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Abstract

The development of a generalized viscous vortex model is
described for application in rotor aeroacoustic analyses. A
brief summary is given of previous models for the viscous
core growth and induced velocity field of a trailing tip vor-
tex. The assumptions made for the vortex core growth are
shown to influence the predictions of the rotor wake ge-
ometry, as well as the induced velocities, airloads, and
performance, thereby emphasizing the need for a more
universal and physically representative vortex model. In
the present approach, the viscous core growth was mod-
eled using an extension of the classic Lamb-Oseen model
for the diffusion of laminar vortices. Turbulence in the tip
vortex affects the diffusion of vorticity, and these effects
were incorporated using an empirically validated correc-
tion for the average apparent or “eddy” viscosity. The
vortex induced velocity profiles measured in experiments
were found to exhibit strong self-similarity when using the
vortex core radius as a length-scale, suggesting that a gen-
eralized model is possible. A family of algebraic models
for the swirl, axial, and radial components of the veloc-
ity induced by a viscous trailing tip vortex is proposed.
These velocity components were found from a solution
to a simplified form of the incompressible Navier-Stokes
equations. The velocity profiles are written in terms of a
single integer exponent with the viscous core growth be-
ing given by a semi-empirical relation for the turbulent
viscosity that scales as a function of the vortex Reynolds
number. The model is compared with velocity field mea-
surements for both fixed-wing and rotating-wing tip vor-
tices, with good agreement.
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Nomenclature

a1 Squire’s parameter
b1 Non-dimensional vortex core growth rate
c Wing chord, m
Cd0 Zero-lift drag coefficient
D0 Zero-lift drag of wing
d Non-dimensional distance, =zΓv/(V∞c2)
n Integer parameter
Nb Number of blades
p Static pressure, Pa
P0 Profile power coefficient, W
R Rotor radius, m
r,θ,z Cylindrical coordinate system, (m, rad, m)
r Non-dimensional radial distance, =r/rc

rc Vortex core radius, m
rc0 Initial vortex core radius, m
Re Chord Reynolds number,= V∞c/ν
Rev Vortex Reynolds number,= Γv/ν
t Time, s
V Non-dimensional peak velocity,= Vθmaxc/Γv

V∞ Free-stream velocity, m s−1

Vr Vortex induced radial velocity, m s−1

Vθ Vortex induced swirl (tangential) velocity, m s−1

Vθmax Maximum swirl (tangential) velocity, m s−1

Vz Vortex induced axial velocity, m s−1

z0 Effective origin, m
α Oseen parameter= 1.25643
Γ Non-dimensional circulation, =Γ/(ΩRc)
Γv Net vortex circulation, m2 s−1

δ Eddy viscosity coefficient
ε Small number
ν Kinematic viscosity, m2 s−1

Ω Rotor rotational frequency, rad s−1

ρ Density, kg m−3

ζ Wake age, deg
ζ0 Virtual origin in wake age, deg

Abbreviations
BVI Blade Vortex Interaction
TPP Tip-Path-Plane



Introduction

Modeling the viscous core structure and temporal devel-
opment of lift-generated trailing vortices has been a con-
tinuing challenge in both fixed-wing and rotating-wing
aerodynamic problems. The persistence of aircraft tip vor-
tices poses a wake-hazard problem for any following air-
craft, and this is a major factor limiting the capacity of
large airports – e.g., see Ref. 1. The prediction of the in-
duced velocities and strength (circulation) history of the
tip vortices as they trail behind an aircraft has been the
subject of much research over the past five decades (e.g.,
see Refs. 2–8). However, the properties of the vortex, such
as its laminar or turbulent core structure and its related
diffusive and dissipative characteristics, are still not well
understood. In depth reviews of these problems have been
presented in Refs. 5 & 8.

For rotating-wing aircraft, the blade tip vortex charac-
teristics have an even more significant impact on rotor air-
loads and performance because of their close proximity
to the rotating blades. Therefore, an improved model-
ing capability for the tip vortices directly translates into
improved predictions of blade loads, rotor performance,
and rotor acoustics (Ref. 9). However, because of the in-
herent difficulties in performing detailed vortex flow mea-
surements in rotor wakes, rotating-wing analyses have de-
pended heavily on the use of fixed-wing measurements for
the development of empirical vortex models (Ref. 10).

The increasingly routine use of free-vortex wake mod-
els in rotating-wing aeroacoustic analyses further high-
lights the importance of more accurately modeling the
viscous nature of the tip vortex structures. Although
these free-vortex wake models are based on potential
flow theory, the formation of the wake behind any lift-
ing surface must be considered as a viscous phenomenon.
Therefore, most free-vortex wake models include semi-
empirical models for the tip vortex core structure and
also, possibly, the viscous growth of the vortex core (e.g.,
Refs. 11–13). The rotor induced velocity predictions are,
in general, sensitive to these parameters, but applications
that focus on modeling close interactions between the tip
vortices and the rotor blades (blade vortex interactions or
BVIs) make it even more essential to properly represent
the tip vortex core structures. Gandhi & Tauszig (Ref. 14)
have shown the sensitivity of the viscous core models on
BVI prediction, and have stressed the need to properly re-
solve such vortex modeling issues.

A complete description of a viscous, turbulent, trailing
vortex requires solution to the full Navier-Stokes equa-
tions. Analytical solutions to these non-linear sets of
equations is not possible, whereas numerical solutions
are deterred by formidable computational costs as well as
building satisfactory turbulence models. Closed-form so-
lutions for vortex flows can only be obtained by further

simplifying the governing equations, e.g., Refs. 15–18.
Several semi-empirical models have been developed, e.g.,
Refs. 19–22, and have been applied to the modeling of
trailing vortices with generally good results. The strongly
self-similar structure of the tip vortices suggests a fur-
ther simplification based on the assumption of an axi-
symmetric flow. The vortex length scale dictated by the
viscous core radius can then be modeled empirically, and
independently from the representation of the velocity pro-
file.

