian kernel
in KPCA. Then, we can only obtain the dot product between the whole speaker
supervector and another supervector. This raises a challenge in KEV. Composite
kernel is the proposed solution. Each Gaussian constituent is mapped to its
high dimensional space by a base kernel and the composite kernel is defined in

Equation 4.7.



p1(xi1) 7' T 1(x51)

er(xir)] Lor(xjr)

R

= > ky(xir, xjr) (4.7)

r=1
Any kernels, such as Gaussian kernel, polynomial kernel can be chosen as
a base kernel. They are discussed in Section 4.6. The composite kernel is the
summation of the base kernel and it is used for KPCA. In addition, since each
constituent maps to the high dimensional feature space by its base kernel, the
speaker supervector in the feature space can be splitted into constituents for both

adaptation and recognition. A similar idea to composite kernel is discussed in [39].

4.5 KEV adaptation

The adaptation algorithm of KEV is the same as the conventional one except
that the Manhalonbis distance measure is replaced by one expressed in terms of
dot products in the feature space. In short, there are three major steps. Firstly,
the auxiliary function is expressed as the dot products. Secondly, the parameters
(weight) is initialized. Thirdly, generalized expectation maximization (GEM) is

adopted for optimization. The details are as follows:

1. Expression of the auxiliary function

Similar to the conventional eigenvoice, the auxiliary function is defined as
the expected likelihood and it is further expressed in terms of weights of
eigenvectors and dot products in the feature space. (The detailed derivation

for Gaussian kernel and polynomial kernel are presented in Section 4.6.)

) (4.8)

where s, is the r-constituent of the speaker s (the speaker to be adapted),

R T
ZZ tr(dllog 2m) + log |C,| + |Is,

which is defined to be a linear combination of the eigenvectors in the feature
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space.

Since the new speaker s is not found in the input space but only its image
¢ in the feature space is estimated as a linear combination of the kernel

eigenvoices and ¢isitscenteredversion.

By Equation 4.6,

. GEM

Due to the non-linearity in KEV, no close form solution to the weights.
Then, GEM is used instead of EM. In the M step of GEM, gradient ascent
is used for improving the likelihood. The weights are updated by:

w(n) = w(n - 1) + n(n)Ql|w:w(n—1) (410)
where
1 90Qp 0Q oQ
Q' = |G s Buy | A
0 — L5l YT g[8 — o[, and

n(n) is the learning rate at n'*iteration

. Initialization

The weights are required to be initialized before the first iteration in the
GEM. The SI model is a good choice for initialization due to its robustness.
Therefore, it is suggested that the SI model is projected to each utilized
eigenvector as initialization. The initial values of weights are derived as

follows:
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because

M
vi,g(xCD) = v 3wl v,
m=1
= w (v, vim)
= wﬂf[)
So,
wiy? = v,e(xE")

3 2 (e 3) + D, )| (4.11)

However, it is noticed that the initialization in this projection method is not
identical to the SI model because there is projection loss. This observation

causes further investigation in Chapter 5.

4.6 Kernels

There are various types of kernel [20] such as Gaussian radial basis function
(RBF) kernel (or in this thesis, simply call Gaussian kernel), polynomial kernel,

exponential kernel and fisher kernel.

Two types of kernel are evaluated in this thesis, which are Gaussian kernel

and polynomial kernel.
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4.6.1 Gaussian kernel

1. Definition

Gaussian kernel is defined as follows:
k. (x;, xj) — ¢ Br(ximx) Cr T (xi—x;) (4.12)
where 3, is a tunable parameter.

2. Dot product in an unseen speaker and its derivative

The dot product between an observation and the corresponding constituent
of an unseen speaker supervector ( ¢.¢,(0;) ) is expressed in terms of the
dot product between the observation and the corresponding constituent of

the training speakers ( k,(X,,, 0;) ) and their weights.

By B.2,
M
srpr(0) = A(r,t) + Y wuB(m,r,t)
m=1
By B.3, its derivative is:
aC' Pr (Ot) .
T — B t
o, ()

where

1 N
A(r,t) = NZkr(Xm,ot)
n=1

B(m,r,t) = i Cmn <kr(xnra0t) — A(r, t))

3. Expression of distance measure

Then, the distance measure ||x,, — 0;|&, is expressed in terms of k,(x,,, 0;)

as follows:

1
Isr — o, = ——logs o, (o)

T

_ —%log(A(r,t)+mZ:1me(m,r,t)> (4.13)
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4. Expression of the auxiliary function

The auxiliary function is expressed in terms of k,(x,,,0;) as follows:

bD|h4

Qv(w) = Z Z%r <d1 log(27) + log |C,| + ||sy — Otcr>

T
r=1t=1
T

R
ZZ tr(dllog 27) + log |C, | —

Mll—t

B—log( (r,1) +Zwm mrt))

5. The first derivative is:

0Qy(w) Yir (%jg;gor(ot)
dw; DE B Ser(on)

4.6.2 Polynomial kernel

1. Definition

Polynomial kernel is defined as follows:
ke (xi, %)) = (x,C; 1% + 1)1
where d is the polynomial degree.

