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KERNEL EIGENVOICE SPEAKERADAPTATIONbyHO KA-LUNGDepartment of Computer SieneThe Hong Kong University of Siene and Tehnology
ABSTRACTSpeeh reognition is a powerful and widely used tehnology nowadays. How-ever, its performane is not robust enough due to variations in speeh introduedby the operating environment, noises (their type and energy) and inter-speakerdi�erenes.Speaker adaptation is an important tehnology to �ne-tune either featuresor speeh models for the mis-math due to inter-speaker variation. In the lastdeade, eigenvoie (EV) speaker adaptation has been developed. It makes useof the prior knowledge of training speakers to provide a fast adaptation algo-rithm (in other words, only a small amount of adaptation data is needed). In-spired by the kernel eigenfae idea in fae reognition, kernel eigenvoie (KEV)is proposed. KEV is a non-linear generalization to EV. This inorporates KernelPrinipal Component Analysis (KPCA), a non-linear version of Prinipal Compo-nent Analysis (PCA), to apture the higher order orrelations in order to furtherexplore the speaker spae and enhane reognition performane. The major dif-�ulty is that through KEV adaptation, the adapted speaker model is estimatedin the kernel feature spae whih may not have an exat pre-image in the inputspeaker-supervetor spae, yet observation likelihoods are omputed in the aous-ti observation spae for both adaptation and reognition. Composite kernel isxi



proposed to solve the problem.Experimental investigation on TIDIGITS orpus, an English digits reognitiontask, using 4 seonds of adaptation data shows that KEV adaptation gives a 21%relative improvement over the speaker-independent (SI) model, a 25% relativeimprovement over MLLR adaptation and a 32% relative improvement over EVadaptation. When the speaker-adapted models from KEV are interpolated withthe SI model, the relative improvements inrease to 32% over SI model, 35% overMLLR adaptation, and 31% over similarly interpolated EV adaptation.
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CHAPTER 1INTRODUCTION1.1 BakgroundSpeeh reognition is a very powerful tehnology that is widely used nowadays.Examples inlude voie-ativated phone-dialing (VAD) by AT&T Wireless, Nokiaand Motorola, voie-ontrolled personal digital assistant (PDA) by Palm, voie-ontrolled in-ar musi system by Sony, voie-operated light swith by VOS Sys-tems, omputer assisted language learning (CALL) and so on. In addition, aall enter with interative voie response (IVR) is an important appliation ofspeeh reognition. This is used in various domains inluding redit/debit ardenquiries, international travel bookings and proessing insurane details and itshowed huge business values. All these examples show the potential and impor-tane of speeh reognition tehnology.However, inter-speaker di�erenes is an important bottlenek to further im-provement on the auray of speeh reognition. To ounter these problems,various kinds of speaker normalization and speaker adaptation methods havebeen proposed. Feature-based adaptation (or normalization) aims to redue theundesired variations in the features while model-based adaptation aims to mod-ify the aousti models to optimize on a ertain amount of data of a given speaker.Among the various adaptation methods, eigenvoie adaptation (EV) is a well-known method to extrat inter-speaker variations suh as gender, age and aentfrom a set of training speakers by Prinipal Component Analysis (PCA). By as-suming any speakers to be a linear ombination of eigenvetors with a set ofweights. A speaker-adapted model is obtained by �nding the weights by maxi-mizing the expeted log likelihood of the given adaptation data.
1



In this thesis, we propose a novel non-linear extension to EV, whih we allKernel Eigenvoie (KEV) by utilizing kernel methods. The hypothesis is thatthe use of linear PCA in EV may not be best to apture the inter-speaker vari-ations. In fat, EV is a speial ase of KEV using a linear kernel. By using thekernel trik, KEV uses KPCA, performing linear PCA in the high dimensionalfeature spae, to enhanes its apability in non-linearity without an expliit non-linear optimization. The main diÆulty is how to express the adaptation algo-rithm in the observation spae using the non-linear information in the featurespae. Our solution is to ompute kernel PCA using omposite kernels.
1.2 Outline of the thesisIn hapter 2, the idea of speaker-dependent (SD) and speaker-independent (SI)modeling are disussed. It is followed by the evolution of KEV from speakeradaptation, eigenfae, eigenvoie and kernel methods.In hapter 3, onventional eigenvoie is introdued. A disussion of its obje-tives and a brief omparison between EV and Cluster Adaptive Training (CAT)[17℄ will be given. The outline of the EV algorithm follows. The general experi-mental setup is stated and two variations of speeh model training methods areintrodued and disussed. This hapter ends with a omparison of the reognitionresults on EV.In hapter 4, the KPCA algorithm and the kernel eigenvoie adaptation aredeveloped. The hallenge of KEV and its proposed solution are investigated. TheKEV algorithm for Gaussian kernel and polynomial kernel are presented. Thetime omplexity of the algorithm as well as the reognition results on KEV aredisussed.Robust EV and KEV are introdued in hapter 5. The motivation, re-formulation and the experimental results are also presented. In hapter 6, aomparison among EV, KEV and onventional adaptation tehniques inluding2



MLLR and MAP is presented. A brief disussion of the signi�ane tests areinluded. Then, the relationship between the eigenvetors and speakers' hara-teristis is analyzed. The onlusion and future work are disussed in the lasthapter.
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CHAPTER 2LITERATURE REVIEW2.1 SD modeling versus SI modelingIn speeh reognition, aousti modeling an be divided into two methods, thatis, speaker-dependent (SD) modeling and speaker-independent (SI) modeling. SDmodeling means that an aousti model is trained by data from a spei� speakerwhile SI modeling means that an aousti model is trained by data from all speak-ers.There are pros and ons in both SD and SI modeling. For SD modeling, theadvantage is that a well-trained SD model is usually better than a well-trained SImodel for the training speaker. [29℄ states that the error rate of an SD model isabout one third of the error rate of an SI model. In [29℄, the author explains that`phonemes do not oupy absolute positions in aousti spae, but are pereivedrelative to eah other`. As all speakers are used to train an SI model, its proba-bility distribution of phonemes in an SI model spreads out. In tehnial words,if Gaussian is used to model the distribution, it beomes atter with larger vari-ane. An illustrative example is that `One person's "ow" in "about" may soundlike another person's "oo" in "room".` In other words, the relative position ofphonemes in aousti spae is weakened in an SI model. The disadvantage is thatan SD model gives a very tough onstraint on the appliation sine it is usable bythe training speaker only. This means that eah user needs to have his/her ownSD model. The amount of data for training a robust SD model is more than 5minutes of speeh data (depending on the domain and the omplexity required).It is a ompletely user-unfriendly idea.For SI modeling, its importane is that a fairly good aousti model an beahieved for all people in general. Any user an utilize this model immediately.Reording speeh and training an aousti model for eah new user is no longer4



neessary. Although it makes speeh reognition more user-friendly, there are twodrawbaks. Firstly, the distribution of data ould a�et or be biased toward somegroups of people. So, it is important to keep everything as balaned as possible inthe training-set and the evaluation-set, suh as gender, aent and age group inorder to ensure the performane is not biased on some fators. Seondly, sine themodeling tehnique has to deal with the variations among speakers, omplexityof the aousti model should be higher. For example, the number of mixturesof HMMs in SI modeling should be higher than that in SD in order to ahievethe same auray. This means that the deoding speed in SI is usually slowerthan the in SD. Although the omplexity of HMMs partially gives the apaityfor desribing the variations in speakers, the mixture design does not diretlyaount for speaker variation.It is true that the SI approah is dominant in aousti modeling. However,speaker variations ause a bottlenek in the reognition auray. Therefore, ifa ertain amount of speaker-spei� data (adaptation data) is available, an wemake use of it to improve aousti models? This leads to speaker adaptationresearh.
2.2 Speaker adaptationAs introdued in Setion 1.1, speaker adaptation an be divided into two lasses,whih are feature-based adaptation and model-based adaptation. Voal-tratnormalization (VTLN) [13℄ is one feature-based example, whih is a parametrimethod used to normalize the e�et introdued by the variations of the voal tratlength of speakers. As stated in [49℄, its major limitation is that it is ineÆient tohave phone-level or word-level ontrol in a feature-based adaptation. For exam-ple, if the adaptation is realized by a transformation, this transformation has tobe applied to all observable frames. In ontrast, a model-based adaptation allowsa transformation to be applied to observable frames whih belong to vowels whileanother transformation is applied to observable frames whih belong to friatives.The three most ommon model-based adaptations are the Maximum Likeli-5



hood Linear Regression (MLLR) [34℄, the Maximum a Posterior (MAP) adapta-tion [33℄ and eigenvoie (EV) adaptation [29, 30, 28, 27℄.Instead of giving the details of the adaptation algorithms, the omparison ishighlighted. In MAP adaptation, large amounts of adaptation data as well as theoverage of the parameters are important. Rarely seen parameters ould resultin poor performane. The rate of onvergene to an SD model is slow. In MLLRadaptation, using blok diagonal or full transformation with a regression lass treemakes it exible and tunable. However, insuÆient adaptation data ould resultin a poorly estimated transformation matrix leading to poor reognition auray.In eigenvoie adaptation, the major idea is to make use of a priori knowledge ofspeaker information. By applying PCA on training speakers, eigenvoies areobtained. They desribe inter-speaker variations. Speaker spae is spanned bythe �rst few eigenvoies. There is a set of weights for eah unseen speaker and eahweight orresponds to eah eigenvoie. Speaker-adapted model is found within thespeaker spae by obtaining the set of weights in the adaptation proess. Furtherdisussion of EV ontinues in hapter 3.MAP MLLR eigenvoieAmount of Large Medium SmalladaptationdataConvergene Yes Yes Noto SD modelRate of Slow Fast FastsaturationOthers dependent on exible: regression, model speakeron the lass tree, variationsdistribution blok diagonal diretlyof data transformationTable 2.1: Comparison of the three main model-based adaptation methodsEV is espeially suitable for small amounts of adaptation data. It models thespeaker variations diretly, but it does not neessarily onverge to an SD model.Empirial results show that improvement saturates quikly, meaning that beyonda ertain limit, more adaptation data would not give further improvement. Theomparison is summarized as in Table 2.1.6