A common approach is to represent the induced veloc-
ity using a desingularized algebraic profile, with a con-
stant viscous core size or a diffusive core growth with
time that is based on the Lamb-Oseen model. Algebraic
models for the vortex induced velocity profiles are popu-
lar in engineering applications because of their simplicity
and computational efficiency. One of the most commonly
used models is the algebraic model suggested by Scully &
Sullivan (Ref. 19) and also by Kaufmann (Ref. 20). This
model qualitatively predicts the overall velocity distribu-
tion, but when compared to both fixed-wing and rotating-
wing measurements the model tends to underpredict the
peak swirl velocity (Ref. 23). A family of algebraic
vortex-induced velocity models was proposed by Vatis-
tas (Ref. 21), which showed a good comparison with the
measured swirl velocities (Refs. 23–25). The success of
these algebraic models in predicting vortex induced ve-
locity field was one motivation for the development of the
present model, which extends Vatistas’s approach to trail-
ing vortices.

The present article first reviews various models for the
trailing vortex structure, and then proposes a new semi-
empirical model suitable for free-vortex rotor wake appli-
cations and other aeroacoustic calculations. The viscous
core growth is modeled using an extension of the Lamb-
Oseen model, with the effects of turbulence on the diffu-
sive characteristics of the vortex being modeled empiri-
cally. The swirl velocity profile is identical to that given
by Vatistas (Ref. 21), which is found to agree with exper-
imental measurements. With this extended core growth
model and the assumption of a swirl-velocity profile, the
radial and axial velocities are solved as a solution to a sim-
plified form of the Navier-Stokes equations. The derived
models showed good comparisons with trailing tip vortex
measurements for both fixed-wings and rotating-wings.

Previous Formulations

The simplest model for the swirl velocity inside a viscous
vortex with a finite core is due to Rankine (Ref. 26). This
model exhibits the key features of a viscous core, that is a
solid-body like rotation near the vortex center and a free
(potential) vortex away from the center, i.e.,
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(1)

where r = r/rc is the non-dimensional radial location nor-
malized by the viscous core radius, rc. The viscous core
radius, by definition, is the radial distance from the vortex
axis to the position of the maximum swirl velocity. It must
be noted that for this Rankine vortex model, the swirl ve-
locity and vorticity distributions are discontinuous at the
vortex core boundary – see Fig. 1.

The Kaufmann vortex (Ref. 20), which is more well-
known as the “Scully model” (Refs. 19, 27), overcomes
the singular nature of the Rankine vortex by using an al-
gebraic velocity profile of the form

Vθ(r) =
Γ
2π

(
r

r2
c + r2

)
(2)

with rc as the vortex core radius. In non-dimensional
terms this desingularized model can be written as

Vθ(r) =
Γ

2πrc

(
r

1+ r2

)
(3)

which reduces the maximum swirl velocity to half the
value given by the Rankine model.

Vatistas (Ref. 21) also proposed a family of desingu-
larized algebraic swirl-velocity profile for stationary vor-
tices, which can be written in the form

Vθ(r) =
Γv

2π

{
r

(r2n
c + r2n)1/n

}
(4)

or in non-dimensional form

Vθ(r) =
Γv

2πrc

{
r(

1+ r2n
)1/n

}
(5)

For the case of n = 2 this particular velocity profile was
found to provide good agreement with measured veloci-
ties in rotor tip vortices (Refs. 23–25). It is interesting to
notice that the Vatistas model with n = 1 corresponds to
the Kaufmann or Scully model, whereas as n → ∞ this
model corresponds to the Rankine vortex. For n = 2,
the model is a close approximation to the Lamb-Oseen
model (see next). These desingularized algebraic models
are compared in Fig. 1.

Another vortex model given by Lamb (Ref. 15) and also
by Oseen (Ref. 28), is a solution to the one-dimensional
laminar Navier-Stokes equations, i.e., an axisymmetric
solution for the swirl velocity with the assumption that

Potential vortex
    Rankine vortex
(solid body rotation
  inside vortex core) Lamb-Oseen vortex

       (solid line)

Scully vortexVatistas n=2 vortex
     (dashed line)

rc

Radial location

   Swirl
velocity

Figure 1: Distribution of induced swirl velocity inside a
viscous vortex core on the basis of several models.

the axial and radial velocities are zero. The Lamb-Oseen
vortex model for the swirl velocity is

Vθ(r) =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
(6)

The viscous core radius is the radial location where the
swirl velocity is a maximum. This can be solved by differ-
entiating the above equation with respect to r, and setting
the derivative to zero. The viscous vortex core radius is
then found to grow with time as

rc(t) =
√

4ανt (7)

where the Oseen parameter has a value of α = 1.25643.
The Lamb-Oseen vortex model can now be written in non-
dimensional form as

Vθ (r) =
Γv

2πrc

(
1− e−αr2

r

)

or
Vθ (r)
Vθmax

=
1− e−αr2

r
(8)

It can be seen from Fig. 1 that the swirl velocity given
by the Vatistas n = 2 vortex model closely resembles that
of the Lamb-Oseen vortex, i.e., it is an algebraic approx-
imation to the one-dimensional Navier-Stokes solution.
The commonly used Scully or Kaufmann model is also an
algebraic approximation to the Lamb-Oseen vortex. Us-
ing a vortex length scale of rc =

√
4νt, the Lamb-Oseen

vortex model (Eq. 6) can be written as a function of the
non-dimensional radial distance r = r/rc

