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Physics is geometry . This dictum is one of the guiding principles of mod-
ern physics. It largely originated with Albert Einstein, whose most important
contribution–via his General Theory of Relativity–was to view the phenomenon
of gravity as a reflection of the curvature of the geometry of spacetime. Ein-
stein’s vision is remarkable in its simplicity, has great conceptual power and is
physically compelling. As well, it leads to a theory of gravity which is very accu-
rate in its agreement with experiment and observation. A further triumph of the
geometric point of view has been the development, over the past four decades,
of the “gauge” or Yang-Mills field theories of fundamental physical processes.
Now, not only is gravity a manifestation of geometry, so are electromagnetism
and the nuclear forces. Work actively continues towards the ultimate “grand
unification,” the marriage of all basic physical interactions with each other and
geometry.

The geometry of general relativity and gauge field theories, known as Rie-
mannian geometry after the great nineteenth century German mathematician
Georg Friedrich Bernhard Riemann, is a curved generalization of the familiar
(and ancient) geometry of Euclid. But there is another, less familiar and less
intuitive, type of geometry which is even more deeply rooted in physics: sym-
plectic geometry . This is the mathematics that underlies mechanics and hence
is at the very foundation of classical physics. The behavior of systems and phe-
nomena as diverse as spinning tops, magnetism, the propagation of water waves
and even the gravitational field itself, can to a large extent be both described
and understood in terms of this geometry.

Thus physics is indeed geometry–symplectic geometry. This is true not just
at the formula, theoretical level, but at the practical, engineering level as well.
Symplectic geometry is turning out to be an indispensable tool for comprehend-
ing the large scale behavior of complex physical systems like the superconducting
supercollider, or the Galileo probe on its way to Jupiter. Understanding which
may be lost in the study of the complicated differential equations governing the
motion of such a body can be recovered by means of symplectic geometry. Such
understanding is often crucial: it could have saved the late 1950s satellite Ex-
plorer I, which tumbled out of control when spun about a dynamically unstable
axis.

Besides this key role in physics and engineering, symplectic geometry is found
increasingly to play an important role in mathematics: not only are symplectic
ideas prevalent throughout, there are indications that much of mathematics
will eventually be “symplectized.” We may well be witnessing the advent of
a symplectic revolution in fundamental science. Already, there is impressive
evidence that symplectic geometry will come to be regarded as one of the most
important and productive offshoots of, and links between, mathematics and
physics in this century.

Box 1: Some History

Part of the reason symplectic geometry is relatively little known and was
so long in developing is that it is a rather abstruse–and almost weird–sort of
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geometry. To aid in its description, we shall compare and contrast it throughout
with the more familiar Euclidean geometry (and its curved Riemannian gener-
alization). The essence of both can be gleaned by studying the simplest possible
case: the geometry of the plane R2.

As its Greek root γεoµετριαε (“measure of land”) implies, geometry has its
origins in the science of surveying. Thus it focuses on the measurement of the
lengths of lines, and on measuring the angles between lines. All this information
is encoded mathematically into the basic notion of Euclidean geometry: the
metric g. This is an object which associates a number to every pair of vectors
v = (v1, v2) and w = (w1, w2) in the plane according to the formula

g(v, w) = v1w1 + v2w2.

It is both symmetric (i.e., g(v, w) = g(w, v)) and nondegenerate (i.e., g(v, w)
= 0 for all vectors w if and only if v = 0 ). Using this device, one defines the
length of a vector v to be ‖v‖ =

√
g(v, v) ; this gives the Pythagorean result

‖v‖2 = (v1)
2 + (v2)

2
.

Similarly, the angle θ between two vectors v and w is determined via

cos θ =
g(v, w)
‖v‖ · ‖w‖ .

In particular, v is at right angles to w if and only if g(v, w) = 0. The
symmetry of g guarantees that the angle between v and w is the same as that
between w and v, while nondegeneracy ensures that no nonzero vector can be
perpendicular to every other vector. Thus various kinds of familiar geometric
information can be recovered from the metric g.

In the same vein, the standard symplectic form Ω on R2 is also an object
which associates to every two vectors v and w a number; in this case the formula
is

Ω(v, w) = v1w2 − v2w1.

Note both the ordering and the all important minus sign–because of these, Ω
is antisymmetric: Ω(w, v) = −Ω(v, w). This means that, unlike the Euclidean
metric g,Ω does not give rise to a notion of length or angle. Indeed, the “sym-
plectic length” ‖v‖ =

√
Ω(v, v) of a vector v always vanishes and, even worse,

every vector is now perpendicular to itself!
But the symplectic form does do something sensible, and that is to make

precise the concept of “oriented area.” Consider a parallelogram whose sides
are formed by two vectors v and w; then the area of this figure is given exactly
by ‖Ω(v, w)‖. The sign of Ω(v, w) is determined by comparing the orientation
of the pair [v,w] with the standard orientation of the plane–the sign is positive
if they agree, negative otherwise. Taking these vectors in the opposite order will
then flip the orientation and reverse the sign; hence the antisymmetry. Like the
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metric g, the symplectic form Ω is nondegenerate, which in this context means
that only the collapsed parallelogram (when v and w are parallel) has zero area.

