NAVSTAR

Global Positioning System

GPS Program Update

25 September 2006

Col Allan Ballenger
Commander, GPS Wing
Space and Missile Systems Center

Overview

- Mission success is top priority
- Sustaining worldwide military/civil utility
- Modernizing for civil and military users
- Acquisition challenges
 - Requirements civil & military
 - Balancing sustainment & modernization
 - Cost & schedule of modernization efforts
 - Synchronizing space, control, and user equipment upgrades
- "Back to Basics" and incremental block approach

Continuously improving GPS services for military and civil users worldwide

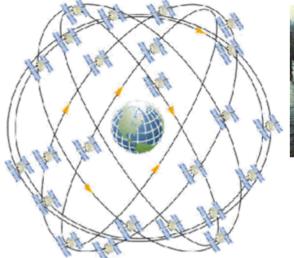
Global Positioning Systems Wing

Mission:

Acquire and sustain survivable, effective, and affordable global positioning & timing services for our military and civil users

Col Allan Ballenger

GPS Enterprise


International Cooperation

- Japan QZSS
- Russia GLONASS
- Europe and other countries

- U.S. Army
- U.S. Navy
- U.S. Marine Corps

- Search and rescue
- Surveying and mapping
- Trucking and shipping
- Aviation
- Offshore drilling
- Fishing and boating

Department of Transportation

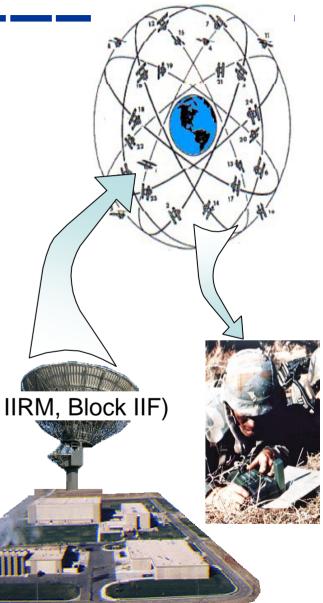
- and other Departments as well

GPS Program Overview

The Global Positioning System (GPS)

- Satellite-based radio navigation system
- Provides continuous global coverage
- Dual use military and civil
- Space, Control, User segments

Space vehicle blocks


- Block IIA, IIR (on-orbit)
- Block IIRM (25 Sep 05 first launch)
- Block IIF (late 2008 first launch)
- Block III (2013 first launch)

Control systems

- GOSC Legacy system (Block IIA)
- AEP Architecture Evolution Plan (Block IIR, Block IIRM, Block IIF)
- OCX Next Generation control system

User equipment generations

- Miniaturized Airborne GPS Receiver (MAGR)
- Defense Advanced GPS Receiver (DAGR)
- Modernized User Equipment (MUE)
- Modernized Space Receiver (MSR)

GPS Evolution

Space Segment

Legacy (Block IIA/IIR)

- Basic GPS
- C/A civil signal (L1C/A)
- Std Pos. Service
- Precise Pos. Service
 - L1 & L2 P(Y) nav
- NDS

Modernized (Block IIR-M)

- 2nd civil signal (L2C)
- M-Code signals (L1M, L2M)
- Flex A/J power (+7dB)

Modernized (Block IIF)

•3rd civil signal (L5)

- Increased A/J power
- /(up to 20 dB)
- Signal integrity
- Search and Rescue
- Common signals with Galileo (L1C)

Control Segment

Legacy

- TT&C
- L1 & L2 monitoring

Upgraded (AEP)

- IIR-M IIF TT&C
- WAGE, All, LADO
- SAASM
- New MCS/AMCS

Modernized (OCX V1)

- New Architecture
- Signal Monitoring

GPS III (OCX V2)

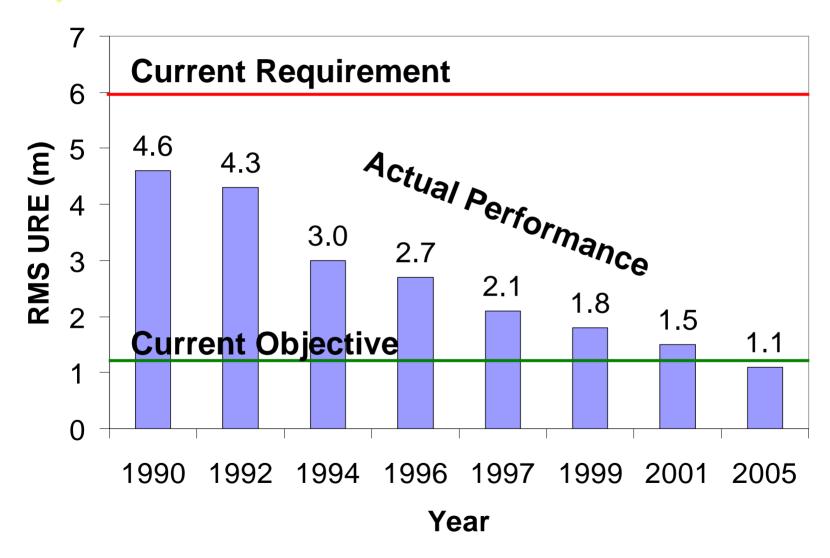
- GPS III TT&C
- NAVWAR, GNOC
- L1C, L2C, L5
- Flex Power
- Real-Time C2