Vθ (r) =
Γ

2πrcr

[
1− e−r2

]
(9)



Using a series expansion for the exponential term and ig-
noring higher order terms, it can be shown that

Vθ (r) =
Γ

2πrcr

[
1− 1

1+ r2 + r4

2 + · · ·

]

≈ Γ
2πrc

(
r

1+ r2

)
for small r (10)

which is the vortex model given by Eq. 3.
The Lamb-Oseen vortex model is a time-dependent so-

lution for a one-dimensional (axisymmetric) vortex flow.
Squire (Ref. 3) showed that the solution for a trailing vor-
tex is identical to the Lamb-Oseen solution with the ax-
ial direction, downstream from the origin of the vortex, z,
being related to time as t = z/V∞. He further proposed
inclusion of an average apparent or “eddy” viscosity (δν)
in the Lamb-Oseen model to account for effects of tur-
bulence generation on the enhanced diffusion of vorticity.
An effective origin offset, z0, was also proposed to give a
finite vortex core at the origin of the trailing vortex at the
generating wing. Therefore, in light of this the vortex core
radius can be written as

rc(t) =

√
4αδν

(
z+ z0

V∞

)
(11)

In the case of a rotor, where the wake age ζ = Ωt, the
core radius can be modeled using

rc(ζ) =

√
4αδν

(
ζ + ζ0

Ω

)
≡

√
r2

c0
+

4αδνζ
Ω

(12)

In this case the time ordinate-shift, ζ0, is responsible for
the non-zero effective core radius, r0 at the tip vortex ori-
gin where ζ = 0◦ and, therefore, gives a more physically
correct finite velocity there.

Squire hypothesized that the “eddy” viscosity is propor-
tional to the vortex circulation strength. The eddy viscos-
ity coefficient was then formulated in terms of the vortex
Reynolds number

(
Rev ≡ Γv/ν

)
as given by

δ = 1+a1Rev (13)

where a1 is a parameter that must be empirically deter-
mined from experimental measurements.

The one-dimensional Lamb-Oseen solution was also
extended to three-dimensional vortex flows by Burg-
ers (Ref. 16). The Burgers vortex model includes a swirl
velocity similar to the Lamb-Oseen model, along with a
linear distribution of radial velocity. However, this im-
plies a constant axial velocity and is not consistent with
experimental observations, which generally show an axial
velocity deficit in the vortex core that decays rapidly with
time, e.g., see Refs. 2, 25. Also, the linearly increasing

radial velocity makes the model applicable to only small
regions of flow near the vortex axis.

Newman (Ref. 17) derived exponential solutions for all
three components of velocity in a trailing vortex by solv-
ing a simplified version of the three-dimensional incom-
pressible Navier-Stokes equations. The swirl velocity in
this case is the same as that given by the Lamb-Oseen
model. This model was shown to give good correlation
with tip vortex measurements – e.g., see Ref. 2.

One interesting commonality in all these models is the
self-similarity of the velocity field. That is, the velocity
profile can be represented using a single function by ap-
propriately scaling the distance by the vortex core radius.
This self-similarity of the vortex induced velocity is also
observed in experimental measurements as mentioned ear-
lier (e.g., Ref. 18, 25). Therefore, the length scale cor-
responding to the vortex core radius is a very important
parameter in modeling the vortex characteristics. In the
present study, the core growth is represented by a model
similar to that given by Eq. 11, but Squire’s eddy viscosity
parameter, a1, is estimated from an assemblage of experi-
mental measurements found in the published literature.

Effect of Viscous Core Growth on
Rotor Wake Predictions

The model used to represent the viscous core growth plays
a significant role in free-vortex wake predictions. Because
the vortex core structure affects the local induced velocity
field, both the rotor wake geometry and the blade airloads
predictions are influenced by the choice of vortex core
models. The assumptions made for the core growth model
can be an even more important factor for higher harmonic
airloads and BVI predictions, as shown in Ref. 14.

Figure 2 shows the core growth model given in Eq. 11
with values of the parameter a1 specified to vary between
2×10−1 to 2×10−4. Experimental measurements of the
core radius for a small-scale two-bladed rotor (Ref. 25)
are also shown for comparison. The results suggest that a
value of a1 = O

(
10−4

)
best describes the physical nature

of the vortex core growth, which in case of the small-scale
rotor corresponds to a value of δ≈ 10. For full-scale heli-
copter rotors, which will have much larger values of Rev,
the same value of a1 would suggest that the ratio of tur-
bulent to laminar viscosity is as high as δ ≈ 1000. This
suggests that the turbulence generation inside the tip vor-
tex can increase its diffusive characteristics by orders of
magnitude compared to that expected on the basis of lam-
inar diffusion alone. The effects of this parameter on pre-
dictions of wake geometry and inflow distribution is now
examined.

For a hovering rotor, the tip vortices trailed into the ro-
tor wake are relatively far apart from each other, and it
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Figure 2: Vortex core growth corresponding to different
values of the Squire’s eddy viscosity parameter, a1, com-
pared with experimental results from Ref. 25.

may appear that the modeling the details of the core struc-
ture are not as significant for hovering rotor wake geome-
try predictions. However, this is not the case. For exam-
ple, Fig. 3 shows predictions of hovering rotor wake ge-
ometry presented in the form of axial and radial tip vortex
locations as a function of increasing vortex age. The pre-
dicted results are shown for different values of a1, along
with experimental results obtained with a Mach-scaled
four-bladed hovering rotor, as reported in Ref. 24.

