
AMD64 Virtualization
Codenamed

“Pacifica” Technology

Secure Virtual Machine
Architecture

Reference Manual

Publication No. Revision Date

33047 3.01 May 2005

Advanced Micro Devices

Secure Virtual Machine Architecture Reference Manual 33047–Rev. 3.01–May 2005

Trademarks
AMD, the AMD Arrow logo,AMD Athlon, AMD Opteron, and combinations thereof, are trademarks, and AMD-K6 is a registered trade-
mark of Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
Pentium is a registered trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2005 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices, Inc.
(“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Contents iii

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Contents

Revision History .xiii

Preface . xv

1 Introduction . 1

1.1 The Virtual Machine Monitor . 1
1.2 SVM Hardware Overview. 1

Virtualization Support . 1
Guest Mode . 2
External Access Protection . 2
Tagged TLB . 2
Interrupt Support . 2

Intercepting physical interrupt delivery 2
Virtual interrupts . 2
Sharing a physical APIC. 2

Restartable Instructions . 2
Security Support . 2

Attestation. . 3
Memory Clear. 3

2 SVM Processor and Platform Extensions 5

2.1 Enabling SVM . 5
2.2 VMRUN Instruction . 5

Basic Operation . 6
Saving Host State . 7
Loading Guest State . 7
Control Bits . 8
Segment State in the VMCB . 9
Canonicalization and Consistency Checks 10
VMRUN and TF/RF bits in EFLAGS 11

2.3 #VMEXIT . 12
2.4 Intercept Operation . 13

Exception intercepts. 13
Instruction intercepts . 14

State Saved on Exit . 14
Intercepts During IDT Interrupt Delivery 14
EXITINTINFO Pseudo-Code . 16

2.5 Instruction Intercepts . 17
Read/Write of CR0 . 17
Read/Write of CR3 (excluding task switch) 17
Read/Write of other CRs . 17
Read/Write of Debug Registers, DRn 17
Selective CR0 Write Intercept . 18
Reading/Writing of IDTR, GDTR, LDTR, TR 18

iv Contents

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

RDTSC Instruction Intercept . 18
RDPMC Instruction Intercept . 18
PUSHF Instruction Intercept . 18
POPF Instruction Intercept . 18
CPUID Instruction Intercept . 18
RSM Instruction Intercept . 18
IRET Instruction Intercept. 19
Software Interrupt Intercept . 19
INVD Instruction Intercept . 19
PAUSE Instruction Intercept . 19
HLT Instruction Intercept. 19
INVLPG Instruction Intercept . 19
INVLPGA Instruction Intercept. 19
VMRUN Instruction Intercept . 19
VMLOAD Instruction Intercept . 19
VMSAVE Instruction Intercept . 19
VMMCALL Instruction Intercept . 20
STGI Instruction Intercept . 20
CLGI Instruction Intercept. 20
SKINIT Instruction Intercept . 20
RDTSCP Instruction Intercept. 20
ICEBP Instruction Intercept. 20

2.6 IOIO Intercepts . 20
I/O Permissions Map . 20
IN and OUT Behavior . 21
I/O Intercept Information. 21

2.7 MSR Intercepts . 22
MSR Permissions Map . 22
RDMSR and WRMSR Behavior . 23
MSR Intercept Information . 23

2.8 Exception Intercepts. 23
Example: . 24

#DE (Divide By Zero) . 24
#DB (Debug). 24
Vector 2 (Reserved). 24
#BP (Breakpoint) . 24
#OF (Overflow) . 24
#BR (Bound-Range). 24
#UD (Invalid Opcode) . 25
#NM (Device-Not-Available). 25
#DF (Double Fault) . 25
Vector 9 (Reserved). 25
#TS (Invalid TSS). 25
#NP (Segment Not Present) . 25
#SS (Stack Fault) . 25
#GP (General Protection) . 25
#PF (Page Fault) . 25

Contents v

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

#MF (X87 Floating Point) . 26
#AC (Alignment Check) . 26
#MC (Machine Check). 26
#XF (SIMD Floating Point). 26

2.9 Interrupt Intercepts . 26
INTR Intercept. 26
NMI Intercept . 26
SMI Intercept . 26
INIT Intercept . 26
Virtual Interrupt Intercept. 27

2.10 Miscellaneous Intercepts . 27
Task Switch Intercept . 27
Ferr_Freeze Intercept . 28
Shutdown Intercept. 28

2.11 VMSAVE and VMLOAD Instructions 28
2.12 TLB Control . 28

Software Rule . 29
TLB Flush . 29
Invalidate Page, Alternate ASID . 29

2.13 Global Interrupt Flag, STGI and CLGI Instructions 29
2.14 VMMCALL Instruction . 31
2.15 New Processor Mode: Paged Real Mode. 31
2.16 Event Injection . 32
2.17 Interrupt and localAPIC Support . 33

Physical (INTR) Interrupt Masking in EFLAGS 33
Virtualizing APIC.TPR . 33
TPR Access in 32-bit Mode. 34
Injecting Virtual (INTR) Interrupts . 34
Interrupt Shadows . 35
Virtual Interrupt Intercept. 36
Interrupt Masking in LocalAPIC . 36
INIT Support . 37
NMI Support . 38

2.18 SMM Support . 38
Sources of SMI . 38
Response to SMI . 39
Containerizing Platform SMM . 39

Advanced Support. 40
2.19 External Access Protection . 40

Device IDs and Protection Domains . 40
Device Exclusion Vector (DEV) . 41

Host Bridge and Processor DEV Caching 41
Multiprocessor Issues . 42

Access Checking . 42
Memory Space Accesses . 42
I/O Space Accesses . 42
Config Space Accesses . 42

vi Contents

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

DEV Capability Block . 43
DEV Capability Header . 44

DEV Register Access Mechanism . 44
DEV Control and Status Registers . 45

DEV_CAP Register . 45
DEV_CR Register . 46
DEV_BASE Address/Limit Registers 46
DEV_MAP Registers. 47

Unauthorized Access Logging . 48
Secure Initialization Support . 48

2.20 Nested Paging Facility . 49
Traditional Paging versus Nested Paging 49
Enabling Nested Paging . 50
Permission Checks. 51
Other Guest Attributes . 51

3 Security . 53

SKINIT Instruction.. 53
Automatic Memory Clearing.. 53
Security Exception.. 53

3.1 Secure Startup with SKINIT . 53
Secure Loader . 53
Secure Loader Image . 54
Secure Loader Block . 54
Trusted Platform Module . 56
System Interface, Memory Controller and I/O Hub Logic. . . 57
SKINIT Operation . 57

Pending interrupts. 58
Debug considerations . 59

SL Abort . 59
Secure Multiprocessor Initialization . 59

Software requirements for Secure MP initialization . . 59
AP Startup Sequence . 60
Pending interrupts . 60
Aborting MP initialization . 60

3.2 Automatic Memory Clear . 61
3.3 Security Exception (#SX) . 62

4 SVM Instruction Set Reference . 63

4.1 Changes to RSM Instruction . 63
4.2 New Instructions . 63

CLGI . 64
INVLPGA . 65
MOV (CRn). 66
SKINIT . 68
STGI . 70
VMLOAD . 71
VMMCALL . 72

Contents vii

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

VMRUN . 73
VMSAVE. 77

Appendix A Reset Values and INIT . 79

Appendix B Processor Feature Identification 81

Appendix C Layout of VMCB . 83

Appendix D Intercept Exit Codes . 91

Appendix E New and Changed MSRs. 95

viii Contents

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

List of Figures ix

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

List of Figures

Figure 2-1. EXITINTINFO for All Intercepts . 15

Figure 2-2. EXITINFO1 for IOIO Intercept. 21

Figure 2-3. Format of SEOI register (in localAPIC). 37

Figure 2-4. Host Bridge DMA Checking . 43

Figure 2-6. Format of DEV_CAP Register (in PCI Config Space) 46

Figure 2-7. Format of DEV_BASE_HI[n] Registers 47

Figure 2-8. Format of DEV_BASE_LO[n] Registers. 47

Figure 2-9. Format of DEV_MAP[n] Registers . 47

Figure 2-10.Address Translation with Traditional Paging 49

Figure 2-11.Address Translation with Nested Paging. 50

Figure 3-1. SLB Example Layout . 56

Figure B-1. SVM Revision and Feature Identification in EAX,
Extended Function 8000_000Ah . 81

Figure B-2. SVM Revision and Feature Identification in EBX,
Extended Function 8000_000Ah . 81

Figure B-3. SVM Revision and Feature Identification in EDX,
Extended Function 8000_000Ah . 81

Figure E-1. Layout of VM_CR MSR (C001_0114h) . 95

Figure E-2. Layout of SMM_CTL MSR (C001_0116h) 96

Figure E-3. Extended APIC feature register. . 98

Figure E-4. Extended APIC control register. . 98

x List of Figures

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

List of Tables xi

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

List of Tables

Table 2-1. Guest Exception or Interrupt Types. 15

Table 2-2. Ranges of MSR Permissions Map . 22

Table 2-3. Effect of GIF on Interrupt Handling . 30

Table 2-4. EVENTINJ Field in the VMCB . 32

Table 2-5. Guest Exception or Interrupt Types. 32

Table 2-6. INIT Handling in Different Operating Modes. 38

Table 2-7. NMI Handling in Different Operating Modes 38

Table 2-8. SMI Handling in Different Operating Modes 39

Table 2-9. DEV Capability Block, Overall Layout 44

Table 2-10. DEV Capability Header (DEV_HDR) (in PCI Config Space) . 44

Table 2-11. Encoding of function field in DEV_OP register 45

Table 2-12. DEV_CR Control Register. 46

Table C-1. VMCB Layout, Control Area . 83

Table C-2. VMCB Layout, State Save Area . 88

Table D-1. SVM Intercept Codes . 91

Table E-1. SVM New MSRs . 95

Table E-2. Secure-VM New localAPIC Registers. 98

xii List of Tables

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Revision History xiii

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Revision History

Date Revision Description

May 2005 3.01 Corrected factual errors in Section 2.20.4, “Other Guest Attributes,” on page 51.

April 2005 3.00 First Public Release.

xiv Revision History

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Preface xv

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Preface

About This Book

This book describes the AMD64 technology Security and
Virtual Machine (SVM) architecture codenamed “Pacifica,”
software requirements, instruction set extensions, changes to
existing instructions, and new bit settings in system registers.

Audience

This volume is intended for programmers writing virtual
machine monitor or hypervisor software and other SVM
applications or system utilities. It assumes an understanding of
AMD64 architecture application-level and system-level
programming as described in Volumes 1 and 2 of the AMD64
Architecture Programmer’s Manual (order# 24592 and order#
24593).

This volume describes SVM architecture resources and
functions that are managed by system software, including
operating-mode control, memory management, intercepts,
interrupts and exceptions, state-change management, system-
management mode, and processor initialization, as well as
extensions to the AMD64 instruction set that are used to
operate on SVM data structures.

xvi Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Organization

This volume begins with an overview of SVM, followed by
chapters that describe the following details of system
programming:

System Resources—The data structures, system registers,
software responsibilities, and hardware support to
implement SVM systems.

SVM Instruction Set—The extensions to the AMD64
instruction set used to control SVM operations.

The appendices describe details of model-specific registers
(MSRs) and data strucure layout. Definitions assumed
throughout this volume are listed below. The index at the end of
this volume cross-references topics within the volume. For other
topics relating to the AMD64 architecture, see the tables of
contents and indices of the references given in “Related
Documents” on page xxv.

Definitions

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on page xxv
for descriptions of the legacy x86 architecture.

Terms and Notation 1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

Preface xvii

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

64-bit mode
A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute
A displacement that references the base of a code segment
rather than an instruction pointer. Contrast with relative.

ASID
Address space identifier.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a
value of 1.

displacement
A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

xviii Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME = 0
Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size
The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size
The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. Control is transferred
to the handler (or service routine) for that exception, as
defined by the exception’s vector. When unmasked, the
exception handler is called, and when masked, a default
response is provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush
An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

Preface xix

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

GIF
Global interrupt flag.

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

long mode
An operating mode unique to the AMD64 architecture. A
processor implementation of the AMD64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask
A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

msb
Most-significant bit.

xx Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
A displacement (also called offset) from an instruction
pointer rather than the base of a code segment. Contrast
with absolute.

reserved
Fields marked as reserved may be used at some future time.

Preface xxi

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.
Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).
Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.
If a reserved field is not marked with one of the previous
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

SBZ
Should be zero. It is the responsibility of software to set SBZ
bits to zero. The result of setting an SBZ bit to 1 may be
unpredictable.

set
To write a bit value of 1. Compare clear.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

vector
An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

xxii Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B–R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX–rSP.

EBP
Extended base pointer register.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

Preface xxiii

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W
registers, or the 32-bit R8D–R15D registers, or the 64-bit
R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with

xxiv Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RAZ
Read as zero (0), regardless of what is written.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

Preface xxv

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the
AMD64 architecture to speed interrupt management.

TR
Task register.

Endian Order The x86 and AMD64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents
AMD64 Architecture Programmer’s Manual Volume 1:
Application Programming, order# 24592.

AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, order# 24593.

AMD64 Architecture Programmer’s Manual Volume 3: General
Purpose and System Instructions, order# 24594.

xxvi Preface

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 1: Introduction 1

1 Introduction

AMD security and virtual machine (SVM) architecture,
codenamed “Pacifica,” is designed to provide enterprise-class
server virtualization software technology that facilitates
virtualization development and deployment. An SVM enabled
virtual machine architecture should provide hardware
resources that allow a single machine to run multiple operating
systems efficiently, while maintaining secure, resource-
guaranteed isolation.

1.1 The Virtual Machine Monitor

A virtual machine monitor (VMM, also known as a hypervisor)
consists of software that controls the execution of multiple guest
operating systems on a single physical machine; the VMM
provides each guest the appearance of full control over a
complete computer system (memory, CPU, and all peripheral
devices). The use of the term host refers to the execution
context of the VMM. World switch refers to the operation of
switching between the host and guest.

Fundamentally, VMMs work by intercepting and emulating in a
safe manner sensitive operations in the guest (such as changing
the page tables, which could give a guest access to memory it is
not allowed to access). AMD’s SVM provides hardware assists to
improve performance and facilitate implementation of
virtualization.

1.2 SVM Hardware Overview

SVM processor support provides a set of hardware extensions
designed to enable economical and efficient implementation of
virtual machine systems. Generally speaking, hardware support
falls into two complementary categories: virtualization support
and security support.

1.2.1 Virtualization
Support

The AMD virtual machine architecture is designed to provide:

Mechanisms for fast world switch between VMM and guest

The ability to intercept selected instructions or events in the
guest

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

2 Chapter 1: Introduction

External (DMA) access protection for memory.

Assists for interrupt handling and virtual interrupt support

A guest/host tagged TLB to reduce virtualization overhead.

1.2.2 Guest Mode This new processor mode is entered through the VMRUN
instruction. When in guest mode, the behavior of some x86
instructions changes to facilitate virtualization.

1.2.3 External Access
Protection

Guests may be granted direct access to selected I/O devices.
Hardware support is designed to prevent devices owned by one
guest from accessing memory owned by another guest (or the
hypervisor).

1.2.4 Tagged TLB In the SVM usage model, the VMM is mapped in a different
address space than the guest. To reduce the cost of world
switches, the TLB is tagged with an address space identifier
(ASID) distinguishing host-space entries from guest-space
entries.

1.2.5 Interrupt
Support

To facilitate efficient virtualization of interrupts, the following
support is provided under control of VMCB flags:

Intercepting physical interrupt delivery. The VMM can request that
physical interrupts cause a running guest to exit, allowing the
VMM to process the interrupt.

Virtual interrupts. The VMM can inject virtual interrupts into the
guest. Under control of the VMM, a virtual copy of the
EFLAGS.IF interrupt mask bit, and a virtual copy of the APIC's
task priority register are used transparently by the guest
instead of the physical resources.

Sharing a physical APIC. SVM allows multiple guests to share a
physical APIC while guarding against malicious or defective
guests that might leave high -pr ior i ty interrupts
unacknowledged forever (and thus shut out other guest's
interrupts).

1.2.6 Restartable
Instructions

SVM is designed to safely restart, with the exception of task
switches, any intercepted instruction after the intercept.
Instructions are either atomic or idempotent.

1.2.7 Security Support To further enable secure initialization SVM provides additional
System support.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 1: Introduction 3

Attestation. The SKINIT instruction and associated system
support (the Trusted Platform Module, or TPM) allow for
verifiable startup of trusted software (such as a VMM), based
on secure hash comparison.

Memory Clear. Automatic memory clear erases the contents of
system memory on reset to prevent simple reset-based attacks
on secrets stored in memory.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

4 Chapter 1: Introduction

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 5

2 SVM Processor and Platform Extensions

This chapter describes the operation of the SVM hardware
extensions. These extensions can be grouped into the following
categories:

State switch—VMRUN, VMSAVE, VMLOAD instructions,
global interrupt flag (GIF), and instructions to manipulate
the latter (STGI, CLGI). (“VMRUN Instruction” on page 5,
“VMSAVE and VMLOAD Instructions” on page 28, “Global
Interrupt Flag, STGI and CLGI Instructions” on page 29)

Intercepts—allow the VMM to intercept sensitive operations
in the guest. (“Intercept Operation” on page 13 through
“Miscellaneous Intercepts” on page 27)

Interrupt and APIC assists—physical interrupt intercepts,
virtual interrupt support, APIC.TPR virtualization. (“Global
Interrupt Flag, STGI and CLGI Instructions” on page 29 and
“Interrupt and localAPIC Support” on page 33)

SMM intercepts and assists (“SMM Support” on page 38)

External (DMA) access protection (“External Access
Protection” on page 40)

Nested paging support for two levels of address translation.
(“Nested Paging Facility” on page 49)

Security—SKINIT instruction, automatic memory clear.
(“Secure Startup with SKINIT” on page 53)

2.1 Enabling SVM

Before any SVM instruction (VMRUN, VMLOAD, VMSAVE,
VMMCALL, STGI, CLGI, SKINIT, INVLPGA) can be used,
EFER.SVME (bit 12 of the EFER MSR register) must be set
to 1. While EFER.SVME is zero (the default after reset), SVM
instructions cause #UD faults.

2.2 VMRUN Instruction

The VMRUN instruction is the cornerstone of SVM. VMRUN
takes, as a single argument, the physical address of a 4KB-
aligned page, the virtual machine control block (VMCB), which
describes a virtual machine (guest) to be executed. The VMCB
contains:

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

6 Chapter 2: SVM Processor and Platform Extensions

a list of which instructions or events in the guest (e.g., write
to CR3) to intercept,

various control bits that specify the execution environment
of the guest or that indicate special actions to be taken
before running guest code, and

guest processor state (such as control registers, etc.).

2.2.1 Basic Operation The VMRUN instruction has an implicit addressing mode of
[rAX]. Software must load RAX (EAX in 32-bit mode) with the
physical address of the VMCB, a 4-Kbyte-aligned page that
describes a virtual machine to be executed. The portion of RAX
used in forming the address is determined by the current
effective address size.