2. Dot product in an unseen speaker and its derivative

In addition to ¢.¢,(0;) and Mw mentioned in subsection 4.6.1, item 2,
J

' and 8“’" are expressed as follows:

By B.4,
M M M
> wpwe D(mym!,r) + > wi,E(m,r) + F(r)
m=1m'=1 m=1

By B.5,

SAs . M .
— = E(j,r)+ E 2w, D(m, j,r)
811)]' —



where

I _ NN CmnOm/n
D(m,m',r) = Z Z —

ZIH

.
Il
—

3. Expression of distance measure

Then, the distance measure is expressed in terms of ¢'c, and ¢/ ¢, (0;) as

Is; —odllg, = lIs:[c, + [lodl[c, —$,.C, "oy — 0,C, s, (4.17)

where

S Ll

s, =507, = o] —1
1
s'!C:lo, = 0/C's, = [g,{cpr(ot)} -1

(Since it is assumed that C, is a symmetric matrix, s,C, 'o; = 0,C, 's,.)

So,
1

1
s —oulle, = [sr]* + lloulfe, = 2[ser(0n)]* +1 (4.18)

4. Expression of the auxiliary function

The auxiliary function is expressed in terms of ¢/, and ¢.¢,(0;) as follows:

Ow) = 135, (d1 log(27) + log |C, | + Is,

r=1t=1

BJ|F4

R T
ZZ%r <d1 log(27) + log |C,| +

r=1t=

[c,icr]

bD|hd
—
—

-2[q @r(ot)]% + 1) (4.19)
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5. The first derivative is:

aQb(W) _ 1 EZ [ ) (-1 Jd
a’w]‘ - 2d ;;Wﬁ grgr 8wj grgr
0
)]
a’w]‘
1 R T ( ) M
= _TdZZ’Ytr[g;grd (E(];T)+ Z meD(m:];T)) -
r=1t=1 m=1
20004 VB 1.1)] (4.20)

4.6.3 Contour plots

In order to have a feeling of the output of the KPCA, some contour plots on dif-
ferent kernels are presented in order to compare with the linear PCA. It contains
data points in the original input space and contour lines, which mean principal
component values are constant along the line and they are orthogonal to the
eigenvectors. A toy example with 3 Gaussian clusters in two dimensions is pre-
sented, which is provided by [24]. The contour plots corresponding to the first few
eigenvectors of the linear kernel (equivalent to linear PCA), the Gaussian kernel
and the polynomial kernel (of degree three and four) are presented in Figures 4.2,
4.3, 4.4 and 4.5 respectively. There are two non-zero eigenvectors for the linear

kernel and three non-zero eigenvectors for the polynomial kernel.

Eigenvalue=17.176 Eigenvalue=9.561

15 15

0.5

Figure 4.2: Contour plot of the linear PCA (The x-axis and y-axis are the di-
mension 1 and 2 respectively)
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Eigenvalue=22.558 Eigenvalue=20.936 Eigenvalue=4.648 Eigenvalue=3.988

(x—x;)?

. . — z

Figure 4.3: Contour plot of the KPCA - Gaussian kernel (K (x;,x;) =e o1 )
Eigenvalue=4.222 Eigenvalue=0.583 Eigenvalue=0.734

1 1)/

0.5

-0.5 . .
-1 0 1 -1 0 1 -1 0 1

Figure 4.4: Contour plot of the KPCA - polynomial kernel in power 2
(K (xi,%;) = (xj7;)?)

Eigenvalue=1.743 Eigenvalue=1.516 Eigenvalue=0.194 Eigenvalue=0.106

15

0.5

Figure 4.5: Contour plot of the KPCA - polynomial kernel in power 3
(K (xi,x;) = (x};)°)

4.7 Time complexity

In both the adaptation algorithm and the recognition algorithm, the calculation
of the dot product dominates the computation. Therefore, they are chosen as the
measure of the time complexity of the algorithm. For the kernel computation in
both the Gaussian kernel and the polynomial kernel, it is essential to compute
k.(Xpnr,0;) in adaptation (forn = 1---N, r =1---Rand t = 1---T) so that
its time complexity is O(NRT) (where N is the number of training speakers, R

is the total number of states in the HMMs and T is the number of frames in
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the utterances. In recognition, without pruning, its overall time complexity is

O(NRT) again.

4.8 KEV adaptation experiment

In Gaussian kernel, 3 is a tunable parameter (all 3, equal to a single /3 in the
experiment). For tuning, 10 speakers are sampled from the training-set. Around
4 seconds of adaptation data are selected for each speaker. KEV is performed on
several beta values. The recognition accuracy against beta value is then plotted.
The tuning results are in figure 4.6 and 5 = 0.0005 is the best and it is chosen

for the rest of the experiments.