2.3 From PCA to eigenfae and eigenvoieThe story of kernel eigenvoie starts from one of the most famous linear transfor-mation methods whih is the PCA [23℄. It is a simple but powerful method thatan be used for dimensionality redution or redundany redution, de-orrelationof data, feature extration and so on. PCA guarantees that the mean square ofreonstrution error is minimized. It is a seond order method that only makesuse of information in orrelation or ovariane of multi-dimensional data.In onventional fae reognition methods, faial features inluding eyeballs,nose, mouth and head shape are deteted for fae identi�ation. In 1992, Turkand Pentland [46℄ �rst proposed the eigenfae. It is a novel unsupervised way todeouple faes into basis-faes by PCA. Any fae is then expressed as a linearombination of the eigenfaes so that the dimension is redued substantially. Thedetetion and identi�ation of human faes beomes a simple pattern reognitiontask in the eigenfae spae.Two main streams of extension to the eigenfaes are available. The �rststream is the work on statistial analysis methods other than PCA. In [19℄, in-stead of using PCA, it was proposed to use Fisher representation to enhane thedisrimination power; this is alled �sherfae. Other variations suh as the useof Independent Component Analysis (ICA) on fae reognition was investigatedin [3℄. The seond stream of extension is that instead of applying the statistialanalysis methods on the pixels of the image diretly, other spaes are explored.Eigenhill and eigenedge was investigated in [54℄ while eigenmotion was investi-gated in [55℄.In the speeh domain, speaker identi�ation and reognition is a diret anal-ogy to fae reognition tasks while speaker adaptation is a losely related prob-lem. Speaker adaptation using an eigen-deomposition tehnique, alled eigen-voie, was �rst proposed in [29℄. In [30, 28, 27℄, the maximum-likelihood eigen-deomposition (MLED) estimator for Gaussian mean adaptation was outlined.Experiments on isolated English letter reognition showed enouraging results.Later, the use of eigenvoie in speaker identi�ation and reognition was also7



explored in [44℄.Similar to eigenfaes, the extension of eigenvoie an be divided into fourstreams. The �rst stream is an extension of the statistial analysis. In [38℄,the PCA-based eigenvoie adaptation was extended to the Linear DisriminantAnalysis (LDA) transformation and pieewise linear onstraints. In [22℄, bothPCA and ICA were used to analyze the speaker variability. It was found thatthe �rst two ICA omponents orresponded to gender and aent respetivelywhile the �rst PCA omponent orresponded to gender only. In [15℄, instead ofusing the maximum likelihood for eigenvoie adaptation, eigenvoie was used forspeaker lustering. HMM sets were trained for eah speaker luster and a paral-lel reognition sheme for hoosing the maximum HMM sore was adopted. Theseond stream extends the sope of eigenvoie. It means that instead of apply-ing statistial analysis on ovariane or orrelation of the means of HMM sets,other targets are explored. In [8℄ and [48℄, the eigenspae-based MLLR approahwas introdued. PCA was applied to the MLLR transformation matrix. In [9℄,the eigenspae-based MAP linear regression approah was proposed. In [10℄, theidea of eigenroom was introdued. Adaptation was used to deal with the mis-math mostly due to room reverberation. The third stream extends the eigenvoiefamily tehnique suitable for the migration from small voabulary tasks to largevoabulary ontinuous speeh reognition (LVCSR). In [38℄, the �rst experimentson relatively large orpus Wall Street Journal ditation tasks were done, whihahieved a 15% relative improvement. In [31℄, the use of eigen-entroid plus deltatree (EDT) for a ompat ontext-dependent eigenvoie modeling was proposed.The fourth stream investigates the ombination of the eigenvoie approah withother onventional adaptation approahes. This is due to the fat that eigenvoieis only good at a small amounts of adaptation data. When the amount of adap-tation data inreases, onventional approahes suh as MLLR and MAP are moreadvantageous. Related disussions were presented in [7℄ and [9℄.
8



2.4 Kernel methodsOn top of the various statistial analysis methods suh as PCA, LDA, ICA, ker-nel methods have been developing at a fast pae in the last deade. The ideaof kernel methods was disussed thoroughly in [3℄. A simple example borrowedfrom it (the example is the same although the �gures are re-generated) to showthe power of high dimension in Figures 2.1 and 2.2.
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Figure 2.1: Input spae of the toy problem (Dimension 1 and 2 orrespond to x1and x2 respetively)In Figure 2.1, there are some data points with two dimensions in two lassesin the input spae whih is not linearly separable. If there is a mapping ' :(x1; x2)! (x1; x2; x21 + x22), data points from input spae an map to the featurespae as shown in Figure 2.2 where lass 1 and lass 2 are linearly separable.However, as the observation dimension inreases, the possible ombinationsof high dimension representation inrease exponentially. It is not a good ideato have an expliit form. Therefore, if the dot produt in the feature spae isgiven by k(x1; x2) = D'(x1); '(x2)E and the algorithm is expressed in terms of dotprodut, then, we an perform the algorithm in high dimensional feature spaeusing dot produts without knowing the expliit form of the mapping.9
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Figure 2.2: Feature spae of the toy problem (Dimension 1, 2 and 3 orrespondto x1, x2 and x21 + x22 respetively)In [3℄, the Kernel Prinipal Component Analysis (KPCA) was introdued.The main onept is to map the input spae to a feature spae of higher dimen-sion and linear PCA is performed in the feature spae. Reently, KPCA is appliedto fae reognition to take into aount higher order orrelations [53, 26℄ and themethod is alled kernel eigenfae. Later, the Fisher Linear Disriminant (FLD)was explored in the work of [51℄.
2.5 Summary of the evolutionThe summary of the evolution is shown in Figure 2.3. In the party of linear algo-rithms, it starts from PCA, following the development of eigenfae and eigenvoiefor fae reognition and speaker adaptation respetively. Similarly, in the partyof non-linear algorithms, KPCA �rst evolved from PCA. It was followed by thestudy of kernel eigenfae and urrently proposed kernel eigenvoie in this thesis.
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CHAPTER 3CONVENTIONAL EIGENVOICE3.1 Idea of eigenvoieFollowing the disussion in Setion 2.1, one may wonder if it is possible to esti-mate an SD model with a very small amount of data. The idea of EV is seededfrom this question. One trivial but important observation is that some speakersare similar. An unseen speaker an be inferred from a similar one from trainingspeakers. This situation exists in the eigenfae researh too. As disussed in [46℄,it is true that humans' faes usually have two eyes, two ears, a nose and a mouth.They are ommon in many aspets although they may di�er in fae shape or theirrelative positions. It inspires researhers to try to redue free parameters fromall pixels of faes to the weight parameters on eigenfaes.If we have many speakers in the training set, we an pre-train a lot of SDmodels from various kinds of referene speakers. A simple method is to use theadaptation data of a new speaker to pik the losest SD model as the adaptedmodel. The main shortoming of the method is that it demands a huge amountof speakers. In addition, an SD model from a similar speaker in training-set isusually not good enough for speakers in an unseen test-set.A modi�ation of the last method is to assume that any speaker model is aweighted sum of the training speaker model. This inreases the speaker spaeso that it is more likely that a good model exists in this searh spae. However,as the number of training speakers inrease, the number of parameters inreasesand more adaptation data is required.Thus, there is a need to redue the number of parameters so as to reduethe requirement of adaptation data. One way to do this is through lustering ofspeakers, as in CAT [17℄. Another way is to perform eigen-deomposition on the12



data to extrat the prinipal omponents, whih is the eigenvoie. Any speakermodel is represented as a linear ombination of the eigenvoies in the eigenspae.In short, eigenvoie adaptation an be divided into two main steps, whih arede�ning the speaker spae and searhing for a good speaker model. This is givenin Table 3.1. step 1 { step 2 {de�ning speaker spae searhing for a good speaker modelCAT by lustering maximum likelihoodeigenvoie PCA maximum likelihoodTable 3.1: Summary of the two steps in eigenvoie-family adaptation3.2 Introdution of parameter spaesSeveral parameter spaes are used in EV at di�erent stages. Three of them areintrodued for larity in this setion, whih are the observation spae, superve-tor spae and eigenspae. The idea is summarized in Figure 3.1 and they areelaborated below.1. Observation spaeThis is the aousti feature spae after feature extration in step one ofFigure 3.1. For example, an aousti observation vetor used in this thesisonsists of 12 mel-frequeny epstral oeÆients (MFCC) and the normal-ized energy from eah speeh frame. It is a 13-dimensional spae.2. Supervetor spae (or speaker input spae)A supervetor is formed by onatenating the means of HMM states asshown in step two of Figure 3.1. Supervetors de�ne the input spae instep three with dimension of:dim(supervetor spae)= (number of HMMs) x (number of states per HMM) *(dimension of the observation spae)In all experiments in this thesis, the number of HMMs is 11 while the13
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�1�2...�r...�R
37777777775 (3.1)