User Segment

Legacy

- Man Pack
- MAGR, PLGR
- RCVR-3A, 3S
- OH, UH
- FRPA, CRPA

- GAS-1
- MAGR2K • CSEL
 - GB-GRAM



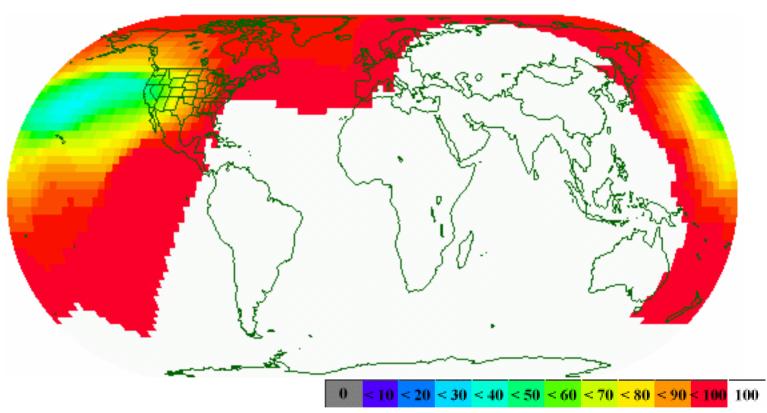
Modernized

- MUE
- MSR

GPS User Range Error (URE) History

Accomplishments Since Last Year

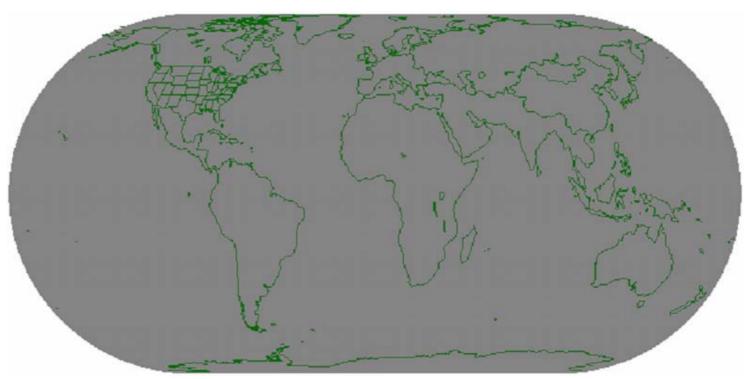
- Launched a new era of GPS services for military & civil users
 - GPS IIR-14(M) launched 25 Sep 05, operational on 16 Dec 05
 - New military signal (M-Code) and new civil signal (L2C)
- Fielded operational improvements (AFSPC 50 SW)
 - Legacy Accuracy Improvement Initiative operational
 - Increases accuracy 10%-50%
 - TALON NAMATH provides "zero age of data" to warfighters
- Refined acquisition strategies
 - GPS III next incremental block of satellites
 - OCX next-generation ground control network
 - MUE Modernized User Equipment contracts awarded May 06
 - MSR Modernized Space Receiver in source selection



What Legacy Accuracy Improvement Initiative (L-AII) Provides

- Specialized defense systems will see 35% improvement
- All users see a small accuracy improvement
- More importantly, all users enjoy improved SV monitoring
- Additional tracking data eliminates monitoring gaps
 - Every satellite now "watched" by at least two tracking stations at all times—two stations needed
 - Without L-All some satellites were out of view of any tracking station for over two hours at a time
- Air Force controllers now can see satellite problems sooner
- User exposure to erroneous satellite signals is reduced

SV Monitoring Before L-All



GPS users on approximately half of the Earth's surface (shown in white) see at least one unmonitored GPS satellites 100 % of the time

A GPS satellite is considered to be "monitored" if it is seen by at least two GPS tracking stations; the minimum of two stations ensures that an alarm is caused by a problem on the satellite and not at a tracking station. Monitoring enables GPS operators to identify errors in satellite transmissions; further upgrades to GPS are needed to ensure that corrective action can executed with sufficient timeliness.

