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Introduction 
 

Development of cutting-edge graphics techniques like programmable pixel and 
vertex shaders are often motivated by a desire to achieve photorealistic renderings for 
gaming or simulation.  In this paper, we apply vertex and pixel shaders to Non-
Photorealistic Rendering (NPR).  In many types of images such as cartoons and technical 
drawings, photorealism is not desirable.  In the case of technical illustrations, non-
photorealistic rendering techniques are used to enhance understanding of the scene or 
object being drawn without obscuring important features such as outlines.  In other cases, 
we simply hope to simulate other media such as cel-shaded cartoons, wood-block prints 
or hatched line drawings for stylistic purposes.  In the following sections, we will apply 
Direct3D pixel and vertex shaders to implement and extend recent research efforts in 
non-photorealistic rendering. 
 
Rendering Outlines 
 

Rendering of object outlines is a common step in non-photorealistic rendering.  In 
this section, we will present a geometric approach to outline rendering, which uses vertex 
shaders to determine silhouette edges.  These outlines are used with the NPR shading 
techniques discussed in subsequent sections.  An image-space approach to outlining will 
be presented at the end of the paper. 
 

We consider the silhouette outline to be the minimum set of lines that is needed to 
represent the contour and shape of the object.  Silhouette edges represent more than just 
the outer edges of the object but also points of surface discontinuity (e.g. a sharp edge or 
crease in a surface). 
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Figure 1 – N⋅L, silhouette outlines, image filtered outlines 
 

The basic algorithm involves drawing every edge of an object as a quadrilateral 
fin and doing the silhouette determination in the vertex shader.  This is very similar to the 
way that [Lengyel01] faded the “fins” used in fur rendering.  The goal of this shader is 
very simple; if the edge is a silhouette, the vertex shader renders the quad fin, otherwise 
the vertex shader renders a degenerate (unseen) fin. 
 

The vertex shader determines if an edge is a silhouette by comparing the face 
normals of the triangles that share the edge (nface0 and nface1).  If one normal is front facing 
with respect to the viewer and the other is back facing, then the edge is a silhouette.  This 
algorithm works perfectly except in the case of edges that are not shared by more than 
one triangle.  These kinds of edges are considered “boundary edges” and need to be 
drawn all of the time.  Boundary edges only have one face normal associated with them, 
so there is no second normal to be used in the comparison.  In order to ensure that 
boundary edges are always drawn, the second shared normal is chosen such that it is the 
negation of the first normal (nface1 = -nface0).  This results in boundary edges always being 
drawn since one normal will always be facing the viewer and the other always facing 
away from the viewer.  With this organization of data, one vertex buffer and one 
rendering call can be used to draw all of the quad fins and the vertex shader will handle 
both regular edges and boundary edges. 
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Figure 2 – Vertex buffer organization for silhouette edge rendering 
 
 

The data for drawing the object will typically be stored in memory in an 
organization similar to that shown in Figure 2.  As shown, every vertex of every edge is 
composed of the vertex position (p) along with three normal values corresponding to the 
vertex’s smooth normal (nsmooth) and the face normals of the triangles sharing the edge 
(nface0 and nface1).  The application should then render each edge quad fin, possibly 
passing the additional normal information in a separate data stream from the rest of the 
vertex.  In order to reduce the memory bandwidth hit from reading in the “extra” data 
(nface0 and nface1), one optimization would be to quantize the face normals to byte 4-tuples 
or short 4-tuples. 
 