So symplectic geometry is a purely “areal” type of geometry.1 We shall see
later how this seemingly obscure concentration on oriented area ties in with
classical mechanics.

The symplectic and Euclidean geometries of the plane R2 are already in-
teresting and nontrivial. But physics and mathematics–as well as common
experience–don’t all happen just on the flat plane, so it is necessary to gen-
eralize. There are two ways to make geometry more useful (and fascinating!):
by adding dimensions and by allowing for more complicated (“warped”) spaces.
Both generalizations are essential: indeed the physical universe–spacetime–in
which we now reside is a curved 4-dimensional space. Each of these gener-
alizations will now be discussed in turn, for both Euclidean and symplectic
geometries.

For Euclidean geometry the generalization to higher dimensions is straight-
forward. There are lines, with angles between them, in everyday 3-dimensional
space R3, as well as in the more abstract spaces Rn of any number of dimen-
sions n. Hence, in any of these spaces one can construct a metric which assigns
lengths to vectors and angles to pairs of vectors in any directions.

The extension to higher dimensions is more complicated for symplectic ge-
ometry, since area is essentially a two-dimensional construct. In fact, one cannot
consistently define “oriented area” for odd-dimensional spaces, such as R3, with-
out introducing unwanted phenomena (“degeneracies”). On the other hand, it
is possible to build a symplectic form on the four-dimensional space R4 as fol-
lows. View R4 as the “sum” R2 ⊕ R2 of two planes; then the oriented area
of a parallelogram in this space is the sum of the oriented areas of its shadows
on these planes. This approach also works for R6,R8, etc.; the upshot is that
only even-dimensional spaces can carry symplectic structures. (We shall see a
physical reason for this later.)

Let us now consider the other avenue of generalization necessary in geometry.
The story is a familiar one in the Euclidean case: During the nineteenth century,
geometers such as Bolyai, Gauss and Lobachevski wondered what geometry
might be like if “parallel lines” didn’t stay parallel, but rather converged or
diverged. Triangles, they found, could then have angles summing to more or to
less than 180◦, there could be six-sided “squares” (with all angles being right
angles), and all the familiar mensuration formulas of Euclidean geometry were
replaced by new and exotic ones.

Box 2: Geometry on Manifolds

Especially interesting are two features of these ’non-Euclidean’ or “Rieman-
nian” geometries: The first is that the geometry can vary considerably from
point to point in the space. So triangles at one location might have angles
which sum to 200◦, while another triangle elsewhere might have angles sum-
ming to 165◦. All this information can still be obtained from a metric g, but
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this metric must be allowed to be different at each point. It is now a metric func-
tion. The second feature is that the spaces which underlie these non-Euclidean
geometries are often structurally quite different from the spaces Rn. The space
could for example “curl up” on itself and close in a variety of ways. These
“warped” or “twisted” spaces–called manifolds–are generalizations of surfaces
such as the sphere. They arise naturally in a variety of contexts, both physical
and mathematical, and can be quite complicated. Some examples are pictured
in Boxes 2 and 5; further discussion of manifolds and their non-Euclidean ge-
ometries can be found in the Scientific American article “The Mathematics of
Three-dimensional Manifolds,” by W.P. Thurston and J.R. Weeks (July, 1984).

Roughly speaking, then, Riemannian geometry is Euclidean geometry ex-
tended to curved spaces of arbitrary dimension. Élie Cartan captured the
essence of Riemannian geometry when he observed: “A Riemannian manifold
is really made up of an infinity of small pieces of Euclidean spaces.” On each of
these infinitesimally small pieces (represented intuitively as flat “tangent spaces”
to the manifold) the metric g takes a fixed value. Thus one may compute the
length of a curve by decomposing it into a chain of “tangent vectors,” com-
puting the length of each of these using the induced Euclidean metric on each
tangent space (as illustrated previously in the two-dimensional case), and then
summing.

Similar remarks apply to symplectic geometry. One generalizes the sym-
plectic plane R2 to an even-dimensional manifold and allows the geometry to
vary from point to point. On each tangent space the symplectic form Ω defines
a notion of oriented area. Thus, for instance, one may compute the oriented
area of a surface residing in a symplectic manifold by breaking the surface up
into infinitesimal parallelograms and summing the oriented areas of these. As
with Riemannian geometry, the “usual” rules for computing oriented areas will
typically not remain valid in this more general setting. (See Box 2.)

At this juncture a crucial difference between symplectic and Riemannian
geometries appears. One may think of constructing a Riemannian geometry
piece-by-piece by “gluing together” the Euclidean geometries on each tangent
space. This gluing can be done in an arbitrary way, so long as it is done
smoothly. One may try to build a symplectic geometry in a similar fashion.
But there is a constraint on the values of the symplectic form Ω so obtained
at neighboring points: these must be arranged so that the oriented surface
area of every compact three-dimensional region is zero (“Jacobi’s identity”).2

This condition is responsible for many of the most interesting–and occasionally
frustrating–facets of symplectic geometry.