SV Monitoring After L-All

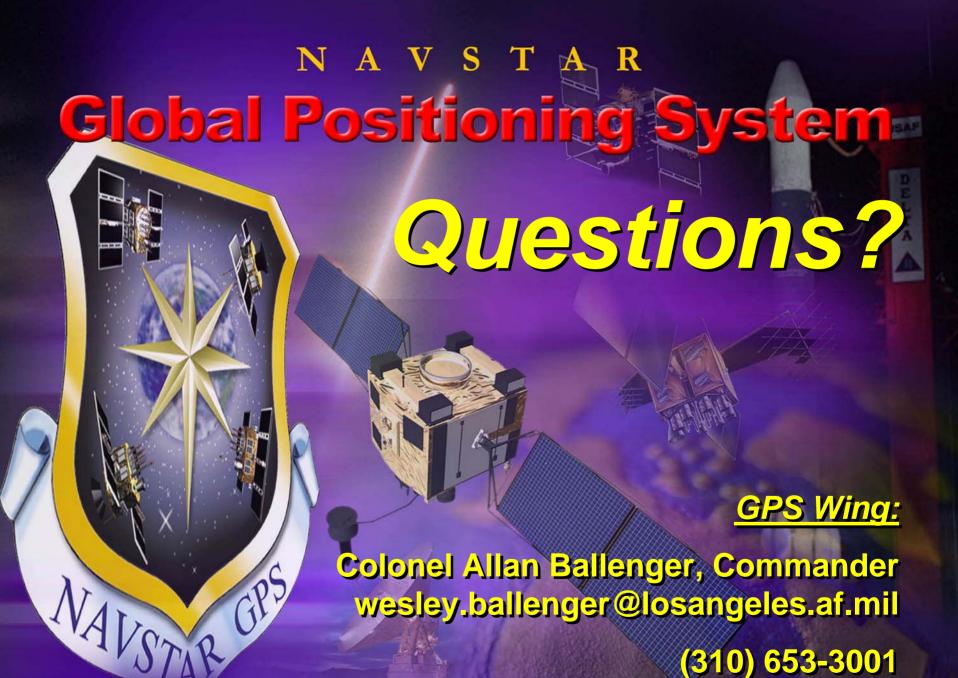
No GPS users anywhere on the Earth's surface ever see an unmonitored GPS satellite

A GPS satellite is considered to be "monitored" if it is seen by at least two GPS tracking stations; the minimum of two stations ensures that an alarm is caused by a problem on the satellite and not at a tracking station. Monitoring enables GPS operators to identify errors in satellite transmissions; further upgrades to GPS are needed to ensure that corrective action can executed with sufficient timeliness.

U.S Space-Based Positioning, Navigation & Timing (PNT) Policy – 8 Dec 04

Objectives

- Provide uninterrupted availability of PNT services
- Meet growing national, homeland, economic security, civil requirements, and scientific and commercial demands
- Remain the pre-eminent military space-based PNT service
- Continue to provide civil services that exceed or are competitive with foreign civil space-based PNT
- Remain essential components of internationally accepted PNT
- Promote U.S. technological leadership in applications involving spacebased PNT
- New National PNT EXCOM & National PNT Coord Office

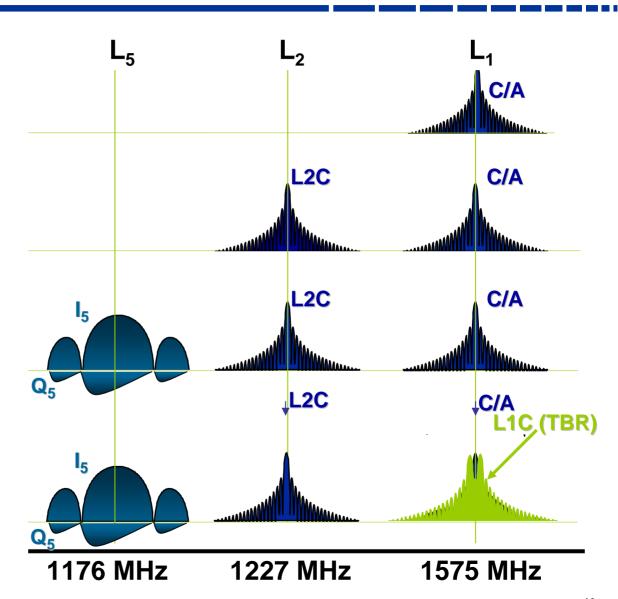

Ubiquitous, ultra-precise PNT is a central enabling utility of the Information Age