The VMCB is accessed by physical address and should be
mapped as writeback (WB) memory.

VMRUN is available only at CPL-0 (a #GP exception is raised if
the CPL is greater than 0). Furthermore, the processor must be
in protected mode and SVME.EFER must be set to 1
(otherwise, a #UD exception is raised).

The VMRUN instruction saves some host processor state in
main memory at the physical address specified in the
VM_HSAVE_AREA MSR; it then loads corresponding guest
state from the VMCB state-save area. VMRUN also reads
additional control bits from the VMCB that allow the VMM to
flush the guest TLB, inject virtual interrupts into the guest, etc.

The VMRUN instruction then checks the guest state just
loaded. If illegal state has been loaded, the processor exits back
to the host (see “#VMEXIT” on page 12).

Otherwise, the processor now runs the guest code until an
intercept event occurs, at which point the processor suspends
guest execution and resumes host execution at the instruction
following the VMRUN. This is called a #VMEXIT and is
described in detail in “#VMEXIT” on page 12.

VMRUN saves or restores a minimal amount of state
information to allow the VMM to resume execution after a
guest has exited. This allows the VMM to handle simple
intercept conditions quickly. If additional guest state
information must be saved or restored (e.g., to handle more
complex intercepts or to switch to a different guest), the VMM

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 7

can employ the VMSAVE and VMLOAD instructions (see
“VMSAVE and VMLOAD Instructions” on page 28).

Saving Host State. To assure that the host can resume operation
after #VMEXIT, VMRUN saves at least the following host state
information at the physical address specified in the new MSR,
VM_HSAVE_PA:

CS.SEL, NEXT_RIP—The CS selector and RIP of the
instruction following the VMRUN. On #VMEXIT the host
resumes running at this address.

RFLAGS, RAX—Host processor mode and the register used
by VMRUN to address the VMCB.

SS.SEL, RSP—Host’s stack pointer.

CR0, CR3, CR4, EFER—Host’s paging/operating mode.

IDTR, GDTR—The pseudo-descriptors. (VMRUN does not
save or restore the host LDTR.)

ES.SEL and DS.SEL.

Processor implementations may store only part (or none) of
host state in the memory area pointed to by VM_HSAVE_AREA
and may store some or all host state in hidden on-chip memory.
Different implementations may choose to save the hidden parts
of the host’s segment registers as well as the selectors. For these
reasons, software must not rely on the format or contents of the
host state save area, nor attempt to change host state by
modifying the contents of the host save area.

Loading Guest State. After saving host state, VMRUN loads the
following guest state from the VMCB:

CS, RIP—Guest begins execution at this address. The
hidden state of the CS segment register is also loaded from
the VMCB.

RFLAGS, RAX.

SS, RSP—Includes the hidden state of the SS segment
register.

CR0, CR2, CR3, CR4, EFER—Guest paging mode. Writing
paging-related control registers with VMRUN does not flush
the TLB (since address spaces are switched).

IF_SHADOW—This flag indicates whether the guest is
currently in an interrupt lockout shadow; see “Interrupt
Shadows” on page 35.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

8 Chapter 2: SVM Processor and Platform Extensions

IDTR, GDTR.

ES and DS—Includes the hidden state of the segment
registers.

DR7 and DR6—The guest’s breakpoint state.

V_TPR—The guest’s virtual TPR.

V_IRQ—The flag indicating whether a virtual interrupt is
pending in the guest.

CPL—If the guest is in real mode, the CPL is forced to 0; if
the guest is in v86 mode, the CPL is forced to 3. Otherwise,
the CPL saved in the VMCB is used.

The processor checks the loaded guest state for consistency. If
an illegal mode is detected or an exception was encountered
while loading guest state, the processor performs a #VMEXIT
immediately and stores VMEXIT_INVALID as an error
indication in the VMCB EXITCODE field.

If the guest is in PAE paging mode according to the registers
just loaded, the processor will also read the four PDPEs pointed
to by the newly loaded CR3 value; setting any reserved bits in
the PDPEs also causes a #VMEXIT.

It is possible for the VMRUN instruction to load a guest RIP
that is outside the limit of the guest’s code segment or that is
non-canonical (if running in long mode). If this occurs, a #GP
fault is delivered inside the guest; the RIP falling outside the
limit of the guest’s code segment is not considered illegal guest
state.

After all guest state is loaded, and intercepts and other control
bits are set up, the processor reenables interrupts by setting
GIF to 1. (It is assumed that VMM software cleared GIF some
time before executing the VMRUN instruction, to ensure an
atomic state switch).

Control Bits. Besides loading guest state, the VMRUN instruction
reads various control fields from the VMCB; most of these fields
are not written back to the VMCB on #VMEXIT (since they
cannot change during guest execution):

TSC_OFFSET—an offset to add when the guest reads the
TSC (time stamp counter). Guest writes to the TSC can be
intercepted and emulated by changing the offset (without
writing the physical TSC). This offset is cleared when the
guest exits back to the host.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 9

V_INTR_PRIO, V_INTR_VECTOR, V_IGN_TPR—fields
used to describe a virtual interrupt for the guest (see
“Injecting Virtual (INTR) Interrupts” on page 34).

V_INTR_MASKING—controls whether masking of
interrupts (in EFLAGS.IF and TPR) is to be virtualized (see
Section 2.17 on page 33).

The TLB address space ID (ASID) to use while running the
guest. (See Appendix B, “Processor Feature Identification,”
on page 81 for feature identification, including how many
ASIDs are implemented.)

A flag indicating whether to flush the TLB of all entries just
before running the guest.

The intercept vector describing the active intercepts for the
guest. On exit from the guest, the internal intercept
registers are cleared so no host operations will be
intercepted.

Segment State in the VMCB. The segment registers are stored in the
VMCB in a format similar to that for SMM: both base and limit
are fully expanded; segment attributes are stored as 12-bit
values formed by the concatenation of bits 55–52 and 47–40
from the original 64-bit (in-memory) segment descriptors; the
descriptor “P” bit is used to signal NULL segments (P==0)
where permissible and/or relevant. When loaded from the
VMCB, only some of the attribute bits are observed by
hardware, depending on the segment register in question:

CS—D, L, R (null code segment are not allowed).

SS—B, P, DPL, E, W (null stack segments allowed in 64-bit
mode only).

DS, ES, FS, GS —D, P, DPL, E, W, Code/Data.

LDTR—Only the P bit is observed.

TR—Only TSS type (32 or 16 bit) is relevant, since a null TSS
is not allowed.

The VMM should follow these rules when storing segment
attributes into the VMCB:

For NULL segments, set all attribute bits to zero.

Otherwise, write the concatenation of bits [55–52] and
[47–40] from the original 64-bit (in-memory) segment
descriptors.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

10 Chapter 2: SVM Processor and Platform Extensions

The processor reads the current privilege level from the CPL
field in the VMCB, not from SS.DPL. However, SS.DPL
should match the CPL field.

When in virtual x86 or real mode, the processor ignores the
CPL field in the VMCB (and forces the values of 3 and 0,
respectively).

When examining segment attributes after a #VMEXIT:

Test the Present (P) bit to check whether a segment is
NULL; note that CS and TR never contain NULL segments
and so their P bit is meaningless;

Retrieve the CPL from the CPL field in the VMCB, not from
any segment DPL.

Canonicalization and Consistency Checks. The VMRUN instruction
performs consistency checks on host and guest state, very much
like RSM performs checks on the new state. Illegal guest state
combinat ions cause a #VMEXIT with error code
VMEXIT_INVALID. The following conditions are considered
illegal state combinations:

EFER.SVME is zero.

CR0.CD is zero and CR0.NW is set.

CR0[63–32] are not zero.

Any MBZ bits of CR3 are set.

CR4[63–11] are not zero.

DR6[63–32] are not zero.

DR7[63–32] are not zero.

EFER[63–15] are not zero.

EFER.LMA or EFER.LME is non-zero this processor does
not support long mode.

EFER.LME and CR0.PG are both set and CR4.PAE is zero.

EFER.LME and CR0.PG are both non-zero and CR0.PE is
zero.

EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-
zero.

The VMRUN intercept bit is zero.

(Other MBZ bits exist in various registers stored in the
VMCB.)

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 11

The MSR or IOIO intercept tables extend to a physical
address ≥ the maximum supported physical address

Illegal event injection (see Section 2.16 on page 32).

VMRUN can load a guest value of CR0 with PE = 0 but PG = 1, a
combination that is otherwise illegal.

In addition to consistency checks, VMRUN and #VMEXIT
canonicalize (i.e., sign-extend to 63 bits) all base addresses in
the segment registers that have been loaded.

VMRUN and TF/RF bits in EFLAGS. When considering interactions of
VMRUN with the TF and RF bits in EFLAGS, one must
distinguish between the behavior of host as opposed to that of
the guest.

From the host point of view, VMRUN acts like a single
instruction, even though an arbitrary number of guest
instructions may execute before a #VMEXIT effectively
completes the VMRUN. As a single host instruction, VMRUN
interacts with EFLAGS.RF and EFLAGS.TF like ordinary
instructions. EFLAGS.RF suppresses any potential instruction
breakpoint match on the VMRUN, and EFLAGS.TF causes a
#DB trap after the VMRUN completes on the host side (i.e.,
after the #VMEXIT from the guest). As with any normal
instruction, completion of the VMRUN instruction clears the
host EFLAGS.RF bit.

The first guest instruction obeys the value of EFLAGS.RF from
the VMCB. When VMRUN loads a guest value of 1 for
EFLAGS.RF, that value takes effect and suppresses any
potential (guest) instruction breakpoint on the first guest
instruction. When VMRUN loads a guest value of 1 in
EFLAGS.TF, that value does not cause a trace trap between the
VMRUN and the first guest instruction, but rather after
completion of the first guest instruction.

Host values of EFLAGS have no affect on the guest and vice-
versa.

See also Section 2.4.1 on page 14 regarding the value of
EFLAGS.RF saved on #VMEXIT.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

12 Chapter 2: SVM Processor and Platform Extensions

2.3 #VMEXIT

When an intercept triggers, the processor performs a #VMEXIT
(i.e., an exit from the guest to the host context).

On #VMEXIT, the processor:

Disables interrupts by clearing the GIF, so that after the
#VMEXIT, VMM software can complete the state switch
atomically.

Writes back to the VMCB the current guest state—the same
subset of processor state as is loaded by the VMRUN
instruction, including the V_IRQ, V_TPR, and the
IF_SHADOW bits.

Saves the reason for exiting the guest in the VMCB’s
EXITCODE field; additional information may be saved in
the EXITINFO1 or EXITINFO2 fields, depending on the
intercept.

Clears all intercepts.

Resets the current ASID register to zero (host ASID).

Clears the V_IRQ and V_INTR_MASKING bits inside the
processor.

Clears the TSC_OFFSET inside the processor.

Reloads the host state previously saved by the VMRUN
instruction.

Note: The processor reloads the host’s CS, SS, DS, and ES segment
registers and, if required, re-reads the descriptors from the
host’s segment descriptor tables, depending on the
implementation. Software should keep the host’s segment
descriptor tables consistent with the segment registers when
executing VMRUN instructions. Immediately after
#VMEXIT, the processor still contains the guest value for
LDTR. So for CS, SS, DS, and ES, the VMM must only use
segment descriptors from the global descriptor table. Any
exception encountered while reloading the host segments
causes a shutdown.

If the host is in PAE mode, the processor reloads (by means
of the host’s CR3) the host’s PDPEs. If the PDPEs contain
illegal state, the processor shuts down.

Forces CR0.PE = 1, RFLAGS.VM = 0 (in other words, the
saved copy of these bits is ignored).

Sets the host CPL to zero.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 13

Disables all breakpoints in the host DR7 register.

Checks the reloaded host state for consistency; any error
causes the processor to shutdown. If the host’s RIP reloaded
by #VMEXIT is outside the limit of the host’s code segment
or non-canonical (in the case of long mode), a #GP fault is
delivered inside the host.

Note: When loading segment bases from the VMCB or the host-
save area (on VMRUN or #VMEXIT), segment bases are
canonicalized (i.e., sign-extended from the highest
implemented address bit to bit 63); see the AMD64
Architecture Programmer’s Manual, Volume 2: System
Programming, order# 24593.

Any illegal state or exception encountered while reloading host
segment state in the VMCB state will cause a processor
shutdown.

2.4 Intercept Operation

Various instructions and events (such as exceptions) in the
guest can be intercepted by means of control bits in the VMCB.
The two primary classes of intercepts supported by SVM are
instruction and exception intercepts.

Exception intercepts. Exception intercepts are checked when
normal instruction processing must raise an exception—before
resolving possible double-fault conditions according to table 8-3
in Volume 2 of the AMD64 Architecture Programmer’s Manual,
order# 24593, and before attempting delivery of the exception
(which includes pushing an exception frame, accessing the IDT,
etc.).

For some exceptions, the processor still writes certain
exception-specific registers even if the exception is intercepted.
(See the descriptions in Section 2.8 on page 23 and following
for details .) When an external or virtual interrupt is
intercepted, the interrupt is left pending.

When an intercept occurs while the guest is in the process of
delivering a non-intercepted interrupt or exception using the
IDT, SVM provides additional information on #VMEXIT (See
Section 2.4.2 on page 14).

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

14 Chapter 2: SVM Processor and Platform Extensions

Instruction intercepts. These occur at well-defined points in
instruction execution—before the results of the instruction are
committed, but ordered in an intercept-specific priority relative
to the instruction’s exception checks. Generally, instruction
intercepts are checked after simple exceptions (such as #GP
when CPL is incorrect, or #UD) have been checked, but before
exceptions related to memory accesses (such as page faults) and
exceptions based on specific operand values. There are several
exceptions to this guideline, e.g., the RSM instruction.
Instruction breakpoints for the current instruction and pending
data breakpoint traps from the previous instruction are
designed to be checked before instruction intercepts.

2.4.1 State Saved on
Exit

When triggered, intercepts write an EXITCODE into the VMCB
identifying the cause of the intercept. The EXITINTINFO field
signals whether the intercept occurred while the guest was
attempting to deliver an interrupt or exception through the
IDT; a VMM can use this information to transparently complete
the delivery (see “Event Injection” on page 32). Some
intercepts provide additional information in the EXITINFO1
and EXITINFO2 fields in the VMCB; see the individual
intercept descriptions for details.

The guest state saved in the VMCB is the processor state as of
the moment the intercept triggers. In the x86 architecture,
traps (as opposed to faults) are detected and delivered after the
instruction that triggered them has completed execution.
Accordingly, a trap intercept takes place after the execution of
the instruction that triggered the trap in the first place. The
saved guest state thus includes the effects of executing that
instruction.

Example: Assume a guest instruction triggers a data breakpoint
(#DB) trap which is in turn intercepted. The VMCB records the
guest state after execution of that instruction, so that the saved
CS:RIP points at the following instruction, and the saved DR7
includes the effects of hitting the data breakpoint.

Some exceptions write special registers even when they are
intercepted; see the individual descriptions in “Exception
Intercepts” on page 23 for details.

2.4.2 Intercepts
During IDT Interrupt
Delivery

It is possible for an intercept to occur while the guest is
attempting to deliver an exception or interrupt through the IDT
e.g., #PF because the VMM has paged out the guest’s exception

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 15

stack). In some cases, such an intercept can result in the loss of
information necessary for transparent resumption of the guest.
In the case of an external interrupt, for example, the processor
will already have performed an interrupt acknowledge cycle
with the PIC or APIC to obtain the interrupt type and vector,
and the interrupt is thus no longer pending.

To recover from such situations, all intercepts indicate (in the
EXITINTINFO field in the VMCB) whether they occurred
during exception or interrupt delivery though the IDT. This
mechanism allows the VMM to complete the intercepted
interrupt delivery, even when it is no longer possible to recreate
the event in question.

The fields in EXITINTINFO are as follows:

VECTOR—Bits 7–0. The 8-bit IDT vector of the interrupt.

TYPE—Bits 10–8. Qualifies the guest exception or interrupt.
Table 2-1 shows possible values returned and their
corresponding interrupt or exception types. Values not
indicated are unused and reserved.

Despite the instruction name, the events raised by the INT1
(also known as ICEBP), INT3 and INTO instructions (opcodes
F1h, CCh and CEh) are considered exceptions, not software
interrupts. Only events raised by the INTn instruction (opcode
CDh) are considered software interrupts.

EV (error code valid)—Bit 11. Set to 1 if the guest exception
would have pushed an error code; cleared to zero otherwise.

63 32 31 30 12 11 10 8 7 0

ERRORCODE V reserved, MBZ EV TYPE VECTOR

Figure 2-1. EXITINTINFO for All Intercepts

Table 2-1. Guest Exception or Interrupt Types

Value Type

0 External or virtual interrupt (INTR)

2 NMI

3 Exception (fault or trap)

4 Software interrupt (caused by
INTn instruction)

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

16 Chapter 2: SVM Processor and Platform Extensions

V (valid)—Bit 31. Set to 1 if the intercept occurred while the
guest attempted to deliver an exception through the IDT;
otherwise cleared to zero.

ERRORCODE—Bits 63–32. If EV is set to 1, holds the error
code that the guest exception would have pushed; otherwise
is undefined.

In the case of multiple exceptions, EXITINTINFO records the
aggregate information on all exceptions but the last (and
intercepted) one.

Example: A guest raises a #GP during delivery of which a #NP is
raised (a scenario that, according to x86 rules, resolves to a
#DF), and an intercepted #PF occurs during the attempt to
deliver the #DF. Upon intercept of the #PF, EXITINTINFO
indicates that the guest was in the process of delivering a #DF
when the #PF occurred. The information about the intercepted
page fault itself is encoded in the EXITCODE, EXITINFO1 and
EXITINFO2 fields. If the VMM decides to repair and dismiss
the #PF, it can resume guest execution by re-injecting (see
“Event Injection” on page 32) the fault recorded in
EXITINTINFO. If the VMM decides that the #PF should be
reflected back to the guest, it must combine the event in
EXITINTINFO with the intercepted exception according to x86
rules (see table 8-3 in Volume 2 of the AMD64 Architecture
Programmer’s Manual, order# 24593). In this case, a #DF plus a
#PF would result in a triple fault or shutdown.

2.4.3 EXITINTINFO
Pseudo-Code

When delivering exceptions or interrupts in a guest, the
processor checks for exception intercepts and updates the value
of EXITINTINFO should an intercept occur during exception
delivery. The following pseudo-code outlines how the processor
delivers an event (exception or interrupt) E.

if E is an exception and is intercepted:
 #VMEXIT(E)
E = (result of combining E with any prior events)

if (result was #DF and #DF is intercepted) :
 #VMEXIT(#DF)
if (result was shutdown and shutdown is intercepted):
 #VMEXIT(#shutdown)
EXITINTINFO = E // Record the event the guest is delivering.

Attempt delivery of E through the IDT
Note that this may cause secondary exceptions

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 17

Once an exception has been successfully taken in the guest:

EXITINTINFO.V = 0 // Delivery succeeded;no #VMEXIT.
Dispatch to first instruction of handler

When an exception triggers an intercept, the EXITCODE (and
optionally EXITINFO1 and EXITINFO2) fields always reflect
the (raw) intercepted exception, while EXITINTINFO (if
marked valid) indicates the prior exception the guest was
attempting to deliver when the intercept occurred.