There is no such gluing condition in Riemannian geometry, with the conse-
quence that every manifold (regardless of dimension) can be endowed with a
Riemannian metric. But Jacobi’s identity cannot always be satisfied, so there
are (even-dimensional) manifolds which do not carry symplectic forms (the six-
dimensional sphere, for example).3 Thus symplectic geometry is really rather
special. In fact, it is not known exactly which manifolds are symplectic, and
researchers have just begun to make progress in characterizing and classifying
those that are. Along these lines we mention here an important recent result:
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Mikhail Gromov’s discovery of an “exotic” symplectic structure on R4. This is
yet a different symplectic geometry than the “standard” one described earlier.
Although the existence of this exotic geometry was established theoretically sev-
eral years ago, it was only in 1989 that an explicit expression for the symplectic
form was found. Using computer graphics (Box 3), one can now get some insight
into how this exotic structure behaves vis-à-vis the standard one. These and
similar topics are the province of symplectic topology , currently one of the most
active areas in the field. See the recent article The Symplectic Camel by Ian
Stewart (Nature, September 1987) as well as the companion article by Claude
Viterbo in this issue for more on this subject.

Box 3: Symplectic Geometries on R4

The most important ramification of the Jacobi identity is that symplectic
geometries are “flat.” This means that all symplectic manifolds of the same
(even) dimension are locally indistinguishable; one cannot tell one from another
if one looks at them with a magnifying glass. Only globally, when one observes
the entire space, do differences between various symplectic manifolds begin to
emerge. [It is partly for this reason that it is so difficult to get a handle on
the exotic symplectic structure on R4 – local measurements cannot differen-
tiate it from the standard symplectic structure. In this regard, we point out
that the twisting in the picture in Box 3 is a large scale phenomenon–it cannot
be detected locally.] This best highlights how symplectic and Riemannian ge-
ometries differ, since the latter do not have this property; indeed, Riemannian
geometries are typically curved. No portion of, say, a sphere–no matter how
small–can be mapped onto the plane without distorting shapes (that is, lengths
and angles). But it is possible to map part of the globe onto the plane in such
a way that relative sizes (that is, areas) remain unaltered, a fact with which
cartographers are well acquainted. We emphasize, however, that flatness does
not rule out a complicated large scale structure: a circular cylinder is flat in
both the symplectic and Riemannian senses, but is not planar.

Box 4: Cartography

Symplectic geometry is also quite “flexible,” at least in comparison with
Riemannian geometry. To appreciate this, we dwell for a moment on the notion
of symmetry . Consider again the round sphere. If we rigidly rotate it about
any axis through its center, its Riemannian geometry remains the same. Thus
rigid rotations are Riemannian symmetries, that is, transformations which leave
lengths and angles invariant. But if instead we rotate the sphere differentially,
with one point lagging behind a neighboring point, then angles and lengths
are distorted and the geometry changes. We see that for a sphere there are a
limited number of symmetries; and ellipsoid has fewer yet, and most Rieman-
nian manifolds have no symmetries at all. By way of contrast, every symplectic
manifold has a enormous number of symmetries (i.e., transformations which
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preserve oriented area). In fact, the set of all symmetries of a symplectic mani-
fold is always infinite-dimensional!4 Thus one can deform symplectic manifolds
to a much greater extent than one can their Riemannian counterparts; this is
because the former are all flat and hence much less rigid than the latter.

These observations provide some insight into the character of symplectic
geometry. but symplectic geometry is not only of interest in itself; over the past
two decades, there has been a burst of applications of symplectic techniques to
other areas in mathematics. Possibly the most significant of these has been to
the theory of group representations, culminating in what is known as “geometric
quantization theory.” (We shall encounter this theory later in physics as well.)
Various branches of analysis, number theory and lately even knot theory have
also profited from symplectic ideas. One particularly interesting development
relates to catastrophe theory, in which context symplectic geometry has been
used to clear up several mysteries in laser optics. The book Catastrophe Theory
by Vladimir I. Arnol’d (Springer-Verlag, 1986) contains a readable account of
these results.

Potentially even more momentous, however, is the philosophy of “symplec-
tization” advocated recently by Arnol’d. He cites mounting evidence which
indicates that many “ordinary” mathematical ideas and constructions not only
have analogues within the domain of symplectic geometry, but are in fact ulti-
mately grounded there. (Certainly the corresponding assertion is true in classi-
cal physics.) This suggests that it may be possible to completely recast a great
deal of mathematics in symplectic terms. Arnol’d has characterized this process
of symplectization as “...one of the small number of operations of the highest
level, which act[s] ... on all of mathematics at once.” It could conceivably lead to
a revolution in mathematics comparable to the invention of complex numbers!
In Stewart’s words:

Mathematicians must have felt this way when they discovered that
complex numbers were more than just one extra gimmick: virtually
every idea of mathematics, from the geometry of curves to the anal-
ysis of partial differential equations, was ripe for complexification.
Mathematics exploded overnight.