Notice that the results shown for a1 = 0 correspond to
pure laminar diffusion as given by the Lamb-Oseen model
(see Eq. 11), i.e., where only molecular diffusion occurs.
Clearly for a1 = O

(
10−1

)
and a1 = O

(
10−2

)
, which cor-

responds to relatively higher rates of turbulent diffusion
and a relatively fat vortex core, the axial displacements
are incorrectly predicted, and the change in axial slip-
stream velocity at the first blade passage, in this case at
ζ = 2π/Nb = 90◦, is not observed. For lower values of a1

(a correspondingly lower rate of turbulent diffusion and
a smaller core size) the blade passage effect is captured
properly. However, to also properly represent the radial
contraction of the wake, a value as low as a1 = O

(
10−4

)
was found necessary. It is interesting to notice that a lam-
inar core growth gives excellent agreement with the ob-
served wake geometry. This is because in hovering flight
condition, there are no close interactions between the vor-
tices and other vortices or blades.

In forward flight, the tip vortices can linger closer to
the tip-path-plane (TPP) for a much longer period of time
(wake age), resulting in more severe variations in local in-
flow and airloads, even in the absence of BVI. The effect
of the vortex core growth model on the airloads was ex-
amined through a numerical experiment by examining the

(a) Axial locations of the tip vortex.
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Figure 3: Effect of vortex core growth model on hover-
ing wake geometry predictions with different values of
Squire’s apparent or “eddy” viscosity parameter. (a) Axial
tip vortex locations as a function of vortex age. (b) Radial
tip vortex locations as a function of vortex age. Experi-
mental data from Ref. 24.

inflow distribution in the TPP for a rotor in forward flight
operating at µ = 0.15. The rotor shaft was tilted forward
3 degrees, and the rotor was trimmed using cyclic pitch
controls to obtain zero first harmonic blade flapping with
respect to the shaft. The inflow contours calculated using
the free-vortex wake model are shown in Figs. 4(a)–(d).
Four different values of Squire’s eddy viscosity parameter,
a1, were used in the vortex model for these calculations.
Each contour represents a constant value of inflow ratio,
as shown in the legend of Fig. 4(d).

Notice that larger values of a1 = O
(
10−1

)
(i.e., more

diffused vortices) appear to mask the higher harmonic
fluctuations in the inflow distribution at the rotor disk.
This observation was also reported in Refs. 14 & 29. For
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lower values of a1 = O
(
10−3

)
and O

(
10−4

)
(less diffused

vortices) these azimuthal variations are properly repre-
sented. This is especially apparent on the front of the rotor
disk where the tip vortices remain close to the TPP. There-
fore, on the basis of these numerical experiments it would
appear that values of a1 = O

(
10−3

)
to O

(
10−4

)
best de-

scribes the viscous core growth of rotor tip vortices. In
the next section, available experimental evidence is exam-
ined to evaluate the validity of Squire’s hypothesis, and to
formalize an empirical value for the parameter, a1.

Empirical Evidence of Turbulent
Diffusion of Vorticity

The Lamb-Oseen core growth model given by Eq. 7 is
valid for purely laminar flows, i.e., where viscous diffu-
sion of vorticity takes place on the molecular level alone.
In most practical cases of lift generated vortex flows, the
vortex strengths and vortex Reynolds number are high
enough to make it necessary to properly account for the
effects of turbulent mixing on the development of the vor-
tex core. Experimental measurements of vortex properties
suggest that turbulent flow effects increase the rate of dif-
fusion of vorticity from within the vortex core, similar to
that expected based on Squire’s hypothesis. These tur-
bulent effects increase the mixing between layers of fluid
inside the vortex, thereby enhancing the diffusion of vor-
ticity in the radial direction.



The details of this process, however, are not clearly un-
derstood or documented, and experimental results have
often been inconclusive. There is evidence that the in-
ner core growth is dominated by viscous (laminar) effects,
and the turbulent mixing effects there are small (Ref. 30).
Other measurements suggest that there is turbulence gen-
eration at the edges of the laminar core (Ref. 31), which
can influence net diffusive growth characteristics of the
vortex. While the details still require further research,
more readily derived vortex properties such as the peak
swirl velocity and effective core size can be used to better
understand the modeling requirements.

Following an approach similar to Iversen (Ref. 32), the
present authors (Ref. 33) have shown a correlation be-
tween the non-dimensional peak swirl velocity and the age
(or equivalent downstream distance) of the vortex. This
correlation is of the form

V θmax

(
d +d0

) 1
2 = k (14)

where the constants d0 and k were determined empiri-
cally. Such a correlation was found to be applicable to
both fixed-wing and rotating-wing tip vortices, with sev-
eral sets of experimental measurements coalescing to form
a single universal curve – see Ref. 33 for details. The non-
dimensional velocity, V θmax , and non-dimensional down-
stream distance, d, were defined as

V θmax =
(

Vθmax

V∞

)(
V∞c
Γv

)
(15)

and

d =
( z

c

)(
Γv

V∞c

)
(16)

respectively.
Examples of the correlation curves are shown for

fixed-wing tip vortex measurements in Fig. 5(a), and for
rotating-wings in Fig. 5(b). In both cases, the measure-
ments show a definitive trend as given by Eq. 14. With the
transformation t = z/V∞, the correlation given by Eq. 14
shows that

Vθmax ∝
√

Γv

t
(17)

The maximum swirl velocity as given by the Lamb-
Oseen (or Newman) model is

Vθmax ∝
Γv

2πrc
∝

Γv√
δνt

(18)

Therefore,

Vθmax ∝
√

Γv

t

√
1
δ

(
Γv

ν

)
(19)

Comparing Eqs. 17 & 19, it follows that

1
δ

(
Γv

ν

)
=

Rev

δ
= constant (20)

(a) Fixed-wing tip vortex measurements from Ref. 2.
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(b) Rotor tip vortex measurements from Ref. 25.
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Figure 5: Correlation of peak swirl velocity as a function
of downstream distance from the vortex origin as given
by Eq. 14. (a) Fixed-wing tip vortex measurements from
Ref. 2. (b) Rotor tip vortex measurements from Ref. 25.

which means that the average apparent viscosity coeffi-
cient, δ, is proportional to the vortex Reynolds number,
Rev. Therefore, the correlations previously reported by
Iversen (Ref. 32) and by Bhagwat & Leishman (Ref. 33)
support Squire’s hypothesis, which relates the average ap-
parent viscosity coefficient to the vortex Reynolds num-
ber, as given by Eq. 13. Therefore, vortex diffusion ef-
fects will be expected to increase with increasing vortex
Reynolds number, Rev.