The vertex shader computes the view vector in camera space by multiplying the 
vertex by the view matrix and normalizing.  The shader then transforms the face normals 
nface0 and nface1 into camera space and dots them with the view vector.  If the edge is a 
silhouette edge, one of these dot products will be negative and the other will be positive.  
The shader checks for this condition by multiplying the two dot products together and 
checking for a value less than zero.  If the value is less than zero, the vertex offset is set 
to zero (unchanged), otherwise the vertex offset is set to one.  The vertex offset is then 
multiplied by the smooth normal and added to the untransformed vertex position.  Note 
that two of the four vertices for each quad fin have nsmooth = 0.  This acts as a mask of the 
fin vertex displacement and causes two of the fin vertices to stick to the model while the 
other two are displaced to cause the fin to be visible. 
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// NPR outline shader 
// c0-3  view matrix 
// c4-7  view projection matrix 
// c8 
// c9  (0.0, 0.0, 0.0, 1.0f) 
// c10  line width scalar 
 
vs.1.1  
m4x4 r0, v0, c0   // compute the view vector 
dp3 r1, r0, r0   // normalize the view vector  
rsq r1, r1 
mul r0, r0, r1 
 
m3x3 r1, v7, c0   // multiply normal 1 by the view matrix 
m3x3 r2, v8, c0   // multiply normal 2 by the view matrix 
dp3 r3, r0, r1   // dot normal 1 with the view vector 
dp3 r4, r0, r2   // dot normal 2 with the view vector 
mul r3, r3, r4   // multiply the dot products together 
slt r3, r3, c9   // check if less than zero 
 
mov oD0, c9      // set the output color  
 
dp4 r0, v0, c6   // compute the vertex depth  
mul r0, r0, c10  // multiply by a line thickness scalar 
mul r3, r3, r0   // multiply the thickness by the smooth normal 
 
mul r3, v3, r3   // multiply by the normal offset  
add r0, v0, r3   // add in the offset 
mov r0.w, c9.w   // swizzle in a one for the w value 
m4x4 oPos, r0, c4 // transform the vertex by the model view projection 
 

 
Listing 1 – Outline vertex shader 

 
Hidden line removal is handled via the depth buffer.  We assume that a shaded 

version of the model is rendered before the outlines to fill the z buffer with values that 
will cause hidden outlines to fail the z test.  The following pseudo code outlines this 
process: 
 

1. Preprocess the geometry into quad fins 
a. For each vertex of each edge store the edge vertex, the smooth surface 

normal, and the two face normals which share said edge; One should have 
the smooth normal and the other should have the smooth normal field set 
to zero  

b. If  edge is unshared (only used in one face) store the negation of the one 
face normal as the second normal 

2. Render a shaded version of the geometry to fill the z buffer 
3. Enable outline vertex shader and initialize the shader constant storage  
4. Set up stream mappings to pass in the additional normal data 
5. Render the edges as triangles 
6. Vertex shader breakdown: 

a. Compute the view vector by transforming the vertex into eye space 
(multiply by the view matrix) and normalize 

b. Dot each face normal with the view vector 
c. Multiply the resulting dot products together 
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d. Check for a value less than zero 
e. Multiply the smooth normal by the result of the less than zero test 
f. Compute the vertex depth (dot the vertex with the third row of the view 

projection matrix) 
g. Multiply the vertex depth by the line thickness factor to get a normal scale 

value 
h. Multiply the smooth normal by the normal scale value 
i. Add the smooth normal to the untransformed vertex 
j. Transform the vertex and output  

 
 There are some drawbacks associated with the previous algorithm.  Along with 
the hassle of preprocessing the geometry and storing extra edge data, boundary edges 
may potentially be drawn incorrectly when a quad fin points straight at the viewer.  This 
is because the algorithm currently only scales the edge along the smooth surface normal, 
therefore leaving no means to screen-align the quadrilateral edge.  This could be 
addressed by re-working the algorithm to also screen-align the quad.  Later in this paper, 
we present an image-space approach to rendering outlines, which requires no 
preprocessing and does not exhibit the same boundary edge issue. 
 
 In the next section, we will discuss methods for shading the interior of the object 
to achieve different stylized results. 
 