984 T T T T

983 b

982 b

recognition accuracy (%)

98.1 i

98 1 1 1 1
0 0.0005 0.001 0.0015 0.002

beta

Figure 4.6: Tuning result of beta value for Gaussian kernel

The Gaussian kernel and the polynomial kernel with power three were adopted.
Only 10-second adaptation-set were done for comparison. This is shown in Figure
4.7. The results show that the Gaussian kernel was better than the polynomial
kernel when the number of eigenvoices is more than one. A possible reason is
that the model we used is HMM where each state is in the form of Gaussian. A

Gaussian kernel is then a reasonable choice for KEV.
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Figure 4.7: Comparison of the Gaussian kernel and polynomial kernel

Through the previous experiment, it is believed that Gaussian kernel is a
reasonably good choice for KEV. Although it is possible that other kernels could
give even better results, the focus of this thesis is on the framework of KEV.
Therefore, the Gaussian kernel is taken for further investigation for the rest of
this paper. In Figure 4.8, it shows that the KEV on 2-second, 4-second and

10-second adaptation-set with various number of eigenvoices from one to ten.

The results show that the base KEV outperforms the SI model when the
number of eigenvoices exceed two. The relative error rate reduction (ERR) of
the base KEV from ST model is 16%, 21% and 21% for 2-second, 4-second and
10-second adaptation-sets respectively while the ERR of the base KEV from
base EV is 28%, 32% and 32% for 2-second, 4-second and 10-second adaptation-
sets respectively. There are two observations. Firstly, the KEV with only one
eigenvoice is the worst. This is due to the fact that there are too few parameters
for estimation and there is a projection loss from the SI model in the initialization.
Due to this weakness, some solutions are proposed and discussed in Chapter 5.
Secondly, it is noticed that the recognition accuracy saturates quickly as the

number of eigenvoices increases.
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Figure 4.8: Summary of the recognition results of the base KEV adaptation
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CHAPTER 5

ROBUST KEV

5.1 Robust KEV 1 - addition approach

The major weakness of KEV is that it does not guarantee that the eigenspace
spanned contains a speaker model not worse than the SI one (in terms of likeli-
hood) for the given adaptation data, especially when the number of eigenvectors
decreases (smaller the eigenspace spanned). It is possible that some unseen speak-
ers in test-sets who cannot be well represented by a combination of the eigenvoices.

The speaker-adapted model can then perform worse than the SI-model.

The first proposal is to include the SI supervector in the optimization. It
means that, in addition to the kernel eigenspace obtained by KPCA, the SI
supervector is treated as a compulsory component. It could ensure the result in

optimization is not worse than the SI one (in terms of the likelihood).

A speaker supervector is defined as:

By equation C.2,

1
s, — o4l[> = ——log(kr(X£SI),0t) + 3 wnB(m,, t))

By equation C.3, ag’g;};"’) is the same as the one in base KEV. Then, the first
derivative of Qy(w) also remains unchanged too. The initialization of both KEV

has to be modified as follows:

f0 fori=1---M
Wi=Y1 fori=0
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5.2 Robust KEV 2 - interpolation approach

In proposal 1, adding the ST model is, in fact, a specific case of interpolation.
Therefore, an extension to an interpolation was proposed and investigated. There
are four modifications, which are the definition of the speaker supervector, dis-
tance expression, the first derivative of the auxiliary function for the gradient

ascent and weights initialization.

e Definition of the speaker supervector

A speaker supervector is defined as an interpolation between the SI model

and the KEV-adapted model:

$=wop(xD) 4 (1—wp) 3% Lmmn ) (5.2)

e Distance expression

The distance expression becomes:

1
s —alle, = —5 log(seon)

where ¢’ ¢, (0;) = wok, (x°7, 0;) + (1 — wy) [A(r, )y +SM_ w,B(m,r, t)] by
D.3.

e The first derivative of the auxiliary function

By 4.15, for i =0--- M,

0Qy(w) 1 Vir aiwg;%(ot)
= 3 Z Z fir ow; T T AR

awi r=1t=1 Pr C;QOT(Ot)

By D.4 and D.5,
35! ¢, S
Isr¢r(00)  _ ke (x50 0,) — A(r,t) — 3w, B(m, 1, t)
aw[] m=1

96,0y (Ot)

= (1 —w)B(j
awj ( wO) (],T,t)
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where

A(T,t) = %;kr(xnraot)
B(m,r,t) = ;j%(kr(xnraot)_A(rﬂt))

By substituting D.4 into 4.15 and D.5 into 4.15,

0Qp (W) _ 1 i i ﬁkr(xgﬂ), o) — A(r,t) = XM_ w,,B(m,, t()5 3)
au}[] 2 r—1t=1 51‘ C,’«QOT (Ot)
0Qy(w) 1 &E &y (1= wo) B(j,m, 1)
_ - tr 5.4
ow, 2 7;1 t:Z1 T Slor(0y) (54)

e Weights initialization

The initialization of weights w; (for j = 1--- M) is the same as the one in

base KEV (projection method) and the weight w, is initialized to be 0.5.

5.3 Robust EV

To have a fair comparison on the EV and KEV, a robust EV is proposed. Similar
to the KEV, we have the ”addition” approach and the ”interpolation” approach.

e robust EV 1 - addition approach

The speaker definition is modified as in equation 5.5.

M

m=1

After differentiate (), with respect to w; and set it zero, the solution be-

comes:
R T R T M
> Z 18, Cr (0, = xD) = 33 5 (Y i), C'8yr)  (5.6)
r=11t=1 r=1t=1 m=1
e robust EV 2 - interpolation approach
The speaker definition is:
M
s = wyx3D + (1 —w0) (ér + Z wmemr) (5.7)
m=1
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After differentiate (), with respect to w; and set it zero, the solution be-

comes:
R T R M

~/ -1 ST ~/ —1x
r=11t=1 r=1t=1 m=1

(5.8)

The weights w; (for j =1--- M) are solved analytically while wy is simply

found exhaustively.