2.5 Instruction Intercepts

This section specifies which instructions check a given
intercept and, where relevant, how the intercept is prioritized
relative to exceptions.

2.5.1 Read/Write of
CR0

Checked by—MOV TO/FROM CR0, LMSW, SMSW, CLTS.

Priority—Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For LMSW and SMSW,
checks SVM intercepts before checking memory exceptions.

2.5.2 Read/Write of
CR3 (excluding task
switch)

Checked by—MOV TO/FROM CR3 (not checked by task switch
operations).

Priority—Checks non-memory exceptions first, then the
intercept. If the intercept triggers on a write, the intercept
happens before the TLB is flushed. If PAE is enabled, the
loading of the four PDPEs can cause a #GP; that exception is
checked after the intercept check, so the VMM handling a CR3
intercept cannot rely on the PDPEs being legal; it must examine
them in software if necessary.

The reads and writes of CR3 that occur in VMRUN, #VMEXIT
or task switches are not subject to this intercept check.

2.5.3 Read/Write of
other CRs

Checked by—MOV TO/FROM CRn.

Priority—All normal exception checks take precedence over
the SVM intercepts.

2.5.4 Read/Write of
Debug Registers, DRn

Checked by—MOV TO/FROM DRn. (Not checked by implicit
DR6/DR7 writes.)

Priority—All normal exception checks take precedence over
the SVM intercepts.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

18 Chapter 2: SVM Processor and Platform Extensions

2.5.5 Selective CR0
Write Intercept

Checked by—MOV TO CR0, LMSW

Priority—Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For LMSW and SMSW,
checks SVM intercepts before checking memory exceptions.

The selective write intercept on CR0 triggers only if a bit other
than CR0.TS or CR0.MP is being changed by the write. In
particular, this means that CLTS does not check this intercept.

When both selective and non-selective CR0-write intercepts are
active at the same time, the non-selective intercept takes
priority. With respect to exceptions, the priority of this
intercept is the same as the generic CR0-Write intercept.

The LMSW instruction treats the selective CR0-Write intercept
as a non-selective intercept (i.e., it intercepts regardless of the
value being written).

2.5.6 Reading/Writing
of IDTR, GDTR, LDTR,
TR

Checked by—LIDT, SIDT, LGDT, SGDT, LLDT, SLDT, LTR, STR
instructions, respectively.

Priority—The SVM intercept is checked after #UD and #GP
exception checks, but before any memory access is performed.

2.5.7 RDTSC
Instruction Intercept

Checked by—RDTSC instruction

Priority—Checks all exceptions before the SVM intercept.

2.5.8 RDPMC
Instruction Intercept

Checked by—RDPMC instruction

Priority—Checks all exceptions before the SVM intercept.

2.5.9 PUSHF
Instruction Intercept

Checked by—PUSHF instruction.

Priority—The intercept takes priority over any exceptions.

2.5.10 POPF
Instruction Intercept

Checked by—POPF instruction.

Priority—The intercept takes priority over any exceptions.

2.5.11 CPUID
Instruction Intercept

Checked by—CPUID instruction.

Priority—No exceptions to check.

2.5.12 RSM
Instruction Intercept

Checked by—RSM instruction.

Priority—The intercept takes priority over any exceptions.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 19

2.5.13 IRET
Instruction Intercept

Checked by—IRET instruction.

Priority—The intercept takes priority over any exceptions.

2.5.14 Software
Interrupt Intercept

Checked by—INTn instruction.

Priority—The intercept occurs before any exceptions are
checked. The CS:RIP reported on #VMEXIT are those of the
intercepted INTn instruction.

Though the INTn instruction may dispatch through IDT vectors
in the range of 0–31, those events cannot be intercepted by
means of exception intercepts (“Exception Intercepts” on
page 23).

2.5.15 INVD
Instruction Intercept

Checked by—INVD instruction.

Priority—Exceptions (#GP) are checked before the intercept.

2.5.16 PAUSE
Instruction Intercept

Checked by—PAUSE instruction (opcode F3 90).

Priority—No exceptions to check.

2.5.17 HLT Instruction
Intercept

Checked by—HLT instruction.

Priority—Checks all exceptions before checking for this
intercept.

2.5.18 INVLPG
Instruction Intercept

Checked by—INVLPG instruction.

Priority—Checks all exceptions (#GP) before the intercept.

2.5.19 INVLPGA
Instruction Intercept

Checked by—INVLPGA instruction.

Priority—Checks all exceptions (#GP) before the intercept.

2.5.20 VMRUN
Instruction Intercept

Checked by—VMRUN instruction.

Priority—Checks exceptions (#GP) before the intercept.

Note: The current implementation requires that the VMRUN
intercept always be set in the VMCB.

2.5.21 VMLOAD
Instruction Intercept

Checked by—VMLOAD instruction.

Priority—Checks exceptions (#GP) before the intercept.

2.5.22 VMSAVE
Instruction Intercept

Checked by—VMSAVE instruction.

Priority—Checks exceptions (#GP) before the intercept.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

20 Chapter 2: SVM Processor and Platform Extensions

2.5.23 VMMCALL
Instruction Intercept

Checked by—VMMCALL instruction.

Priority—The intercept takes priority over exceptions.
VMMCALL takes #UD if it is not intercepted or if EFER.SVME
is zero.

2.5.24 STGI
Instruction Intercept

Checked by—STGI instruction.

Priority—Checks exceptions (#GP) before the intercept.

2.5.25 CLGI
Instruction Intercept

Checked by—CLGI instruction.

Priority—Checks exceptions (#GP) before the intercept.

2.5.26 SKINIT
Instruction Intercept

Checked by—SKINIT instruction.

Priority—Checks exceptions (#GP) before the intercept.

2.5.27 RDTSCP
Instruction Intercept

Checked by—RDTSCP instruction.

Priority—Checks all exceptions before the SVM intercept.

2.5.28 ICEBP
Instruction Intercept

Checked by—ICEBP instruction (opcode F1h).

Note: Although the ICEBP instruction dispatches through IDT
vector 1, that event is not interceptable by means of the
#DB exception intercept.

2.6 IOIO Intercepts

The VMM can intercept IOIO instructions (IN, OUT, INS,
OUTS) on a port-by-port basis by means of the SVM I/O
permissions map.

I/O Permissions Map. The I/O Permissions Map (IOPM) occupies
12 Kbytes of contiguous physical memory. The table is
structured as a linear array of 64K+3 bits (two 4-Kbyte pages,
and the first three bits of a third 4-Kbyte page) and must be
aligned on a 4-Kbyte boundary; the physical base address of the
IOPM is specified in the IOPM_BASE_PA field in the VMCB
and loaded into the processor by the VMRUN instruction.

Note: The VMRUN instruction ignores the lower 12 bits of the
address specified in the VMCB. If the address of the last byte
in the table is greater than or equal to the maximum
supported physical address, this is treated as illegal VMCB
state and causes a #VMEXIT(VMEXIT_INVALID).

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 21

Each bit in the table corresponds to an 8-bit I/O port. Bit 0 in the
table corresponds to I/O port 0, bit 1 to I/O port 1 and so on. A
bit set to 1 indicates that accesses to the corresponding port
should be intercepted. The IOPM is accessed by physical
address, and should reside in memory that is mapped as
writeback (WB).

IN and OUT Behavior. If the IOIO_PROT intercept bit is set, the
IOPM table controls port access. For IN/OUT instructions that
access more than a single byte, the permission bits for all bytes
are checked; if any bit is set to 1, the I/O operation is
intercepted.

Exceptions related to virtual x86 mode, IOPL, or the TSS-
bitmap are checked before the SVM intercept check. All other
exceptions are checked after the SVM intercept check.

I/O Intercept Information. When an IOIO intercept triggers, the
following information (describing the intercepted operation in
order to facilitate emulation) is saved in the VMCB’s
EXITINFO1 field:

The fields are as follows:

PORT—Intercepted I/O port

SZ32—Port access was 32-bit

SZ16—Port access was 16-bit

SZ8—Port access was 8-bit

REP—Repeated port access

STR—String based port access (INS, OUTS)

TYPE—Access type (0 = OUT instruction, 1 = IN instruction)

The RIP of the instruction following the IN/OUT is saved in
EXITINFO2, so that the VMM can easily resume the guest after
I/O emulation.

31 16 15 7 6 5 4 3 2 1 0

PORT reserved,0
S
Z

32

S
Z
16

S
Z
8

R
E
P

S
T
R

0

T
Y
P
E

Figure 2-2. EXITINFO1 for IOIO Intercept

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

22 Chapter 2: SVM Processor and Platform Extensions

2.7 MSR Intercepts

The VMM can intercept RDMSR and WRMSR instructions by
means of the SVM MSR permissions map (MSRPM) on a per-
MSR basis.

MSR Permissions Map. The MSR permissions bitmap consists of a
number of smaller separate bitmaps of 2K bytes each covering a
defined range of 8K MSRs. Four of these smaller bitmaps reside
in two physical pages (8KB, covering 32K MSRs). One 8Kbyte
range is used for the Pentium® compatible MSRs, the next 8K
range is used for the AMD sixth generation x86 processor
(AMD-K6®) MSRs, and the third 8K range for the AMD seventh
and eighth generation x86 processors (e.g., the AMD Athlon™
and AMD Opteron™) MSRs. If the MSR_PROT intercept is
active, any attempt to read or write an MSR not covered by the
bitmap will automatically cause an intercept.

The MSRPM is accessed by physical address, and should reside
in memory that is mapped as writeback (WB). The MSRPM
must be aligned on a 4KB boundary. The physical base address
of the MSRPM is specified in MSRPM_BASE_PA field in the
VMCB and loaded into the processor by the VMRUN
instruction.

Note: The VMRUN instruction ignores the lower 12 bits of the
address specified in the VMCB, and if the address of the last
byte in the table is greater than or equal to the maximum
supported physical address, this is treated as illegal VMCB
state and causes a #VMEXIT(VMEXIT_INVALID).

Table 2-2. Ranges of MSR Permissions Map

Byte Offset MSR Range Current Usage

000h–7FFh 0000_0000h–0000_1FFFh Pentium®-compatible
MSRs

800h–FFFh C000_0000h–C000_1FFFh
AMD Sixth Generation x86

Processor MSRs and
SYSCALL

1000h–17FFh C001_0000h–C001_1FFFh
AMD Seventh and Eighth

Generation Processor
Public/Private MSRs

1800h–1FFFh XXXX_XXXX–XXXX_XXXX reserved

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 23

Table 2-2 defines the ranges of the MSR permissions map. For
each MSR mapped by the table, two bits are allocated—the
lower order of the two bits controls read access to the MSR, and
the higher order of the two bits controls write access. A bit
value of 1 indicates that the operation is intercepted.

RDMSR and WRMSR Behavior. If the MSR_PROT bit in the VMCB’s
intercept vector is clear, RDMSR/WRMSR instructions are not
intercepted.

RDMSR and WRMSR instructions check for exceptions and
intercepts in the following order:

Exceptions common to all MSRs (e.g., #GP if not at CPL-0)

Check SVM intercepts in the MSR permission map, if the
MSR_PROT intercept is requested.

Exceptions specific to a given MSR (including password
protection, unimplemented MSRs, reserved bits, etc.)

MSR Intercept Information. On #VMEXIT, the processor indicates
in the VMCB’s EXITINFO1 whether a RDMSR (EXITINFO1 =
0) or WRMSR (EXITINFO1 = 1) was intercepted.

2.8 Exception Intercepts

When intercepting exceptions that define an error code
(normally pushed onto the exception stack), the SVM hardware
delivers that error code in the VMCB’s EXITINFO1 field; the
exception vector number can be inferred from the EXITCODE.
The CS.SEL and RIP saved in the VMCB on an exception-
intercept always match those that would otherwise have been
pushed onto the exception stack frame. Unless otherwise noted
below, no special registers are written before an exception is
intercepted. For details on guest state saved in the VMCB, see
Section 2.4.1.

External interrupts and software interrupts (INTn instruction)
do not check the exception intercepts, even when they use a
vector in the range 0 to 31.

Exceptions that occur during the handling of a prior exception
are checked for intercepts before being combined with the prior
exception (e.g., into a double-fault). If the result of combining
exceptions is a double-fault or shutdown, the processor checks
whether those are intercepted before attempting delivery.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

24 Chapter 2: SVM Processor and Platform Extensions

Example: Assume that the VMM intercepts #GP and #DF
exceptions, and the guest raises a (non-intercepted) #NP, during
the delivery of which it also gets a #GP (e.g., due to an illegal
IDT entry)—a situation that, according to x86 semantics, results
in a #DF. In this case, #VMEXIT signals an intercepted #GP, not
an intercepted #DF. On the other hand, if only the #DF
intercept were active in this scenario, #VMEXIT would signal
an intercepted #DF.

The following subsections detail the individual intercepts.

2.8.1 #DE (Divide By
Zero)

The EXITINFO1 and EXITINFO2 fields are undefined.

2.8.2 #DB (Debug) The #DB exception can have fault-type (e.g., instruction
breakpoint) or trap-type (e.g., data breakpoint) behavior;
accordingly the intercept differs in what state is saved in the
VMCB (see “State Saved on Exit” on page 14). In either case,
however, the value saved for DR6 and DR7 matches what would
be visible to a #DB exception handler (i.e., both #DB faults and
traps are permitted to write DR6 and DR7 before the
intercept). The EXITINFO1 and EXITINFO2 fields are
undefined.

Note: A vector 1 exception generated by the single byte INT1
instruction (also known as ICEBP) does not trigger the #DB
intercept. Software should use the dedicated ICEBP
intercept to intercept ICEBP (see “ICEBP Instruction
Intercept” on page 20).

2.8.3 Vector 2
(Reserved)

This intercept bit is not implemented; use the NMI intercept
(Section 2.9.2) instead. The effect of setting this bit is
undefined.

2.8.4 #BP
(Breakpoint)

This intercept applies to the trap raised by the single byte INT3
(opcode CCh) instruction. The EXITINFO1 and EXITINFO2
fields are undefined.

2.8.5 #OF (Overflow) This intercept applies to the trap raised by the INTO (opcode
CEh) instruction. The EXITINFO1 and EXITINFO2 fields are
undefined.

2.8.6 #BR (Bound-
Range)

This intercept applies to the fault raised by the BOUND
instruction. The EXITINFO1 and EXITINFO2 fields are
undefined.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 25

2.8.7 #UD (Invalid
Opcode)

The EXITINFO1 and EXITINFO2 fields are undefined.

2.8.8 #NM (Device-
Not-Available)

The EXITINFO1 and EXITINFO2 fields are undefined.

2.8.9 #DF (Double
Fault)

The EXITINFO1 and EXITINFO2 fields are undefined. The RIP
value saved in the VMCB is undefined (as is the case for the RIP
value pushed on the stack for #DF exceptions).

Note: If a double fault is intercepted, the exceptions leading up to
the double fault will have written any status registers
normally written by those exceptions.

2.8.10 Vector 9
(Reserved)

This intercept is not implemented. The effect of setting this bit
is undefined.

2.8.11 #TS (Invalid
TSS)

The EXITINFO1 and EXITINFO2 fields are undefined. The RIP
value saved in the VMCB may point to either the instruction
causing the task switch, or to the first instruction of the
incoming task.

2.8.12 #NP (Segment
Not Present)

The EXITINFO1 field contains the error code that would be
pushed on the stack by a #NP exception. The EXITINFO2 field
is undefined.

2.8.13 #SS (Stack
Fault)

The EXITINFO1 field contains the error code that would be
pushed on the stack by a #SS exception. The EXITINFO2 field
is undefined.

2.8.14 #GP (General
Protection)

The EXITINFO1 field contains the error code that would be
pushed on the stack by a #GP exception.

2.8.15 #PF (Page
Fault)

This intercept is tested before CR2 is written by the exception.
The error code saved in EXITINFO1 is the same as would be
pushed onto the stack by a non-intercepted #PF exception in
protected mode. The faulting address is saved in the
EXITINFO2 field in the VMCB.

Note: Even when the guest is running in paged real mode, the
processor will deliver the (protected-mode) page-fault error
code in EXITINFO1, for the hypervisor to use in analyzing
the intercepted #PF.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

26 Chapter 2: SVM Processor and Platform Extensions

2.8.16 #MF (X87
Floating Point)

This intercept is tested after the floating point status word has
been written, as is the case for a normal FP exception. The
EXITINFO1 and EXITINFO2 fields are undefined.

2.8.17 #AC (Alignment
Check)

The EXITINFO1 field contains the error code that would be
pushed on the stack by an #AC exception. The EXITINFO2
field is undefined.

2.8.18 #MC (Machine
Check)

The SVM intercept is checked after all #MC-specific registers
have been written, but before other guest state is modified.
When #MC is being intercepted, a machine-check exits to the
VMM wherever possible, and shuts down the processor only
where this is not a reasonable option. The EXITINFO1 and
EXITINFO2 fields are undefined.

2.8.19 #XF (SIMD
Floating Point)

This intercept is tested after the SIMD status word (MXCSR)
has been written, as is the case for a normal FP exception. The
EXITINFO1 and EXITINFO2 fields are undefined.

2.9 Interrupt Intercepts

External interrupts, when intercepted, cause a #VMEXIT; the
interrupt is held pending so that the interrupt can eventually
be taken in the VMM. Exception intercepts do not apply to
external or software interrupts, so it is not possible to intercept
an interrupt by means of the exception intercepts, even if the
interrupt should happen to use a vector in the range from 0 to
31.

2.9.1 INTR Intercept This intercept affects physical, as opposed to virtual, maskable
interrupts. See “Virtual Interrupt Intercept” on page 36 for
virtualization of maskable interrupts.

2.9.2 NMI Intercept This intercept affects non-maskable interrupts.

2.9.3 SMI Intercept This intercept affects System Management Mode Interrupts
(SMIs); see “SMM Support” on page 38 for details on SMI
handling. When the intercept triggers, the VMCB’s EXITINFO1
field distinguishes whether the SMI was caused internally, i.e.,
by I/O Trapping (EXITINFO1=0), or asserted externally
(EXITINFO1=1).

2.9.4 INIT Intercept This allows the VMM to intercept the assertion of INIT while a
guest is running; see “INIT Support” on page 37 for a discussion
of the INIT-redirection feature.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 27

2.9.5 Virtual Interrupt
Intercept

This intercept is taken when a guest is about to take a virtual
interrupt. When the intercept triggers, the virtual interrupt
has not been taken, and and remains pending in the guest's
VMCB V_IRQ field.

Note: This intercept is not required for handling fixed localAPIC
interrupts, but may be used for emulating ExtINT interrupt
delivery mode (which does not obey the TPR), or legacy PICs
in auto-EOI mode.

2.10 Miscellaneous Intercepts

The SVM architecture includes intercepts to handle task
switches, processor freezes due to FERR, and shutdown
operations.

2.10.1 Task Switch
Intercept

Checked by—Any instruction or event that causes a task switch
(e.g., JMP, CALL, exceptions, interrupts, software interrupts).