A recent study of fixed-wing trailing vortices reported
by Cotel & Breidenthal (Ref. 34) suggests that the dif-
fusion of vorticity in the vortex is dominated by laminar
flow effects. These authors conclude based on the ideas
of flow stratification in the vortex core, that the effects
of turbulence on vortex core growth are almost negligi-



ble, with the vortex flow being governed by laminar dif-
fusion alone. The attainment of a critical Richardson’s
number essentially suggests that the strong rotational ve-
locity in the vortex core causes the re-laminarization of
any turbulence formed inside the core or which may be
entrained from outside the vortex core. This results in a
predominantly laminar vortex core development. Similar
observations have been reported for rotating wing mea-
surements (Ref. 30), where the vortex core initially grows
very slowly, almost laminar-like. This is followed by a
more rapid but asymptotic growth in the core as the tip
vortex structure becomes more turbulent as it mixes with
the inner vortex sheet.

Cotel & Breidenthal (Ref. 34) present results from sev-
eral trailing vortex measurements in the form of a non-
dimensional core growth rate, b1, as defined by

b1 = 2

√
t

Γv

(
drc

dt

)
(21)

The growth rate is shown to be inversely proportional to
the square root of the vortex Reynolds number, suggesting
purely laminar viscous diffusion. This trend was deduced
in the analysis of several experimental measurements re-
ported in Ref. 34. Indeed, using the Lamb-Oseen core
growth model as given by Eq. 7 it follows from Eq. 21
that

b1 ∝ Re
− 1

2
v (22)

The extended core growth model of Eq. 11 would show
this trend for the case where the apparent viscosity ratio,
δ, is a constant independent of the vortex Reynolds num-
ber. Recall that δ = 1 corresponds to the laminar case,
and a constant value of δ would also suggest that the core
growth is essentially laminar. However, the experimental
data reported in Ref. 34 was from small-scale tests and
was restricted to vortex Reynolds numbers smaller than
105.

Iversen (Ref. 32) reports that the turbulent flow ef-
fects in the vortex core become important only for vor-
tex Reynolds numbers greater than 105. The flow strat-
ification argument presented in Ref. 34 explains how
externally entrained turbulence, such as from a vortex
sheet, would not influence the predominantly laminar core
growth. However turbulence generation within the vortex
core (e.g., see Ref. 31) may affect its diffusive growth.
Indeed, using the core growth model in Eq. 11 the core
growth rate can be shown to be proportional to

b1 ∝
√

δ Re
− 1

2
v (23)

and using the definition of δ as given by Squire’s hypoth-
esis (Eq. 13), it can be shown that

b1 ∝
√

a1 +Re
− 1

2
v (24)
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Figure 6: Non-dimensional viscous core growth rate for
several trailing vortex measurements as a function of vor-
tex Reynolds number.

Therefore, a predominantly laminar core growth trend
may be observed for smaller values of vortex Reynolds
numbers, typically found in small-scale experiments.
However, for large values of vortex Reynolds numbers the
core growth rate would become asymptotically constant,
as governed by the constant value of the Squire’s parame-
ter, a1.

Figure 6 shows the results reported in Ref. 34 along
with an assemblage of additional data from several
other sources of experimental tip vortex measurements
(Refs. 25, 35–46), which include full-scale fixed-wing as
well as rotating-wing trailing vortices. Lines are shown
for the predominantly laminar trend, as in Ref. 34, along
with the trends obtained on the basis of Squire’s hypothe-
sis.

For smaller Reynolds numbers, the experiments show
a somewhat laminar-like trend for the growth of the vor-
tices. Yet, at larger Reynolds numbers, the core growth
rate appears to remain nominally constant. The trend lines
for Squire’s hypothesis suggest that this behavior is be-



(a) Apparent viscosity coefficient, δ.

100

101

102

103

104

103 104 105 106 107

R
at

io
 o

f e
ffe

ct
iv

e 
to

 a
ct

ua
l v

is
co

si
ty

, δ

Vortex Reynolds number, Rev = Γv / ν

Laminar trend
Squire´s hypothesis, a1=0.00005
Squire´s hypothesis, a1=0.0002

(b) Squire’s apparent viscosity parameter a1.
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Figure 7: Apparent or average “eddy” viscosity in the vor-
tex core growth as a function of vortex Reynolds num-
ber. (a) Apparent or “eddy” viscosity coefficient, δ. (b)
Squire’s apparent viscosity parameter a1 (Ref. 3). See
Fig. 6 for legend describing experimental results.

cause of turbulent diffusion of vorticity from within the
vortex. Notice that the trend given by Squire’s hypoth-
esis also describes the vortex core growth as essentially
laminar at low vortex Reynolds numbers, with turbulent
diffusion effects becoming apparent only at the higher
Reynolds numbers.