Cartoon Lighting Model 
 

One method of cartoon shading is to create banded regions of color to represent 
varying levels of lighting.  Recent examples of 3D games using cel-shading techniques 
are Cel Damage by Pseudo Interactive and the Jet Set Radio games (called Jet Grind 
Radio in some markets) by Sega/Smilebit.  A common technique illustrated in [Lake00] 
is a technique called hard shading which shades an object with two colors that make a 
hard transition where N · L crosses zero.  [Lake00] indexes into a 1D texture map to 
antialias the transition, while the method shown here computes the colors analytically.  
Figure 3 shows an approach which uses three colors to simulate ambient (unlit), diffuse 
(lit) and specular (highlight) illumination of the object. 
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Figure 3 - Cartoon shaded with outlines 

 
This is accomplished using a vertex shader that computes the light vector at each 

vertex and passes it into the pixel shader as the first texture coordinate.  The vertex 
shader also computes the half angle vector at each vertex and passes it into the pixel 
shader as the second texture coordinate.  The pixel shader analytically computes the pixel 
color.  As shown in the listing below, the pixel shader first computes N · L and N · H.  If 
the N · L term is above a specified threshold, the diffuse color is output, otherwise the 
ambient color is output.  If the N · H term is above a specified threshold, then the 
specular color replaces the color from the N · L term.  This same analytical method could 
be expanded to use any number of banded regions. 
 
 
 // Cartoon vertex shader 
 // c9 is the light position 
 // c10 is the view projection matrix 
 // c14 is the view matrix 
 vs.1.1 
 
 // output the vertex multiplied by the mvp matrix 
 m4x4 oPos, v0, c10 
 
 // compute the normal in eye space 
 m3x3  r0, v3, c14 
 mov  oT0, r0 // write the normal to tex coord 0 
 
 // compute the light vector 
 sub   r0, c9, v0 
 dp3   r1, r0, r0 
 rsq   r1, r1 
 mul   r0, r0, r1 
 m3x3  r1, r0, c14 // transform the light vector into eye space 
 mov  oT1, r1 // write the light vector to tex coord 1 
 
 // compute half vector 
 m4x4  r0, v0, c14 // transform the vertex position into eye space  
 dp3   r3, r0, r0 // normalize to get the view vector 
 rsq   r3, r3 
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 add   r0, r1, -r0 // add the light vector and the view vector = half angle 
 dp3   r3, r0, r0 // normalize the half angle vector 
 rsq   r3, r3 
 mul   r0, r0, r3 
 mov  oT2, r0 // write the half angle vector to tex coord 2 
 
 

Listing 2 – Cartoon shading vertex shader code 
 
 
 
 // Cartoon shading pixel shader  
 // 
 ps.1.4 
 
 def c0, 0.1f, 0.1f, 0.1f, 0.1f // falloff 1 
 def c1, 0.8f, 0.8f, 0.8f, 0.8f // falloff 2 
 def c2, 0.2f, 0.2f, 0.2f, 1.0f // dark 
 def c3, 0.6f, 0.6f, 0.6f, 1.0f // average 
 def c4, 0.9f, 0.9f, 1.0f, 1.0f // bright 
 
 // get the normal and place it in register 0 
 texcrd r0.xyz, t0 
 
 // get the light vector and put it in register 1 
 texcrd r1.xyz, t1 
 
 // compute n dot l and place it in register 3 
 dp3 r3, r0, r1 
 
 // subtract falloff 1 from the n dot l computation 
 sub r4, r3, c0 
 
 // check if n dot l is greater than zero 
 // if yes use average color otherwise use the darker color 
 cmp_sat r0, r4, c3, c2 
 
 // subtract falloff 2 from the n dot l computation 
 sub r4, r3, c1 
 
 // check if n dot l is greater than zero 
 // if yes use bright color otherwise use whats there 
 cmp_sat r0, r4, c4, r0 

 
 

Listing 3 – Cartoon shading pixel shader code 
 
 

The ambient and diffuse bands help to visualize the shape of the object while the 
specular highlight gives insight into the properties of the surface of the object.  If the goal 
of the cartoon shader is only to represent the object’s shape then the shader could omit 
the specular portion and replace it with any number of additional diffuse regions. 
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Figure 4 - Cartoon shaded object with specular and with multiple diffuse regions 

 
 
Hatching 
 

Another method of NPR shading is hatching, which is commonly used in pen and 
ink drawings to show shape and differentiate between lit and unlit regions of an object.  
The density of the hatch pattern signifies how much light the surface is reflecting at that 
point.  The current state of the art in real-time hatching is illustrated in [Praun01].  This 
technique uses an array of hatch patterns ranging from very sparse (well lit) to very dense 
(unlit) hatching called tonal art maps.  N · L is computed per-vertex and used to 
determine a weighted-average of the tones in the tonal art map.  Per-pixel, the tonal art 
maps are blended together according to the weights interpolated from the vertices.  The 
result is a hatched image which is well antialiased. 
 