5.4 Experimental results

Since it does not guarantee that the base KEV is better than the ST one in terms
of likelihood, two solutions are proposed in the last two sections. Experiments
are conducted in 2-second, 4-second and 10-second adaptation-sets. Compar-
isons of recognition results of the base KEV and the two suggested methods are

summarized in Figures 5.4, 5.5 and 5.6 respectively.
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Figure 5.1: Comparison of the recognition results of the base EV and robust EV
adaptations in 2-second adaptation-set

These figures show that both proposed modifications outperform the base
KEV while the robust KEV 2, which interpolates the SI supervector with the
KEV one, is the best. The robust KEV 2 is slightly better than the robust KEV
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Figure 5.2: Comparison of the recognition results of the base EV and robust EV
adaptations in 4-second adaptation-set
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Figure 5.3: Comparison of the recognition results of the base EV and robust EV
adaptations in 10-second adaptation-set

1 in small amounts of adaptation data (2-second adaptation-set). As the amount
of adaptation data increases, the robust KEV 2 has a greater advantage over the

robust KEV 1.
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Figure 5.4: Comparison of the recognition results of the base KEV and robust
KEV adaptations in 2-second adaptation-set
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Figure 5.5: Comparison of the recognition results of the base KEV and robust
KEV adaptations in 4-second adaptation-set
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CHAPTER 6

FURTHER INVESTIGATION

6.1 KEV versus conventional adaptation meth-
ods

In this chapter, KEV is compared with conventional adaptation methods includ-
ing MAP and MLLR. For MLLR adaptation, a global transformation matrix is
estimated since it is conducted with small amounts of adaptation data. MLLR
with a full transformation matrix or a diagonal transformation matrix are tried.
In MAP adaptation, there is a back-off scaling factor. Various values are tried
and the best results are presented. For KEV, the best results (among experi-
ments on different numbers of eigenvectors) are summarized. The comparison is

presented in Figure 6.1. All the above experiments are done under supervised

conditions.
amount of MLLR MAP base | robust | base | robust
adaptation data full diag. EV EV 2 | KEV | KEV 2
25 96.16% | 96.16% | 95.50% | 95.61% | 96.26% | 96.85% | 97.28%
4s 96.06% | 96.15% | 95.63% | 95.65% | 96.26% | 97.05% | 97.44%
10s 97.56% | 96.24% | 96.47% | 95.67% | 96.27% | 97.05% | 97.50%

Table 6.1: Comparison of recognition accuracies of various adaptation methods

Overall, MAP gives the worst performance due to the fact that MAP re-
quires a lot of adaptation data. The MLLR gives good results in a 10-second
adaptation-set. However, all three variations of KEV outperform both MAP and
MLLR in 2-second and 4-second adaptation-sets. This shows that KEV is good
in rapid speaker adaptation. Out of the three variations, robust KEV 2, which

incorporates the SI model by interpolation, is found to be the best.

6.2 Significant tests

Section 6.1 shows that KEV gives promising results in small amounts of adapta-

tion data. However, when comparing several adaptation methods, it is important
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Figure 6.1: Comparison of the various adaptation methods

to understand how significant the performance gains are between one system and
another. Therefore, significance tests are done. A software for significance test by
the National Institute of Standards and Technology (NIST) is used. A two-tail
5% significant level is used. The results are shown in Table F.1, F.2 and F.3 in
appendix F.

6.3 Analysis of the eigenvectors

In both EV and KEV, it is expected that the extracted components represent
certain kinds of inter-speaker variations such as gender, age, accents and so on.
Therefore, in this section, we try to analyze the relationship between the weights

of the components and the inter-speaker variations in a qualitative manner.

First of all, there are 326 speakers in the corpus, 163 speakers for each of
the training-sets and test-sets. PCA and KPCA are performed on the 163 train-
ing speakers for EV (base-EV with 2 eigenvectors) and KEV (base-KEV with 8
eigenvectors) respectively and two sets of experiments are conducted (the chosen
configurations give the best recognition accuracy in base-EV and base-KEV re-

spectively). The first set of experiments is to project the SD supervectors of the
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training speakers on the eigenvectors. The relationship between the projected
weight of the component and the inter-speaker variations are analyzed. Scatter
graphs (each speaker represents a point) on the first and second weights are plot-
ted. Speakers are grouped as "girl”, "boy”, "man” or "woman”. The scatter
plot of the first two eigenvectors shows whether EV and KEV can extract inter-

speaker variations successfully.