Top Priorities

- Sustaining capabilities for military and civil users worldwide
 - Launching satellites to sustain constellation partnership with 50th Space Wing
 - Fielding GPS enhancements such as Legacy Accuracy Improvement Initiative
- Modernizing by adding new signals and capabilities
 - Second IIR-M launch Sep 06, first IIF launch 2008, first III launch 2013
 - New civil and military GPS signals
 - Transitioning control segment from legacy to AEP in Apr 07
 - Continuing work with Galileo and international community
- Planning to execute next generation of GPS
 - Acquisition strategies for space, ground, and user segments
 - Synchronizing space, control, and user equipment upgrades
- Managing GPS systems & being responsive to diverse customer base
 - National PNT Executive Committee (NPEC) next meeting Oct 06
 - GPS Independent Review Team, Defense Science Board recommendations

Department of Defense and Air Force are committed to responsible stewardship of GPS as a global utility

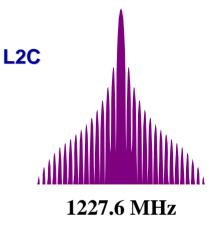
BACKUP


GPS Civil Signals

1st Civil Block II/IIA/IIR

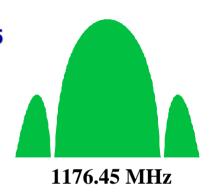
> 2nd Civil Block IIR-M

3rd Civil Block IIF


4th Civil Block III

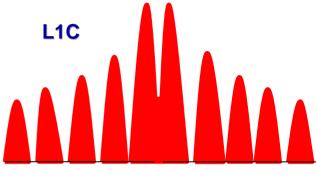
L2C Second Civil Signal

- Benefits of L2C
 - Improves PNT for current scientific/commercial dual frequency users via ionospheric effect cancellation
 - Extends safety-of-life, single-frequency E-911 applications
 - Provides better protection than C/A against code cross correlation and continuous wave (CW) interference
 - Improved data structure for enhanced data demodulation
 - Provides backup link in case of local interference
- Defined in IS-GPS-200D
- First available with IIR-M launch 21 Sep 05
 - Configuration of signal determined via ongoing interagency process
 - Use L2C at user's risk--configuration can change (NANU process)



L5 Third Civil Signal

- Improves signal structure for enhanced Legaler
 performance
 - Higher power
 - Wider bandwidth = 10xprocessing gain
 - Longer spreading codes (10x C/A)

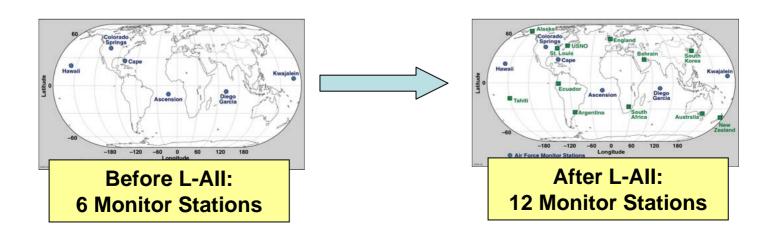

- WRC-2000 added space signal component to this aeronautical band
- So aviation community can manage interference to L5 more effectively than L2
- Defined in IS-GPS-705
- First available with first GPS IIF launch (2008)

New L1C Signal Improvements

- Implementation will provide C/A code to ensure backward compatibility
- Assured of 1.5 dB increase in minimum C/A code power to mitigate any noise floor increase

1575.42 MHz

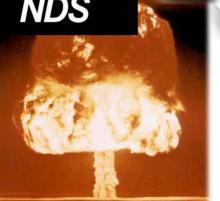
- Data-less signal component pilot carrier improves tracking
- Enables greater civil interoperability with Galileo L1
- First available with first GPS III launch in 2013


Civil Applications

- Enabling technology
 - Unlimited growth potential
 - \$68 billion industry worldwide by year 2010
- Wide use in transportation safety
 - Aviation, maritime, railroad, highway, etc.
 - Potential to reduce land-based navigation systems
 - Centerpiece of future transportation infrastructure
- Ever increasing range of civil uses
 - Telecommunications, surveying, law enforcement, emergency response, agriculture, mining, etc.
 - Used in conjunction with remote sensing
 - Supporting civil applications never envisioned

How L-All Works

- Key to L-All is incorporation of 6 additional ground stations that track GPS satellites
 - Additional tracking stations improve the GPS satellite position accuracy
 - Additional stations monitor satellite errors, making the GPS signals more trustworthy
 - An additional five stations will be added