PCA is performed on the ovariane matrix or orrelation matrix of thespeaker supervetors to extrat the eigenvetors. These eigenvetors are alledeigenvoies. It is also in the form in Equation 3.1. Any speaker supervetor isassumed to be a linear ombination of the eigenvoies as in equation 3.2 and 3.3for ovariane and orrelation approah respetively.� When ovariane matrix is used for eigen-deomposition, the unseen speakersupervetor s is de�ned ass� �e = MXm=1wmems = �e+ MXm=1wmem (3.2)where �e is the mean of eigenvetors and wm is the weight of the mth eigen-vetor. The set of weights are unknown variables and eah speaker has hisown set of weights.� When orrelation matrix is used, the di�erene is that eah dimension isnormalized before eigen-deomposition. It beomes:Z�1(s� �e) = MXm=1wmems = �e + MXm=1wmZem= �e + MXm=1wm~em (3.3)15



where Z = 26664 �1 0 � � � 00 �2 � � � 0... ... . . . ...0 0 0 �D 37775where �d is the standard deviation of the dth omponent in the supervetors,and ~em = ZemThus, determining the speaker-adapted model for a new speaker means �nd-ing his/her eigenvoies weights. This an be done by maximizing the likelihoodof his/her adaptation data. Sine the state sequene is a hidden variable, ex-petation maximization (EM) is used for optimization. The auxiliary funtion isde�ned as the expeted log likelihood and is given by:Q(w) = Q� +Qa +Qb(w) (3.4)where Q� = RXr=1 1(r) log(�r)Qa = RXp;r=1 T�1Xt=1 �t(p; r) log(apr)Qb(w) = RXr=1 TXt=1 t(r) log�br(ot)� (3.5)Q�, Qa and Qb(w) orresponds to the initial probability, transition probabilityand observation probability; �r is the initial probability of state r; t(r) is theposterior probability of observation o being at state r at time t; �t(p; r) is theposterior probability of observation o being at state p at time t and at state r attime t+ 1; br is the Gaussian pdf of the rth state after re-estimation and ot is anobservation frame at time t.Sine Q� and Qa are independent of wj, they an be ignored in the weightsestimation. For simpliity, we only onsider Qb(w) as the auxiliary funtion inthe rest of the thesis. It is expanded as:16



Qb(w) = RXr=1 TXt=1 t(r)hd1 log(2�) +Cr + jjsr � otjj2Cri (3.6)where Cr is the ovariane matrix of the Gaussian at state r; sr is the newspeaker's mean vetor de�ned in Equations 3.2 or 3.3.In EV, sr an be expressed in terms of weights wm and they are unknown. Bydi�erentiating Qb(w) with respet to eah wj for j = 1 � � �M , a set of M linearequations with M variables are obtained. This problem is analytially solvable.They are desribed as follows.� For the ovariane ase:�Qb�wj = � RXr=1 TXt=1 tre0jrC�1r (sr � ot)= � RXr=1 TXt=1 tre0jrC�1r ���er + MXm=1wmemr�� ot� (3.7)Set �Qw�wj = 0,RXr=1 TXt=1 tre0jrC�1r (ot � �er) = RXr=1 TXt=1 tr� MXm=1wme0jrC�1r emr� (3.8)� For the orrelation ase, the solution is the same as the one in ovarianease exept that ejr is replaed by ~ejr as follows:RXr=1 TXt=1 tr~e0jrC�1r (ot � �er) = RXr=1 TXt=1 tr� MXm=1wm~e0jrC�1r ~emr� (3.9)3.4 Experimental setupTI-digits orpus [35℄ is the target orpus for investigation. It is a lean onneteddigit orpus sampled at 20KHz. There are 163 speakers for eah of the standardtraining-set and test-set. There are about 77 utteranes for eah speaker. Theyare in various length ranging from one to seven digits. Speakers are from 2217



dialet regions of USA with ages ranging from six to seventy. In the orpus itis, by default, divided into four main groups, whih are girl, boy, woman and man.Adaptation experiments were done with di�erent amounts of adaptation data.Three of them are investigated, whih are 2-seond, 4-seond and 10-seondadaptation-sets. The detailed information is provided by Table 3.2.Name Number of digits Duration Duration (without silene)2-seond 5 3.0 s 2.1 s4-seond 10 5.5 s 4.1 s10-seond 20 13.0 s 9.6 sTable 3.2: Detailed information of the adaptation sets (The third olumn is thereorded duration and the fourth olumn is the speeh duration without sileneaording to the fore alignment by the SI model.)For eah testing speaker, their data are divided into �ve mutually exlusivesets (e.g., A, B, C, D, E) as in Figure 3.2. A random subset (depending on theamounts of adaptation data) of one set is used for adaptation while the remainingfour sets are used for testing eah time. Sets are rotated and tested repeatedly�ve times. (It means that, subset of "A" is used for adaptation and "B", "C","D" and "E" are used for testing for the �rst time. Subset of "B" is used foradaptation and "A", "C", "D" and "E" are used for testing in the seond timeand so on.) In eah subset, the length of the utteranes is kept balaned. Super-vised adaptation is adopted.In the feature extration, an aousti vetor onsisting of 12 MFCCs and thenormalized energy is extrated from eah speeh frame of 25ms at eah 10ms.HMM is used for aousti modeling. The prototypes of the HMMs are illustratedin Figure 3.3 Sixteen (real) states left-to-right HMMs are used for modeling elevendigits (inluding "one", "two", ..., "nine", "oh" and "zero"). Three (real) statesleft-to-right HMM (with a skip ar from state one to state three and a loop-bakar from state three to state one) is used for modeling silene. One (real) stateHMM is used for modeling an optional short pause. For simpliity, only sin-gle mixture Gaussian is used for eah state of HMMs. These settings are usedthroughout all the experiments. Sine the dimension of observation spae is 1318
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Figure 3.3: Illustration of prototype of the HMMs (the small irle represents anull state while the large irle represents a real state. There are 16 real statesfor eah digit HMM.)In training the SI model and the SD models for eigenvoie, two approahesare investigated:� Training approah A (Illustrated in Figure 3.4)The SI model and the SD models are trained independently using the at-start proedure. The means of the SD models are then used for eigen-19



deomposition. In addition to eigenvetors, varianes, transition probabilitymatries, silene (SIL) and short pause (SP) HMMs from SI model are usedfor eigenvoie adaptation. This is the simplest approah. One drawbak ofthis approah is that there may be a mismath between the SD models andthe borrowed quantities.
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Figure 3.4: Illustration of the training approah A (SI and SD models are trainedindependently)� Training approah B (Illustrated in Figure 3.5)The SI model is trained �rst. It is opied as the initialization for SD modelsinstead of a at-start initialization. In HMM parameters re-estimation inSD models, only the means of digit HMMs are updated. The SIL, SP, vari-anes and transition probability matries are idential to the orrespondingone in SI. These speially trained SD models are used for eigenvoie adap-tation.The advantage of this method is that it ensures SIL, SP and digit HMMsmath. Sine only one set of SIL and SP as well as the varianes andtransition probability an be used in the adapted model, the ones from theSI model are generally good for all speakers. If SD models share them in theexpeted maximization (EM) re-estimation of the means, it ensures theironsistene.
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3.5 Conventional eigenvoie adaptation experi-mentThe �rst experiment ompares the two proposed training approahes desribedin 3.4. Eigenvoie adaptation using ovariane matrix for eigen-deomposition isonduted. Only 10-seond of adaptation-set is used. The results are shown inFigure 3.6. It shows that approah B is better than approah A and is used inthe rest of the thesis.
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CHAPTER 4KERNEL EIGENVOICE4.1 Revisit the de�nition of parameter spaesBefore introduing the KEV, two more parameter spaes are introdued in addi-tion to the spaes disussed in Setion 3.2, whih are speaker feature spae andkernel eigenspae. These ideas are illustrated in Figure 4.1.