 

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks 
    

8 



Non-Photorealistic Rendering with Pixel and Vertex Shaders 

 
 

Figure 5 - Hatched object 
 
 
 

 
Figure 6 - Tonal Art Map from [Praun01] 
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 // Hatching vertex shader 
 // 
 // c0 0 (0.0, 0.0, 0.0, 0.0) 
 // c1 1 (1.0, 1.0, 1.0, 1.0) 
 // c2 2 (2.0, 2.0, 2.0, 2.0) 
 // c3 3 (3.0, 3.0, 3.0, 3.0) 
 // c4 4 (4.0, 4.0, 4.0, 4.0) 
 // c5 5 (5.0, 5.0, 5.0, 5.0) 
 // c6 6 (6.0, 6.0, 6.0, 6.0) 
 // c7 7 (7.0, 7.0, 7.0, 7.0) 
 // c8 brightness 
 // c9 light position 
 // c10 view projection matrix 
 // c14 view matrix 
 //       
 vs.1.1 
 
 m4x4 oPos, v0, c10 // output the vertex multiplied by the mvp matrix 
 
 mov oT0, v7 // write out the texture coordinate 
 mov oT1, v7 
 
 mov r1, v3 // normalize the normal  
 mov r1.w, c0 
 dp3 r2, r1, r1 
 rsq r2, r2 
 mul r1, r1, r2 
 
 sub r2, c9, v0 // compute light vector and normalize 
 dp3 r3, r2, r2 
 rsq r3, r3 
 mul r2, r2, r3 
 
 dp3 r3, r2, r1 // compute the light factor (n dot l) times six clamp at zero 
 mul r3, r3, c8 
 
 mov r5.x, c5.x // seed the blend weights 
 mov r5.y, c4.x 
 mov r5.z, c3.x 
 mov r5.w, c0.x 
 
 mov r6.x, c2.x 
 mov r6.y, c1.x 
 mov r6.z, c0.x 
 mov r6.w, c0.x 
 
 sub r5, r3, r5 // sub each weights initial value from the light factor 
 sub r6, r3, r6 
 
 max r5, r5, c0 // get rid of everything less than zero 
 sge r7, c2, r5 // flag all weights that are <= 2 
 mul r5, r5, r7 // zero out weights > 2 
 sge r7, r5, c1 // flag all weights that are >= 1 
 mul r7, r7, c2 // subtract all weights that are greater than or equal to one from 2 
 sub r5, r7, r5 
 slt r7, r5, c0 // flag all weights that are < 0 and negate 
 sge r8, r5, c0 // flag all spots that are >= 0 
 add r7, -r7, r8 // add the flags 
 mul r5, r5, r7 // should negate the negatives and leave the positives 
 
 max r6, r6, c0 // same as above only on the second set of weights 
 sge r7, c2, r6 
 mul r6, r6, r7 
 sge r7, r6, c1 
 mul r7, r7, c2 
 sub r6, r7, r6 
 slt r7, r6, c0 
 sge r8, r6, c0 
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 add r7, -r7, r8 
 mul r6, r6, r7 
 
 sge r8, c1, r3 // check for total shadow and clamp on the darkest texture 
 mov r7, c0 
 mov r7.z, r8.z 
 add r6, r6, r7 
 min r6, r6, c1 
 
 mov oT2.xyz, r5 // write the 123 weights into tex coord 3 
 mov oT3.xyz, r6 // write the 456 weights into tex coord 4 
 
 

Listing 4 – Hatching Vertex Shader 
 
 
 