The same results are presented again in Fig. 7(a) as an
average apparent viscosity coefficient, δ as a function of
vortex Reynolds number. For low Reynolds numbers, the
measurements indicate a nominally constant values of δ,
suggesting that the core is mostly laminar. However, the
turbulence effects are manifest as increasing average ap-
parent viscosity with increasing Reynolds number, with
an almost linearly increasing trend at high Reynolds num-

bers. Notice that experimental values of δ < 1 imply
that turbulent mixing results in an even smaller amount
of vorticity diffusion than the laminar case, which is
physically impossible. However, the various uncertain-
ties in experimental measurements may account for such
inconsistencies, and highlights the difficulties in making
such measurements on vortices. The overall experimen-
tal evidence, however, strongly suggests the validity of
Squire’s hypothesis that turbulent diffusion of vorticity
from within the vortex core is directly proportional to the
vortex Reynolds number, as given by Eq. 13.

The results are shown in Fig. 7(b) in the form of the
Squire’s parameter, a1. The assemblage of experimental
data suggests that the apparent viscosity parameter falls
in the range O

(
10−3

)
to O

(
10−4

)
, as was also deduced

from the free-vortex wake predictions presented earlier.
It appears that the rotating-wing results show a slightly
higher viscous diffusion rate corresponding to an average
value of a1 = O

(
10−4

)
, while the fixed-wing results show

a lower net diffusion rate with a1 = O
(
10−5

)
.

It must be recognized, however, that most rotating-wing
results have the implicit effects of vortex straining result-
ing from filament curvature and other wake distortion ef-
fects included in the measurements, which may account
for part of these differences. Isolating the viscous effects
associated with diffusion of vorticity from those associ-
ated with strain or vortex stretching will be a problem for
future consideration (Ref. 47). Clearly, however, the aver-
age value of a1 is of the order of 10−3 to 10−5 for all the
data shown here.

Therefore, on the basis of the foregoing results, Eq. 11
provides a preliminary universal model for the growth of
the viscous core of a trailing tip vortex, with the value of
the empirical parameter a1 being determined from exper-
iments as described above. The initial core radius of trail-
ing vortices has been measured to be typically 5−10% of
chord, i.e., of the order of the airfoil thickness at the wing
tip where the vortex was originated. The effective origin
offset, z0 or ζ0, can then be established from the initial
core radius, rc0 , by using Eqs. 11 or 12.

Solution for Self-Similar Vortex
Velocity Profiles

The tip vortex flow can now be examined in a cylindrical
coordinate system with the origin at the blade tip where
the vortex first originated. The vortex trajectory, which is
along the longitudinal axis of the vortex (z-axis), is fixed
relative to the wing or blade tip, i.e., the vortex is exam-
ined under steady flow conditions. It should be noted that
the axial velocity relative to the wing is the sum of the
free-stream velocity and the vortex induced velocity, i.e.,
V∞ +Vz.



The induced velocities are assumed to be dependent
only on r and z, i.e., the vortex is assumed to be axi-
symmetric. This is a reasonable assumption because even
though, in practice, both fixed and rotating wing tip vor-
tices are not completely axisymmetric, the asymmetry is
usually small and restricted to small regions close to the
origin of the vortex.∗ As the vortex convects downstream,
the velocity profiles become more axisymmetric.

The governing Navier-Stokes equations for incom-
pressible flow as written in cylindrical coordinates are:
Continuity

1
r

∂
∂r

(rVr)+
∂Vz

∂z
= 0 (25)

r−momentum

Vr
∂Vr

∂r
+V∞

∂Vr

∂z
+Vz

∂Vr

∂z
− V 2

θ
r

= −1
ρ

∂p
∂r

+ν
[
∇ 2Vr −

Vr

r2

]
(26)

θ−momentum

Vr
∂Vθ
∂r

+V∞
∂Vθ
∂z

+Vz
∂Vθ
∂z

+
VrVθ

r

= ν
[
∇ 2Vθ−

Vθ
r2

]
(27)

z−momentum

Vr
∂Vz

∂r
+V∞

∂Vz

∂z
+Vz

∂Vz

∂z
= −1

ρ
∂p
∂z

+ν
[
∇ 2Vz

]
(28)

where the operator ∇ 2 is given by

∇ 2 =
∂2

∂r2 +
1
r

∂
∂r

+
∂2

∂z2 (29)

The required boundary conditions can be obtained by
assuming that the vortex is generated as a “ free” vortex,
i.e., a potential vortex of strength Γv at z = 0, and it dif-
fuses until at large distances the vortex induced velocities
become zero – see Ref. 17. These boundary conditions
can be formalized as:

1. At z = 0, Vθ = Γv/2πr and Vz,Vr = 0. Notice that
there is a singularity at r = 0.

2. For z > 0, Vθ,Vz,Vr −→ 0 for large r.

3. As z −→ ∞, Vθ,Vz,Vr −→ 0 for all r.

∗Flow measurements made with the convecting vortices gen-
erated by rotating wings must be placed in axis system moving
with the vortex core using either a Galilean or Reynolds type
decomposition of the flow – see Ref. 30.

The governing Navier-Stokes equations are now rewrit-
ten in a non-dimensional form so as to allow some sim-
plifications. The velocities are normalized with the free-
stream velocity, V∞, i.e.,

Vi =
Vi

V∞
, i = r,θ,z (30)

The distances are normalized by the wing chord length, c,
i.e.,

r =
r
c

and z =
z
c

(31)

The pressure is normalized with the dynamic pressure

p =
p

ρV 2
∞

(32)

and the flow Reynolds number is given by

Re =
V∞ c

ν
(33)

To simplify the governing equations, an ordering
scheme may be employed to establish the relative mag-
nitudes of the non-dimensional terms. The swirl and ax-
ial velocities induced by the tip vortex are small as com-
pared to the free-stream velocity, typical values being 0.1
to 0.3 (see Refs. 2, 25, 35, 48–50), i.e., Vθ and Vz are O(ε).
Typically the tip vortex core radius is of the order of the
airfoil thickness (e.g., Refs. 24, 51), which is typically 5
to 15% of the wing or blade chord. The tip vortex can
be observed, and induces significant velocities, for several
chord lengths downstream of the generating wing. This
implies that, if z is O(1) then r is O(ε).