ϕ (x)

.........

concatenation of

means of states

of HMMs

feature

extraction

1

3

2

kernel eigenspace

HMM

feature vectors

observation space

waveform

eigenspace

Feature spaceInput space

acoustic modeling

supervector means

Figure 4.1: Illustration of parameter spaes used in KEV (1) Things inside dottedregion is the same as EV. (2) '(x) is a mapping to a high dimensional featurespae. (3) KPCA is used to �nd the kernel eigenspae.The basi idea behind kernel methods is that if a funtion '(x) exists, thespeaker input spae an be mapped to a high dimensional feature spae in a non-linear manner in step two of Figure 4.1. However, '(x) does not neessarily existand it is, in fat, undesirable to work with '(x) expliitly beause both expressing23



and omputing the high dimensional vetors is very expensive. Therefore, if akernel funtion is de�ned as the dot produt of vetors in the feature spae, thenany linear algorithm that works on dot produts is equivalent to a non-linearalgorithm in the input spae.Similar to EV, there is a spae alled kernel eigenspae in step three of Figure4.1. This is the spae after eigen-deomposition in the feature spae, whih isfound by PCA in the feature spae. It is desribed by a set of orthogonal vetorsin the feature spae with eigenvalues in sorted order, whih represent the vari-anes in the orresponding eigenvetors. So, the �rst few eigenvetors with thelargest eigenvalues are hosen to desribe the kernel eigenspae. This guaranteesto minimize the re-onstrution error in the feature spae.Remember that the observation spae has dimension D0 whih is the smallestone. The input speaker spae (of dimension D1) is then the onatenation ofGaussian means and D0 � D1. The feature spae (of dimension D2) is a highdimensional spae mapped from the input speaker spae and usually D1 � D2.The eigenspae (of dimension D3) and the kernel eigenspae (of dimension D4)is the "most useful" subspae in the input speaker spae and the feature spaerespetively.In summary, 8><>: D0 � D1 � D2D3 � D1D4 � D24.2 Overview of KEVOne of the ruial limitations of onventional eigenvoie adaptation is that unseenspeakers are assumed to be a linear ombination of eigenvoies. However, a linearonstraint may not be good enough. Therefore, inorporating non-linearity isdesired. In [3℄, KPCA was proposed. This is used to extrat omponents in anon-linear manner in the feature spae. The KEV makes use of the KPCA foromponents extration and kernel trik is used in the adaptation algorithm whih24



is disussed in the rest of this setion. The overall idea inludes four main stepsas follows:1. De�ne kernel funtionA kernel funtion in the input spae de�nes the dot produt of two datain the feature spae. Di�erent kernel funtions represent di�erent forms ofnon-linearity. A kernel matrix gives the similarity measure between eahpair of training vetors. The element in the ith row and the jth olumn isthe dot produt between the ith sample and the jth sample in the dataset.In this thesis, Gaussian kernel and polynomial kernel were studied.2. KPCAPrinipal omponents are derived from the kernel matrix (whih is de�nedin step 1) by KPCA. The details of the algorithmwill be disussed in Setion4.3.3. Express speaker vetor and distaneThe feature vetor of a new speaker is expressed as a linear ombination ofthe eigenvetors in the feature spae while the distane in the input spaeis expressed in terms of dot produts in the feature spae using the kerneltrik.4. ML estimation of eigenvoie weightsSimilar to the EV, the expeted log-likelihood is maximized on a set ofspeaker-spei� adaptation data. Due to the non-linearity, there is no ana-lytial solution and gradient-based numerial methods are used. The Gen-eralized Expetation Maximization (GEM) is used instead of EM.4.3 KPCAThe idea of KPCA is to perform PCA algorithm in terms of dot produts inthe feature spae so that kernel triks an be used. The detailed derivation anddisussion of the KPCA an be found in [3℄. Here is a summary of the majorsteps. 25



� Let funtion ' be the mapping from the input spae to the feature spae,~' be its entered version and �' be the mean of the training vetors in thefeature spae. In PCA (or KPCA), the entered ovariane is needed andit is given by the following (the proof is given in A.1 of appendix A):~C = HCH (4.1)where H = I� 1N 110 and 1 = [11:::1℄0.� The entered ovariane matrix ~C is de�ned as:~C = 1N NXn=1 ~'(xn) ~'(xn)0= 1N ~�x~�0x (4.2)for n = 1 � � �N , xn is the nth training speaker supervetor and ~�x =� ~'(x1); � � � ; ~'(xN )�.� In [3℄, it is shown that all eigenvetors um lies in the span of training vetors~'(x1); � � � ; ~'(xN). Then, um = NXn=1�mn ~'(xn)= ~�x�mu = ~�x� (4.3)where �mn is the nth element of vetor �m and � = ��1; � � � ;�N�.� Eigenvalue problem in the high dimensional spae is presented as:~Cv = �v1N ~�x ~�0x~�x� = �~�x� (4.4)where � are the eigenvalues orresponding to the eigenvetors v.26



By multiplying ~�0x to both sides of Equation 4.4, it beomes~K ~K� = N� ~K� (4.5)where ~K = ~�0x~�x and it is shown that a problem in ~K� = N�� yields allsolution of Equation 4.5 (proved in [11℄, Lemma 21.1.3).� Eigenvetor vm is normalized to be a unit vetor. Then, it beomes:vm = NXn=1 �mnp�m ~'(xn) (4.6)(The proof of the normalizing fator is given in A.2 of appendix A).Then, performing eigen-deomposition on the kernel matrix ~K gives � and �,whih desribe the eigenvetors in the feature spae.
4.4 Composite KernelsIn EV, speaker supervetor s is splitted into onstituents sr for alulating thedistane between a given Gaussian and an observation frame jjsr � otjj2 requiredby the omputation of expeted log likelihood. In KEV, sine speaker supervetoris de�ned in the feature spae only and there is no exat pre-image bak to theinput spae, so we need to transform the observation ot to the feature spae too.Then, we an ompute their dot produt in the feature spae and the Manhalonbisdistane an be expressed in terms of the dot produt. But, in this proess, itneeds the dot produt between ertain segment of a supervetor and anothervetor (observation). If the whole supervetor is put to a single Gaussian kernelin KPCA. Then, we an only obtain the dot produt between the whole speakersupervetor and another supervetor. This raises a hallenge in KEV. Compositekernel is the proposed solution. Eah Gaussian onstituent is mapped to itshigh dimensional spae by a base kernel and the omposite kernel is de�ned inEquation 4.7.

k(xi;xj) = k 264 xi1...xiR 375 ; 264 xi1...xiR 375!27



= 264 '1(xi1)...'R(xiR)3750 264 '1(xj1)...'R(xjR) 375= RXr=1 kr(xir;xjr) (4.7)Any kernels, suh as Gaussian kernel, polynomial kernel an be hosen asa base kernel. They are disussed in Setion 4.6. The omposite kernel is thesummation of the base kernel and it is used for KPCA. In addition, sine eahonstituent maps to the high dimensional feature spae by its base kernel, thespeaker supervetor in the feature spae an be splitted into onstituents for bothadaptation and reognition. A similar idea to omposite kernel is disussed in [39℄.
4.5 KEV adaptationThe adaptation algorithm of KEV is the same as the onventional one exeptthat the Manhalonbis distane measure is replaed by one expressed in terms ofdot produts in the feature spae. In short, there are three major steps. Firstly,the auxiliary funtion is expressed as the dot produts. Seondly, the parameters(weight) is initialized. Thirdly, generalized expetation maximization (GEM) isadopted for optimization. The details are as follows:1. Expression of the auxiliary funtionSimilar to the onventional eigenvoie, the auxiliary funtion is de�ned asthe expeted likelihood and it is further expressed in terms of weights ofeigenvetors and dot produts in the feature spae. (The detailed derivationfor Gaussian kernel and polynomial kernel are presented in Setion 4.6.)Qb(w) = �12 RXr=1 TXt=1 tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr! (4.8)where sr is the r-onstituent of the speaker s (the speaker to be adapted),whih is de�ned to be a linear ombination of the eigenvetors in the feature28



spae. ~& = MXm=1wmvmSine the new speaker s is not found in the input spae but only its image& in the feature spae is estimated as a linear ombination of the kerneleigenvoies and ~&isitsenteredversion:By Equation 4.6, ~& = MXm=1 NXn=1 wm�mnp�m ~'(xn)= 2664 PMm=1PNn=1 wm�mnp�m ~'1(xn1)...PMm=1PNn=1 wm�mnp�m ~'R(xnR) 3775 (4.9)2. GEMDue to the non-linearity in KEV, no lose form solution to the weights.Then, GEM is used instead of EM. In the M step of GEM, gradient asentis used for improving the likelihood. The weights are updated by:w(n) = w(n� 1) + �(n)Q0jw=w(n�1) (4.10)whereQ0 = ��Qb�w1 �Qb�w2 � � � �Qb�wm � and�Qb�wj = �12 PRr=1PTt=1 tr ��wj jjsr � otjj2Cr and�(n) is the learning rate at nthiteration3. InitializationThe weights are required to be initialized before the �rst iteration in theGEM. The SI model is a good hoie for initialization due to its robustness.Therefore, it is suggested that the SI model is projeted to eah utilizedeigenvetor as initialization. The initial values of weights are derived asfollows: 29