 // Hatching pixel shader 
 ps.1.4 
 
 texld   r0, t0         // sample the first texture map 
 texld   r1, t1         // sample the second texture map 
 texcrd  r2.rgb, t2.xyz // get the 123 texture weights and place it in register 2 
 texcrd  r3.rgb, t3.xyz // get the 456 texture weights and place it in register 3 
 dp3_sat r0, 1-r0, r2   // dot the reg0 (texture values) with reg2 (texture weights) 
 dp3_sat r1, 1-r1, r3   // dot the reg1 (texture values) with reg3 (texture weights) 
 add_sat r0, r0, r1     // add reg 0 and reg1 
 mov_sat r0, 1-r0       // complement and saturate 
 

 

Listing 5 – Hatching Pixel Shader 
 
Gooch Lighting 
 
 The Gooch lighting model introduced in [Gooch98] is designed to provide 
lighting cues without obscuring the shape of the model, the edge lines or specular 
highlights.  This technique, designed to model techniques used by technical illustrators, 
maps the -1 to 1 range of the diffuse N · L term into a cool-to-warm color ramp.  This 
results in diffuse lighting cues which are shown as hue changes rather than color intensity 
changes.  This diffuse lighting model is designed to work with the silhouette and feature-
edge lines discussed earlier in this paper.  It essentially results in a reduction in the 
dynamic range of the diffuse shading so that the edge lines and specular highlights are 
never obscured.  A similar technique is used in the game Half-Life by Valve Software 
[Birdwell01].  The Half-Life engine first computes a single approximate aggregate light 
direction.  The -1 to 1 result of the per-vertex N.L from this aggregate light direction is 
then scaled and biased into the 0 to1 range rather than simply clamped at zero.  This 
eliminates the flat look that would otherwise be apparent on the side of a game character 
that faces away from the light. 
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 As shown in [Gooch98], the classic lighting equation can be generalized to the 
following, which allows us to experiment with cool-to-warm colors. 
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Figure 7 – Gooch lighting with outlining on a teapot and cartoon characters 

 
 
 
 // Gooch Lighting vertex shader 
 // c9 is the light position 
 // c10 is the view projection matrix 
 // c14 is the view matrix 
 vs.1.1 
 
 m4x4 oPos, v0, c10 // output the vertex multiplied by the vp matrix 
 sub r0, c9, v0 // compute the light vector and normalize 
 dp3 r1, r0, r0 
 rsq r1, r1 
 mul r0, r0, r1 
 mov r1, v3  // compute the normal 
 mov oT0, r1 // write the normal to tex coord 0 
 mov oT1, r0 // write the light vector to tex coord 1 
 
 

Listing 6 – Gooch Lighting Vertex Shader 
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 // Gooch Lighting pixel shader 
 // c0 is alpha (eg. {0.4, 0.4, 0.4, 1.0}) 
 // c1 is beta (eg. {0.5, 0.5, 0.5, 1.0}) 
 // c2 is kyell  (eg. {0.5, 0.5, 0.0, 1.0}) ow

 // c3 is kblue (eg. {0.0, 0.0, 0.4, 1.0}) 
 // c4 is kd 
 // c5 is (1.0, 1.0, 1.0, 1.0) 
 ps.1.4 
 
 texcrd r0.xyz, t0  // get the normal and place it in register 0 
 texcrd r1.xyz, t1  // get the light vector and put it in register 1 
 dp3    r3, r0, r1  // compute n dot l and place it in register 3 
 add_d2 r3, r3, c5  // normalize the n dot l range 
 
 mul_sat r0, c4, c0 // compute the cool factor 
 add_sat r0, r0, c2  
 mul_sat r0, r0, r3 
 
 mul_sat r1, c4, c1 // compute the warm factor 
 add_sat r1, r1, c3  
 mad_sat r0, r1, 1-r3, r0 // add the warn and cool together and output 
 
 

Listing 7 – Gooch Lighting Pixel Shader 
 
 
 In the preceding sections, we have concentrated on shader techniques which 
render non-photorealistic images directly into the frame buffer.  In the following section, 
we will look at image-space techniques which require rendering into textures and 
subsequent processing of these rendered images to produce non-photorealistic images. 
 