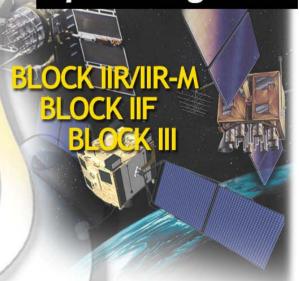
Mission

User Segment

AGR 2000

Vision:

We are the Center of Excellence for Space-Based **Navigation**


Mission:

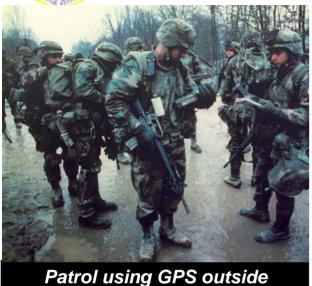
Acquire and Sustain Survivbable, Effective, and Affordable Global Positioning Services for our Customers

Motto:

"Any Time, Any Place Right Time, Right Place"

Space Segment

Control Segment



Value Proposition of Space: GPS as a Transformation Enabler

WWII Schweinfurt Raids vs Today:
Dropped 24 million pounds of bombs to destroy 5 ball bearing plants

Operational Support

Military applications

- Force location
- Navigation
- Force employment
- Weapon guidance
- Satellite positioning
- Comm network timing

Civil applications

- Search and rescue
- Surveying and mapping
- Trucking and shipping
- Aviation
- Offshore drilling
- Fishing and boating

A global utility for military and civilian applications

- Finalize Acquisition Program Baseline (APB) and associated funding
 - Proposed APB update returns all segments to green with margin
 - Finish Block IIF satellite development and enter production
 - Transition Control Segment to AEP and LADO
 - Initiate development of Block III, OCX, MUE, & MSR this year
 - Congressional marks and reprogramming actions
- Sustain constellation with Block IIR-M satellites
- Workforce reductions to FFRDC, SETA, military, and civilian staff

PLGR vs DAGR

PLGR (Legacy)

Single (L1 only)

PPS-SM

Text only

5 Maximum

24 dB

6 minutes

60 sec

2.75 lbs

NTE 120 cu. In.

13 hrs (8 batteries)

2000 hr

Frequency

Security

Display

Satellites

Anti-Jam

TTFF

TTSF

Weight

Volume

Battery Life

Reliability

<u>DAGR</u>

Dual (L1/L2)

SAASM

GUI w/maps

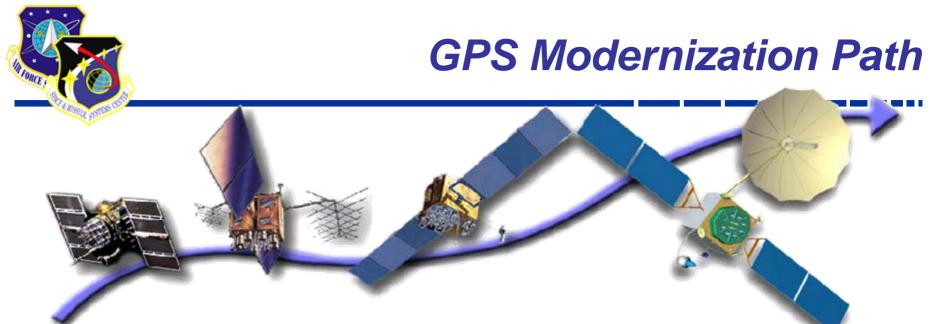
All-In-View

41 dB (+)

1 minute

20 sec

.94 lb


Fit in secured 2-clip Ammo Pouch

14 hrs

(4 batteries,-20C)

5000 hr

Increasing System Capabilities • Increasing Defense / Civil Benefit

Block IIA/IIR Block IIR-M, IIF Block III

Basic GPS

- Std Service (16-24m SEP)
 - Single frequency (L1)
 - Coarse acquisition (C/A) code navigation
- Precise Servicze (16m SEP)
 - Y-Code (L1Y & L2Y)
 - Y-Code navigation

IIR-M: IIA/IIR capabilities plus

- 2nd civil signal (L2C)
- M-Code (L1M & L2M)
- Eliminates SA for denial
- Anti-jam flex power

IIF: IIR-M capability plus

- 3rd civil signal (L5)
- Anti-jam flex power

Block IIIA:

- Increased anti-jam power
- Increased security
- Increased accuracy
- Navigation surety
- Backward compatibility
- Assured availability
- Controlled integrity
- System survivability
- 4th civil signal (L1C)