The above experiments are an ideal analysis on the components obtained by
PCA and KPCA. Therefore, the second set of experiments compare the weights
estimated by EV and KEV adaptation against the inter-speaker variations. Al-
though it is expected that the class could become more confused in the test-set,
it is meaningful to see if the distribution in the scatter plot of the training-set
is similar to that of the test-set. The first set of experiments are treated as an
analysis on the extraction of component while the second one is treated as an

analysis on whether the adaptation can make use of extracted components.
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Figure 6.2: Scatter plot of the training-set of EV

The scatter plot of the training-set is in Figure 6.2. It is found that "boy”
and "girl” speakers are too diverse and it makes the scatter plot un-readable. It

means that the first two eigenvector does not help in distinguishing boy and girl
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from man and woman. Therefore, only "man” and ”woman” speakers are plotted

in 6.2 (for a training-set again).
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Figure 6.3: Scatter plot of the training-set of EV

It is found that, in EV, the second eigenvector separates the "man” and

”woman” speakers ("man” is on the left while ”woman” is on the right).

In order to see if the adaptation is making use of this information, the scatter
plot of a test-set is plotted in Figure 6.4 (only "man” and ”woman” speakers are

plotted). The trend holds but it is more confused in the middle.

Similar to EV, the scatter plot of the training-set and the test-set of KEV are
plotted in Figures 6.5 and 6.6.

It is found that the distribution of "man” and ”woman” are separated clearly
in the first eigenvectors of KEV ("woman” is on the top-right corner and ”man”
is in the bottom) while the children (both "boy” and "girl” subsets) are in the
top-left corner. ”Woman” and "kids” are slightly confused. "Boy” and ”girl” are
confused a lot. That observation matches the idea that children’s voices are more
similar to women’s voices rather than men and children’s gender is difficult to
distinguish by their voices.
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Values on the first eigenvoice

Values on the first eigenvoice

In the study of the relationship between the four groups and the eigenvectors,

it implicitly investigates the gender and age effect in a blurred way. In addition,
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Figure 6.5: Scatter plot of the training-set of KEV

the effect of accents is also studied but no clear correlation can be found.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Contribution

We have made several contribution in this thesis. Firstly, KEV is proposed which
is a non-linear generalization of EV. By using different base kernel, it can handle
different kinds of data distribution. This enhances the capability of eigenvoice
family. Secondly, the derivation of the formula for the Gaussian kernel and poly-
nomial kernel is conducted. The major works include expressing the Manhalonbis
distance in the input space in terms of dot products in the feature space. In addi-
tion, if we put the whole supervectors in a single non-linear kernel in the KPCA,
dot products between certain segment of a supervector and another vector are
unable to be calculated which is needed by the computation of Manhalonbis dis-
tance. Therefore, the composite kernel is proposed to solve this specific problem
in KEV speaker adaptation. Thirdly, due to the observation that KEV speaker
adapted model does not guarantee to be better than the SI model, robust KEV
is investigated, which combines the SI model and the KEV adapted model. It is
showed that robust KEV improves its robustness in small amount of adaptation
data. Fourthly, eigenvoice analysis in scatter plot is used to study the relationship
between the extracted eigenvoice and the underlying inter-speaker variations. It
shows that the first two eigenvectors in KEV captures gender and age in this digit

recognition task.

7.2 Conclusion

In this thesis, EV has been revised. It is found that the correlation approach is
better than the covariance approach because it avoids some features with large
dominating values. Both EV and SI model are taken for comparing with the

KEV. However, EV does not show improvement. A possible reason is that linear
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PCA may not be effective enough for this digit recognition problem. This is the
reason for proposing KEV. The importance of KEV is to generalize EV from a
linear manner to a non-linear one so as to enhance its capability on different prob-
lems. In establishing the KEV architecture, the major difficulty is to map the
feature space eigenvoices to observation space. Composite kernel is the proposed
solution which is able to split the eigenvoice into constituents in the features
space in order to compute the likelihood which is used in both the adaptation

algorithm and recognition algorithm.

Following the investigation of kernel eigenface in the development of face
recognition, KEV has been proposed as a non-linear extension of EV. The polyno-
mial kernel and the Gaussian kernel have been studied. KEV using the Gaussian
kernel showed promising results in a digit recognition task. By an observation
that both base-EV and base-KEV do not guarantee it is better than SI model in
terms of likelihood, two enhancements (addition approach and interpolation ap-
proach) have been proposed on KEV. Both of them incorporate the SI model to
improve the robustness of the adaptation. In 2-second and 4-second adaptation
set, KEV is not only better than EV model and SI model, but also outperforms
the conventional adaptation approaches including MAP and MLLR adaptation.
However, as more adaptation data are available (for example, 10-second adapta-

tion set), MLLR becomes better.

In order to show the EV and KEV are extracting and utilizing some underly-
ing inter-speaker variations, eigenvalues are analyzed. According to the analysis,
it is found that the second eigenvectors in EV discriminate "man” from ”woman”
while the first two eigenvectors in KEV is highly correlated with the gender and

age. It can be used to discriminate "man”, "woman” and ”children”.

7.3 Future work

There are three main extensions of the current work.

1. Extension to the Gaussian mixtures or context-dependent mod-
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eling

In this thesis, all the experiments are based on single Gaussian HMM. It
would be good to extend on Gaussian mixtures or context-dependent mod-
eling. However, the method concatenation of means is kept, the dimension
of supervector becomes huge. There is also a problem of sequence in Gaus-
sian mixtures. A direct extension is to use MLLR-based eigenspace speaker
adaptation by applying the eigen-decomposition on the MLLR space instead
of the supervector of the means of HMMs. There are similar investigations

in [8, 48, 31].