Image-Space Techniques 
 

As discussed in “Image Processing with 1.4 Pixel Shaders in Direct3D,” it is 
possible to render 3D scenes into textures for subsequent image processing.  One 
technique developed in [Saito90] and refined in [Decaudin96], is to render the depth and 
world-space normals of objects in a scene into a separate buffer.  This rendered image is 
subsequently post-processed to extract edges which can be composited with a hatched, 
Gooch shaded or cartoon shaded scene.  We will show a Direct3D implementation of this 
technique as well as our own extension which thickens the lines using morphological 
techniques.  One advantage of an image-space approach to determining outlines is that it 
is independent of the rendering primitives used to render the scene or even whether the 
models are particularly well-formed.  A scene which contains N-Patch primitives 
[Vlachos01], for example, will work perfectly well with an image-space approach as will 
interpenetrating geometry such as the classic Utah teapot.  This approach even works 
with user clip planes (or the front clip plane), correctly outlining areas of normal or depth 
discontinuity in the final image, without any application intervention at the modeling 
level.  Another advantage is that this approach does not require the creation and storage 
of the auxiliary outline buffers discussed in the first section of this paper. 
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The first step of this technique is to use a vertex shader to render the world space 
normals and depths of a scene into a texture map.  The vertex shader scales and biases the 
world space normals from the -1 to 1 range into the 0 to 1 range and writes them to 
diffuse r, g and b (oD0.xyz).  The eye-space depth is written into diffuse alpha (oD0.w).  
This interpolator is simply written out to the RGBA render target (i.e. a texture) by the 
pixel shader.  One important detail is that the clear color for the scene should be set to 
world-space +z so that the filter will interact properly with the objects at all orientations. 
An image of some cartoon characters rendered with this technique is shown in the 
following figures.  The RGBA texture containing world space normals and eye-space 
depths is shown in Figure 8. 

 

     
 

Figure 8 – World Space Normals and Eye Space Depth as in [Saito90] and 
[Decaudin96].  These are rendered to RGB and A of a renderable texture map. 

 
 The vertex shader used to render this scene is shown in Listing 8: 
 
 
 vs.1.1 
 m4x4 oPos, v0, c0 
 mov   r0, v3 
 mov   r0.w, c12.w 
 add   r0, c8, r0 
 mul   r0, r0, c9 
 m4x4  r1, v0, c4 
 sub   r1.w, r1.z, c10.x 
 mul   r0.w, r1.w, c11.x 
 mov  oD0, r0 
 
 

Listing 8 – World Space Normals and Eye Space depth vertex shader 
 
 The next step is to use image processing techniques to extract the desired outlines.  
The normals and depths are effectively processed independently to isolate different 
classes of edges.  Discontinuities in the normals occur at internal creases of an object, 
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while depth discontinuities occur at object silhouettes, as shown in Figure 9.  Note that 
while the normal discontinuity filter picks up the edge at the top of the leg and the depth 
discontinuity filter does not, the union of the edge pixels from the two filters produces a 
reasonable outline for the object. 
 

       
  (a)    (b)             (c) 

Figure 9 – (a) Edges from world space normal discontinuities, (b) depth discontinuities and (c) both 
 
 
 // Normal discontinuity filter for Non-Photorealistic Rendering 
 ps.1.4 
 def c0,  1.0f,  1.0f, 1.0f, 1.0f 
 def c1, -0.85f, 0.0f, 1.0f, 1.0f 
 def c2,  0.0f,  0.0f, 0.0f, 0.0f 
 
 // Sample the map five times 
 texld r0, t0 // Center Tap 
 texld r1, t1 // Down/Right 
 texld r2, t2 // Down/Left 
 texld r3, t3 // Up/Left 
 texld r4, t4 // Up/Right 
 dp3 r1.rgb, r0_bx2, r1_bx2  // Dot products with center pixel (Signed result -1 to 1) 
 dp3 r2.rgb, r0_bx2, r2_bx2 
 dp3 r3.rgb, r0_bx2, r3_bx2 
 dp3 r4.rgb, r0_bx2, r4_bx2 
 
