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Introduction

Importance of TRV 

The TRV is a decisive parameter that limits the 
interrupting capability of a circuit breaker.
The interrupting capability of a circuit breaker was found to 
be strongly dependent on TRV in the 1950’s. 

Standard requirements for TRV were first introduced in
1971: in C37.072 (IEEE Std. 327) and IEC 56.

When developing interrupting chambers, manufacturers 
must check and prove the withstand of TRVs specified in 
the standards for different test duties.

Users must specify TRVs in accordance with their 
applications.

Test laboratories must define test circuits that meet the 
TRV requirements. 
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General considerations on 
Transient Recovery Voltages (TRVs)
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TRV for High-voltage Circuit Breakers

The recovery voltage is the voltage which appears across the 
terminals of a pole of circuit breaker after current interruption. 
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TRV for High-voltage Circuit Breakers

Current Interruption Process (in gas blast circuit breakers)

Two contacts are 
separated in each 
interrupting chamber. 
An arc is generated, 
it is cooled and 
extinguished when 
current passes  
through zero.  
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TRV for High-voltage Circuit Breakers
During the interruption process, the arc loses rapidly its conductivity as 
the instantaneous current approaches zero. 

During the first microseconds after current zero, the TRV withstand is 
function of the energy balance in the arc: thermal phase of interruption.
Later, the voltage withstand is function of the dielectric withstand
between contacts: dielectric phase of interruption. 
The breaking operation is successful if the circuit breaker is able to 
withstand the TRV and the power frequency recovery voltage.
The TRV is the difference between  the voltages on the source side and 
on the load side of the circuit breaker.

Gas circuit breakers: 
within a few 
microseconds after 
current zero, arc 
resistance (Rarc)
reaches 1 million ohms 
in a few microseconds
and current stops 
flowing in the circuit.

TRV

TRV (kV)
I (A)
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TRV for High-voltage Circuit Breakers

Thermal Restrike

During tens of microseconds around current zero, the evolution of 
arc resistance is function of the energy balance in the arc i.e. the 
difference over time between the power input (Uarc x I = Rarc. I2) and 
the power loss by gas cooling.

If the gas blast is not sufficient, the arc resistance stop increasing 
after current zero, it decreases to a low value, as a consequence  
the interval between contacts becomes conductive again. 

This type of restrike is called a thermal restrike.

Arc model:  

Rarc= arc resistance   Ploss= dissipated power    

Θ = arc time constant    Uarc = arc voltage      I = current

loss

arcarcarc

P
IUR

dt
dR ×

−×
Θ

= 1
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TRV for High-voltage Circuit Breakers

The nature of the TRV is dependent on the circuit being interrupted, 
whether primarily resistive, capacitive or inductive, (or some 
combination).

When interrupting a fault at the circuit breaker terminal  (terminal 
fault) in an inductive circuit, the supply voltage at current zero is 
maximum.  

The circuit breaker interrupts at current zero (at a time when the 
power input is minimum) the voltage on the supply side terminal 
meets the supply voltage in a transient process called the TRV. 

TRV frequency is               

with L = short-circuit inductance

C = supply capacitance.

CLπ2
1
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TRV for High-voltage Circuit Breakers

Current and TRV waveforms during interruption of inductive current

CURRENT

TRANSIENT RECOVERY
VOLTAGE 

Supply voltage
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TRV for High-voltage Circuit Breakers

TRV and recovery voltage in resistive, inductive 
and capacitive circuits
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TRV for High-voltage Circuit Breakers
Combination of the former basic cases are possible

Example #1: the TRV for mainly active load current breaking is a 
combination of TRVs associated with the inductive and resistive 
components of the circuit. 

They are specified for high-voltage switches only as circuit-
breakers are able to interrupt with more severe TRVs (in 
inductive circuits).
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TRV for High-voltage Circuit Breakers

Example #2: circuit with 
capacitive and inductive 
components.

In a circuit with a low short-circuit 
power, the recovery voltage during 
interruption of a capacitive load is 
the sum a (1– cos) wave-shape on 
the load side and a voltage 
oscillation on the supply side due a 
transient across the short-circuit 
(inductive) reactance at the time of 
interruption.

The initial voltage jump tends to 
increase the minimum arcing time 
and therefore to increase the 
shortest duration between contact 
separation and the instant of peak 
recovery voltage.

In standards, the voltage jump is 
limited in amplitude in order to test 
with the more severe condition.
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TRV for High-voltage Circuit Breakers

Fault interruptions are often considered to produce the most 
onerous TRVs. Shunt reactor switching is one of the 
exceptions.   

TRVs can be oscillatory, triangular, or exponential and can 
occur as a combination of these forms. 

The highest TRV peaks are met during capacitive current and 
out-of-phase current interruption,

TRVs associated with the highest short-circuit current are 
obtained during terminal fault and short-line-fault interruption.