beause v0ivj = ( 1 if i = j;0 if i 6= j:
v0m ~'(x(SI)) = v0m MXm=1w(SI)m vm= w(SI)m (v0mvm)= w(SI)mSo, w(SI)m = v0m ~'(x(SI))= NXn=1 �mnp�m ~'(xn)0 ~'(x(SI))= NXn=1 �mnp�m h'(xn)� �'i0h'(x(SI))� �'i= NXn=1 �mnp�m �k(xn;x(SI)) + 1N2 NXp=1 NXq=1 k(xp;xq)�1N NXp=1�k(xn;xp) + k(x(SI);xp)�� (4.11)However, it is notied that the initialization in this projetion method is notidential to the SI model beause there is projetion loss. This observationauses further investigation in Chapter 5.4.6 KernelsThere are various types of kernel [20℄ suh as Gaussian radial basis funtion(RBF) kernel (or in this thesis, simply all Gaussian kernel), polynomial kernel,exponential kernel and �sher kernel.Two types of kernel are evaluated in this thesis, whih are Gaussian kerneland polynomial kernel.
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4.6.1 Gaussian kernel1. De�nitionGaussian kernel is de�ned as follows:kr(xi;xj) = e��r(xi�xj)0Cr�1(xi�xj) (4.12)where �r is a tunable parameter.2. Dot produt in an unseen speaker and its derivativeThe dot produt between an observation and the orresponding onstituentof an unseen speaker supervetor ( & 0r'r(ot) ) is expressed in terms of thedot produt between the observation and the orresponding onstituent ofthe training speakers ( kr(xnr; ot) ) and their weights.By B.2, & 0r'r(ot) = A(r; t) + MXm=1wmB(m; r; t)By B.3, its derivative is: �& 0r'r(ot)�wj = B(j; r; t)where A(r; t) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�3. Expression of distane measureThen, the distane measure jjxnr�otjj2Cr is expressed in terms of kr(xnr; ot)as follows:jjsr � otjj2Cr = � 1�r log & 0r'r(ot)= � 1�r log�A(r; t) + MXm=1wmB(m; r; t)� (4.13)31



4. Expression of the auxiliary funtionThe auxiliary funtion is expressed in terms of kr(xnr; ot) as follows:Qb(w) = �12 RXr=1 TXt=1 tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr!= �12 RXr=1 TXt=1 tr d1 log(2�) + log jCrj �1�r log�A(r; t) + MXm=1wmB(m; r; t)�! (4.14)5. The �rst derivative is:�Qb(w)�wj = 12 RXr=1 TXt=1 tr�r ��wj & 0r'r(ot)& 0r'r(ot)= 12 RXr=1 TXt=1 tr�r B(j; r; t)& 0r'r(ot) (4.15)4.6.2 Polynomial kernel1. De�nitionPolynomial kernel is de�ned as follows:kr(xi;xj) = (x0iC�1r xj + 1)d (4.16)where d is the polynomial degree.2. Dot produt in an unseen speaker and its derivativeIn addition to & 0r'r(ot) and �&0r'r(ot)�wj mentioned in subsetion 4.6.1, item 2,& 0r&r and �&0r&r�wj are expressed as follows:By B.4,& 0r&r = MXm=1 MXm0=1wmwm0D(m;m0; r) + MXm=1wmE(m; r) + F (r)By B.5, �& 0r&r�wj = E(j; r) + MXm=1 2wmD(m; j; r)32



whereD(m;m0; r) = NXn=1 NXn0=1 �mn�m0n0p�m�m0�kr(xnr;xn0r)� 1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i+ F (r)E(m; r) = 2 NXn=1 �mnp�m � 1N NXi=1 kr(xnr;xir)� F (r)�F (r) = 1N2 NXi=1 NXj=1 kr(xir;xjr)3. Expression of distane measureThen, the distane measure is expressed in terms of & 0r&r and & 0r'r(ot) as:jjsr � otjj2Cr = jjsrjj2Cr + jjotjj2Cr � s0rC�1r ot � o0tC�1r sr (4.17)wherejjsrjj2Cr = s0rC�1r sr = h& 0r&ri 1d � 1s0rC�1r ot = o0tC�1r sr = h& 0r'r(ot)i 1d � 1(Sine it is assumed that Cr is a symmetri matrix, s0rC�1r ot = o0tC�1r sr.)So, jjsr � otjj2Cr = h& 0r&ri 1d + jjotjj2Cr � 2h& 0r'r(ot)i 1d + 1 (4.18)4. Expression of the auxiliary funtionThe auxiliary funtion is expressed in terms of & 0r&r and & 0r'r(ot) as follows:Qb(w) = �12 RXr=1 TXt=1 tr d1 log(2�) + log jCrj+ jjsr � otjj2Cr!= �12 RXr=1 TXt=1 tr d1 log(2�) + log jCrj+h& 0r&ri 1d + jjotjj2Cr � 2h& 0r'r(ot)i 1d + 1! (4.19)33



5. The �rst derivative is:�Qb(w)�wj = � 12d RXr=1 TXt=1 tr�& 0r&( 1d�1)r ��wj & 0r&r �2& 0r'r(ot)( 1d�1) ��wj & 0r'r(ot)�= � 12d RXr=1 TXt=1 tr�& 0r&( 1d�1)r �E(j; r) + MXm=1 2wmD(m; j; r)��2& 0r'r(ot)( 1d�1)B(j; r; t)� (4.20)4.6.3 Contour plotsIn order to have a feeling of the output of the KPCA, some ontour plots on dif-ferent kernels are presented in order to ompare with the linear PCA. It ontainsdata points in the original input spae and ontour lines, whih mean prinipalomponent values are onstant along the line and they are orthogonal to theeigenvetors. A toy example with 3 Gaussian lusters in two dimensions is pre-sented, whih is provided by [24℄. The ontour plots orresponding to the �rst feweigenvetors of the linear kernel (equivalent to linear PCA), the Gaussian kerneland the polynomial kernel (of degree three and four) are presented in Figures 4.2,4.3, 4.4 and 4.5 respetively. There are two non-zero eigenvetors for the linearkernel and three non-zero eigenvetors for the polynomial kernel.
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Figure 4.4: Contour plot of the KPCA - polynomial kernel in power 2(K(xi;xj) = (x0ixj)2)
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the utteranes. In reognition, without pruning, its overall time omplexity isO(NRT ) again.
4.8 KEV adaptation experimentIn Gaussian kernel, � is a tunable parameter (all �r equal to a single � in theexperiment). For tuning, 10 speakers are sampled from the training-set. Around4 seonds of adaptation data are seleted for eah speaker. KEV is performed onseveral beta values. The reognition auray against beta value is then plotted.The tuning results are in �gure 4.6 and � = 0:0005 is the best and it is hosenfor the rest of the experiments.
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CHAPTER 5ROBUST KEV5.1 Robust KEV 1 - addition approahThe major weakness of KEV is that it does not guarantee that the eigenspaespanned ontains a speaker model not worse than the SI one (in terms of likeli-hood) for the given adaptation data, espeially when the number of eigenvetorsdereases (smaller the eigenspae spanned). It is possible that some unseen speak-ers in test-sets who annot be well represented by a ombination of the eigenvoies.The speaker-adapted model an then perform worse than the SI-model.The �rst proposal is to inlude the SI supervetor in the optimization. Itmeans that, in addition to the kernel eigenspae obtained by KPCA, the SIsupervetor is treated as a ompulsory omponent. It ould ensure the result inoptimization is not worse than the SI one (in terms of the likelihood).A speaker supervetor is de�ned as:~& = ~'(x(SI)) + MXm=1 NXn=1 wm�mnp�m ~'(xn) (5.1)By equation C.2,jjsr � otjj2 = � 1�r log�kr(x(SI)r ; ot) + MXm=1wmB(m; r; t)�By equation C.3, �&0r'r(ot)�wj is the same as the one in base KEV. Then, the �rstderivative of Qb(w) also remains unhanged too. The initialization of both KEVhas to be modi�ed as follows:wi = ( 0 for i = 1 � � �M1 for i = 039