 // Subtract threshold 
 add r1, r1, c1.r 
 add r2, r2, c1.r 
 add r3, r3, c1.r 
 add r4, r4, c1.r 
 
 phase 
 
 // Make black/white based on threshold 
 cmp r1.rgb, r1, c0.r, c2.r 
+mov r1.a, c0.a 
 cmp r2.rgb, r2, c0.r, c2.r 
+mov r2.a, c0.a 
 cmp r3.rgb, r3, c0.r, c2.r 
+mov r3.a, c0.a 
 cmp r4.rgb, r4, c0.r, c2.r 
+mov r4.a, c0.a 
 
 mul r0.rgb, r1, r2 
 mul r0.rgb, r0, r3 
 mul r0.rgb, r0, r4 
+mov r0.a, r0.r 
 
 
Listing 9 – Determining edges from an image of a scene’s world space normals 
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 // 5-tap depth-discontinuity filter 
 ps.1.4 
 def c0, -0.02f, 0.0f, 1.0f, 1.0f 
 
 texld r0, t0 // Center Tap 
 texld r1, t1 // Down/Right 
 texld r2, t2 // Down/Left 
 texld r3, t3 // Up/Left 
 texld r4, t4 // Up/Right 
 
 add r1, r0.a, -r1.a     // Take four deltas 
 add r2, r0.a, -r2.a 
 add r3, r0.a, -r3.a 
 add r4, r0.a, -r4.a 
 
 cmp r1, r1, r1, -r1     // Take absolute values 
 cmp r2, r2, r2, -r2 
 cmp r3, r3, r3, -r3 
 cmp r4, r4, r4, -r4 
 
 phase 
 
 add r0.rgb, r1, r2     // Accumulate the absolute values 
 add r0.rgb, r1, r3 
 add r0.rgb, r1, r4 
 
 add r0.rgb, r0, c0.r  // Subtract threshold 
 cmp r0.rgb, r0, c0.g, c0.b 
+mov r0.a, r0.r 
 
 

Listing 10 – Determining edges from an image of a scene’s eye-space depth 
 
 
Compositing the Edges 
 
 Once we have the image containing the world-space normals and depth, we 
composite the edge-filtered result with the frame buffer which already contains a hatched, 
cartoon or Gooch shaded image.  The output of the edge detection shader is either black 
or white, so we use a multiplicative blend (src*dst) with the image already in the frame 
buffer: 
 
   d3d->SetRenderState (D3DRS_ALPHABLENDENABLE,TRUE); 
   d3d->SetRenderState (D3DRS_SRCBLEND,  D3DBLEND_DESTCOLOR); 
   d3d->SetRenderState (D3DRS_DESTBLEND, D3DBLEND_ZERO); 
 

This frame buffer operation is nice because we can multipass edge filters with the 
frame buffer and get the aggregate edges.  In the NPR sample on the book CD, for 
example, we do one pass for normal discontinuities and one for depth discontinuities.  It 
is worth noting that it would be possible to process both normal discontinuities and depth 
discontinuities using 1.4 pixel shaders and co-issue pixel shader instructions, but we 
chose to use a larger filter kernel (and thus more instructions) in the sample shown here.   
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Depth Precision 
 
 We have found that 8 bits of precision for eye-space depth works well for the 
simple scenes we have tested, but we expect this to be a problem for more aggressive 
NPR applications such as games with large environments.  In scenes of large game 
environments, using only 8 bits of precision to represent eye-space depth will cause some 
which are close to each other to “fuse” together if their world-space normals are also 
similar.  Because of this, it might be necessary to use techniques which spread the eye-
space depth across multiple channels or to simply rely upon future generations of 
hardware which will provide higher precision pixels and texels.  
 