Symplectic geometry may well light up the mathematical sky once again.
But this is for the future; let us now delve into its role in the realm of physics.

Symplectic geometry was “invented” by Lagrange in 1808 during his semi-
nal studies of celestial mechanics. It first appeared as an analytical technique
whereby the equations of planetary motion could be written in a greatly simpli-
fied form. (See Alan Weinstein, Lectures on Symplectic Manifolds (American
Mathematical Society, 1977), for nice mathematical discussions of both La-
grange’s work and symplectic geometry.) These techniques were substantially
amplified and expanded by William Rowan Hamilton, who showed that La-
grange’s discoveries could be applied to mechanics as a whole. The resulting
collection of ideas and calculational procedures is known as Hamiltonian me-
chanics. This theory was further expanded and refined by Jacobi, Liouville and
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Poisson, among others, and now forms the structural basis for essentially all of
classical physics.

The paradigm for Hamiltonian mechanics is particle dynamics–the study
of the motion of an object subject to various forces, like an electron moving
through the electromagnetic fields inside a cathode ray tube. To determine the
trajectory which such an object will follow, it is not enough to know the object’s
initial position; one must also know its initial velocity or, equivalently, its initial
momentum. Only then is one able to “predict the future,” that is, divine the
object’s location and movements at all future times.

This leads one to study particle dynamics on a space–called phase space–
which consists both of all possible positions or “configurations” q and all possible
velocities or “momenta” p of the particle. For example, the phase space of a
particle moving in everyday three-dimensional space R3 is R6 whose points are
labeled by six quantities (x, y, z, px, py, pz) giving the three components of posi-
tion and momentum. Similarly, the planar pendulum has a phase space which
is a circular cylinder parametrized by (θ, pθ), where θ is the angular position of
the bob and pθ is its angular momentum. Other bodies, like relativistic particles
with spin or coupled rigid bodies, have more complicated phase spaces.

Box 5: The Phase Flow for the Planar Pendulum

The underlying idea is that once one knows a particle’s initial state (q, p) in
phase space and also the forces that act on it, then one has enough information
to chart the particle’s motion in time. All this can be neatly visualized (Box
5). To specify the (net) force is to assign a particular arrow (or “flow vector”)
to every point in phase space. Then a particle starting out at some given state
moves along a unique trajectory (“flow line”) as indicated by the arrows. The
collection of all possible trajectories (the “flow”) fills in the phase space, with
no two trajectories crossing. If one were to work, say, in just the space of all
possible configurations (q’s) rather than phase space (q’s and p’s), one would
not have such an elegant and orderly description of particle motion. Thus phase
space is the appropriate arena for dynamics.

The picture of particle motion we have been sketching here is both figura-
tively and literally analogous to the flow of a fluid. In fact dynamics, in a precise
mathematical sense, is merely a fluid flow in phase space. This “phase flow,”
however, has a very special property: it is area-preserving , that is the areas of
two-dimensional sheets of fluid remain unchanged as they flow along. Since a
fluid flow on a manifold may be viewed as a time-dependent transformation of
that manifold, we conclude that dynamics consists of a time-dependent trans-
formation of phase space which preserves areas. And where there are areas,
there must be symplectic forms!

These observations constitute the fundamental links between mechanics and
geometry, viz., the phase spaces of particle dynamics are symplectic manifolds,
and dynamics corresponds to a time-dependent symplectic transformation.
These facts have had far-reaching consequences for physics. Indeed, it is the
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presence of the symplectic structure on phase space which is largely responsi-
ble, in one way or another, for the tremendous success Hamiltonian mechanics
has had in describing the physical world.

What precisely does the symplectic form do physically? Two interrelated
things, primarily. First, it sorts out how the generalized positions q and mo-
menta p fit together. For a complicated system such as the Galileo Jupiter
probe, with literally hundreds of configuration variables q and momentum vari-
ables p, it is crucial that the right momentum be tied to the right position if
the system’s motion is to make sense. Now recall that, mathematically, the
symplectic form locally serves to split a 2n-dimensional space into a collec-
tion of n transverse planes. So in a sense it collects the 2n independent di-
rections (q1, · · · , qn, p1, · · · , pn) of phase space into pairs: (q1, p1; · · · ; qn, pn).5

This explains, from a physical standpoint, why symplectic manifolds are even-
dimensional: it is because each position is paired with a corresponding mo-
mentum. [As we will see, the intertwining of the p’s and q’s also has striking
consequences in quantum mechanics.] Second, the symplectic form tells one
exactly how to convert the forces which act on the system into an assignment of
flow vectors on phase space, thereby enabling one to compute the phase flow and
hence all allowable motions of the system. Succinctly, it converts dynamic data–
about forces–into kinematic information–about the system’s motion. For more
on the “why” and “how” of symplectic geometry in physics, we refer the reader
to the books Foundations of Mechanics, by Ralph Abraham and Jerrold E.
Marsden (Benjamin-Cummings, second ed., 1978), and Symplectic Techniques
in Physics, by Victor Guillemin and Shlomo Sternberg (Cambridge University
Press, second ed., 1989).