Priority—The intercept is checked before the task switch takes
place but after the incoming TSS and task gate (if one was
involved) have been checked for correctness.

Task switches can modify several resources that a VMM may
want to protect (CR3, EFLAGS, LDT). However, instead of
checking various intercepts (e.g., CR3 Write, LDTR Write)
individually, task switches check only a single intercept bit.

On #VMEXIT, the following information is delivered in the
VMCB:

EXITINFO1[15–0] holds the segment selector identifying
the incoming TSS.

EXITINFO2[31–0] holds the error code to push in the new
task (undefined if n/a).

EXITINFO2[63–32] holds auxiliary information for the
VMM:

- EXITINFO2[36]—Set to 1 if the task switch was caused
by an IRET; else cleared to 0.

- EXITINFO2[38]—Set to 1 if the task switch was caused
by a far jump; else cleared to 0.

- EXITINFO2[44]—Set to 1 if the task switch has an
errorcode; else cleared to 0.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

28 Chapter 2: SVM Processor and Platform Extensions

- EXITINFO2[48]—The value of EFLAGS.RF that would
be saved in the outgoing TSS if the task switch were not
intercepted.

2.10.2 Ferr_Freeze
Intercept

Checked when the processor freezes due to assertion of FERR
(while IGNNE is deasserted, and legacy handling of FERR is
selected in CR0.NE), i.e., while the processor is waiting to be
unfrozen by an external interrupt.

2.10.3 Shutdown
Intercept

When this intercept occurs, any condition that normally causes
a shutdown causes a #VMEXIT to the VMM instead.

Note: After an intercepted shutdown, the state saved in the VMCB
is undefined.

2.11 VMSAVE and VMLOAD Instructions

The VMSAVE and VMLOAD instructions take the physical
address of a VMCB in the (implicit) rAX operand. The
instructions are intended to complement the state save/restore
abilities of the VMRUN instruction. They provide access to
hidden processor state that software cannot otherwise access,
as well as additional privileged state.

VMSAVE saves the following state to the VMCB pointed at by
rAX:

FS, GS, TR, LDTR (including all hidden state)

KernelGsBase

STAR, LSTAR, CSTAR, SFMASK

SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

VMLOAD loads the corresponding state from the VMCB.
VMLOAD and VMSAVE are available only at CPL-0 (#GP
otherwise), and in protected mode with SVM enabled in
EFER.SVME (#UD otherwise).

2.12 TLB Control

TLB entries are tagged with Address Space Identifier (ASID) bits
to distinguish different host and/or guest address spaces. The
VMM can choose a software strategy in which it keeps multiple
shadow page tables (SPTs) up-to-date and allocates one ASID
per SPT. This allows switching to a new process in a guest (i.e., a

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 29

new CR3 value, which means a new SPT) without flushing the
TLBs.

The VMRUN instruction and #VMEXIT write the CR0, CR3,
CR4 and EFER registers — these writes do not flush the TLB.
The VMM is responsible for explicitly invalidating any guest
translations that may be affected by its actions; there are two
mechanisms available, as described in the next two sections.

When running with SVM enabled, global page table entries
(PTEs) are global only within an ASID, not across ASIDs.

Software Rule. When the VMM changes a guest’s paging mode by
changing entries in the VMCB, it must ensure that the guest’s
ASID is flushed from the TLB. The relevant VMCB state
includes:

CR0—Any bits other than AM, NE, ET, TS, EM, MP, PE.

CR3—Any bit.

CR4—Any bit other than OSX, OSFXSR, PCE, MCE, DE,
TSD, PVI, VME.

EFER—Any bit other than SCE.

2.12.1 TLB Flush TLB flush operations function identically whether or not SVM
is enabled (e.g., MOV-TO-CR3 flushes non-global mapping
whereas MOV-TO-CR4 flushes global and non-global mappings),
and affect all ASIDs. The current implementation does not
provide a way to selectively flush all translations of a single
specified ASID; software may achieve a similar effect by simply
allocating a new ASID and not reusing the old ASID until the
entire TLB has been flushed at least once.

By setting the TLB_CONTROL field in the VMCB to 1, the VMM
can force a complete flush of the TLB (all ASIDs, global and
non-global pages).

2.12.2 Invalidate Page,
Alternate ASID

A new instruction, INVLPGA, allows the VMM to selectively
invalidate the TLB mapping for a given virtual page and a given
ASID. The virtual address is specified in the implicit register
operand rAX; the ASID is specified in ECX.

2.13 Global Interrupt Flag, STGI and CLGI Instructions

The global interrupt flag (GIF) is a bit that controls whether
interrupts and other events can be taken by the processor. The

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

30 Chapter 2: SVM Processor and Platform Extensions

STGI and CLGI instructions set and clear, respectively, the GIF.
Table 2-1 shows how the GIF. Table 2-3 shows how the value of
the GIF affects how interrupts and exceptions are handled.

Table 2-3. Effect of GIF on Interrupt Handling

Interrupt source GIF==0 GIF ==1

Debug exception or trap,
due to breakpoint register
match

Ignored and discarded Normal operation

Debug trace trap due to
EFLAGS.TF Normal operation Normal operation

RESET# Normal operation Normal operation

INIT Held pending until GIF==1 Normal operation, see Table 2-6
on page 38

NMI Held pending until GIF==1
Normal operation, see Table 2-7
on page 38

External SMI Held pending until GIF==1 Normal operation, see Table 2-8
on page 39

Internal SMI (I/O Trapping) Ignored and discarded Normal operation, see Table 2-8
on page 39

INTR and vINTR Held pending until GIF==1 Normal operation

#SX (Security Exception) n/a1 Normal operation

Machine Check
If possible (implementation-
dependent), held pending until
GIF==1, otherwise shutdown.

Normal operation

DBREQ# (enter HDT)
Normal operation Normal operation

(VM_CR.DPD always controls DBREQ)

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 31

2.14 VMMCALL Instruction

This instruction is meant as a way for a guest to explicitly call
the VMM. No CPL checks are performed, so the VMM can
decide whether to make this instruction legal at the user-level
or not.

If VMMCALL instruction is not intercepted the instruction
raises a #UD exception.

2.15 New Processor Mode: Paged Real Mode

To facilitate virtualization of real mode, the VMRUN
instruction may legally load a guest CR0 value with PE = 0 but
PG = 1. (Likewise, the RSM instruction is permitted to return to
paged real mode.) This processor mode behaves in every way
like real mode, with the exception that paging is applied. The
intent is that the VMM run the guest in paged-real mode at
CPL0, and with page faults intercepted. The VMM is
responsible for setting up a shadow page table that makes guest
physical memory appear at the proper virtual addresses inside
the guest.

The behavior of running a guest in paged real mode without
also intercepting page faults to the VMM is undefined.

A20M
Normal operation Normal operation

 (VM_CR.DIS_A20M controls A20 masking)

Other implementation-
specific but non-
architecturally-visible
interrupts (STPCLK, IGNNE
toggle, ECC scrub)

Normal operation Normal operation

Note:
1. #SX is only caused by an INIT signal that has been “redirected” (i.e., converted to an #SX; see Section 3.3); the

conversion only happens when GIF==1, as the INIT is simply held pending otherwise.

Table 2-3. Effect of GIF on Interrupt Handling (continued)

Interrupt source GIF==0 GIF ==1

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

32 Chapter 2: SVM Processor and Platform Extensions

2.16 Event Injection

The VMM can inject exceptions or interrupts (events) into the
guest by setting bits in the VMCB’s EVENTINJ field prior to
executing the VMRUN instruction. The format of the field is
shown in Table 2-4 on page 32. The encoding matches that of
the EXITINTINFO field. When an event is injected by means of
this mechanism, the VMRUN instruction causes the guest to
unconditionally take the specified exception or interrupt
before executing the first guest instruction.

Injected events are treated in every way as though they had
occurred normally in the guest (in particular, they are recorded
in EXITINTINFO) with the following two exceptions:

Injected events are not subject to intercept checks. (Note,
however, that if secondary exceptions occur during delivery
of an injected event, those exceptions are subject to
exception intercepts.)

An injected NMI does not block delivery of further NMIs.

The fields in EVENTINJ are as follows:

VECTOR—Bits 7–0. The 8-bit IDT vector of the interrupt or
exception. If TYPE is 2 (NMI), the VECTOR field is ignored.

TYPE—Bits 10–8. Qualifies the guest exception or interrupt
to generate. Table 2-5 shows possible values and their
corresponding interrupt or exception types. Values not
indicated are unused and reserved.

63 32 31 30 12 11 10 8 7 0

ERRORCODE V reserved, MBZ EV TYPE VECTOR

Table 2-4. EVENTINJ Field in the VMCB

Table 2-5. Guest Exception or Interrupt Types

Value Type

0 External or virtual interrupt (INTR)

2 NMI

3 Exception (fault or trap)

4 Software interrupt (INTn instruction)

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 33

EV (error code valid)—Bit 11. Set to 1 if the exception
should push an error code; clear to 0 otherwise.

V (valid)—Bit 31. Set to 1 if an event is to be injected into
the guest; clear to 0 otherwise.

ERRORCODE—Bits 63–32. If EV is set to 1, the error code to
be pushed, ignored otherwise.

Note: Injecting an exception (TYPE = 3) with vectors 3 or 4
behaves like a trap raised by INT3 and INTO instructions,
respectively, in which case the processor checks the DPL of
the IDT descriptor before dispatching to the handler.

VMRUN exits with VMEXIT_INVALID if either:

Reserved values of TYPE have been specified, or

TYPE = 3 (exception) has been specified with a vector that
does not correspond to an exception (this includes vector 2,
which is an NMI, not an exception).

2.17 Interrupt and localAPIC Support

SVM hardware support is designed to ensure efficient
virtualization of interrupts.

2.17.1 Physical (INTR)
Interrupt Masking in
EFLAGS

To prevent the guest from blocking maskable interrupts
(INTR), SVM provides a VMCB control bit, V_INTR_MASKING,
which changes the operation of EFLAGS.IF and accesses to the
TPR by means of the the CR8 register. While running a guest
with V_INTR_MASKING cleared to zero:

EFLAGS.IF controls both virtual and physical interrupts.

While running a guest with V_INTR_MASKING set to 1:

The host EFLAGS.IF at the time of the VMRUN is saved and
controls physical interrupts while the guest is running.

The guest value of EFLAGS.IF controls virtual interrupts
only.

2.17.2 Virtualizing
APIC.TPR

SVM provides a virtual TPR register, V_TPR, for use by the
guest; its value is loaded from the VMCB by VMRUN and
written back to the VMCB by #VMEXIT. The APIC's TPR
always controls the task priority for physical interrupts, and the
V_TPR always controls virtual interrupts.

While running a guest with V_INTR_MASKING cleared to 0:

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

34 Chapter 2: SVM Processor and Platform Extensions

Writes to CR8 affect both the APIC's TPR and the V_TPR
register.

Reads from CR8 operate as they would without SVM.

While running a guest with V_INTR_MASKING==1:

Writes to CR8 affect only the V_TPR register.

Reads from CR8 return V_TPR.

2.17.3 TPR Access in
32-bit Mode

The mechanism for TPR virtual izat ion described in
Section 2.17.2 applies only to accesses that are performed using
the CR8 register. However, in 32-bit mode, the TPR is
traditionally accessible only by using a memory-mapped
register. Typically, a VMM virtualizes such TPR accesses by not
mapping the APIC page addresses in the guest. A guest access
to that region then causes a #PF intercept to the VMM, which
inspects the guest page tables to determine the physical
address and, after recognizing the physical address as
belonging to the APIC, finally invokes software emulation code.

To improve the efficiency of TPR accesses in 32-bit mode, SVM
makes CR8 available to 32-bit code by means of an alternate
encoding of MOV TO/FROM CR8 (namely, MOV TO/FROM CR0
with a LOCK prefix). To achieve better performance, 32-bit
guests should be modified to use this access method, instead of
the memory-mapped TPR. (For details, see “MOV (CRn)” on
page 66.)

The alternate encodings of the MOV TO/FROM CR8
instructions are available even if SVM is disabled in
EFER.SVME. They are available in both 64-bit and 32-bit mode.

2.17.4 Injecting Virtual
(INTR) Interrupts

Virtual Interrupts allow the host to pass an interrupt (#INTR)
to a guest. While inside a guest, the virtual interrupt follows the
same rules that a real interrupt follows (virtual #INTR is not
taken until EFLAGS.IF = 1, the guest's CR8 priority register has
enabled high-priority interupts, etc).

SVM provides an efficient mechanism by which the VMM can
inject virtual interrupts into a guest:

As described in Section 2.9.1, the VMM can intercept
physical interrupts that arrive while a guest is running, by
activating the INTR intercept in the VMCB.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 35

As described in Section 2.17.4, the VMM can virtualize the
interrupt masking logic by setting the V_INTR_MASKING
bit in the VMCB.

The three VMCB fields V_IRQ, V_INTR_PRIO, and
V_INTR_VECTOR indicate whether there is a virtual
interrupt pending, and, if so, what its vector number and
priority are. The VMRUN instruction loads this information
into corresponding on-chip registers.

The processor takes a virtual INTR interrupt if

- V_IRQ and V_INTR_PRIO indicate that there is a virtual
interrupt pending whose priority is greater than the
value in V_TPR,

- interrupts are enabled in EFLAGS.IF,

- interrupts are enabled in GIF, and

- the processor is not in an interrupt shadow (see
Section 2.17.5).

The only other difference between virtual INTR handling
and normal interrupt handling is that, in the latter case, the
interrupt vector is obtained from the V_INTR_VECTOR
register (as opposed to running an INTAK cycle to the
localAPIC).

The V_IGN_TPR field in the VMCB can be set to indicate
that the currently pending virtual interrupt is not subject to
masking by TPR. The priority comparison against V_TPR is
omitted in this case. This mechanism can be used to inject
ExtINT-type interrupts into the guest.

When the processor dispatches a virtual interrupt (through
the IDT), V_IRQ is cleared after checking for intercepts of
virtual interrupts and before the IDT is accessed.

On #VMEXIT, V_IRQ is written back to the VMCB, allowing
the VMM to track whether a virtual interrupt has been
taken.

Physical interrupts take priority over virtual interrupts,
whether they are taken directly or through a #VMEXIT.

On #VMEXIT, the processor clears its internal copies of
V_IRQ and V_INTR_MASKING, so virtual interrupts do not
remain pending in the VMM, and interrupt control reverts to
normal.

2.17.5 Interrupt
Shadows

The x86 architecture defines the notion of an interrupt
shadow—a single-instruction window during which interrupts

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

36 Chapter 2: SVM Processor and Platform Extensions

are not recognized. For example, the instruction after an STI
instruction that sets EFLAGS.IF (from zero to one) does not
recognize interrupts or certain debug traps. The VMCB
INTERRUPT_SHADOW field indicates whether the guest is
currently in an interrupt shadow. This information is saved on
#VMEXIT and loaded on VMRUN.

2.17.6 Virtual
Interrupt Intercept

When virtualizing interrupt handling, a VMM typically needs
only gain control when new interrupts for a guest arrive or are
generated, and when the guest issues an EOI (end-of-interrupt).
In some circumstances, it may also be necessary for the VMM to
gain control at the moment interrupts become enabled in the
guest (i.e., just before the guest takes a virtual interrupt). The
VMM can do so by enabling the VINTR intercept.

2.17.7 Interrupt
Masking in LocalAPIC

When guests have direct access to devices, interrupts arriving
at the localAPIC can usually be dismissed only by the guest that
owns the device causing the interrupt. To prevent one guest
from blocking other guests’ interrupts (by never processing
their own), the VMM can mask pending interrupts in the
localAPIC, so they do not participate in the prioritization of
other interrupts.

SVM introduces the following new APIC features:

A 256-bit IER (interrupt enable) register is added to the
localAPIC. This register resets to all-ones (enabling all 256
vectors). Software can read and write the IER by means of
the memory-mapped APIC page.

Only vectors that are enabled in the IER participate in the
APIC’s computation of the highest-priority pending
interrupt.

The VMM can issue specific end-of-interrupt (EOI)
commands to the localAPIC, allowing the VMM to clear
pending interrupts in any order, rather than always
targeting the interrupt with highest-priority.

Software issues a specific EOI (SEOI) by writing the vector
number of the interrupt to the new SEOI register in the
localAPIC. The SEOI register is located at offset 420h in the
APIC space. The SEOI register format is shown in Figure 2-3
below.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 37

The IER is made available to software by means of eight 32-bit
registers in the localAPIC; bit i of the 256-bit IER is located at
bit position (i mod 32) in the localAPIC register IER[i / 32]. The
eight IER registers are located at offsets 480h, 490h, ...,4F0h in
APIC space.

The IER and SEOI registers are located in the APIC Extended
Space area. The presence of the APIC Extended Space area is
indicated by bit 31 of the APIC Version Register (at offset 30h
in APIC space).

The presence of the IER and SEOI functionality is identified by
bits 0 and 1, respectively, of the APIC Extended Feature
Register (located at offset 400h in APIC space). IER and SEOI
are enabled by setting bits 0 and 1, respectively, of the APIC
Extended Control Register (located at offset 410h).

2.17.8 INIT Support The INIT signal interrupts the processor after completion of the
current instruction and causes an unconditional control
transfer. INIT reinitializes the control registers, segment
registers and GP registers similar to RESET#, but does not alter
the contents of most MSRs, caches or numeric coprocessor (x87
or SSE) state, and then transfers control to the same instruction
address as RESET# (physical address FFFFFFF0h). Unlike
RESET#, INIT is not expected to be visible to the memory
controller, and hence will not trigger automatic clearing of
trusted memory pages by memory controller hardware. (See
“Automatic Memory Clear” on page 61.)

To maintain the security of such pages, the VMM can request
that INITs be redirected and turned into #SX exceptions by
setting the R_INIT bit in the VM_CR MSR (see Section E.1 on
page 95). This allows the VMM to gain control when an INIT is
requested. The VMM may then disable the redirection of INIT
and then cause the platform to reassert INIT, at which point the
processor will respond in the normal manner. The actions
initiated by the INIT pin may also be initiated by an incoming
APIC INIT interrupt; the mechanisms described here apply in
either case. Table 2-6 on page 38 summarizes the handling of
INITs.

31 8 7 0

reserved, MBZ VECTOR

Figure 2-3. Format of SEOI register (in localAPIC)

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

38 Chapter 2: SVM Processor and Platform Extensions

2.17.9 NMI Support The VMM can intercept non-maskable interrupts (NMI) using a
VMCB control bit (see Table 2-7). When intercepted, NMIs
cause an exit from the guest and are held pending.

2.18 SMM Support

This section describes SVM support for virtualization of System
Management Mode (SMM).

2.18.1 Sources of SMI Various events can cause an assertion of a system management
interrupt (SMI); these are classified into three categories

Internal, synchronous (also known as I/O Trapping)—
implementation-specific IOIO or config space trapping in
the CPU itself; always synchronous in response to an IN or
OUT instruction. I/O Trapping is set up by means of MSRs
and can be brought under the control of the VMM by
intercepting guest access to those MSRs.