. KEV based on phone-classes

Currently, all units (digits or phonemes) are concatenated into a single
supervector, which implies a huge constraint to the estimated weights.
However, each unit could have different behavior, but if we consider each
phoneme independently, it could result in insufficient data or require large
amounts of adaptation data. This would violate one of the most important
motivations of EV or KEV. So, KEV based on phoneme-classes is a desirable
choice. For example, people from country A and country B may pronounce
vowels in different ways. Aside from that, though their pronunciation of
consonant are similar. We can then group the vowels and consonants into
two clusters. Weights for each cluster are estimated independently. It then
can release the constraints on the weights. In order to have an automatic
architecture to form clusters, regression class tree can be considered, which

uses a Euclidean distance measure for a centroid splitting algorithm.

. Speed-up issues

Although KEV gives an encouraging performance gain, it is costly in the
computation. When performing recognition, it is at least N times slower

than the conventional methods.

Various speed-up methods are possible, which can be sub-divided into three

areas. The first area is to reduce the number of kernels to be computed

and it can be realized by sparse KPCA. or finding an approximated pre-

image in the input space. The second area is for saving computation in the

adaptation algorithm. A common approach is that, instead of computing

all decoding paths in the adaptation, only the Viterbi path is used. This
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is due to the fact that the Viterbi path accounts for the major component
in the auxiliary function. The time complexity of the kernel computation
can be reduced from O(NRT) to O(NT'). The third area is the recognition
concern. One idea is to find an approximated pre-image in the input space.
Another idea is to use a two-pass decoding. The ST model is used as the
first-pass decoding, giving the N-best lattice. The KEV-adapted model is
used as the second-pass decoding on the N-best lattice generated in the first-
pass. In two-pass decoding, the first-pass decoding using a less expensive
model, prunes most of the unlikely candidates. The search space can be
reduced significantly by the n-best lattice. The second-pass decoding using

an expensive model could be more efficient.

. Design and selection of kernel functions

In this thesis, Gaussian kernel and polynomial kernel are only compared
experimentally. Deep analysis on the suitability and selection of kernel are

absent, which is a very interesting area of study.
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APPENDIX A

PROOFS FOR KPCA

A.1 Proof of centering of covariance matrix

f(z'j = @(Xi)I@(Xj)

1 N 1 N N
¥ 2 P %) (%) + 15 21 D () ()
p=1 p=1g=1
1 N 1 N N N
= K; K; K, + K
J N qu q N I,Zl pJ NQ pgl qgl pq
(A.1)
Then,
K = HKH (A.2)
where
H=1I- 111 and
1=[11..1]

A.2 Proof of the normalizing factor used in KPCA

For each eigenvector v,,, it is normalized by ¢, as follows:

N

Vin = 3 5 (x;) (A.3)

n=1 Cm

By definition of orthonormality, for any eigenvector v,, in the feature space,
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vV, =1 (A.4)

By substituting A.3 into A.4, it becomes:

N N
¢ = Z Zamnamn’@(xny@(xn’)

Since Ka,,, = A\,

Therefore,

Vi = 3 A5 (x) (A5)
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APPENDIX B

DERIVATION FOR ORIGINAL KERNEL
EIGENVOICE

B.1 Derivation of ¢ ¢,(0;)

M N
(6
= r m - kr nrs - _;n r B.1
@,¢r(0) +mZ:1w 7;1 \/m[ (Xnr. 01) — @rp (Ot)] (B.1)
M
= A(r,t)+ Y wnB(m,r,t) (B.2)
m=1
where
1 N
A(Ta t) = @;Qpr(ot) = ﬁ Z kr(xnraot)
n=1

B(m,r,t) = ) Cmn (kr(an,Ot) — A(r, t))

Differentiate ¢ ¢, (0;) with respect to wj,

aC;. Pr (Ot)
8wj

— B(j,r 1) (B.3)



B.2 Derivation of ¢/,

S Gr

M N M N
= LYY Y ) s

where

kr(xnraxn’r) = (ﬁr(xnr)’gbr(xn’r)
]

= [gpr(xnr — QC_’T)] [(Pr(xn’r - ‘F_’r)]

> [Fr (Knrs Xir) + e (i, Xir) | +

i=1

==

= kr(xnraxn 'r) —

1 N N
m szr eraX]r

i=1j=1

1 N 1 N N
= N Z gOr(an) O (Xir) — N2 Z Z Qpr(xir)lgpr(xjf)

i=1 i=1j=1
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b0, = [%Z%(Xw)]'[%z%(xﬁ)}

So, The final equation is:

M M M
g;«gr - Z Z wmwm’D(m; mla T) + Z me(ma T) + F(T)
m=1m'=1 m=1

where

N N
D(m,m',r) = zz%[;@(xx)_

S

% Z {kr (an, Xir) + kr (Xn,r’ X”)} + F(T):|

Differentiate ¢, with respect to wj,

0,6y

M
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APPENDIX C

DERIVATION FOR ROBUST KEV 1 -
ADDITION

C.1 Derivation of ¢ ¢, (0;)