Besides their primary duties, symplectic structures can be exploited for nu-
merous other purposes in mechanics. They provide an efficient way to relate
symmetries (translational, rotational, “internal” or “gauge,” etc.) of physical
systems to quantities (energy-momentum, angular momentum, electric charge,
etc.) which remain constant as the systems evolve in time. Such “conservation
laws” are very helpful in the general analysis of how systems behave, especially
in nonlinear dynamics, where it is often impossible to obtain exact quantitative
results. Symplectic methods are also crucial for studying questions of stability
(e.g., could small oscillations of the Galileo probe’s antenna grow uncontrol-
lably in time?), and have greatly enhanced our ability to model and accurately
predict the dynamical behavior of complex mechanical systems. One beautiful
application of symplectic geometry (involving many of the above ideas) is to the
age-old question of shy a falling cat always lands on its feet. It turns out that
the cat achieves this by behaving as if it were a particle moving in a certain
Yang-Mills field !

Box 6: The Yang-Mills Cat

Thus the symplectic form is an essential ingredient both theoretically and
practically in classical mechanics. And recently, in a formulation due to S.
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Sternberg, it has assumed an even more transcendent role. In Sternberg’s ap-
proach the forces themselves have been subsumed into the symplectic structure,
which is now all there is! We have come full circle: Symplectic geometry is
the mathematics of mechanics, and Hamiltonian mechanics is nothing but sym-
plectic geometry on phase space. While symplectic geometry is most visible
in the context of mechanics, its use extends far beyond that small branch of
physics. Indeed, most classical systems, however complex, can be studied by
means of Hamiltonian techniques. These include models of galaxy formation,
electric circuits, and collective models of the nucleus. And if we generalize to
infinite-dimensional phase spaces, then classical fields can be studied as well. In
this way we have learned much about gravitational and other fields, about elas-
ticity theory, about plasmas, and even about corrosion. Several close relatives
of symplectic geometry are likewise important. One is contact geometry , which
is an extension of symplectic geometry to odd -dimensional manifolds. It plays a
role in optics which is similar to that of symplectic geometry in mechanics. [It
is for this reason that mechanics and optics have had such a close and parallel
development; they are mathematical first cousins.]

In our exposition thus far, we have been concerned exclusively with classical
physics. One of the great lessons of the twentieth century, however, is that the
fundamental description of most (if not all) physical systems must be quantum
mechanical . The differences between the classical and quantum approaches to
physics are pronounced as well as profound, but it would take us too far afield
to discuss them in detail. We will therefore be content with making a few
basic observations. (A nice account of some of the more interesting aspects of
quantum theory can be found in Richard P. Feynman’s book QED (Princeton
University Press, 1985).)

The crux of the matter is that whereas classical physics is completely de-
terministic, quantum mechanics is inherently probabilistic. One consequence
is that while classically an observer may (in principle) simultaneously measure
physical quantities to any desired accuracy, an observer in a quantum mechani-
cal world cannot: there are unavoidable limitations on the precision with which
certain pairs of quantities may be simultaneously measured. This is the content
of Heisenberg’s famous “uncertainty principle.” For instance, a measurement
which seeks to pinpoint simultaneously the position q and momentum p of an
electron must be uncertain in both, with the inaccuracies ∆q and ∆p satisfying
the inequality

∆q ∆p ≥ h/4π,

where Planck’s constant h = 6.6246×10−34 Joules-seconds. Since this constant
is very small, for most macroscopic systems such uncertainties are negligible.
For microscopic systems, they are not.

Does symplectic geometry play a role in quantum physics comparable to
that which it plays in the classical theory? It would not seem so. For one
thing quantum mechanical states are not represented by points of the classical
phase space. Rather, the quantum state space for a physical system is an
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infinite-dimensional space called Hilbert space. This Hilbert space moreover
is related to the classical configuration space (viz., the space of all positions q)
of the system and not to its phase space ( em viz., the space of all momenta
p as well as positions q). Thus the basic symplectic object–phase space–of
classical physics has “disappeared” in the quantum theory. However, like the
Cheshire cat’s smile, remnants of symplectic geometry are still to be found in
the quantum theory. One such remnant is apparent in the above formula for the
uncertainty principle: the symplectic pairing of a position with its corresponding
momentum. In fact, there is no uncertainty principle for quantities which are not
symplectically intertwined. Other symplectic relics are the “Bohr-Sommerfeld-
Maslov quantization rules,” which explain why certain physical parameters such
as electric charge and elementary particle spin can only take on a discrete set
of values.