Alpha Test for Efficiency 
 

Since the black edge pixels are a very small subset of the total pixels in the scene, 
we can alpha test the edge image to save frame buffer bandwidth during the composite.  
Note that the last instruction in the depth and normal discontinuity shaders moves the red 
channel of the filter result into the alpha channel of the pixel.  This is done so that the 
alpha test functionality which follows the pixel shader can be used to kill the pixel rather 
than composite it with the frame buffer, speeding up performance.  Since we want to kill 
pixels which are white, we set an alpha reference value of something between white and 
black (0.5f) and use an alpha compare function of D3DCMP_GREATER: 
 
   d3d->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE); 
   d3d->SetRenderState(D3DRS_ALPHAREF, (DWORD) 0.5f); 
   d3d->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER); 
 
Shadow Outlines 
 
 In addition to outlining object silhouettes, it is also desirable to outline shadows in 
a scene.  We have added this functionality to a stencil shadow application in the 
RADEON 8500 SDK on the ATI website as shown in Figure 10 below. 
 
 Figure 10 (a) shows a scene using the hatching technique from [Praun01] alone.  
In addition to this, we use stencil shadows to generate an image in a texture which 
contains normals and depths similar to the preceding technique.  The application renders 
the scene into the texture with world space normals and depths, using the stencil buffer to 
write to only pixels which are not in shadow.  The application then re-renders the 
geometry to the pixels in shadow, but negates the world space normals.  This results in an 
image like that shown in Figure 10 (b), where the alpha channel (not shown) contains 
depths.  The same normal and depth discontinuity filters used above are applied to this 
image to determine both object and shadow edges in one pass.  These edges are 
composited over a hatched scene which already contains areas in shadow which have 
been hatched with the densest hatching pattern to simulate shadow. Figure 10 (d) shows 
this technique along with coloration of the TAMs and per-pixel TAM weight 
determination. 
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(a) (b) 

 

             
(c)      (d) 

 
Figure 10 – (a) A plain outlined hatched scene.  (b) The renderable 
texture containing world-space normals for non-shadowed pixels and 
negated normals for shadowed pixels.  (c) A hatched scene with shadows, 
object outlines and shadow outlines.  (d) Adding base texture coloring and 
per-pixel TAM weight calculation. 

 
Thickening Outlines with Morphology 
 
 The outlines generated by the above technique are a few pixels thick and look fine 
for many NPR applications, but some applications may want thicker lines.  Rather than 
directly composite the edges onto a shaded image in the back buffer, we can render the 
edges into a separate texture and apply morphological operations as shown in “Image 
Processing with 1.4 Pixel Shaders in Direct3D.”  To thicken the lines, use dilation; to thin 
them or break them up, use erosion.  Do give a different style, we could thicken the lines 
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by ping-pong rendering between renderable textures.  After performing the desired 
number of dilations, composite the thickened edge image back onto the shaded frame 
buffer as discussed above. 
 
Summary of Image Space Technique. 
 
 Rendering a scene with the image-space outlining technique shown here is done 
in the following steps: 
 

1. Render shaded scene to back buffer 
2. Render world-space normals and depths to a texture map 
3. If thickening lines using morphology, 

a. Clear renderable texture to white 
b. Draw quad into texture using world-space normal discontinuity filter.  Use 

alpha test and src*dst blending 
c. Draw quad into texture using depth discontinuity filter.  Use alpha test and 

src*dst blending 
d. Dilate edges 
e. Composite with shaded scene in back buffer by drawing full screen quad 

using alpha test and src*dst blending 
4. Else using edges directly 

a. Draw full-screen quad over whole screen using world-space normal 
discontinuity filter.  Use alpha test and src*dst blending 

b. Draw full-screen quad over whole screen using depth discontinuity filter.  
Use alpha test and src*dst blending 

 
 
Conclusion 
 
 We have presented Direct3D shader implementations of some recent 
developments in non-photorealistic rendering including outlines, cartoon shading, 
hatching, Gooch lighting and image-space techniques.  For an excellent overview of these 
and many other NPR techniques, please refer to the recent book Non-Photorealistic 
Rendering by Gooch & Gooch.  Gooch & Gooch also have an excellent online reference 
for NPR research: http://www.cs.utah.edu/npr/ 
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