External, synchronous—IOIO trapping in response to (and
synchronous with) IN or OUT instructions, but generated by
an external agent (typically the Southbridge).

Table 2-6. INIT Handling in Different Operating Modes

GIF INIT Intercept INIT Redirect Processor Response to INIT

0 x x Hold pending until GIF = 1.

1

1 x #VMEXIT(INIT), INIT is still
pending.

0
0 Taken normally.

1 #SX, INIT is no longer pending.

Table 2-7. NMI Handling in Different Operating Modes

GIF NMI Intercept Processor Response to NMI

0 X Hold pending until GIF=1.

1
1 #VMEXIT(NMI), NMI is still pending.

0 Taken normally.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 39

External, asynchronous—generated externally in response
to an external, physical event, e.g., closing a laptop lid,
temperature sensor triggering, etc.

2.18.2 Response to
SMI

How hardware responds to SMIs is a function of whether SMM
interrupts are being intercepted and whether interrupts are
enabled globally, as shown in Table 2-8.

By intercepting SMIs, the VMM can gain control before the
processor enters SMM.

2.18.3 Containerizing
Platform SMM

In some usage scenarios, the VMM may not trust the existing
platform SMM code. To address this case, SVM provides the
ability to containerize SMM code, i.e., run it inside a guest, with
the full protection mechanisms of the VMM in place.

A simple solution is for the VMM to create its own trusted SMM
handler and to use the handler as a trampoline to invoke the
platform SMM code inside a container. The main function of the
trampoline code is to set up a guest and associated VMCB, and
copy relevant state between the trampoline’s SMM save area,
and the guest’s (virtual) SMM save area. The guest executes the
platform SMM code in paged real mode with appropriate SVM
intercepts in place, thus ensuring security.

For this approach to work, the VMM must be able to write the
SMM_BASE MSR, as well as related SMM control registers.
However, this action conflicts with any BIOS that attempts to
lock SMM control registers.

A VMM can determine if it is running with a compatible BIOS
setup by checking the SMMLOCK bit in the HWCR MSR
(descibed in the appropriate BIOS and kernel developer’s guide
for your processor). If the bit is 1, the BIOS has locked the SMM

Table 2-8. SMI Handling in Different Operating Modes

GIF Intercept
SMI Internal SMI External SMI

0 x Lost. Hold pending until GIF=1.

1
1

Exit guest,
code VMEXIT_SMI_INT.

#VMEXIT(SMI), SMI is still
pending

0 Taken normally. Taken normally.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

40 Chapter 2: SVM Processor and Platform Extensions

control registers and the VMM will be unable to move them or
insert its own SMM trampoline.

Warning: As the processor physically enters SMM, the SMRAM
regions are remapped. The VMM design must ensure
that none of its code or data disappears when the
SMRAM areas are mapped or unmapped. Any attempt
by guests to relocate any of the SMRAM areas (by
means of certain MSR writes) must also be intercepted
to prevent malicious SMM code from interfering with
VMM operation.

Advanced Support. For more efficient and flexible operation, the
new SMM_CTL MSR (described in more detail in Section E.3 on
page 96) is designed to allow the VMM to control explicitly:

when SMI is acknowledged or deasserted to the chipset,

when SMM is considered active (i.e., SMRAM areas are
mapped, NMIs and various other interrupts are blocked),
and

when the SMI-pending flag is cleared in the processor.

With this hardware support, the VMM can enter and exit SMM
at will and the VMM code should be simplified.

Note: Writes to the SMM_CTL MSR cause a #GP if the BIOS has
locked the SMM control registers. Otherwise, SMM_CTL can
be used to inspect the SMRAM areas at will, which risks
revealing secrets that the BIOS might intend to hide.

2.19 External Access Protection

By securing the virtual address translation mechanism, the
VMM can restrict guest CPU accesses to memory. However,
should the guest have direct access to DMA-capable devices, an
additional protection mechanism is required. SVM provides
multiple protection domains which can restrict device access to
physical memory on a per-page basis. This is accomplished via
control logic in the Northbridge’s host bridge which governs any
external access port (e.g., PCI or HyperTransport™ technology
interfaces).

2.19.1 Device IDs and
Protection Domains

The Northbridge’s host bridge provides a number (initially
four) of protection domains. Each protection domain has
associated with it a device exclusion vector (DEV) that specifies

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 41

the per-page access rights of devices in that domain. Devices
are identified by a HyperTransport™ bus/unitID (device ID) and
the host bridge contains a lookup table of fixed size that maps
device IDs to a protection domain.

2.19.2 Device
Exclusion Vector
(DEV)

A DEV is a contiguous array of bits in physical memory; each bit
in the DEV (in little-endian order) corresponds to one 4Kbyte
page in physical memory.

The physical address of the base of a DEV must be 4-Kbyte-
aligned and stored in one of the DEVBASE registers, which are
accessed through an indirection mechanism in the DEVCTL
PCI Configuration Space function block in the host bridge (see
“DEV Control and Status Registers” on page 45). The DEV
protection hardware is not operational until enabled by setting
a control bit in the DEV Control Register, also in the DEVCTL
function block.

Note: The DEV may have to cover part of MMIO space beyond the
DRAM. Especially in 64-bit systems, the operating system
should map MMIO space starting immediately after the
DRAM area and building up, as opposed to starting down
from the maximum physical address.

Host Bridge and Processor DEV Caching. For improved performance,
the host bridge may cache portions of the DEV. Any such
cached information can be invalidated by setting the
DEV_FLUSH flag in the DEV control register to 1. Software
must set this flag after modifying DEV contents to ensure that
the protection logic uses the updated values. The host bridge
automatically clears this flag when the flush operation
completes. After setting this flag, software should monitor it
until it has cleared, in order to synchronize DEV updates with
subsequent activity.

By default, the host bridge probes the processor caches for the
latest data when it accesses the DEV in DRAM. However, it is
possible to disable probing by means of the DEV_CR register
(see “DEV_CR Register” on page 46); this is recommended in
the case of unified memory architecture (UMA) graphics
systems. If cache probing is disabled, host bridge reads of the
DEV will not check processor caches for more recent copies.
This requires software on the CPU to map the memory
containing the DEV as uncacheable (UC) or write-through
(WT). Alternatively, software must perform a CLFLUSH before
it can expect a change to the DEV to be visible by the

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

42 Chapter 2: SVM Processor and Platform Extensions

Northbridge (and before software flushes the DEV cache in the
host controller).

Multiprocessor Issues. Device-originated memory requests are
checked against the DEV at the point of entry to the system—
the Northbridge to which the device is physically attached.
Each Northbridge can have its own set of domains, device-to-
domain mappings, and DEV tables (e.g., domain #2 on one node
can encompass different devices, and can have different access
rights than domain #2 on another node). Thus, the number of
protection domains available to software can scale with the
number of Northbridges in the system.

2.19.3 Access
Checking

Memory Space Accesses. When a memory-space read or write
request is received on an external host bridge port, the host
bridge maps the HyperTransport bus device ID to a protection
domain number, which in turn selects the DEV defining the
access permissions for the device (see Figure 2-4 on page 43).
The host bridge then checks the memory address against the
DEV contents by indexing into the DEV with the PFN portion
of the address (bits 39–12). The PFN is used as a bit index
within the DEV. If the bit read from the DEV is set to 1, the host
bridge inhibits the access by returning all ones for the data for a
read request, or suppressing the store operation on a write
request. A Master Abort error response will be returned to the
requesting device.

Peer-to-peer memory accesses routed up to the host bridge are
also subjected to checks against the DEV. Peer-to-peer transfers
that may be occurring behind bridges are not checked.

DEV checks are applied before addresses are translated by the
GART. The DEV table is never consulted by accesses
originating in the CPU.

I/O Space Accesses. The host bridge can be configured to reject all
I/O space accesses from devices, by setting the IOSPE bit in the
DEV_CR control register (see “DEV_CR Register” on page 46).
I/O space peer-to-peer transfers behind bridges are not checked.

Config Space Accesses. Major aspects of host bridge functionality
are configured by means of control registers that are accessed
through PCI configuration space. Because this is potentially
accessible by means of device peer-to-peer transfers, the host

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 43

bridge always blocks access to this space from anything other
than the CPU.

Figure 2-4. Host Bridge DMA Checking

2.19.4 DEV Capability
Block

The presence of DEV support is indicated through a new PCI
capability block. The capability block also provides access to
the registers that control operation of the DEV facility.

The DEV capability block in PCI space contains three 32-bit
words: the capability header (DEV_HDR), and two registers
(DEV_OP and DEV_DATA) which serve as an indirection
mechanism for accessing the actual DEV control and status
registers.

DEV Cache

with
 Domain#

Tagged

DEV Table
Walker

HyperTransport

to

Domain#
(Zero if No Match)

Bus/Dev ID

Physical Address

DEV_BASE/LIMIT[0]

DEV_BASE/LIMIT[1]

DEV_BASE/LIMIT[2]

DEV_BASE/LIMIT[3]

Domain#Bus/Dev ID

TM

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

44 Chapter 2: SVM Processor and Platform Extensions

DEV Capability Header. The DEV capability header (DEV_HDR) is
defined as follows

2.19.5 DEV Register
Access Mechanism

The Northbridge’s DEV control and status registers are
accessed through an indirection mechanism: writing the
DEV_OP register selects which internal register is to be
accessed, and the DEV_DATA register can be read or written to
access the selected register.

Figure 2-5 shows the format of the DEV_OP register. The
DEV_DATA register reflects the format of the DEV register
selected in DEV_OP.

Table 2-9. DEV Capability Block, Overall Layout

Byte
Offset Register Comments

0 DEV_HDR Capability block header

4 DEV_OP Selects control/status register to access

8 DEV_DATA Read/write to access register selected in DEV_OP

Table 2-10. DEV Capability Header (DEV_HDR) (in PCI Config Space)

Bit(s) Definition

31–22 Reserved, MBZ

21 Interrupt Reporting Capability (zero in the current implementation)

20 Machine Check Exception Reporting Capability

19 Reserved, MBZ

18–16
DEV Capability Block Type; hardwired to 010b. Codes 000b, 001b, and
011b–111b are reserved.

15–8 PCI Capability pointer; points to next capability in list

7–0 PCI Capability ID; hardwired to 0x0F

31 16 15 8 7 0

reserved, MBZ FUNCTION INDEX

Figure 2-5. Format of DEV_OP Register (in PCI Config Space)

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 45

The FUNCTION field in the DEV_OP register selects the
function/register to read or write according to the encoding in
Table 2-11; for blocks of registers that have multiple instances
(e.g., multiple DEV_BASE_HI/LO registers), the INDEX field
selects the instance; otherwise it is ignored.

For example, to write the DEV_BASE_HI register for protection
domain number 2, software sets DEV_OP.FUNCTION to 1, and
DEV_OP.INDEX to 2, and then writes the desired 32-bit value
into DEV_DATA. As the DEV_OP and DEV_DATA registers are
accessed through PCI config space (ports 0CF8h–0CFFh), they
may be secured from unauthorized access by software
executing on the processor by appropriate settings in the SVM
I/O protection bitmap. These registers are also protected by the
host bridge from external access as described in “Config Space
Accesses” on page 42.

2.19.6 DEV Control
and Status Registers

This section describes the DEV control and status registers
accessible by means of the indirection mechanism; the registers
described here are not directly visible in PCI config space.

DEV_CAP Register. Read-only register; holds implementation
specific information: the number of protection domains
supported, the number of DEV_MAP registers (which map
device/unit IDs to domain numbers), and the revision ID
(initially zero).

Table 2-11. Encoding of function field in DEV_OP register

Function Code RegisterType Number of Instances

0 DEV_BASE_LO multiple

1 DEV_BASE_HI multiple

2 DEV_MAP multiple

3 DEV_CAP single

4 DEV_CR single

5 DEV_ERR_STATUS single

6 DEV_ERR_ADDR_LO single

7 DEV_ERR_ADDR_HI single

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

46 Chapter 2: SVM Processor and Platform Extensions

.

The initial implementation will provide four domains and three
map registers.

DEV_CR Register. This is the main control register for the DEV
mechanism; it is cleared to zero by RESET.

DEV_BASE Address/Limit Registers. The DEV Base Address registers
(one set per domain) each point to the physical address of a
DEV table corresponding to a protection domain. The address
and size are encoded in a pair (high/low) of 32-bit registers. The
N_DOMAINS field in DEV_CAP indicates how many (pairs of)
DEV_BASE registers are implemented. The register format is
as shown in Figures 2-7 and 2-8 on page 47.

31 24 23 16 15 8 7 0

reserved, RAZ N_MAPS N_DOMAINS REVISION

Figure 2-6. Format of DEV_CAP Register (in PCI Config Space)

Table 2-12. DEV_CR Control Register

Bit(s) Definition

31-7 reserved, MBZ

6
DEV Table Walk Probe Disable.
0 = Use Probe on DEV walk; 1 = Do not use Probe

5 SL_DEV_EN. Enable bit for limited memory protection, see Section 2.19.8 on page 48.
Set to “1” by SKINIT instruction, can be cleared by software.

4 Invalidate DEV Cache. S/w must set this bit to 1 to invalidate the DEV cache; cleared by
hardware when invalidation is complete.

3
Enable MCE Reporting.
0 = Do not generate MCE; 1 = Generate MCE on errors.

2
I/O Space Protection Enable (IOSPEN)
0 = Allow upstream I/O cycles; 1 = Block.

1
Memory Clear Disable. If non-zero, memory-clearing on reset is disabled.
This bit is not writable until the memory is enabled.

0 DEV Global Enable Bit. If zero, DEV protection is turned off.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 47

Fields of the DEV_BASE_HI and DEV_BASE_LO registers are
defined as follows:

V (valid)—Bit 0. Indicates whether a DEV table has been
defined for the given protection domain; if this bit is clear,
software can leave the other fields undefined, and no
protection checks are performed for memory references in
this domain.

P (protect)—Bit 1. Indicates whether accesses to addresses
beyond the address range covered by the DEV are legal
(P=0) or illegal (P=1).

SIZE—Bits 6–2. Specifies how much memory the DEV
covers, expressed increments of 4GB * 2size. In other words, a
DEV table covers a minimum of 4GB, and can expand by
powers of two (up to SIZE equal to 8, i.e., 256*4GB, in the
initial implementation).

DEV_MAP Registers. The DEV_MAP registers assign protection
domain numbers to device-originated requests by matching the
device ID (HT bus and unit number) associated with the
request against bus and unit numbers in the registers. If no
match is found in any of the registers, a domain number of zero
is returned. The number of DEV_MAP registers implemented
by the chip is indicated by the N_MAPS field in DEV_CAP.

The format of the DEV_MAP registers is shown in Figure 2-9.

The fields of the DEV_MAP[n] registers are defined as follows:

31 7 0

reserved. MBZ BASEADDRESS[39–32]

Figure 2-7. Format of DEV_BASE_HI[n] Registers

31 12 11 7 6 2 1 0

BASEADDRESS[31–12] reserved, MBZ SIZE P V

Figure 2-8. Format of DEV_BASE_LO[n] Registers

31 26 25 20 19 12 11 10 6 5 4 0

DOM1 DOM0 BUSNO V1 UNIT1 V0 UNIT0

Figure 2-9. Format of DEV_MAP[n] Registers

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

48 Chapter 2: SVM Processor and Platform Extensions

UNIT0—Bits 4–0. Specifies the first of two HyperTransport
link unit numbers on the bus number specified by the
BUSNO field.

V0—Bit 5. Indicates whether UNIT0 is valid (no matches
occur on invalid entries).

UNIT1—Bits 10–6. Specifies the second of two
HyperTransport link unit numbers on the bus number
specified by the BUSNO field.

V1—Bit 11. Indicates whether UNIT1 is valid (no matches
occur on invalid entries).

BUSNO—Bits 19–12. Specifies a HyperTransport link bus
number.

DOM0—Bits 25–20. Specifies the protection domain for the
first HyperTransport link unit.

DOM1—Bits 31–26. Specifies the protection domain for the
second HyperTransport link unit.

2.19.7 Unauthorized
Access Logging

Any attempted unauthorized access by devices to DEV-
protected memory are logged by the host bridge in the
DEV_Error_Status and DEV_Error_Address registers for
possible inspection by the VMM.

2.19.8 Secure
Initialization Support

The host bridge contains additional logic that operates in
conjunction with the SKINIT instruction to provide a limited
form of memory protection during the secure startup protocol.
This provides protection for a Secure Loader image in memory,
allowing it to, among other things, set up full DEV protection.
(See section 3.1.6 on page 57 for detailed operation of SKINIT.)

The host bridge logic includes a hidden (not accessible to
software) SL_DEV_BASE address register. SL_DEV_BASE
points to a 64KB-aligned 64KB region of physical memory.
When SL_DEV_EN is 1 , the 64KB region defined by
SL_DEV_BASE is protected from external access (as if it were
protected by the DEV), as well as from any access (both CPU
and external accesses) via GART-translated addresses.
Additionally, the SL_DEV mechanism, when enabled, blocks all
device accesses to PCI Configuration space.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 49

2.20 Nested Paging Facility

The SVM Nested Paging facility provides for two levels of
address translation, thus eliminating the need for the VMM to
maintain shadow page tables. Nested Paging is an optional
feature of SVM and is not available in all implementations of
SVM-capable processors. The CPUID instruction should be
used to determine nested paging support on a particular
processor (see Appendix B on page 81 for the details of
processor feature identification and support).

2.20.1 Traditional
Paging versus Nested
Paging

Figure 2-10 shows how a page in the virtual address space is
mapped to a page in the physical address space in traditional
(single-level) address translation. The CR3 control register
contains the physical address of the page table (PT, represented
by the shaded box in the figure), which governs the address
translation.

Figure 2-10. Address Translation with Traditional Paging

With nested paging enabled, two levels of address translation
are applied; refer to Figure 2-11 below.

A guest page table (gPT) mapping guest virtual addresses to
guest physical addresses is located in guest physical space.

A host page table (hPT) mapping host virtual addresses to
host physical addresses is located in host physical space.

Both host and guest levels have their own copy of CR3,
referred to as hCR3 and gCR3, respectively.

After translating a guest virtual address using the guest
page tables, the resulting (guest physical) address is treated
as a host virtual address and is further translated, using the

Virtual Space

PT

0

0

CR3

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

50 Chapter 2: SVM Processor and Platform Extensions

host page tables, into a host physical address. The resulting
translation from guest virtual to host physical address is
cached in the TLB and used on subsequent guest accesses.

It is important to note that gCR3 and the guest page table
entries contain guest physical addresses, not host physical
addresses. Hence, before accessing a guest page table entry, the
table walker first translates that entry’s guest physical address
into a host physical address.