But symplectic geometry is intimately involved in the transition from the
classical description of a system to its quantum version, that is, quantization.
To appreciate the significance of this, let us consider how the classical and quan-
tum descriptions of a given physical system are related. In principle, as noted
above, every physical system is quantum mechanical in nature. However, for
most (sufficiently macroscopic) systems, the quantum description has a unique
“classical limit”–a classical description which in a certain sense accurately ap-
proximates the quantum one. In practice, on the other hand, one almost always
has a better ab initio understanding of the classical limit of a system than of
its full-blown quantum formulation. [This is for two reasons: our everyday
common-sense environment is classical, so that we are used to thinking in clas-
sical terms, and because the classical approximation is much simpler than the
quantum description.] Thus physicists are more often confronted with the prob-
lem of constructing a quantum formulation of a system from a knowledge of its
classical limit than they are with recovering the classical description from the
quantum. In other words, it is occasionally necessary to “quantize” a classical
system.

Unfortunately, this is not a straightforward proposition. One difficulty is
that while the classical limit of a given quantum system is unique (if it exists),
there are always many different quantum systems which have the same classical
limit. Compounding matters is a “no-go” theorem, which asserts that it is
impossible to find a quantization scheme which can be consistently applied to
every classical system.

In spite of these obstacles, efforts to systematically quantize limited assort-
ments of systems persist. One of the most successful such schemes is known as
geometric quantization theory . Based on the work of Bertram Kostant at M.I.T.
and Jean-Marie Souriau in Marseille, geometric quantization is a beautiful ap-
plication of some of the most sophisticated ideas in symplectic geometry.

The idea behind geometric quantization is to use the symplectic geometry of
the classical phase space to construct the quantum Hilbert space. The key step
in this procedure is to polarize the phase space; that is, to invariantly separate
the positions q from the momenta p. This distinction is used to cut the phase
space down to the configuration space which, as we indicated earlier, is closely
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related to the quantum Hilbert space. Once the phase space has been polarized,
it is possible to generate a quantum theory of the system.

While geometric quantization is a powerful tool, it can be both difficult and
subtle. For instance, there usually is some freedom in the choice of polarization,
mirroring the fact that many quantum systems have identical classical limits.
Thus the geometric quantization procedure may produce several inequivalent
quantum theories, and it is usually necessary to resort to experiment to select
the physically correct one. At the opposite extreme, there exist symplectic
manifolds which cannot be polarized. It is not known if there are any genuine
physical systems whose phase spaces have this property; in any event, it is
not clear what to make of these “purely classical” symplectic geometries. One
area in physics where geometric quantization may play a useful role is general
relativity. The classical physics of the gravitational field is fairly well understood
in terms of Einstein’s theory. Yet, of all the fundamental interactions in nature,
gravity alone does not have a consistent quantum description. This a major
puzzle of theoretical physics, and is why “quantum gravity” is an area of active
research. One reason the gravitational field so strongly resists quantization
is that its phase space is both infinite-dimensional and highly nonlinear. To
gain some preliminary insight into quantum gravity, a favorite stratagem is to
“freeze out” all but a finite number of these dimensions by demanding that
the gravitational field be the same everywhere in space (while still allowing it to
change in time). One thereby builds (relatively) tractable models of the Universe
and its gravitational fields known as homogeneous cosmologies. These form
handy “laboratories” for studying the quantization of gravity, and geometric
quantization has proven most useful in these “experiments.”

One of the experiments the authors have run in this laboratory concerns
the fascinating problem of gravitational singularities. These are unimaginably
dense, gravitationally violent phases through which the Universe, according to
general relativity, must pass at some point in its evolution. One such singularity–
the “Big Bang”–has almost certainly occurred, at the moment of creation. Will
there be another, final singularity–the “Big Crunch”? Observational data is
inconclusive at this stage, but if gravitational attraction is strong enough to
overcome the current expansion of the Universe, then it appears that the Uni-
verse will collapse, unrelentingly, to a fiery doom.

Box 7: The Fate of the Universe

This prediction is founded on classical general relativity. However, as grav-
ity squeezes the Universe to submicroscopic dimensions, quantum effects should
predominate, and there has been much speculation that such effects could slow
or even halt the collapse. The authors have used geometric quantization to
investigate this possibility within the framework of homogeneous cosmologies.
Although the issue is far from settled, indications–unluckily!–are that quan-
tum effects cannot prevent the final, catastrophic collapse of the Universe to a
singularity.
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In all of this discussion we have left unanswered one important question:
what is the origin of the unusual name “symplectic”? It is derived from the
Greek σνµπλεκτικús, which is the antecedent of the Latin “complex.” Its
mathematical usage is due to Hermann Weyl who, in an effort to avoid a cer-
tain semantic confusion, renamed the then obscure “line complex group” the
“symplectic group.” But whatever its etymology, the adjective “symplectic”
means “plaited together” or “woven.” This is wonderfully apt, for it is this
intertwining–already evident in the above expression for the form–that most
characterizes, and is in fact the essence of, both symplectic geometry and Hamil-
tonian mechanics. And it is the intricate plaiting together of mathematics and
physics which gives symplectic geometry its power and its promise.