The continuity equation now implies that the radial ve-
locity, Vr, is O(ε2). This is also consistent with the obser-
vation that the radial velocities induced by the tip vortices
are very small (Ref. 2). The radial momentum equation
(Eq. 26) indicates that the pressure, p, is O(ε2). Typi-
cally, for a transport aircraft or a helicopter rotor, the chord
Reynolds number is approximately 107. Even in wind tun-
nel experiments with scaled models, the Reynolds num-
bers are always greater than 104. Therefore, Re can be
assumed to be O(1/ε4).

The conservation laws are now rewritten in the non-
dimensional form with the order of magnitudes of each
term being indicated below each term. Notice that, all the
variables are non-dimensional, but the overbar has been
omitted.
Continuity :

1
r

∂
∂r

(rVr) +
∂Vz

∂z
= 0

ε ε
(34)



r−momentum :

Vr
∂Vr

∂r
+

∂Vr

∂z
+ Vz

∂Vr

∂z
− V 2

θ
r

=

ε3 ε2 ε3 ε

−∂p
∂r

+
1
Re

[
∇ 2Vr −

Vr

r2

]
ε ε4

(35)

θ−momentum :

Vr
∂Vθ
∂r

+
∂Vθ
∂z

+ Vz
∂Vθ
∂z

+
VrVθ

r
=

ε2 ε ε2 ε2

1
Re

[
∇ 2Vθ−

Vθ
r2

]
ε3

(36)

z−momentum :

Vr
∂Vz

∂r
+

∂Vz

∂z
+ Vz

∂Vz

∂z
=

ε2 ε ε2

−∂p
∂z

+
1
Re

[
∇ 2Vz

]
ε2 ε3

(37)

One approach to simplify these governing equations
(Eqs. 34–37) is to linearize them by neglecting the higher
order terms in ε. This results in the simplified set of equa-
tions:

1
r

∂
∂r

(rVr)+
∂Vz

∂z
= 0

∂p
∂r

− V 2
θ
r

= 0

∂Vθ
∂z

= 0

∂Vz

∂z
= 0

(38)

Clearly, these equations alone are not sufficient to solve
for the vortex induced velocity profiles. Therefore, a dif-
ferent approach must be employed to further simplify the
governing equations.

The proposed simplification approach proceeds with a
pre-assumed solution for the swirl velocity in the tip vor-
tex. The swirl velocity is chosen to be the algebraic profile

first suggested by Vatistas (Ref. 21), as given by the ex-
pression

Vθ(r) =
Γv

2π

{
r

(r2n
c + r2n)1/n

}
(39)

or

Vθ(r) =
Γv

2πrc

{
r(

r2n +1
)1/n

}
(40)

with the exponent n taking only integer values. Notice
that rc is the viscous core radius of the tip vortex, that
is the swirl velocity exhibits a maximum at r = rc. As
previously mentioned, this algebraic velocity profile has
shown to give good agreement with experimental mea-
surements, and is an approximation to the Lamb-Oseen
solution (Eq. 8), i.e., an approximate solution to the one-
dimensional Navier-Stokes equation

V∞
∂Vθ
∂z

= ν
[
∇ 2Vθ−

Vθ
r2

]
(41)

The θ-momentum equation can now be simplified
by subtracting the one-dimensional form (Eq. 41) from
Eq. 36 resulting in

Vr
∂Vθ
∂r

+Vz
∂Vθ
∂z

+
VrVθ

r
= 0 (42)

This forms the third equation along with the first two
equations in Eq. 38 to give a simplified set of governing
equations

1
r

∂
∂r

(rVr)+
∂Vz

∂z
= 0

Vr
∂Vθ
∂r

+Vz
∂Vθ
∂z

+
VrVθ

r
= 0

∂p
∂r

− V 2
θ
r

= 0




(43)

Therefore, with the swirl velocity profile being given by
Eq. 39, the pressure and the radial and axial induced ve-
locity profiles can be determined as solution to the above
set of equations. The axial and radial velocity compo-
nents are solved for by satisfying first two equations, i.e.,
the continuity equation (Eq. 25) and Eq. 42. These com-
ponents are given by

Vz = −A
z

{
1− r2

(r2n
c + r2n)1/n

}
(44)

Vr = − Ar
2z2

{
1− r2

(r2n
c + r2n)1/n

}
(45)

where A is a constant. Notice that depending on the sign
of A, the axial velocity can be either “wake-like” or “ jet-
like.”



(a) Swirl (tangential) velocity.
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(b) Radial velocity.
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(c) Axial velocity.
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Figure 8: Vortex induced velocities given by the present
model for various values of the parameter n. The Newman
model (Ref. 17) is also shown for comparison. (a) Swirl
(tangential) velocity. (b) Radial velocity. (c) Axial veloc-
ity. (d) Static pressure distribution in the vortex core.

(d) Static pressure distribution
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Figure 8: Concluded.