Figure 2-11. Address Translation with Nested Paging

2.20.2 Enabling
Nested Paging

Nested paging is enabled by the VMRUN instruction if the
NP_ENA bit in the VMCB is set to 1; nested paging is disabled
by #VMEXIT. When nested paging is enabled, the processor
loads guest paging state from the CR0, CR3, CR4 and EFER
fields in the VMCB. Additionally, the processor

loads the guest copy of the PAT register from the G_PAT
field in the VMCB and

loads hCR3, the host-level version of CR3 to be used while
the nested-paging guest is running, from the H_CR3 field in
the VMCB. The paging mode for the host-level remains the

Guest Virtual

gPT

0

0

Host Virtual

0

hPT

0

Guest Physical

pa
ge

d
by

gC
R3gCR3

hCR3

PT

CR3 (used by VMM)

Host Physical

paged by

the VMM’s CR3

pa
ge

d
by

hC
R3

TL
B

En
tr

y

VMM

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 2: SVM Processor and Platform Extensions 51

same as was in effect in the VMM at the time the VMRUN
instruction was issued.

The value of hCR3 can be different from the CR3 in effect while
the VMM is running; this gives the VMM maximum flexibility
on how to remap guests’ physical address spaces, and where to
optionally map guest physical pages in the VMM’s address
space.

2.20.3 Permission
Checks

When nested paging is enabled, pages accessed by the guest
must be marked as present and accessible at the user-level in the
host page table—regardless of the current guest CPL. Further,
the host mapping must permit writes for the guest to be able to
write the page. A failed host access check (for an access that is
otherwise legal at the guest level) results in a #VMEXIT(NPF).

Note: Host permissions are checked on every reference to a guest
physical address—even those caused by guest page table
walks. In particular, when attempting to set an “Accessed”
or “Dirty” bit while walking the guest tables (which reside
in guest physical space), the processor checks whether the
corresponding host virtual page is present and user-level
writable; if not, the processor raises a #VMEXIT(NPF).

The host paging mechanism allows a VMM to page out guest
pages and to use copy-on-write techniques (i.e., sharing of
physical pages) between guests.

2.20.4 Other Guest
Attributes

Some attributes are taken from the guest page tables and guest
operating modes only:

Global pages—whether a guest page is marked global in the
TLB is entirely a function of the global bit in the guest page
tables and the guest’s CR4.PGE. The host page table entry and
paging mode are irrelevant.

System/User—whether a page is user or system-only accessible
is entirely a function of the U/S bit in the guest page tables and
the guest’s CR0.WP (as long as the host page table allows any
guest access to the page at all). The host page table entry and
paging mode are irrelevant.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

52 Chapter 2: SVM Processor and Platform Extensions

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 3: Security 53

3 Security

SVM provides additional hardware support that is designed to
facilitate the construction of trusted software systems. While
the security features described in this section are orthogonal to
SVM’s virtualization support (and are not required for
processor virtualization), the two form building blocks for
trusted systems.

SKINIT Instruction. The SKINIT instruction and associated system
support (the Trusted Platform Module or TPM) are designed to
allow for verifiable startup of trusted software (such as a
VMM), based on secure hash comparison.

Automatic Memory Clearing. Automatic clearing of memory upon
reset protects secrets stored in system memory from simple
reset-based attacks.

Security Exception. A new Security Exception (#SX) is used to
signal certain security-critical events.

3.1 Secure Startup with SKINIT

The SKINIT instruction is one of the keys to creating a “root of
trust” starting with an initially untrusted operating mode.
SKINIT reinitializes the processor to establish a secure
execution environment for a software component called the
secure loader (SL) and starts execution of the SL in a way that
cannot be tampered with. SKINIT also copies the secure loader
executable image to an external device, such as a Trusted
Platform Module (TPM) for verification using unique bus
transactions that preclude SKINIT operation from being
emulated by software in a way that the TPM could not readily
detect. (Detailed operation is described in Section 3.1.4.)

3.1.1 Secure Loader A secure loader (SL) typically initializes SVM hardware
mechanisms and related data structures, and initiates
execution of a trusted piece of software such as a VMM or
hypervisor (referred to as a Security Kernel, or SK, in this
document), after first having validated the identity of that
software.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

54 Chapter 3: Security

One of the main features of SKINIT allows SVM protections to
be reliably enabled after the system is already up and running
in a non-trusted mode — there is no requirement to change the
typical x86 platform boot process.

Exact details of the handoff from the SL to an SK are
dependent on characteristics of the SL, SK and the initial
untrusted operating environment. However, there are specific
requirements for the SL image, as described in Section 3.1.2.

3.1.2 Secure Loader
Image

The secure loader (SL) image contains all code and initialized
data sections of a secure loader. This code and initial data are
used to initialize and start a security kernel in a completely safe
manner, including setting up DEV protection for memory
allocated for use by SL and SK. The SL image is loaded into a
region of memory called the secure loader block (SLB) and can
be no larger than 64Kbyte (see “Secure Loader Block” on
page 54). The SL image is defined to start at byte offset 0 in the
SLB.

The first word (16 bits) of the SL image must specify the SL
entry point as an unsigned offset into the SL image. The second
word must contain the length of the image in bytes; the
maximum length allowed is 65535 bytes. These two values are
used by the SKINIT instruction. The layout of the rest of the
image is determined by software conventions. The image
typically includes a digital signature for validation purposes.
The digital signature hash must include the entry point and
length fields. SKINIT transfers the SL image to the TPM for
validation prior to starting SL execution (see “SKINIT
Operation” on page 57 for further details of this transfer). The
SL image for which the hash is computed must be ready to
execute without prior manipulation.

3.1.3 Secure Loader
Block

The secure loader block is a 64Kbyte range of physical memory
which may be located at any 64Kbyte-aligned address below
4Gbyte. The SL image must have been loaded into the SLB
starting at offset 0 before executing SKINIT. The physical
address of the SLB is provided as an input operand (in the EAX
register) to SKINIT, which sets up special protection for the SLB
against device accesses (i.e., the DEV need not be activated
yet).

The SL must be written to execute initially in flat 32-bit
protected mode with paging disabled. A base address can be

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 3: Security 55

derived from the value in EAX to access data areas within the
SL image using base+displacement addressing, to make the SL
code position-independent.

Memory between the end of the SL image and the end of the
SLB may be used immediately upon entry by the SL as secure
scratch space, such as for an initial stack, before DEV
protections are set up for the rest of memory. The amount of
space required for this will limit the maximum size of the SL
image, and will depend on SL implementation. SKINIT sets the
ESP register to the appropriate top-of-stack value (EAX +
10000h).

Figure 3-1 illustrates the layout of the SLB, showing where EAX
and ESP point after SKINIT execution. Labels in italics
indicate suggested uses; other labels reflect required items.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

56 Chapter 3: Security

t

Figure 3-1. SLB Example Layout

3.1.4 Trusted Platform
Module

The trusted platform module, or TPM, is an essential part of full
trusted system initialization. This device is attached to an LPC
link off the system I/O hub. It recognizes special SKINIT
transactions, receives the SL image sent by SKINIT and verifies
the signature. Based on the outcome, the device decides
whether or not to cooperate with the SL or subsequent SK. The
TPM typically contains sealed storage containing cryptographic

SL Stack

SL Code
and

Static Data

SL Entry Point

SL Header

Length EP Offset

31 16 15 0

64 KB

SL Runtime
Data Area

SL Image
(Hash Area)

Post SKINIT ESP

Post SKINIT EAX

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 3: Security 57

keys and other high-security information that may be specific to
the platform.

3.1.5 System
Interface, Memory
Controller and I/O
Hub Logic

SKINIT uses special support logic in the processor’s system
interface unit, the internal controller and the I/O hub to which
the TPM is attached. SKINIT uses special transactions that are
unique to SKINIT, along with this support logic, designed tp
securely transmit the SL Image to the TPM for validation.

The use of this special protocol should allow the TPM to reliably
detect true execution, as opposed to emulation, of a trusted
Secure Loader, which in turn provides a reliable means for
verifying the subsequent loading and startup of a trusted
Security Kernel.

3.1.6 SKINIT
Operation

The SKINIT instruction is intended to be used primarily in
normal mode prior to the hypervisor taking control.

SKINIT takes the physical base address of the SLB as its only
input operand in EAX, and performs the following steps:

1. Reinitialize processor state in the same manner as for the
INIT signal, then enter flat 32-bit protected mode with
paging off. The CS and SS selectors are set to 0008h and
0010h respectively, and CS and SS base, limit and attribute
registers are set to (base = 0, limit = 4G, CS:read-only,
SS:read/write, expand-up). DS, ES, FS and GS are left as 16-
bit real mode segments and the SL must reload these with
protected mode selectors having appropriate GDT entries
before using them. (Initialized data in the SLB may be
referenced using the SS segment override prefix until DS is
reloaded.) The general purpose registers are cleared except
for EAX, which points to the start of the secure loader,
EDX, which contains model, family and stepping
information, and ESP, which contains the initial stack
pointer for the secure loader. Cache contents remain intact,
as do the x87 and SSE control registers. Most MSRs also
retain their values, except those which might compromise
SVM protections. The EFER MSR, however, is cleared. The
DPD, R_INIT and DIS_A20M flags in the VM_CR register
are unconditionally set to 1.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

58 Chapter 3: Security

2. Form the SLB base address by clearing bits 15–0 of EAX
(EAX is updated), and enable the SL_DEV protection
mechanism (see “Secure Initialization Support” on page 48)
to protect the 64-Kbyte region of physical memory starting
at the SLB base address from any device access.

3. In multiprocessor operation, perform an inter-processor
handshake as described in Section 3.1.8 on page 59.

4. Read the SL image from memory and transmit it to the TPM
in a manner that cannot be emulated by software.

5. Signal the TPM to complete the hash and verify the
signature. If any failures have occurred along the way, the
TPM will conclude that no valid SL was started.

6. Clear the Global Interrupt Flag. This disables all interrupts,
including NMI, SMI and INIT and ensures that the
subsequent code can execute atomically. If the processor
enters the shutdown state (due to a triple fault for instance)
while GIF is clear, it can only be restarted by means of a
RESET.

7. Update the ESP register to point to the first byte beyond
the end of the SLB (SLB base + 65536), so that the first item
pushed onto the stack by the SL will be at the top of the
SLB.

8. Add the unsigned 16-bit entry point offset value from the
SLB to the SLB base address to form the SL entry point
address, and jump to it.

The validation of the SL image by the TPM is a one-way
transaction as far as SKINIT is concerned. It does not depend on
any response from the TPM after transferring the SL image
before jumping to the SL entry point, and initiates execution of
the Secure Loader unconditionally. Because of the processor
initialization performed, SKINIT does not honor instruction or
data breakpoint traps, or trace traps due to EFLAGS.TF.

Pending interrupts. Device interrupts that may be pending prior to
SKINIT execution due to EFLAGS.IF being clear, or that assert
during the execution of SKINIT, will be held pending until
software subsequently sets GIF to 1. Similarly, SMI, INIT and
NMI interrupts that assert after the start of SKINIT execution
will also be held pending until GIF is set to 1.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 3: Security 59

Debug considerations. SKINIT automatically disables various
implementation-specific hardware debug features such as HDT
that could subvert security. A debug version of the SL can
reenable those features by clearing the VM_CR.DPD flag
immediately upon entry.

3.1.7 SL Abort If the SL determines that it cannot properly initialize a valid
SK, it must cause GIF to be set to 1 and clear the VM_CR MSR
to re-enable normal processor operation.

3.1.8 Secure
Multiprocessor
Initialization

The following standard APIC features are used for secure MP
initialization:

The concept of a single Bootstrap Processor (BSP) and
multiple Application Processors (APs).

The INIT inter-processor interrupt (IPI), which puts the
target processors into a halted state which is responsive only
to a subsequent Startup IPI.

The Startup IPI causes target processors to begin execution
at a location in memory that is specified by the Boot
Processor and conveyed along with the Startup IPI. The
operation of the processor in response to a Startup IPI is
slightly modified to support secure initialization, as
described below.

A Startup IPI normally causes an AP to start execution at a
location provided by the IPI. To support secure MP startup,
each AP responds to a startup IPI by additionally clearing its
GIF and setting the DPD, R_INIT and DIS_A20M flags in the
VM_CR register if, and only if, the BSP has indicated that it has
executed an SKINIT. All other aspects of Startup IPI behavior
remain unchanged.

Software requirements for Secure MP initialization. The dr iver that
starts the SL must execute on the BSP. Prior to executing the
SKINIT instruction, the driver must arrange for any processor-
specific system register contents to be saved to memory (to be
restored after the APs undergo hardware re-initialization), and
for all APs to be idled using whatever software means is
appropriate (for example, by means of an OS kernel function or
driver threads running on the other processors). Once the
driver has confirmed that all APs are idle, it must issue an INIT
IPI to all APs and wait for its localAPIC Busy indication to clear.
This places the APs into a halted state which is responsive only
to a subsequent Startup IPI (although the APs will still respond

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

60 Chapter 3: Security

to snoops for cache coherency). The driver may execute SKINIT
any t ime af ter this point . Depending on processor
implementation, a fixed delay of no more than 1000 processor
cycles may be necessary before executing SKINIT to ensure
reliable sensing of APIC INIT state by the SKINIT.

AP Startup Sequence. While the SL starts executing on the BSP, the
APs remain halted in APIC INIT state. Either the SL or the SK
may issue the Startup IPI for the APs at whatever point is
deemed appropriate. The Startup IPI conveys an 8-bit vector
specified by the software that issues the IPI to the APs. This
vector provides the upper 8 bits of a 20-bit physical address.
Therefore, the AP startup code must reside in the lower 1Mbyte
of physical memory—with the entry point at offset 0 on that
particular page.

In response to the Startup IPI, the APs start executing at the
specified location in 16-bit real mode. This AP startup code
must set up protections on each processor as determined by the
SL or SK. It must also set GIF to re-enable interrupts, and
restore the pre-SKINIT system context (as directed by the SL or
SK executing on the BSP), before resuming normal system
operation.

The SL must guarantee the integrity of the AP startup
sequence, for example by including the startup code in the
hashed SL image and setting up DEV protection for it before
copying it to the desired area. The AP startup code does not
need to (and should not) execute SKINIT.

Pending interrupts. Device interrupts that may be pending on an
AP prior to the APIC INIT IPI due to EFLAGS.IF being clear, or
that assert any time after the processor has accepted the INIT
IPI, will be held pending through the subsequent Startup IPI,
and remain pending until software sets GIF to 1 on that AP.
Similarly, SMI, INIT, and NMI interrupts that assert after the
processor has accepted the INIT IPI will also be held pending
until GIF is set to 1.

Aborting MP initialization. In the event that the SL or SK on the
BSP decides to abort SVM system initialization for any reason,
the following clean-up actions must be performed by SL code
executing on each processor before returning control to the
original operating environment:

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Chapter 3: Security 61

The BSP and all APs that responded to the Startup IPI must
restore GIF and clear VM_CR on each processor for normal
operation.

For each processor that has a distinct memory controller
associated with it, the SL_DEV_EN flag in the DEV control
register must be cleared in order to restore normal device
accessibility to the 64KB SL memory range.

Any secure context created by the SL that should not be
exposed to untrusted code should be cleaned up as appropriate
before these steps are taken.

3.2 Automatic Memory Clear

Automatic memory clear (AMC) erases the contents of sytem
memory after the processor is subjected to a cold reset, and
under controlled circumstances after a warm reset.

The processor shadows the AMC Check registers (the
northbridge registers that configure the DRAM size and
configuration), for use after the next warm reset. The shadow
copies are updated each time the DRAM controller completes
initialization.

The memory clear operates as follows:

Memory is cleared after warm reset, when DRAM access is
first enabled, if either of these conditions is true

- AMC was not disabled in the northbridge (MemClrDis =
0), or

- the new value of the DRAM configuration registers do
not match the shadowed AMC Check registers.

Once the memory clear starts, it continues through
completion (unless interrupted by a reset).

The range of DRAM cleared is the entire memory that was
enabled the previous time DRAM was enabled. This
configuration can be determined from the shadow registers.

After the memory clear ends, the new AMC Check register
values are shadowed, for use after the next warm reset.

After trusted software has taken steps to ensure that any
secrets in system memory have been removed or encrypted,
trusted software is expected to set MemClrDis before entering
the ACPI-defined S3 state (suspend to RAM).

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

62 Chapter 3: Security

Refer to the AMD BIOS and Kernel Developer's Guide for your
processor for details on the relevant register definitions.

3.3 Security Exception (#SX)

The Security Exception fault signals security-sensitive events
that occur while executing the VMM, in the form of an
exception so that the VMM may take appropriate action. (A
VMM would typically intercept comparable sensitive events in
the guest.) In the current implementation, the only use of the
#SX is to redirect external INITs into an exception so that the
VMM may — among other possibilities — destroy sensitive
information before re-issuing the INIT, this time without
redirection. (The INIT redirection is controlled by the
VM_CR.R_INIT bit.)

The #SX exception dispatches to vector 30, and behaves like
other fault-class exceptions such as General Protection Fault
(#GP). The #SX exception pushes an error code. The only error
code currently defined is 1, and indicates redirection of INIT
has occurred.

The #SX exception is a contributory fault.

63

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

4 SVM Instruction Set Reference

AMD virtualization technology, codenamed “Pacifica,”
introduces several new instructions and modifies several
existing instructions to facilitate the implementation of VMM
systems.

The SVM instruction set includes instructions to:

Start execution of a guest (VMRUN)

Save and restore subsets of processor state (VMSAVE,
VMLOAD)

Allow guests to explicitly communicate with the VMM
(VMMCALL)

Set and clear the global interrupt flag (STGI, CLGI)

Invalidate TLB entries in a specified ASID (INVLPGA)

Read and write CR8 in all processor modes

Secure init and control transfer with attestation (SKINIT)

Enabling SVM also affects the behavior of existing AMD64
instructions.

4.1 Changes to RSM Instruction

RSM is not allowed to change EFER.SVME. Attempts to do so
are ignored.

When EFER.SVME is 1, RSM reloads the four PDPEs (through
the incoming CR3) when returning to a mode that has PAE
mode paging enabled.

When EFER.SVME is 1, the RSM instruction is permitted to
return to paged real mode (i.e., CR0.PE=0 and CR0.PG=1).

4.2 New Instructions

The basic operation of each SVM instruction is given in the
pages that follow.

64 CLGI

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Clears the global interrupt flag (GIF). While GIF is zero, all external interrupts are
disabled.

Related Instructions

STGI

rFLAGS Affected

None.

Exceptions

CLGI Clear Global Interrupt Flag

Mnemonic Opcode Description

CLGI 0F 01 DD Clears the global interupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X CPL was not zero.

INVLPGA 65

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Invalidates the TLB mapping for a given virtual page and a given ASID. The virtual
address is specified in the implicit register operand rAX (the portion of RAX used to
form the address is determined by the effective address size). The ASID is taken from
ECX.

INVLPGA may invalidate any number of additional TLB entries, in addition to the
targeted entry.

Related Instructions

None.

rFLAGS Affected

None.

Exceptions

INVLPGA Invalidate TLB Entry in a Specified ASID

Mnemonic Opcode Description

INVLPGA rAX, ECX 0F 01 DF Invalidates the TLB mapping for the virtual page specified in
rAX and the ASID specified in ECX.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X CPL was not zero.

66 MOV (CRn)

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register
or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non-64-bit mode, the operand size is fixed at 32 bits and the upper 32 bits of the
destination are forced to 0.