13



FOOTNOTES

1. From the above discussion it may seem that the symplectic form is essen-
tially the vector (or cross) product. This is a coincidence on R2; in higher
dimensions there is no relation between the two.

2. Technically, the Jacobi identity amounts to the 2-form Ω being closed:
dΩ = 0. In this regard we observe that the exterior differential of forms is
analogous to the Lie bracket of vector fields.

3. S6 cannot be symplectic for cohomological reasons. But manifolds may
fail to be symplectic on other grounds. For instance, on S4 it is not even
possible to define a nondegenerate antisymmetric bilinear form (closed or
not), so the obstruction in this case is more “algebraic.”

4. The set of symmetries of a geometrical structure on a manifold forms a
(Lie) group under composition. It is a well known fact that the isometry
group of a Riemannian metric is always finite-dimensional. But in sym-
plectic geometry the analogous object–the symplectomorphism group–is
huge. (In fact, the Lie algebra of this group is isomorphic to the set of all
closed 1-forms on the manifold in question.)

5. This is particularly evident in the local expression for the symplectic form,
which is

Ω =
n∑

i=1

dqi ∧ dpi ,

where ∧ is the wedge product of forms.
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Box 1: Some History

Menaechmus advised Alexander that “There is no royal road to Geome-
try.” But if there is no royal road to symplectic geometry, the historical path is
surely replete with regal personages. For the roots of symplectic geometry can
be traced back to the work of many of the most outstanding names in mathe-
matics and physics of the nineteenth and early twentieth centuries: Lagrange,
Poisson, Hamilton, Jacobi, Liouville, Hertz, Noether and Poincaré. Indeed, they
made lasting contributions to the science of mechanics, from whence symplec-
tic geometry springs and with which it is inextricably linked. As is often the
case the mathematics owes its existence to physics, and this is especially true of
symplectic geometry; physics, in turn, has been enriched by the techniques and
insights afforded by the maturation of the mathematics it engendered.

Although symplectic geometry was really “there” from the beginning, the
geometric nature of mechanics was obscured by an early emphasis on the analyt-
ical and computational aspects of the theory. This mindset was so overwhelming
that Lagrange, in the preface to his monumental Mécanique Analytique [1788],
could boast:

The reader will find no figures in this work. The methods which I set
forth do not require either constructions or geometrical or mechanical
reasonings: but only algebraic operations, subject to a regular and
uniform rule of procedure.

It was not until more than a hundred years later, well after the ground-
breaking mathematical work or Riemann in 1854, that one finds Darboux in
1889 and Hertz in 1899 employing geometrical ideas in mechanics, treating the
motion of any system, no matter how complicated, as that of a “particle” moving
in a certain higher-dimensional curved space. The death knell of the analytical
era was finally rung by the great French mathematician Henri Poincaré in 1889,
when he realized that purely quantitative techniques could not suffice to solve
various problems in celestial mechanics, notably that of stability in the “n-
body problem” (for instance, the motion of the planets subject to their mutual
gravitational attractions).

This famous failure ushered in the “qualitative period” in mechanics, and
geometry at long last got its due. The first theorem in symplectic geometry
as such as Poincaré’s “last geometric theorem” in 1912 which, among other
things, predicts the existence of periodic orbits in the nobody problem. Still,
the geometrization of mechanics proceeded slowly, and by and large the sym-
plectic aspects remained shadowy. Even as late as the 1940s, one finds physicists
utilizing symplectic ideas rather cautiously and superficially. (A contemporary
account of mechanics is given by Cornelius Lanczos in The Variational Principles
of Mechanics (University of Toronto Press, 1949).)

Meanwhile, mathematicians were rediscovering symplectic geometry from
entirely different angles, with the researches of Sophus Lie, Poincaré and Élie
Cartan paving the way. But symplectic geometry, as a distinct mathematical
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discipline, did not really appear until the 1940s with the (little-known) work
of Hwa-Chung Lee in China. Within ten years, one finds French mathemati-
cians such as Charles Ehresmann, André Lichnerowicz and Georges Reeb setting
the stage for future developments and later applications to mechanics. By the
mid 1960s, symplectic geometry was cast into the modern mathematical idiom,
and the symplectic compact between geometry and mechanics was irreversibly
sealed. A period of explosive growth, fueled primarily by emergent schools of
American and Russian symplectic geometers, followed and continues unabated
to this day.
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Box 2: Geometry on Manifolds

The familiar mensuration formulas of Euclidean and symplectic geometry
will change when the flat plane R2 is replaced by a more general “warped”
space, such as a sphere or a saddle. On both the (positively curved) sphere and
the (negatively curved) saddle we draw a disk of radius r as illustrated below.
Provided r is relatively small, the circumference C of the disk is given by

C = 2π

(
r − 1

6
κr3 + · · ·

)
.