For robust KEV, the only difference is the definition of the new speaker in the

feature space which is as follows:

M N Wor v
¢ = g(xN)+ 3 Y I o(x,)

m=1n=1 \/m
= (o —p)+ 33 () —)  (c)

M N M N
Wim Cmn WmCmn _
= Z Z kr(xnra Ot) - Z Z 90;307“(015) + QOT(X(SI))’QOT(Ot)

m=1n=1 \% )\m m=1n=1 V )\m
(S1) M N o
- r ' r m o kr nrs - @, T
e (D) (o) + 3w Em[ (Xur, 01) — @rpr(01)]
M
= k(x0) + Y wpB(m,r,t) (C.2)
m=1

B(m,r,t)

I
[]=
2
3
S
—
=
5
ol
3
2
|
BN
=
=
~—



Differentiate ¢, ¢, (0;) with respect to wj,

96,0y (Ot)

= B(j.rt
o, (j,r 1)
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APPENDIX D

DERIVATION FOR ROBUST KEV 2 -

INTERPOLATION

D.1 Derivation of ¢ ¢,(0o;)

For robust KEV, the only difference is the definition of the new speaker in the

feature space which is as follows:

B(s) = wog(xD) + (1—wp) Y. 3

where

(D.1)

(D.3)



( (%Xur 01) — A(r, 1))

N
B(m,r,t) Z

n:l

e Differentiate ¢ ¢, (0;) with respect to wq

a/ . M

grg’w(()t) = kr(xr ,Ot Z m r t
0 m=1

. .M,

e Differentiate ¢, ¢, (0;) with respect to w;, for j =1

o5l v, (o .
220 — (1 - un) ..
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APPENDIX E

PRACTICAL SPEED-UP METHODS IN
KEV

Some practical methods are considered in this thesis for speed-up. The compari-
son of the CPU time and the accuracy of the lookup table, approximation method

I and II to the exponential function are summarized in Table E.1.

1. Pruning

In decoding, pruning is a common approach for speed-up. Reducing the
search space by pruning can directly decrease the number of distance mea-

sure computation. This can improve the speed.

2. Lookup table

In the distance calculation, exponential function is the most costly part for
the Gaussian kernel. It is found that the input of the exponential function
is usually within a narrow range. Therefore, pre-computing exponential

values in that range could speed-up.

3. Schraudolph fast approximation method to exponential function

According to the [43], a fast and compact method is proposed for approxi-

mating the exponential function.

4. Series-based approximation method to exponential function

In the calculation of the k,(s,,0;), computing exponential is most costly
component. Therefore, we first express exponential function as a series.
Then, the input value is bound to a given range and the first four terms of
the series is used as the approximation. It is defined in E.2. The comparison
of the CPU time and the absolute error for using various number of terms

are stated in Table E.1.

Exponential function can be expressed as a series which is:

2 IE3 "

e:cp(:c):1+x+%+§+...+ﬁ (E.1)
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let y = £ where ¢ > z so that -1 <y <1

exp(z) = [eap(y)]’

Q

2

1
= {1+x(1+x(§+

[1+y+% ‘%3]6

C

5)

(E.2)

if it is approximated by the first four terms and ¢ = 2¢, power function

means d multiplications (d = 6 in the experiment).

Therefore, the exponential function is replaced by 8 multiplications and

3 additions.

CPU time | Relative error
Build-in exponential function 1.3 NIL
Lookup table 0.64 0.050%
Schraudolph fast approx. method 0.55 1.517%
Series-based approx. method 0.77 0.280%

Table E.1: Comparison of the CPU time and the accuracy of the 3 proposed
approximation methods to exponential function with the build-in one

Finally, in order to have a balance in minimizing the relative error and CPU

time, the lookup table approach is used in calculating exponential function.
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APPENDIX F

SIGNIFICANCE TESTS

In the significant tests, MAP, MLLR, base-EV, robust-EV, base-KEV and robust-

KEV are compared. Their abbreviations are summarized as follows:

b-EV : base-EV

r-EV : robust-EV

b-KEV @ base-KEV

r-KEV . robust-KEV (the interpolation one)

MLLR.d : MLLR with diagonal transformation matrix
MLLR.f : MLLR with full transformation matrix

SI-m : ST modeling

MP :  Matched Pair Sentence Segment (Word Error) Test

ST : Signed Paired Comparison (Speaker Word Accuracy Rate (%)) Test
Wi : Wilcoxon Signed Rank (Speaker Word Accuracy Rate (%)) Test
MN : McNemar (Sentence Error) Test
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V.