CR0 maintains the state of various control bits. CR2 and CR3 are used for page
translation. CR4 holds various feature enable bits. CR8 is used to prioritize external
interrupts. CR1, CR5, CR6, CR7, and CR9 through CR15 are all reserved and raise an
undefined opcode exception (#UD) if referenced.

CR8 can also be read and modified using the task priority register described in
“System-Control Registers” in Volume 2.

CR8 can be read and written in 64-bit mode, using a REX prefix. CR8 can be read and
written in legacy mode using the MOV (CRn) opcode, using a LOCK prefix instead of a
REX prefix to specify the additional opcode bit. To verify whether the LOCK prefix
can be used in this way, check the status of ECX bit 4 returned by CPUID standard
function 80000001h.

This instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

MOV(CRn) is a privileged instruction and must always be executed at CPL = 0.

MOV (CRn) is a serializing instruction.

MOV (CRn) Move to/from Control Registers

Mnemonic Opcode Description

MOV CRn, reg32 0F 22 /r Move the contents of a 32-bit register to CRn

MOV CRn, reg64 0F 22 /r Move the contents of a 64-bit register to CRn

MOV reg32,CRn 0F 20 /r Move the contents of CRn to a 32-bit register.

MOV reg64,CRn 0F 20 /r Move the contents of CRn to a 64-bit register.

MOV CR8, reg32 F0 0F 22/r Move the contents of a 32-bit register to CR8.

MOV CR8, reg64 F0 0F 22/r Move the contents of a 64-bit register to CR8.

MOV (CRn) 67

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Related Instructions

CLTS, LMSW, SMSW

rFLAGS Affected

None

Exceptions

MOV reg32, CR8 F0 0F 20/r Move the contents of CR8 into a 32-bit register.

MOV reg64, CR8 F0 0F 20/r Mov the contents of CR8 into a 64-bit register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Instruction,
#UD

X

X

X

X

X

X

An illegal control register was referenced (CR1, CR5–CR7,
CR9–CR15).

The use of the LOCK prefix to read CR8 in legacy mode is not
supported, as indicated by ECX bit 4 as returned by CPUID standard
function 8000_0001h.

General protection,
#GP

X X CPL was not 0.

X X An attempt was made to set CR0.PG = 1 and CR0.PE = 0.

X X An attempt was made to set CR0.CD = 0 and CR0.NW = 1.

X X Reserved bits were set in the page-directory pointers table (used in
the legacy extended physical addressing mode) and the instruction
modified CR0, CR3, or CR4.

X X An attempt was made to write 1 to any reserved bit in CR0, CR3, CR4
or CR8.

X X An attempt was made to set CR0.PG while long mode was enabled
(EFER.LME = 1), but paging address extensions were disabled
(CR4.PAE = 0).

X An attempt was made to clear CR4.PAE while long mode was active
(EFER.LMA = 1).

68 SKINIT

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Designed to allows for verifiable startup of trusted software (such as a VMM), based
on secure hash comparison. SKINIT takes the physical base address of the SLB as its
only input operand, in EAX. The SLB must be structured as described in “Secure
Loader Block” on page 54, and is assumed to contain the code for a Secure Loader
(SL).

Action
Initialize processor state like for an INIT signal
CR0.PE = 1

CS.sel = 0x0008
CS.attr = 32-bit code, read/execute
CS.base = 0
CS.limit = 0xFFFFFFFF

SS.sel = 0x0010
SS.attr = 32-bit stack, read/write, expand up
SS.base = 0
SS.limit = 0xFFFFFFFF

EAX = EAX & 0xFFFF0000 // Form SLB base address.
EDX = model/family/stepping
ESP = EAX + 0x00010000 // Initial SL stack.
Clear GPRs other than EAX, EDX, ESP

EFER = 0
VM_CR.DPD = 1
VM_CR.R_INIT = 1
VM_CR.DIS_A20M = 1

Enable SL_DEV, to protect 64Kbyte of physical memory starting at
the physical address in EAX

GIF = 0

Send the SL image to the TPM for attestation
Read the SL entrypoint offset from the SL image
Jump to SL entrypoint

SKINIT Secure Init and Jump with Attestation

Mnemonic Opcode Description

SKINIT EAX 0F 01 DE Secure initialization and jump, with attestation.

SKINIT 69

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Related Instructions

None.

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X CPL was not zero.

70 STGI

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

The STGI instruction sets the global interrupt flag (GIF) to 1. While GIF is zero, all
external interrupts are disabled.

Related Instructions

CLGI

rFLAGS Affected

None.

Exceptions

STGI Set Global Interrupt Flag

Mnemonic Opcode Description

STGI 0F 01 DC Sets the global interupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X CPL was not zero.

VMLOAD 71

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Loads a subset of processor state from the VMCB specified by the physical address in
the rAX register. The portion of RAX used to form the address is determined by the
effective address size.

The VMSAVE and VMLOAD instructions complement the state save/restore abilities
of VMRUN and #VMEXIT, providing access to hidden state that software is otherwise
unable to access, plus some additional commonly-used state.

Action
Load from a VMCB at physical address rAX:

FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMSAVE

rFLAGS Affected

None.

Exceptions

VMLOAD Load State from VMCB

Mnemonic Opcode Description

VMLOAD rAX 0F 01 DA Load additional state from VMCB.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X

X

X

CPL was not zero.

rAX references a physical address above the maximum supported
physical address.

The address in rAX is not aligned on a 4Kbyte boundary.

72 VMMCALL

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

Provides a mechanism for a guest to explicitly communicate with the VMM.

A non-intercepted VMMCALL unconditionally raises a #UD exception.

VMMCALL is not restricted to either protected mode or CPL zero.

Related Instructions

None.

rFLAGS Affected

None.

Exceptions

VMMCALL Call VMM

Mnemonic Opcode Description

VMMCALL 0F 01 D9 Explicit communication with the VMM.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

VMMCALL was not being intercepted.

VMRUN 73

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Starts execution of a guest instruction stream. The physical address of the virtual
machine control block (VMCB) describing the guest is taken from the rAX register (the
portion of RAX used to form the address is determined by the effective address size).

VMRUN saves a subset of host processor state to the host state-save area specified by
the physical address in the VM_HSAVE_PA MSR. VMRUN then loads guest processor
state (and control information) from the VMCB at the physical address specified in
rAX. The processor then executes guest instructions until one of several intercept
events (specified in the VMCB) triggers. When an intercept event occurs, the
processor stores a snapshot of the guest state back into the VMCB, reloads the host
state, and continues execution of host code at the instruction following the VMRUN
instruction.

Action
if (intercepted(VMRUN)) #VMEXIT
remember VMCB address (delivered in rAX) for next #VMEXIT
save host state to physical memory indicated in the VM_HSAVE_PA MSR:

ES.sel
CS.sel
SS.sel
DS.sel
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR4
CR3
// host CR2 is not saved
RFLAGS
RIP
RSP
RAX
// host PDPEs are not saved (they get reloaded at #VMEXIT if necessary)

from the VMCB at physical address rAX, load control information:
intercept vector
tsc offset
interrupt control (v_irq, v_intr_*, v_tpr)
EVENTINJ field

VMRUN Run Virtual Machine

Mnemonic Opcode Description

VMRUN rAX 0F 01 D8 Performs a world-switch to guest.

74 VMRUN

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

nested paging control:
np_ena
hCR3 // only used if nested paging is enabled

ASID
if requested, flush entire TLB (all ASIDs, all entries)
if VMRUN intercept not set: #VMEXIT(INVALID)

from the VMCB at physical address rAX, load guest state:
ES.{base,limit,attr,sel}
CS.{base,limit,attr,sel}
SS.{base,limit,attr,sel}
DS.{base,limit,attr,sel}
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR4
CR3
CR2
if (nested paging enabled)

load guest PAT // leaves host PAT register unchanged
RFLAGS
RIP
RSP
RAX
DR7
DR6
CPL // 0 for real mode, 3 for v86 mode, else as loaded
interrupt_shadow flag

if (guest state consistency checks fail) #VMEXIT(INVALID)

GIF = 1 // allow interrupts in the guest
if (EVENTINJ.V)

cause exception/interrupt in guest
else

jump to first guest instruction

VMRUN 75

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Upon #VMEXIT, the processor performs the following actions in order to return to the
host execution context:

GIF = 0
save guest state to VMCB:

ES.{base,limit,attr,sel}
CS.{base,limit,attr,sel}
SS.{base,limit,attr,sel}
DS.{base,limit,attr,sel}
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR4
CR3
CR2
CR0
if (nested paging)
 guest PAT
RFLAGS
RIP
RSP
RAX
DR7
DR6
CPL
interrupt_shadow flag

save additional state and intercept information:
v_irq, v_tpr
exitcode
exitinfo1
exitinfo2
exitintinfo

clear EVENTINJ field in VMCB

prepare processor for entering host mode:
clear intercepts
clear v_irq
clear v_intr_masking
clear tsc_offset
turn off nested paging
reset ASID to zero

reload host state
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR0.PE = 1 // saved copy of CR0.PE is ignored
CR4
CR3
// NOTE: if host is in PAE paging mode, its PDPEs are reloaded here.
// Do not reload host CR2 or PAT

76 VMRUN

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

RFLAGS
RIP
RSP
RAX
DR7 = “all disabled”
CPL = 0
ES.sel; reload segment descriptor from GDT
CS.sel; reload segment descriptor from GDT
SS.sel; reload segment descriptor from GDT
DS.sel; reload segment descriptor from GDT

if (illegal host state loaded, or exception while loading host state)
shutdown

else
execute first host instruction following the VMRUN

Related Instructions

VMLOAD, VMSAVE.

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME is zero.

Instruction is only recognized in protected mode.

General protection, #GP X

X

X

CPL was not zero.

rAX referenced a physical address above the maximum supported
physical address.

The address in rAX was not aligned on a 4Kbyte boundary.

VMSAVE 77

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Stores a subset of the processor state into the VMCB specified by the physical address
in the rAX register (the portion of RAX used to form the address is determined by the
effective address size).

The VMSAVE and VMLOAD instructions complement the state save/restore abilities
of VMRUN and #VMEXIT, providing access to hidden state that software is otherwise
unable to access, plus some additional commonly-used state.

Action
Store to a VMCB at physical address rAX:

FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMLOAD

rFLAGS Affected

None.

Exceptions

VMSAVE Save State to VMCB

Mnemonic Opcode Description

VMSAVE rAX 0F 01 DB Save additional guest state to VMCB.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X

X

X

The SVM instructions are not supported as indicated by ECX bit 2 as
returned by CPUID extended function 8000_0001h.

EFER.SVME was zero.

Instruction is only recognized in protected mode.

General protection, #GP X

X

X

CPL was not zero.

rAX referenced a physical address above the maximum supported
physical address.

The address in rAX was not aligned on a 4Kbyte boundary.

78 VMSAVE

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix A: Reset Values and INIT 79

Appendix A Reset Values and INIT

This appendix provides data on reset values of SVM-related
data structures and features, and the reinitialization of state as
a result of INIT.

A.1 Reset Values

The SVM-related processor state resets as follows:

EFER.SVME is cleared to 0 (SVM extensions disabled).

GIF is set to 1 (interrupts enabled globally).

SVM intercepts are cleared to 0 (no intercepts active).

The “current ASID” register is cleared to 0.

VM_CR is cleared to 0 (debug, INIT and A20M function as
usual).

V_IRQ and V_INTR_MASKING are cleared to 0 (no virtual
interrupt pending, interrupt masking not virtualized).

TSC_OFFSET is cleared to 0 (RDTSC delivers “raw” value).

Nested paging is disabled.

SVM-related Northbridge state resets as follows:

DEV table features are disabled.

Interrupt Enable Register (IER) is set to “all vectors
enabled”.

A.2 Action of INIT

INIT can be intercepted when inside a guest (in which case it
causes a #VMEXIT and INIT is held pending) and can be
redirected inside the host context, in which case it causes INIT
to be dropped and raises an #SX exception. In either case, the
INIT has no effect on hardware state. Only if the INIT is neither
intercepted nor redirected does it reinitialize state as follows:

EFER.SVME is cleared to 0 (SVM extensions disabled).

GIF is set to 1 (interrupts enabled globally).

SVM intercepts are cleared to 0 (no intercepts active).

The “current ASID” register is cleared to 0.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

80 Appendix A: Reset Values and INIT

VM_CR is cleared to 0 (debug, INIT and A20M function as
usual).

V_IRQ and V_INTR_MASKING are cleared to 0 (no virtual
interrupt pending, interrupt masking not virtualized).

TSC_OFFSET is cleared to 0 (RDTSC delivers “raw” value).

Nested paging is disabled.

SVM-related Northbridge state is initialized as follows:

DEV table features are disabled.

Interrupt Enable Register (IER) is set to “all vectors
enabled”.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix B: Processor Feature Identification 81

Appendix B Processor Feature Identification

The presence of the SVM extensions is indicated by the SVM
feature flag in the extended feature flags returned by extended
CPUID function 8000_0001h, in bit 2 of ECX.

On processors that support SVM, CPUID function 8000_000Ah
returns the SVM revision and feature flags in EAX, and the
number of supported ASIDs in EBX, as shown in Table B-1. EDX
is used to report feature flags, and ECX is currently reserved
and set to zero.

The fields returned in EAX are defined as follows:

REVISION—Bits 7–0. An 8-bit ordinal representing the SVM
REVISION number; its value for the initial implementation
is 1.

Available—Bit 8. EAX bit 0 reads as zero. A hypervisor may
use this bit to signal its presence by intercepting and
emulating CPUID.

The fields returned in EBX are defined as follows:

N_ASIDS—Bits 31–0. A bit field that specifies the number of
address space IDs supported by the given implementation. The
N_ASIDS value reported is one larger than the largest
supported ASID value. The number of supported ASIDS need
not be a power of two. The initial SVM implementation
supports 64 ASIDs.

The NP field in EDX indicates whether the nested paging
facility is implemented.

31 9 8 7 0

reserved, RAZ 0 REVISION

Figure B-1. SVM Revision and Feature Identification in EAX, Extended Function 8000_000Ah

31 0

N_ASIDS

Figure B-2. SVM Revision and Feature Identification in EBX, Extended Function 8000_000Ah

31 1 0

reserved, RAZ NP

Figure B-3. SVM Revision and Feature Identification in EDX, Extended Function 8000_000Ah

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

82 Appendix B: Processor Feature Identification

Future SVM features will be identified by a combination of
revision number and feature flags in the currently reserved
bits.

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix C: Layout of VMCB 83

Appendix C Layout of VMCB

C.1 Layout of VMCB

The VMCB is divided into two areas—the first one contains
various control bits including the intercept vector and the
second one contains saved guest state.

Table C-1 describes the layout of the control area of the VMCB,
which starts at offset zero within the VMCB page. The control
area is padded to a size of 1024 bytes. All unused bytes must be
zero, as they are reserved for future expansion. It is
recommended that software “bzero” any newly allocated
VMCB.

Table C-1. VMCB Layout, Control Area

Byte Offset Bit(s) Function

000h 0–15 Intercept reads of CR0–15, respectively.

16–31 Intercept writes of CR0–15, respectively.

004h 0–15 Intercept reads of DR0–15, respectively.

16–31 Intercept writes of DR0–15, respectively.

008h 0–31 Intercept exception vectors 0–31, respectively.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

84 Appendix C: Layout of VMCB

00Ch 0 Intercept INTR (physical maskable interrupt).

1 Intercept NMI.

2 Intercept SMI.

3 Intercept INIT.

4 Intercept VINTR (virtual maskable interrupt).

5 Intercept CR0 writes that change bits other than CR0.TS or
CR0.MP.

6 Intercept reads of IDTR.

7 Intercept reads of GDTR.

8 Intercept reads of LDTR.

9 Intercept reads of TR.

10 Intercept writes of IDTR.

11 Intercept writes of GDTR.

12 Intercept writes of LDTR.

13 Intercept writes of TR.

14 Intercept RDTSC instruction.

15 Intercept RDPMC instruction.

Table C-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix C: Layout of VMCB 85

00Ch (continued) 16 Intercept PUSHF instruction.

17 Intercept POPF instruction.

18 Intercept CPUID instruction.

19 Intercept RSM instruction.

20 Intercept IRET instruction.

21 Intercept INTn (software interrupt) instruction.

22 Intercept INVD instruction.

23 Intercept PAUSE instruction.

24 Intercept HLT instruction.

25 Intercept INVLPG instruction.

26 Intercept INVLPGA instruction.

27 IOIO_PROT—Intercept IN/OUT accesses to selected ports.

28 MSR_PROT—intercept RDMSR or WRMSR accesses to
selected MSRs.

29 Intercept task switches.

30 FERR_FREEZE: intercept processor “freezing” during legacy
FERR handling.

31 Intercept shutdown events.

010h 0 Intercept VMRUN instruction.

1 Intercept VMMCALL instruction.

2 Intercept VMLOAD instruction.

3 Intercept VMSAVE instruction.

4 Intercept STGI instruction.

5 Intercept CLGI instruction.

6 Intercept SKINIT instruction.

7 Intercept RDTSCP instruction.

8 Intercept ICEBP instruction.

9...31 RESERVED, MBZ

Table C-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

86 Appendix C: Layout of VMCB

014h–03Fh all RESERVED, MBZ

040h 0–63 IOPM_BASE_PA—Physical base address of IOPM (bits 11:0
are ignored).

048h 0–63 MSRPM_BASE_PA—Physical base address of MSRPM (bits
11:0 are ignored).

050h 0–63 TSC_OFFSET—To be added in RDTSC and RDTSCP.

058h 0–31 Guest ASID.

32–39 TLB_CONTROL—Only two values are currently defined:
0—Do nothing
1—Flush TLB on VMRUN (all entries, all ASIDs)

40–63 RESERVED, MBZ

060h 0–7 V_TPR—The virtual TPR for the guest; currently bits 3:0 are
used for a 4-bit virtual TPR value; bits 7:4 are MBZ.

NOTE: This value is written back to the VMCB at #VMEXIT.

8 V_IRQ—If nonzero, virtual INTR is pending.
NOTE: This value is written back t othe VMCB at #VMEXIT.

9–15 RESERVED, MBZ

16–19 V_INTR_PRIO—Priority for virtual interrupt.

20 V_IGN_TPR—If nonzero, the current virtual interrupts
ignores the (virtual) TPR.

21–23 RESERVED, MBZ

24 V_INTR_MASKING—Virtualize masking of INTR interrupts.
See Section 2.17.1.

25–31 RESERVED, MBZ

32–39 V_INTR_VECTOR—Vector to use for this interrupt.

40–63 RESERVED, MBZ

068h 0 INTERRUPT_SHADOW—Guest is in an interrupt shadow;
see Section 2.17.5.

Note: This value is written back to the VMCB at #VMEXIT.

1–63 RESERVED, MBZ

070h 0–63 EXITCODE

Table C-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix C: Layout of VMCB 87

078h 0–63 EXITINFO1

080h 0–63 EXITINFO2

088h 0–63 EXITINTINFO

090h 0 NP_ENA—Enable nested paging.