5.2 Robust KEV 2 - interpolation approahIn proposal 1, adding the SI model is, in fat, a spei� ase of interpolation.Therefore, an extension to an interpolation was proposed and investigated. Thereare four modi�ations, whih are the de�nition of the speaker supervetor, dis-tane expression, the �rst derivative of the auxiliary funtion for the gradientasent and weights initialization.� De�nition of the speaker supervetorA speaker supervetor is de�ned as an interpolation between the SI modeland the KEV-adapted model:~& = w0 ~'(x(SI)) + (1� w0) MXm=1 NXn=1 wm�mnp�m ~'(xn) (5.2)� Distane expressionThe distane expression beomes:jjsr � otjj2Cr = � 1�r log�& 0r'r(ot)�where & 0r'r(ot) = w0kr(x(SI)r ; ot)+ (1�w0)hA(r; t)+PMm=1 wmB(m; r; t)i byD.3.� The �rst derivative of the auxiliary funtionBy 4.15, for i = 0 � � �M ,�Qb(w)�wi = 12 RXr=1 TXt=1 tr�r ��wi & 0r'r(ot)& 0r'r(ot)By D.4 and D.5,�& 0r'r(ot)�w0 = kr(x(SI)r ; ot)� A(r; t)� MXm=1wmB(m; r; t)�& 0r'r(ot)�wj = (1� w0)B(j; r; t)40



where A(r; t) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�By substituting D.4 into 4.15 and D.5 into 4.15,�Qb(w)�w0 = 12 RXr=1 TXt=1 tr�r kr(x(SI)r ; ot)� A(r; t)�PMm=1wmB(m; r; t)& 0r'r(ot) (5.3)�Qb(w)�wj = 12 RXr=1 TXt=1 tr�r (1� w0)B(j; r; t)& 0r'r(ot) (5.4)� Weights initializationThe initialization of weights wj (for j = 1 � � �M) is the same as the one inbase KEV (projetion method) and the weight wo is initialized to be 0:5.5.3 Robust EVTo have a fair omparison on the EV and KEV, a robust EV is proposed. Similarto the KEV, we have the "addition" approah and the "interpolation" approah.� robust EV 1 - addition approahThe speaker de�nition is modi�ed as in equation 5.5.s = x(SI) + MXm=1wm~em (5.5)After di�erentiate Qb with respet to wj and set it zero, the solution be-omes:RXr=1 TXt=1 tr~e0jrC�1r (ot � x(SI)) = RXr=1 TXt=1 tr� MXm=1wm~e0mrC�1r ~ejr� (5.6)� robust EV 2 - interpolation approahThe speaker de�nition is:s = w0x(SI) + (1� w0)��er + MXm=1wmemr� (5.7)41



After di�erentiate Qb with respet to wj and set it zero, the solution be-omes:RXr=1 TXt=1 tr~e0jrC�1r �ot�(1�w0)�er�w0x(SI)� = RXr=1 TXt=1 tr� MXm=1wm~e0mrC�1r ~ejr�(5.8)The weights wj (for j = 1 � � �M) are solved analytially while w0 is simplyfound exhaustively.5.4 Experimental resultsSine it does not guarantee that the base KEV is better than the SI one in termsof likelihood, two solutions are proposed in the last two setions. Experimentsare onduted in 2-seond, 4-seond and 10-seond adaptation-sets. Compar-isons of reognition results of the base KEV and the two suggested methods aresummarized in Figures 5.4, 5.5 and 5.6 respetively.
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Figure 5.2: Comparison of the reognition results of the base EV and robust EVadaptations in 4-seond adaptation-set
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CHAPTER 6FURTHER INVESTIGATION6.1 KEV versus onventional adaptation meth-odsIn this hapter, KEV is ompared with onventional adaptation methods inlud-ing MAP and MLLR. For MLLR adaptation, a global transformation matrix isestimated sine it is onduted with small amounts of adaptation data. MLLRwith a full transformation matrix or a diagonal transformation matrix are tried.In MAP adaptation, there is a bak-o� saling fator. Various values are triedand the best results are presented. For KEV, the best results (among experi-ments on di�erent numbers of eigenvetors) are summarized. The omparison ispresented in Figure 6.1. All the above experiments are done under supervisedonditions.amount of MLLR MAP base robust base robustadaptation data full diag. EV EV 2 KEV KEV 22s 96.16% 96.16% 95.50% 95.61% 96.26% 96.85% 97.28%4s 96.06% 96.15% 95.63% 95.65% 96.26% 97.05% 97.44%10s 97.56% 96.24% 96.47% 95.67% 96.27% 97.05% 97.50%Table 6.1: Comparison of reognition auraies of various adaptation methodsOverall, MAP gives the worst performane due to the fat that MAP re-quires a lot of adaptation data. The MLLR gives good results in a 10-seondadaptation-set. However, all three variations of KEV outperform both MAP andMLLR in 2-seond and 4-seond adaptation-sets. This shows that KEV is goodin rapid speaker adaptation. Out of the three variations, robust KEV 2, whihinorporates the SI model by interpolation, is found to be the best.6.2 Signi�ant testsSetion 6.1 shows that KEV gives promising results in small amounts of adapta-tion data. However, when omparing several adaptation methods, it is important46
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Figure 6.1: Comparison of the various adaptation methodsto understand how signi�ant the performane gains are between one system andanother. Therefore, signi�ane tests are done. A software for signi�ane test bythe National Institute of Standards and Tehnology (NIST) is used. A two-tail5% signi�ant level is used. The results are shown in Table F.1, F.2 and F.3 inappendix F.6.3 Analysis of the eigenvetorsIn both EV and KEV, it is expeted that the extrated omponents representertain kinds of inter-speaker variations suh as gender, age, aents and so on.Therefore, in this setion, we try to analyze the relationship between the weightsof the omponents and the inter-speaker variations in a qualitative manner.First of all, there are 326 speakers in the orpus, 163 speakers for eah ofthe training-sets and test-sets. PCA and KPCA are performed on the 163 train-ing speakers for EV (base-EV with 2 eigenvetors) and KEV (base-KEV with 8eigenvetors) respetively and two sets of experiments are onduted (the hosenon�gurations give the best reognition auray in base-EV and base-KEV re-spetively). The �rst set of experiments is to projet the SD supervetors of the47



training speakers on the eigenvetors. The relationship between the projetedweight of the omponent and the inter-speaker variations are analyzed. Sattergraphs (eah speaker represents a point) on the �rst and seond weights are plot-ted. Speakers are grouped as "girl", "boy", "man" or "woman". The satterplot of the �rst two eigenvetors shows whether EV and KEV an extrat inter-speaker variations suessfully.The above experiments are an ideal analysis on the omponents obtained byPCA and KPCA. Therefore, the seond set of experiments ompare the weightsestimated by EV and KEV adaptation against the inter-speaker variations. Al-though it is expeted that the lass ould beome more onfused in the test-set,it is meaningful to see if the distribution in the satter plot of the training-setis similar to that of the test-set. The �rst set of experiments are treated as ananalysis on the extration of omponent while the seond one is treated as ananalysis on whether the adaptation an make use of extrated omponents.
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from man and woman. Therefore, only "man" and "woman" speakers are plottedin 6.2 (for a training-set again).
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Figure 6.4: Satter plot of the test-set of EV
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Figure 6.5: Satter plot of the training-set of KEV
In the study of the relationship between the four groups and the eigenvetors,it impliitly investigates the gender and age e�et in a blurred way. In addition,the e�et of aents is also studied but no lear orrelation an be found.50
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CHAPTER 7CONCLUSION AND FUTURE WORK7.1 ContributionWe have made several ontribution in this thesis. Firstly, KEV is proposed whihis a non-linear generalization of EV. By using di�erent base kernel, it an handledi�erent kinds of data distribution. This enhanes the apability of eigenvoiefamily. Seondly, the derivation of the formula for the Gaussian kernel and poly-nomial kernel is onduted. The major works inlude expressing the Manhalonbisdistane in the input spae in terms of dot produts in the feature spae. In addi-tion, if we put the whole supervetors in a single non-linear kernel in the KPCA,dot produts between ertain segment of a supervetor and another vetor areunable to be alulated whih is needed by the omputation of Manhalonbis dis-tane. Therefore, the omposite kernel is proposed to solve this spei� problemin KEV speaker adaptation. Thirdly, due to the observation that KEV speakeradapted model does not guarantee to be better than the SI model, robust KEVis investigated, whih ombines the SI model and the KEV adapted model. It isshowed that robust KEV improves its robustness in small amount of adaptationdata. Fourthly, eigenvoie analysis in satter plot is used to study the relationshipbetween the extrated eigenvoie and the underlying inter-speaker variations. Itshows that the �rst two eigenvetors in KEV aptures gender and age in this digitreognition task.
7.2 ConlusionIn this thesis, EV has been revised. It is found that the orrelation approah isbetter than the ovariane approah beause it avoids some features with largedominating values. Both EV and SI model are taken for omparing with theKEV. However, EV does not show improvement. A possible reason is that linear52