eyep uoryeydepe puosas-g Uo SS9, douedIUSIS 1° . 9[qRL,

MAP MLLR.f MLLR.d SI-m r-EV b-KEV r-KEV
b-EV MP: MAP | MP: MLLR.f | MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: MAP SI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: MAP | WI: MLLR.f | WI: MLLR.d | WI: SI-m | WI: r-EV | WI: b-KEV | WI: -KEV
MN: MAP | MN: MLLR.f | MN: MLLR.d | MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MAP MP: MLLR.f | MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: -KEV
SI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: MLLR.f | WI: MLLR.d | WI: SI-m | WI: r-EV | WI: b-KEV | WI: -KEV
MN: MLLR.f | MN: MLLR.d | MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MLLR.f MP: same MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: same WI: SI-m | WI: r-EV | WI: b-KEV | WI: r-KEV
MN: same MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MLLR.d MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: SI-m | WI: r-EV | WI: b-KEV | WI: --KEV
MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
SI-m MP: same | MP: b-KEV | MP: --KEV
SI: same SI: b-KEV SI: r-KEV
WI: same | WI: b-KEV | WI: --KEV
MN: same | MN: b-KEV | MN: r-KEV
r-EV MP: b-KEV | MP: r-KEV
SI: b-KEV SI: r-KEV
WI: b-KEV | WI: --KEV
MN: b-KEV | MN: r-KEV
b-KEV MP: r-KEV
SI: r-KEV
WI: r-KEV

MN: r-KEV
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eyep uoryeydepe puosas-¥ uo s3so, douedYIUsIg 7" 9[qRL,

MLLR.f MAP MLLR.d SI-m r-EV b-KEV r-KEV
b-EV MP: MLLR.f | MP: MAP | MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: MLLR.f SI: MAP SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: MLLR.f | WI: MAP | WI: MLLR.d | WI: SI-m | WI: r-EV | WI: b-KEV | WI: -KEV
MN: MLLR.f | MN: MAP | MN: MLLR.d | MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MLLR.f MP: same | MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: same SI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: same WI: same WI: SI-m | WI: r-EV | WI: b-KEV | WI: --KEV
MN: MAP | MN: MLLR.d | MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MAP MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: MLLR.d | WI: SI-m | WI: r-EV | WI: b-KEV | WI: --KEV
MN: same MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
MLLR.d MP: SI-m | MP: r-EV | MP: b-KEV | MP: r-KEV
SI: SI-m SI: r-EV SI: b-KEV SI: r-KEV
WI: SI-m | WI: r-EV | WI: b-KEV | WI: --KEV
MN: SI-m | MN: r-EV | MN: b-KEV | MN: r-KEV
SI-m MP: same | MP: b-KEV | MP: --KEV
SI: same SI: b-KEV SI: r-KEV
WI: same | WI: b-KEV | WI: --KEV
MN: same | MN: b-KEV | MN: r-KEV
r-EV MP: b-KEV | MP: r-KEV
SI: b-KEV SI: r-KEV
WI: b-KEV | WI: --KEV
MN: b-KEV | MN: r-KEV
b-KEV MP: r-KEV
SI: r-KEV
WI: r-KEV

MN: r-KEV
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eyep uoryejdepe puoIas-)J UO SS9, 90URIYIUSIS ¢ o[qR],

MLLR.d SI-m r-EV b-KEV MAP r-KEV MLLR.f
b-EV MP: MLLR.d | MP: SI-m | MP: r-EV | MP: b-KEV | MP: MAP | MP: r-KEV | MP: MLLR.f
SI: MLLR.d SI: SI-m SI: -EV | SI: b-KEV | SI: MAP SI: -KEV | SI: MLLR.f
WI: MLLR.d | WI: SI-m | WL: r-EV | WI: b-KEV | WI: MAP | WL: -KEV | WI: MLLR.f
MN: MLLR.d | MN: SI-m | MN: r-EV | MN: b-KEV | MN: MAP | MN: r-KEV | MN: MLLR.f
MLLR.d MP: same | MP: same | MP: b-KEV | MP: MAP | MP: -KEV | MP: MLLR.f
SI: same | SI: same | SI: b-KEV | SI: MAP SI: -KEV | SI: MLLR.f
WI: same | WI: same | WI: b-KEV | WI: MAP | WI: r-KEV | WI: MLLR.f
MN: same | MN: same | MN: b-KEV | MN: MAP | MN: r-KEV | MN: MLLR.f
SI-m MP: same | MP: b-KEV | MP: MAP | MP: r-KEV | MP: MLLR.f
SI: same | SI: b-KEV | SI: MAP SI: r-KEV | SI: MLLR.f
WI: r-EV | WI: b-KEV | WI: MAP | WIL: -KEV | WI: MLLR.f
MN: same | MN: b-KEV | MN: MAP | MN: r-KEV | MN: MLLR.f
r-EV MP: b-KEV | MP: MAP | MP: r-KEV | MP: MLLR.f
SI: b-KEV | SI: MAP SI: -KEV | SI: MLLR.f
WI: b-KEV | WI: MAP | WIL: r-KEV | WI: MLLR.f
MN: b-KEV | MN: MAP | MN: r-KEV | MN: MLLR.f
b-KEV MP: MAP | MP: r-KEV | MP: MLLR.f
SI: MAP SI: r-KEV | SI: MLLR.f
WI: MAP | WI: r-KEV | WI: MLLR.f
MN: MAP | MN: r-KEV | MN: MLLR.f
MAP MP: r-KEV | MP: MLLR.f
SI: -KEV | SI: MLLR.f
WI: r-KEV | WI: MLLR.f
MN: r-KEV | MN: MLLR.f
r-KEV MP: MLLR.f
SI: MLLR.f
WI: MLLR.f

MN: MLLR.f