1–63 RESERVED, MBZ

098h–0A7h RESERVED. MBZ

0A8h 0–63 EVENTINJ—Event injection.

0B0h 0–63 H_CR3—Host-level CR3 to use for nested paging.

All other fields up to 3FFh RESERVED, MBZ

Table C-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

88 Appendix C: Layout of VMCB

The state-save area within the VMCB starts at offset 400h into
the VMCB page; Table C-2 below describes the fields within the
state-save area; note that the table lists offsets relative to the
state-save area (not the VMCB as a whole).

Table C-2. VMCB Layout, State Save Area

Offset Size Contents Notes

000h word

ES

selector

002h word attrib

004h dword limit

008h qword base Only lower 32 bits are implemented

010h word

CS

selector

012h word attrib

014h dword limit

018h qword base Only lower 32 bits are implemented

020h word

SS

selector

022h word attrib

024h dword limit

028h qword base Only lower 32 bits are implemented

030h word

DS

selector

032h word attrib

034h dword limit

038h qword base Only lower 32 bits are implemented

040h word

FS

selector

042h word attrib

044h dword limit

048h qword base

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix C: Layout of VMCB 89

050h word

GS

selector

052h word attrib

054h dword limit

058h qword base

060h word

GDTR

selector not implemented

062h word attrib not implemented

064h dword limit only lower 16 bits are implemented

068h qword base

070h word

LDTR

selector

072h word attrib

074h dword limit

078h qword base

080h word

IDTR

selector not implemented

082h word attrib not implemented

084h dword limit only lower 16 bits are implemented

088h qword base

090h word

TR

selector

092h word attrib

094h dword limit

098h qword base

0A0h - 0CAh RESERVED

0CBh byte CPL

0CCh dword RESERVED

0D0h qword EFER

0D8h - 147h RESERVED

148h qword CR4

150h qword CR3

Table C-2. VMCB Layout, State Save Area (continued)

Offset Size Contents Notes

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

90 Appendix C: Layout of VMCB

158h qword CR0

160h qword DR7

168h qword DR6

170h qword RFLAGS

178h qword RIP

180h - 1D7h RESERVED

1D8h qword RSP

1E0h - 1F7h RESERVED

1F8h qword RAX

200h qword STAR

208h qword LSTAR

210h qword CSTAR

218h qword SFMASK

220h qword KernelGsBase

228h qword SYSENTER_CS

230h qword SYSENTER_ESP

238h qword SYSENTER_EIP

240h qword CR2

248h - 267h RESERVED

268h qword G_PAT Guest PAT—only used if nested paging
enabled.

270h to end of VMCB RESERVED

Table C-2. VMCB Layout, State Save Area (continued)

Offset Size Contents Notes

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix D: Intercept Exit Codes 91

Appendix D Intercept Exit Codes

When the VMRUN instruction exits (back to the host), an
exit/reason code is stored in the EXITCODE field in the VMCB.
The exit codes are defined in Table D-1. Intercept exit codes
0–136 equal the bit position of the corresponding flag in the
VMCB’s intercept vector.

:

Table D-1. SVM Intercept Codes

Code Name Cause

0–15 VMEXIT_CR[0–15]_READ read of CR 0 through 15, respectively

16–31 VMEXIT_CR[0–15]_WRITE write of CR 0 through 15, respectively

32–47 VMEXIT_DR[0–15]_READ read of DR 0 through 15, respectively

48–63 VMEXIT_DR[0–15]_WRITE write of DR 0 through 15, respectively

64–95 VMEXIT_EXCP[0–31] exception vector 0–31, respectively

96 VMEXIT_INTR physical INTR (maskable interrupt)

97 VMEXIT_NMI physical NMI

98 VMEXIT_SMI physical SMI; EXITINFO1 indicates whether caused
internally (0) or externally (1)

99 VMEXIT_INIT physical INIT

100 VMEXIT_VINTR virtual maskable interrupt

101 VMEXIT_CR0_SEL_WRITE write of CR0 that changed any bits other than CR0.TS or
CR0.MP

102 VMEXIT_IDTR_READ read of IDTR

103 VMEXIT_GDTR_READ read of GDTR

104 VMEXIT_LDTR_READ read of LDTR

105 VMEXIT_TR_READ read of TR

106 VMEXIT_IDTR_WRITE write of IDTR

107 VMEXIT_GDTR_WRITE write of GDTR

108 VMEXIT_LDTR_WRITE write of LDTR

109 VMEXIT_TR_WRITE write of TR

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

92 Appendix D: Intercept Exit Codes

110 VMEXIT_RDTSC RDTSC instruction

111 VMEXIT_RDPMC RDPMC instruction

112 VMEXIT_PUSHF PUSHF instruction

113 VMEXIT_POPF POPF instruction

114 VMEXIT_CPUID CPUID instruction

115 VMEXIT_RSM RSM instruction

116 VMEXIT_IRET IRET instruction

117 VMEXIT_SWINT software interrupt (INTn instruction)

118 VMEXIT_INVD INVD instruction

119 VMEXIT_PAUSE PAUSE instruction

120 VMEXIT_HLT HLT instruction

121 VMEXIT_INVLPG INVLPG instructions

122 VMEXIT_INVLPGA INVLPGA instruction

123 VMEXIT_IOIO IN or OUT accessing protected port (the EXITINFO1 field
provides more information)

124 VMEXIT_MSR RDMSR or WRMSR access to protected MSR

125 VMEXIT_TASK_SWITCH task switch

126 VMEXIT_FERR_FREEZE FP legacy handling enabled, and processor is frozen in an
x87/mmx instruction waiting for an interrupt

127 VMEXIT_SHUTDOWN a shutdown condition occurred in the guest

128 VMEXIT_VMRUN VMRUN instruction

129 VMEXIT_VMMCALL VMMCALL instruction

130 VMEXIT_VMLOAD VMLOAD instruction

131 VMEXIT_VMSAVE VMSAVE instruction

132 VMEXIT_STGI STGI instruction

133 VMEXIT_CLGI CLGI instruction

134 VMEXIT_SKINIT SKINIT instruction

135 VMEXIT_RDTSCP RDTSCP instruction

Table D-1. SVM Intercept Codes (continued)

Code Name Cause

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix D: Intercept Exit Codes 93

136 VMEXIT_ICEBP ICEBP instruction

1024 VMEXIT_NPF Nested paging: host-level page fault occurred. EXITINFO1
contains fault errorcode. EXITINFO2 contains the guest
physical address causing the fault.

-1 VMEXIT_INVALID Invalid guest state in VMCB

Table D-1. SVM Intercept Codes (continued)

Code Name Cause

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

94 Appendix D: Intercept Exit Codes

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix E: New and Changed MSRs 95

Appendix E New and Changed MSRs

SVM introduces new MSRs and adds new fields to existing
MSRs as summarized in Table E-1. These new MSRs and fields
are available regardless of whether SVM is enabled in
EFER.SVME.

E.1 VM_CR MSR (C001_0114h)

The read/write VM_CR MSR controls certain “global” aspects
of SVM. The layout of the MSR is shown in Figure E-1.

The individual fields are as follows:

DPD—Bit 0. If set, disables HDT and certain internal debug
features.

R_INIT—Bit 1. If set, non-intercepted INIT signals are
converted (“redirected”) into an #SX exception.

DIS_A20M—Bit 2. If set, disables A20 masking.

E.2 IGNNE MSR (C001_0115h)

The read/write IGNNE MSR is used to directly set the state of
the processor-internal IGNNE signal. This is only useful if
IGNNE emulation has been enabled in the HW_CR MSR (and
thus the external signal is being ignored). Bit 0 specifies the
current value of IGNNE; all other bits are MBZ.

Table E-1. SVM New MSRs

Name Address Access Description

VM_CR C001_0114
r/w

Security-related control bits.

IGNNE C001_0115 Set the processor-internal IGNNE state.

SMM_CTL C001_0116 w/o Explicit control over SMM state and signals.

VM_HSAVE_PA C001_0117 r/w Physical address of host state-save area.

63 3 2 1 0

reserved, MBZ DIS_A20M R_INIT DPD

Figure E-1. Layout of VM_CR MSR (C001_0114h)

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

96 Appendix E: New and Changed MSRs

E.3 SMM_CTL MSR (C001_0116h)

The write-only SMM_CTL MSR provides software control over
SMM signals.

Writing individual bits causes the following actions:

DISMISS—Bit 0. Clear the processor-internal “SMI
pending” flag.

ENTER—Bit 1. Enter SMM: map the SMRAM memory areas,
record whether NMI was currently blocked and block
further NMI and SMI interrupts.

SMI_CYCLE—Bit 2. Send SMI special cycle.

EXIT—Bit 3. Exit SMM: unmap the SMRAM memory areas,
restore the previous masking status of NMI and
unconditionally reenable SMI.

RSM_CYCLE—Bit 4. Send RSM special cycle.

Writes to the SMM_CTL MSR cause a #GP if the BIOS has
locked the SMM control registers.

Conceptually, the bits are processed in the order of ENTER,
SMI_CYCLE, DISMISS, RSM_CYCLE, EXIT, though only the
following bit combinations may be set together in a single write
(for all other combinations of more than one bit, behavior is
undefined):

ENTER + SMI_CYCLE

DISMISS + ENTER

DISMISS + ENTER + SMI_CYCLE

EXIT + RSM_CYCLE

The VMM must ensure that ENTER and EXIT operations are
properly matched, and not nested, otherwise processor
behavior is undefined. Also undefined are ENTER when the
processor is already in SMM, and EXIT when the processor is
not in SMM.

63 5 4 3 2 1 0

reserved, MBZ RSM_CYCLE EXIT SMI_CYCLE ENTER DISMISS

Figure E-2. Layout of SMM_CTL MSR (C001_0116h)

33047—Rev. 3.01—May 2005 Secure Virtual Machine Architecture Reference Manual

Appendix E: New and Changed MSRs 97

E.4 VM_HSAVE_PA MSR (C001_0117h)

The 64-bit read/write VM_SAVE_PA MSR holds the physical
address of a block of memory where VMRUN saves host state,
and from which #VMEXIT reloads host state. The VMM
software is expected to set up this register before issuing the
first VMRUN instruction. The host state-save area must be
aligned at 4KB; software must not attempt to either read or
write it.

Writing this MSR causes a #GP if:

any of the low 12 bits of the address written are nonzero, or

the address written is greater than or equal to the maximum
supported physical address for this implementation.

E.5 Changes to Existing MSRs

The following existing MSRs are changed:

E.5.1 EFER SVME—Bit 12. Enables the SVM extensions. While this bit
is zero, the new SVM instructions cause #UD exceptions.
Resets to zero (SVM extensions disabled). The effect of
turning off EFER.SVME while a guest is running is
undefined, therefore the VMM should always prevent guests
from writing EFER.

E.6 New localAPIC Registers

The 256-bit IER and the SEOI command register are made
available via new registers in the second APIC page, at the
offsets defined in Table E-2, “Secure-VM New localAPIC
Registers”‚ on page 98 below.

Secure Virtual Machine Architecture Reference Manual 33047—Rev. 3.01—May 2005

98 Appendix E: New and Changed MSRs

E.7 APIC Feature Identification, and Enabling

Secure virtualization also depends on new APIC features. These
are identified in the new extended APIC feature register and
must be enabled via the new extended APIC control register.
Bit 31 in the existing APIC version register (offset 30h)
indicates whether the extended APIC register space is present.

The IER and SEOI fields in these two registers indicate the
presence of, and enable, the new APIC SEOI and IER registers,
respectively.

Table E-2. Secure-VM New localAPIC Registers

Name Address Description

0x400 Extended APIC feature register (read only); see
Section E.7.

0x410
Extended APIC control register (read/write); see
Section E.7.

SEOI 0x420

Specific End-of-Interrupt register (write only).
S/w writes this register with an 8-bit vector number
in the low 8 bits to cause an end-of-interrupt cycle to
be performed for the specified vector. If no interrupt
is in service for the specified vector, the behavior is
undefined.

IER0 0x480
The 256-bit IER (Interrupt Enable Register) is made
available as eight 32-bit APIC registers; the layout is
little-endian (IER0 contains IER bits 0–31, IER1
contains bits 32–63, and so on).

IER1 0x490

...

IER7 0x4F0

31 2 1 0

(see APIC documentation) SEOI IER

Figure E-3. Extended APIC feature register.

31 2 1 0

(see APIC documentation) SEOI IER

Figure E-4. Extended APIC control register.

	Contents
	List of Figures
	List of Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Definitions
	Related Documents

	1 Introduction
	1.1 The Virtual Machine Monitor
	1.2 SVM Hardware Overview
	1.2.1 Virtualization Support
	1.2.2 Guest Mode
	1.2.3 External Access Protection
	1.2.4 Tagged TLB
	1.2.5 Interrupt Support
	1.2.6 Restartable Instructions
	1.2.7 Security Support

	2 SVM Processor and Platform Extensions
	2.1 Enabling SVM
	2.2 VMRUN Instruction
	2.2.1 Basic Operation

	2.3 #VMEXIT
	2.4 Intercept Operation
	2.4.1 State Saved on Exit
	2.4.2 Intercepts During IDT Interrupt Delivery
	2.4.3 EXITINTINFO Pseudo-Code

	2.5 Instruction Intercepts
	2.5.1 Read/Write of CR0
	2.5.2 Read/Write of CR3 (excluding task switch)
	2.5.3 Read/Write of other CRs
	2.5.4 Read/Write of Debug Registers, DRn
	2.5.5 Selective CR0 Write Intercept
	2.5.6 Reading/Writing of IDTR, GDTR, LDTR, TR
	2.5.7 RDTSC Instruction Intercept
	2.5.8 RDPMC Instruction Intercept
	2.5.9 PUSHF Instruction Intercept
	2.5.10 POPF Instruction Intercept
	2.5.11 CPUID Instruction Intercept
	2.5.12 RSM Instruction Intercept
	2.5.13 IRET Instruction Intercept
	2.5.14 Software Interrupt Intercept
	2.5.15 INVD Instruction Intercept
	2.5.16 PAUSE Instruction Intercept
	2.5.17 HLT Instruction Intercept
	2.5.18 INVLPG Instruction Intercept
	2.5.19 INVLPGA Instruction Intercept
	2.5.20 VMRUN Instruction Intercept
	2.5.21 VMLOAD Instruction Intercept
	2.5.22 VMSAVE Instruction Intercept
	2.5.23 VMMCALL Instruction Intercept
	2.5.24 STGI Instruction Intercept
	2.5.25 CLGI Instruction Intercept
	2.5.26 SKINIT Instruction Intercept
	2.5.27 RDTSCP Instruction Intercept
	2.5.28 ICEBP Instruction Intercept

	2.6 IOIO Intercepts
	2.7 MSR Intercepts
	2.8 Exception Intercepts
	2.8.1 #DE (Divide By Zero)
	2.8.2 #DB (Debug)
	2.8.3 Vector 2 (Reserved)
	2.8.4 #BP (Breakpoint)
	2.8.5 #OF (Overflow)
	2.8.6 #BR (Bound- Range)
	2.8.7 #UD (Invalid Opcode)
	2.8.8 #NM (Device- Not-Available)
	2.8.9 #DF (Double Fault)
	2.8.10 Vector 9 (Reserved)
	2.8.11 #TS (Invalid TSS)
	2.8.12 #NP (Segment Not Present)
	2.8.13 #SS (Stack Fault)
	2.8.14 #GP (General Protection)
	2.8.15 #PF (Page Fault)
	2.8.16 #MF (X87 Floating Point)
	2.8.17 #AC (Alignment Check)
	2.8.18 #MC (Machine Check)
	2.8.19 #XF (SIMD Floating Point)

	2.9 Interrupt Intercepts
	2.9.1 INTR Intercept
	2.9.2 NMI Intercept
	2.9.3 SMI Intercept
	2.9.4 INIT Intercept
	2.9.5 Virtual Interrupt Intercept

	2.10 Miscellaneous Intercepts
	2.10.1 Task Switch Intercept
	2.10.2 Ferr_Freeze Intercept
	2.10.3 Shutdown Intercept

	2.11 VMSAVE and VMLOAD Instructions
	2.12 TLB Control
	2.12.1 TLB Flush
	2.12.2 Invalidate Page, Alternate ASID

	2.13 Global Interrupt Flag, STGI and CLGI Instructions
	2.14 VMMCALL Instruction
	2.15 New Processor Mode: Paged Real Mode
	2.16 Event Injection
	2.17 Interrupt and localAPIC Support
	2.17.1 Physical (INTR) Interrupt Masking in EFLAGS
	2.17.2 Virtualizing APIC.TPR
	2.17.3 TPR Access in 32-bit Mode
	2.17.4 Injecting Virtual (INTR) Interrupts
	2.17.5 Interrupt Shadows
	2.17.6 Virtual Interrupt Intercept
	2.17.7 Interrupt Masking in LocalAPIC
	2.17.8 INIT Support
	2.17.9 NMI Support

	2.18 SMM Support
	2.18.1 Sources of SMI
	2.18.2 Response to SMI
	2.18.3 Containerizing Platform SMM

	2.19 External Access Protection
	2.19.1 Device IDs and Protection Domains
	2.19.2 Device Exclusion Vector (DEV)
	2.19.3 Access Checking
	2.19.4 DEV Capability Block
	2.19.5 DEV Register Access Mechanism
	2.19.6 DEV Control and Status Registers
	2.19.7 Unauthorized Access Logging
	2.19.8 Secure Initialization Support

	2.20 Nested Paging Facility
	2.20.1 Traditional Paging versus Nested Paging
	2.20.2 Enabling Nested Paging
	2.20.3 Permission Checks
	2.20.4 Other Guest Attributes

	3 Security
	3.1 Secure Startup with SKINIT
	3.1.1 Secure Loader
	3.1.2 Secure Loader Image
	3.1.3 Secure Loader Block
	3.1.4 Trusted Platform Module
	3.1.5 System Interface, Memory Controller and I/O Hub Logic
	3.1.6 SKINIT Operation
	3.1.7 SL Abort
	3.1.8 Secure Multiprocessor Initialization

	3.2 Automatic Memory Clear
	3.3 Security Exception (#SX)

	4 SVM Instruction Set Reference
	4.1 Changes to RSM Instruction
	4.2 New Instructions
	CLGI
	INVLPGA
	MOV (CRn)
	SKINIT
	STGI
	VMLOAD
	VMMCALL
	VMRUN
	VMSAVE

	Appendix A Reset Values and INIT
	A.1 Reset Values
	A.2 Action of INIT

	Appendix B Processor Feature Identification
	Appendix C Layout of VMCB
	C.1 Layout of VMCB

	Appendix D Intercept Exit Codes
	Appendix E New and Changed MSRs
	E.1 VM_CR MSR (C001_0114h)
	E.2 IGNNE MSR (C001_0115h)
	E.3 SMM_CTL MSR (C001_0116h)
	E.4 VM_HSAVE_PA MSR (C001_0117h)
	E.5 Changes to Existing MSRs
	E.5.1 EFER

	E.6 New localAPIC Registers
	E.7 APIC Feature Identification, and Enabling