PCA may not be e�etive enough for this digit reognition problem. This is thereason for proposing KEV. The importane of KEV is to generalize EV from alinear manner to a non-linear one so as to enhane its apability on di�erent prob-lems. In establishing the KEV arhiteture, the major diÆulty is to map thefeature spae eigenvoies to observation spae. Composite kernel is the proposedsolution whih is able to split the eigenvoie into onstituents in the featuresspae in order to ompute the likelihood whih is used in both the adaptationalgorithm and reognition algorithm.Following the investigation of kernel eigenfae in the development of faereognition, KEV has been proposed as a non-linear extension of EV. The polyno-mial kernel and the Gaussian kernel have been studied. KEV using the Gaussiankernel showed promising results in a digit reognition task. By an observationthat both base-EV and base-KEV do not guarantee it is better than SI model interms of likelihood, two enhanements (addition approah and interpolation ap-proah) have been proposed on KEV. Both of them inorporate the SI model toimprove the robustness of the adaptation. In 2-seond and 4-seond adaptationset, KEV is not only better than EV model and SI model, but also outperformsthe onventional adaptation approahes inluding MAP and MLLR adaptation.However, as more adaptation data are available (for example, 10-seond adapta-tion set), MLLR beomes better.In order to show the EV and KEV are extrating and utilizing some underly-ing inter-speaker variations, eigenvalues are analyzed. Aording to the analysis,it is found that the seond eigenvetors in EV disriminate "man" from "woman"while the �rst two eigenvetors in KEV is highly orrelated with the gender andage. It an be used to disriminate "man", "woman" and "hildren".
7.3 Future workThere are three main extensions of the urrent work.1. Extension to the Gaussian mixtures or ontext-dependent mod-53



elingIn this thesis, all the experiments are based on single Gaussian HMM. Itwould be good to extend on Gaussian mixtures or ontext-dependent mod-eling. However, the method onatenation of means is kept, the dimensionof supervetor beomes huge. There is also a problem of sequene in Gaus-sian mixtures. A diret extension is to use MLLR-based eigenspae speakeradaptation by applying the eigen-deomposition on the MLLR spae insteadof the supervetor of the means of HMMs. There are similar investigationsin [8, 48, 31℄.2. KEV based on phone-lassesCurrently, all units (digits or phonemes) are onatenated into a singlesupervetor, whih implies a huge onstraint to the estimated weights.However, eah unit ould have di�erent behavior, but if we onsider eahphoneme independently, it ould result in insuÆient data or require largeamounts of adaptation data. This would violate one of the most importantmotivations of EV or KEV. So, KEV based on phoneme-lasses is a desirablehoie. For example, people from ountry A and ountry B may pronounevowels in di�erent ways. Aside from that, though their pronuniation ofonsonant are similar. We an then group the vowels and onsonants intotwo lusters. Weights for eah luster are estimated independently. It thenan release the onstraints on the weights. In order to have an automatiarhiteture to form lusters, regression lass tree an be onsidered, whihuses a Eulidean distane measure for a entroid splitting algorithm.3. Speed-up issuesAlthough KEV gives an enouraging performane gain, it is ostly in theomputation. When performing reognition, it is at least N times slowerthan the onventional methods.Various speed-up methods are possible, whih an be sub-divided into threeareas. The �rst area is to redue the number of kernels to be omputedand it an be realized by sparse KPCA. or �nding an approximated pre-image in the input spae. The seond area is for saving omputation in theadaptation algorithm. A ommon approah is that, instead of omputingall deoding paths in the adaptation, only the Viterbi path is used. This54



is due to the fat that the Viterbi path aounts for the major omponentin the auxiliary funtion. The time omplexity of the kernel omputationan be redued from O(NRT ) to O(NT ). The third area is the reognitiononern. One idea is to �nd an approximated pre-image in the input spae.Another idea is to use a two-pass deoding. The SI model is used as the�rst-pass deoding, giving the N-best lattie. The KEV-adapted model isused as the seond-pass deoding on the N-best lattie generated in the �rst-pass. In two-pass deoding, the �rst-pass deoding using a less expensivemodel, prunes most of the unlikely andidates. The searh spae an beredued signi�antly by the n-best lattie. The seond-pass deoding usingan expensive model ould be more eÆient.4. Design and seletion of kernel funtionsIn this thesis, Gaussian kernel and polynomial kernel are only omparedexperimentally. Deep analysis on the suitability and seletion of kernel areabsent, whih is a very interesting area of study.
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APPENDIX APROOFS FOR KPCAA.1 Proof of entering of ovariane matrix~Kij = ~'(xi)0 ~'(xj)= ('(xi)� �')0('(xj)� �')= '(xi)0'(xj)� 1N NXq=1'(xi)0'(xq)�1N NXp=1'(xp)0'(xj) + 1N2 NXp=1 NXq=1'(xp)0'(xq)= Kij � 1N NXq=1Kiq � 1N NXp=1Kpj + 1N2 NXp=1 NXq=1Kpq (A.1)Then, ~K = HKH (A.2)whereH = I� 1N 110 and1 = [11:::1℄0A.2 Proof of the normalizing fator used in KPCAFor eah eigenvetor vm, it is normalized by m as follows:vm = NXn=1 �mnm ~'(xi) (A.3)By de�nition of orthonormality, for any eigenvetor vm in the feature spae,62



v0mvm = 1 (A.4)By substituting A.3 into A.4, it beomes:
2 = NXn=1 NXn0=1�mn�mn0 ~'(xn)0 ~'(xn0)= NXn=1 NXn0=1�mn�mn0Knn0= �0mK�mSine K�m = �m�m, 2 = �0m�m�m= �m(�0m�m)= �m = q�mTherefore, vm = NXn=1 �mnp�m ~'(xi) (A.5)
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APPENDIX BDERIVATION FOR ORIGINAL KERNELEIGENVOICEB.1 Derivation of & 0r'r(ot)& 0r'r(ot)= h( MXm=1 NXn=1 wm�mnp�m ~'r(xnr)) + �'ri0'r(ot)= �� MXm=1 NXn=1 wm�mnp�m ('r(xnr)� �'r)�+ �'r�0'r(ot)= MXm=1 NXn=1 wm�mnp�m kr(xnr; ot) + �1� MXm=1 NXn=1 wm�mnp�m � �'0r'r(ot)= �'0r'r(ot) + MXm=1wm NXn=1 �mnp�m hkr(xnr; ot)� �'0r'r(ot)i (B.1)= A(r; t) + MXm=1wmB(m; r; t) (B.2)where A(r; t) = �'0r'r(ot) = 1N NXn=1 kr(xnr; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�Di�erentiate & 0r'r(ot) with respet to wj,�& 0r'r(ot)�wj = B(j; r; t) (B.3)
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B.2 Derivation of & 0r&r& 0r&r= �� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+ �'r�0�� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+ �'r�= � MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�0� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�+2� MXm=1 NXn=1 wm�mnp�m ~'r(xnr)�0 �'r + �'0r �'r= MXm=1 NXn=1 MXm0=1 NXn0=1(wm�mnp�m ~'r(xnr))0(wm0�m0n0p�m0 ~'r(xnr)) +2 MXm=1 NXn=1 wm�mnp�m ~'r(xnr)0 �'r + �'0r �'r= MXm=1 NXn=1 MXm0=1 NXn0=1 wm�mnp�m wm0�m0n0p�m0 ~kr(xnr;xn0r) +2 MXm=1 NXn=1 wm�mnp�m ~'r(xnr)0 �'r + �'0r �'rwhere~kr(xnr;xn0r) = ~'r(xnr)0 ~'r(xn0r)= h'r(xnr � �'r)i0h'r(xn0r � �'r)i= kr(xnr;xn0r)� 1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i +1N2 NXi=1 NXj=1 kr(xir;xjr)~'r(xnr)0 �'r = ~'r(xnr)0� 1N NXi=1'r(xir)�= 1N NXi=1�'r(xnr)� �'r�0'r(xir)= 1N NXi=1'r(xnr)0'r(xir)� 1N2 NXi=1 NXj=1'r(xir)0'r(xjr)65



= 1N NXi=1 kr(xnr;xir)� 1N2 NXi=1 NXj=1 kr(xir;xjr)�'0r �'r = h 1N NXi=1'r(xir)i0h 1N NXj=1'r(xjr)i= 1N2 NXi=1 NXj=1 k(xir;xjr)So, The �nal equation is:& 0r&r = MXm=1 MXm0=1wmwm0D(m;m0; r) + MXm=1wmE(m; r) + F (r) (B.4)where D(m;m0; r) = NXn=1 NXn0=1 �mn�m0n0p�m�m0 �kr(xnr;xn0r)�1N NXi=1hkr(xnr;xir) + kr(xn0r;xir)i+ F (r)�E(m; r) = 2 NXn=1 �mnp�m � 1N NXi=1 kr(xnr;xir)� F (r))�F (r) = 1N2 NXi=1 NXj=1 kr(xir;xjr)Di�erentiate & 0r&r with respet to wj,�& 0r&r�wj = E(j; r) + MXm=1 2wmD(m; j; r) (B.5)
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APPENDIX CDERIVATION FOR ROBUST KEV 1 -ADDITIONC.1 Derivation of & 0r'r(ot)For robust KEV, the only di�erene is the de�nition of the new speaker in thefeature spae whih is as follows:~& = ~'(x(SI)) + MXm=1 NXn=1 wm�mnp�m ~'(xn)= �'(x(SI))� �'� + MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (C.1)
& 0r'r(ot)= �~&r + �'r�0'r(ot)= �� MXm=1 NXn=1 wm�mnp�m ('r(xnr)� �'r)�+ 'r(x(SI))�0'r(ot)= MXm=1 NXn=1 wm�mnp�m kr(xnr; ot)� MXm=1 NXn=1 wm�mnp�m �'0r'r(ot) + 'r(x(SI))0'r(ot)= 'r(x(SI))0'r(ot) + MXm=1wm NXn=1 �mnp�m hkr(xnr; ot)� �'0r'r(ot)i= kr(xSIr ; ot) + MXm=1wmB(m; r; t) (C.2)where A(r; t) = �'0r'r(ot) = 1N NXi=1 kr(xir; ot)B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�67