Following the approach taken by Newman (Ref. 17),
the constant A may be determined based on the drag of
the generating wing as given by

A =
D0

4πρ(δν)
(46)

where the drag, D0, on the wing in the limit as Γ → 0 can
be expressed in terms of the zero-lift drag coefficient of
the airfoil section, Cd0 , as

D0 =
1
2

ρV 2
∞c

(
b
2

)
Cd0 (47)

where b/2 is the wing semi-span. For the rotating wing
case, the average profile drag, D0, on the blade is given by
integration of the sectional drag to get

D0 =
1
2

ρ(ΩR)2 c

(
R
3

)
Cd0 (48)

where Ω is the rotational speed, and R the radius of the
rotor. If the profile power of the rotor, P0, is known or
measured (say by extrapolating the power versus thrust
curve to zero thrust), then D0 is related to P0 using

D0 =
4
3

(
P0

NbΩR

)
(49)

where Nb is the number of blades.
The static pressure distribution in the vortex can be de-

termined by integrating third part of Eq. 43 with respect
to r, i.e.,

p(r) =
∫ r

0

V 2
θ
r

dr (50)

The non-dimensional induced velocity profiles given
by this model for different values of the parameter n are
shown in Fig. 8. As the parameter n → ∞, the present
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Figure 9: Comparison of vortex induced velocities using
the proposed model (n = 2) with fixed-wing experimental
results (Ref. 2). (a) Swirl velocity. (b) Axial velocity.

model reduces to the Rankine vortex model with a solid
body rotation of the vortex core. The exponential velocity
model proposed by Newman (Ref. 17) is also shown for
comparison. Recall that for the swirl velocity the Newman
model is identical to the Lamb-Oseen model. For the
value of n = 2, the present model closely resembles the
Newman model, thus verifying that it is, indeed, an al-
gebraic approximation to a solution of the Navier-Stokes
solution.

The results obtained using the proposed algebraic vor-
tex model are now compared with experimentally mea-
sured vortex induced velocities for both fixed-wing and
rotating-wing tip vortices. Figure 9 shows the swirl and
axial velocities in the tip vortex generated by a fixed wing,
with the experimental results from Dosanjh et al. (Ref. 2).
Both velocity profiles are non-dimensionalized with the
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Figure 10: Comparison of vortex velocities using the pro-
posed model (n = 2) with rotating-wing experimental re-
sults (Ref. 25). (a) Swirl velocity. (b) Axial velocity.

maximum velocity in the viscous vortex core, while the
radial distance is normalized with the vortex core radius,
as defined previously. Both the measured velocity profiles
are found to be essentially self-similar, and the present
model showed good agreement with experiments when
using the parameter n = 2.

Figure 10 shows results for a rotating-wing tip vortex,
with the experimental data taken from Ref. 25. In this
case, the measured swirl velocity data showed a strongly
self-similar profile, and the present model showed close
agreement with this observed trend. The axial velocity
measurements showed some asymmetric deviations from
the self-similar profile. However, overall agreement with
the present model for the n = 2 case is considered good.

The radial velocities in the tip vortex are noted to be of
much smaller magnitude, as described previously. There-
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Figure 11: Radial velocity profiles in the trailing vortex of
a fixed wing tip vortex compared with the present model.
Experimental measurements from Ref. 2.

fore, the radial velocities are more sensitive to measure-
ment uncertainties, and accurate measurements of radial
velocity are, in general, more difficult for rotating-wing
tip vortices, e.g., see Ref. 30. The measured velocity dis-
tribution from Ref. 2 is shown in Fig. 11. The results
showed some scatter resulting from uncertainties in the
measurements, but the overall trend agrees with that pre-
dicted using the present model for n = 2.

Conclusions

The diffusive growth of a viscous vortex has been mod-
eled using an extension of the classic Lamb-Oseen core
growth model with an average apparent or eddy viscosity
correction for the effects of self-generated turbulence. The
apparent viscosity parameter, as given by Squire’s hypoth-
esis, was estimated based on several sets of experimental
results documenting the characteristics of trailing tip vor-
tices. A family of algebraic models for the three compo-
nents of velocity induced by a viscous trailing tip vortex
has been proposed. The velocity components were deter-
mined by solving a simplified form of the incompressible
Navier-Stokes equations. The model has been compared
with velocity field measurements for both fixed-wing and
rotating-wing tip vortices.

The observations and conclusions from this study are
summarized as follows:

1. The classic Lamb-Oseen model for the viscous core
growth of a vortex accounts only for laminar diffu-
sion of vorticity. Squire’s hypothesis suggests a cor-
rection to this basic laminar model using an average
apparent viscosity parameter. Available experimen-

tal measurements were examined to show the valid-
ity of Squire’s hypothesis in that the diffusion of vor-
ticity is governed by an apparent turbulent viscosity
that is proportional to the vortex Reynolds number.
A general empirical value for the apparent viscosity
parameter has been suggested.

2. In the proposed vortex model, the three compo-
nents of the vortex induced velocity are continuous,
bounded, and asymptote to zero at large distances.
The swirl velocity shows a behavior similar to the
one-dimensional Lamb-Oseen vortex. The axial ve-
locity in the vortex core shows a wake-like profile,
with the maximum velocity deficit occurring at the
center of the vortex. The radial velocity induced by
the tip vortex is directed toward the vortex center,
with a maximum value occurring inside the vortex
core radius. The magnitude of the radial velocity was
found to be much smaller than the swirl or the axial
velocities.

3. Free-vortex wake predictions were shown to be sen-
sitive to the assumption made for the vortex core
growth model. By choosing the core growth param-
eters as outlined in this study, the free-vortex wake
predictions gave improved agreement with measured
wake geometries, as well as provided better predic-
tions of the higher harmonic variations of the rotor
inflow.

4. The proposed model provides solutions for the vor-
tex induced profiles in the form of a family of alge-
braic profiles with an integer parameter n. For the
case of n = 2, the proposed model was shown to give
good predictions of the characteristics of both fixed-
wing and rotating-wing tip vortices. Therefore, this
general model should be suitable for use in several
aeroacoustic applications that require good physical
approximations for the viscous nature of tip vortices.
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