κ is a constant which is +1 for the sphere, 0 for the plane and −1 for the
saddle. Only when κ = 0 do we recover the “standard” formula C = 2πr,
showing that the Riemannian geometries of the sphere and saddle are genuinely
non-Euclidean.

Similarly, the symplectic geometries of the sphere and saddle are distinct
from that of the plane. For if we compute the area A of the disk, we find

A = π

(
r2 − 1

2
κr4 + · · ·

)
,

which deviates from the familiar result A = πr2 when κ �= 0.

r

Note that on the sphere, the circumference and area of the disk are smaller
than those of a disk of radius r in the plane. This can be most easily seen by
cutting the disk out of the sphere and flattening it onto the plane; it would split
apart as shown below left. If one does the same for the disk on the saddle, it
would fold over on itself as shown below right, which explains why the values of
C and A are greater on the saddle than the plane.
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Box 3: Symplectic Geometries on R4

To get a feeling for the nature of the exotic symplectic geometry on R4,
it is useful to contrast it with the standard one. Since we cannot visualize
4-dimensional objects, we restrict attention to the unit 3-dimensional sphere
centered at the origin of R4. When restricted to this sphere, both the exotic
and standard symplectic forms define symplectic planes at each point. Some
of these planes are plotted in the photographs here. Notice how twisted the
pattern of planes for the exotic symplectic structure is (above) as compared
to the standard one (below). (Computer graphics courtesy of Larry Bates and
Charles Herr, Universities of Calgary and Alberta.)
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Box 4: Cartography

A map attempts to represent the surface of a sphere on a plane. Every
map distorts shapes (Riemannian geometry) to some extent, even the currently
accepted “best” map, the Robinson projection of 1963 (left). On the other
hand, one can draw maps with no size distortion (symplectic geometry). One
such map is the Mollweide elliptical equal-area projection of 1805 (right). This
phenomenon reflects the “flatness” of symplectic manifolds.
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Box 5: The Phase Flow for the Planar Pendulum

A planar pendulum is a mass at the end of a light rod which is free to swing
in a given plane. All possible positions of the bob are parametrized by the angle
θ, with −180◦ ≤ θ ≤ 180◦. Its corresponding angular momentum pθ can take
on any value. The phase space for the planar pendulum is therefore a circular
cylinder, with θ running counterclockwise around the cylinder and pθ running
along its axis. Since 180◦ and −180◦ represent the same position (“up”), these
two configurations must be identified; hence the circle.)

The forces acting on the bob are gravity and the tension in the rod. The pat-
tern of force vectors and resulting dynamical trajectories in the phase space are
drawn above. For clarity, we have “unwrapped” the phase space into a rectan-
gular strip; the two vertical lines corresponding to θ = ±180◦ must be identified
with one another. The point in the center represents a stable equilibrium, with
the pendulum motionless and hanging straight down. The ellipses surrounding
this point correspond to rocking motions of the pendulum. These increase in
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amplitude until the bob “just” reaches the top. There we have an unstable
equilibrium (located at θ = ±180◦, pθ = 0), with the pendulum stationary
and pointing straight up. The remaining wavy trajectories represent motions
wherein the bob swings entirely around the hinge going either clockwise (top)
or counterclockwise (bottom).
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Box 6: The Yang-Mills Cat

The falling cat can be modeled mechanically by two cylinders connected
with a ball-and-socket joint. In control theory terms, the problem is to maneu-
ver this system, by rotating the cylinders both about their axes and relative
to one another, to achieve a desired orientation in an optimal way. Symplectic
geometry provides a succinct description of this problem and greatly facilitates
its solution. In effect, the cat lands on its feet by solving the Yang-Mills equa-
tions! Contrary to an old wives’ tale, the cat’s tail is irrelevant; Manx cats land
on their feet too. (This last assertion is rumored to have been experimentally
verified.)
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Box 7: The Fate of the Universe
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“Big Bang”

“Big Crunch”

“Quantum Bounce”

?

Einstein’s classical theory of gravity predicts that the Universe has evolved
from an initial singularity–the Big Bang. But what will become of the Uni-
verse is not yet known; the standard scenarios (for homogeneous and isotropic
models) are sketched above left. The Universe is currently expanding and its
fate depends on how quickly gravitational attraction slows this expansion. This
in turn depends crucially on the average mass density ρ of the Universe. The
critical value of ρ is ρc ≈ 10−30gm/cm3. Models with ρ = ρc will just escape
gravitational collapse (the middle curve). In models with ρ > ρc (such as the
third curve), gravitational attraction overwhelms the expansion and the model
collapses to a final singularity–the Big Crunch. Observationally ρ ≈ 10−31, but
the issue is far from settled.

Cosmologists have wondered whether quantum effects, which are expected
to be of primary importance when the Universe has been crushed to subatomic
size (the shaded region in the figure on the right), might prevent the ultimate
collapse. Conceivably the Universe could “bounce” into a new expansion phase.
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