Di�erentiate & 0r'r(ot) with respet to wj,�& 0r'r(ot)�wj = B(j; r; t) (C.3)
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APPENDIX DDERIVATION FOR ROBUST KEV 2 -INTERPOLATIOND.1 Derivation of & 0r'r(ot)For robust KEV, the only di�erene is the de�nition of the new speaker in thefeature spae whih is as follows:~'(s) = w0 ~'(x(SI)) + (1� w0) MXm=1 NXn=1 wm�mnp�m ~'(xn)= w0�'(x(SI))� �'� +(1� w0) MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (D.1)
'(s) = ~'(s) + �'(s)= w0'(x(SI)) + (1� w0) �'+(1� w0) MXm=1 NXn=1 wm�mnp�m �'(xn)� �'� (D.2)

& 0r'r(ot)= �w0'r(x(SI)r ) + (1� w0) �'r +(1� w0) MXm=1 NXn=1 wm�mnp�m �'r(xnr)� �'r��0'r(ot)= w0kr(x(SI)r ; ot) + (1� w0)hA(r; t) + MXm=1wmB(m; r; t)i (D.3)where A(r; t) = �'0r'r(ot) = 1N NXn=1 kr(xnr; ot)69



B(m; r; t) = NXn=1 �mnp�m�kr(xnr; ot)� A(r; t)�� Di�erentiate & 0r'r(ot) with respet to w0�& 0r'r(ot)�w0 = kr(x(SI)r ; ot)� A(r; t)� MXm=1wmB(m; r; t) (D.4)� Di�erentiate & 0r'r(ot) with respet to wj, for j = 1 � � �M ,�& 0r'r(ot)�wj = (1� w0)B(j; r; t) (D.5)
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APPENDIX EPRACTICAL SPEED-UP METHODS INKEVSome pratial methods are onsidered in this thesis for speed-up. The ompari-son of the CPU time and the auray of the lookup table, approximation methodI and II to the exponential funtion are summarized in Table E.1.1. PruningIn deoding, pruning is a ommon approah for speed-up. Reduing thesearh spae by pruning an diretly derease the number of distane mea-sure omputation. This an improve the speed.2. Lookup tableIn the distane alulation, exponential funtion is the most ostly part forthe Gaussian kernel. It is found that the input of the exponential funtionis usually within a narrow range. Therefore, pre-omputing exponentialvalues in that range ould speed-up.3. Shraudolph fast approximation method to exponential funtionAording to the [43℄, a fast and ompat method is proposed for approxi-mating the exponential funtion.4. Series-based approximation method to exponential funtionIn the alulation of the kr(sr; ot), omputing exponential is most ostlyomponent. Therefore, we �rst express exponential funtion as a series.Then, the input value is bound to a given range and the �rst four terms ofthe series is used as the approximation. It is de�ned in E.2. The omparisonof the CPU time and the absolute error for using various number of termsare stated in Table E.1.Exponential funtion an be expressed as a series whih is:exp(x) = 1 + x+ x22! + x33! + ::: + xnn! (E.1)71



let y = x where  > x so that �1 < y < 1exp(x) = hexp(y)i� h1 + y + y22 + y36 i= �1 + x�1 + x(12 + x6)�� (E.2)if it is approximated by the �rst four terms and  = 2d, power funtionmeans d multipliations (d = 6 in the experiment).Therefore, the exponential funtion is replaed by 8 multipliations and3 additions. CPU time Relative errorBuild-in exponential funtion 1.3 NILLookup table 0.64 0.050%Shraudolph fast approx. method 0.55 1.517%Series-based approx. method 0.77 0.280%Table E.1: Comparison of the CPU time and the auray of the 3 proposedapproximation methods to exponential funtion with the build-in oneFinally, in order to have a balane in minimizing the relative error and CPUtime, the lookup table approah is used in alulating exponential funtion.
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APPENDIX FSIGNIFICANCE TESTSIn the signi�ant tests, MAP, MLLR, base-EV, robust-EV, base-KEV and robust-KEV are ompared. Their abbreviations are summarized as follows:b-EV : base-EVr-EV : robust-EVb-KEV : base-KEVr-KEV : robust-KEV (the interpolation one)MLLR.d : MLLR with diagonal transformation matrixMLLR.f : MLLR with full transformation matrixSI-m : SI modelingMP : Mathed Pair Sentene Segment (Word Error) TestSI : Signed Paired Comparison (Speaker Word Auray Rate (%)) TestWI : Wiloxon Signed Rank (Speaker Word Auray Rate (%)) TestMN : MNemar (Sentene Error) Test
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MAP MLLR.f MLLR.d SI-m r-EV b-KEV r-KEVb-EV MP: MAP MP: MLLR.f MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MAP SI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MAP WI: MLLR.f WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MAP MN: MLLR.f MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMAP MP: MLLR.f MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.f SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.f WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MLLR.f MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.f MP: same MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: same WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: same MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: SI-m MN: r-EV MN: b-KEV MN: r-KEVSI-m MP: same MP: b-KEV MP: r-KEVSI: same SI: b-KEV SI: r-KEVWI: same WI: b-KEV WI: r-KEVMN: same MN: b-KEV MN: r-KEVr-EV MP: b-KEV MP: r-KEVSI: b-KEV SI: r-KEVWI: b-KEV WI: r-KEVMN: b-KEV MN: r-KEVb-KEV MP: r-KEVSI: r-KEVWI: r-KEVMN: r-KEV

TableF.1:Signi�aneTestson2-seondadaptationdata
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MLLR.f MAP MLLR.d SI-m r-EV b-KEV r-KEVb-EV MP: MLLR.f MP: MAP MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.f SI: MAP SI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.f WI: MAP WI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MLLR.f MN: MAP MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.f MP: same MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: same SI: same SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: same WI: same WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: MAP MN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMAP MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: same MN: SI-m MN: r-EV MN: b-KEV MN: r-KEVMLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: r-KEVSI: SI-m SI: r-EV SI: b-KEV SI: r-KEVWI: SI-m WI: r-EV WI: b-KEV WI: r-KEVMN: SI-m MN: r-EV MN: b-KEV MN: r-KEVSI-m MP: same MP: b-KEV MP: r-KEVSI: same SI: b-KEV SI: r-KEVWI: same WI: b-KEV WI: r-KEVMN: same MN: b-KEV MN: r-KEVr-EV MP: b-KEV MP: r-KEVSI: b-KEV SI: r-KEVWI: b-KEV WI: r-KEVMN: b-KEV MN: r-KEVb-KEV MP: r-KEVSI: r-KEVWI: r-KEVMN: r-KEV

TableF.2:Signi�aneTestson4-seondadaptationdata
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MLLR.d SI-m r-EV b-KEV MAP r-KEV MLLR.fb-EV MP: MLLR.d MP: SI-m MP: r-EV MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: MLLR.d SI: SI-m SI: r-EV SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: MLLR.d WI: SI-m WI: r-EV WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: MLLR.d MN: SI-m MN: r-EV MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fMLLR.d MP: same MP: same MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: same SI: same SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: same WI: same WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: same MN: same MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fSI-m MP: same MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: same SI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: r-EV WI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: same MN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fr-EV MP: b-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: b-KEV SI: MAP SI: r-KEV SI: MLLR.fWI: b-KEV WI: MAP WI: r-KEV WI: MLLR.fMN: b-KEV MN: MAP MN: r-KEV MN: MLLR.fb-KEV MP: MAP MP: r-KEV MP: MLLR.fSI: MAP SI: r-KEV SI: MLLR.fWI: MAP WI: r-KEV WI: MLLR.fMN: MAP MN: r-KEV MN: MLLR.fMAP MP: r-KEV MP: MLLR.fSI: r-KEV SI: MLLR.fWI: r-KEV WI: MLLR.fMN: r-KEV MN: MLLR.fr-KEV MP: MLLR.fSI: MLLR.fWI: MLLR.fMN: MLLR.f
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