In general, a network can be reduced to a simple parallel RLC 
circuit for TRV calculations. This representation is valid for a 
short-time period until voltage reflections return from remote 
buses (see IEEE C37.011-2005) 
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TRV for High-voltage Circuit Breakers

The TRV in the parallel RLC circuit is oscillatory (under-
damped) if   

The TRV in the parallel RLC circuit is exponential (over-
damped) if 

CLR /
2
1

〉

CLR /
2
1

≤

R C

(Vcb)

L
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TRV for High-voltage Circuit Breakers
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Note: damping of the oscillatory TRV is provided by R, as R is in parallel to L 
and C (parallel damping) the higher the value of R the lower the damping (the 
TRV peak increases when R increases).
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TRV for High-voltage Circuit Breakers

Reflection from end of lines

When longer time frames are considered, typically several 
hundreds of micro-seconds, reflections on lines have to be taken 
into account. 
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Lines or cables must then 
be treated as components 
with distributed elements
on which voltage waves 
travel after current 
interruption. 

These traveling waves are 
reflected and refracted 
when reaching an open 
circuit or a discontinuity.



> Transient Recovery Voltages,  D.Dufournet October 200818 18

TRV for High-voltage Circuit Breakers

The most severe TRVs tend to occur across the first pole to 
clear of a circuit breaker interrupting a three-phase 
symmetrical current at its terminal and when the system 
voltage is maximum (see section on Terminal fault). 

By definition, all TRV values defined in the standards are 
inherent, i.e. the values that would be obtained during 
interruption by an ideal circuit breaker without arc voltage

(arc resistance changes from zero to an infinite value at 
current zero).
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Types of TRVs
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TRV for High-voltage Circuit Breakers

Exponential (over-damped) TRV

The exponential part of a TRV occurs when the equivalent 
resistance of the circuit with N connected lines in parallel  

Req = is lower or equal to

where Z1 = positive sequence surge impedance of a line 

N = number of lines, α =  coefficient

Leq =  source inductance, Ceq =  source capacitance.

It typically occurs when at least one transformer and one or 
several lines are on the unfaulted side of the circuit breaker 
and when a fault is cleared at the breaker terminals.

This exponential part of TRV is transmitted as traveling waves 
on each of the transmission lines. Reflected wave(s) returning 
from open lines or discontinuities contribute also to the TRV. 

N
Z1α eqeq CL /5.0
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TRV for High-voltage Circuit Breakers

Exponential TRV characteristic
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TRV for High-voltage Circuit Breakers

As an example, the following figure shows the one line diagram 
of a 550kV substation. The TRV seen by circuit breaker (A) 
when clearing the three-phase fault is shown in the next slide. 
Circuit breaker (B) is open.



> Transient Recovery Voltages,  D.Dufournet October 200823 23

TRV for High-voltage Circuit Breakers
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A reflection occurs from the end of the shortest line
after  2 x 81 / 0.3 = 540 µs

System TRV with reflected wave
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TRV for High-voltage Circuit Breakers

Oscillatory (under-damped) TRV

An oscillatory TRV occurs generally when a fault is limited by a 
transformer or a series reactor and no transmission line (or 
cable) surge impedance is present to provide damping.
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TRV for High-voltage Circuit Breakers

To be oscillatory, the equivalent resistance of the source side 
has to be such that

Leq = equivalent source inductance, Ceq =  equivalent source 
capacitance.  

To meet this requirement, only a low number of lines should be 
connected, therefore oscillatory TRVs are specified for

terminal fault test duties T10 and T30 for circuit breakers in 
transmission systems (Ur ≥ 100 kV),
all terminal fault test duties in the case of circuit breakers in 
distribution or sub-transmission systems (Ur < 100 kV).

In the large majority of cases, TRV characteristics (peak value 
and rate-of-rise) are covered by the rated values defined in the 
standards for terminal faults at 10% or 30% of rated short-
circuit current.

eq

eq
eq C

L
n
ZR 5.0>=α



> Transient Recovery Voltages,  D.Dufournet October 200826 26

TRV for High-voltage Circuit Breakers
TRV with triangular wave-shape

Triangular-shaped TRVs are associated with short-line faults
(see separate chapter). 
After current interruption, the line side voltage exhibits a 
characteristic triangular waveshape. The rate-of-rise of the 
saw-tooth shaped TRV is function of the line surge impedance. 
The rate-of rise is usually higher than that experienced with 
exponential or oscillatory TRVs (with the same current), 
however the TRV peak is generally low.

line

Circuit breaker
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Asymmetry and circuit breaker 
influence on TRV
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Effects on TRV
Effect of asymmetry on TRV

The TRVs that occur when interrupting asymmetrical currents
are less severe (lower RRRV and TRV peak) than when 
interrupting the related symmetrical current because the 
instantaneous value of the supply voltage at the time of 
interruption is less than the peak value.

TIME

CURRENT

SUPPLY VOLTAGE
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Effects on TRV

Effect of asymmetry on TRV

IEEE C37.081 and IEC 62271-100 give the reduction factors of 
the TRV peak and rate of rise of recovery voltage (RRRV) 
when interrupting asymmetrical currents.
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Effects on TRV

Effect of a circuit breaker on TRV

The circuit TRV can be modified by a circuit breaker. The TRV 
measured across the terminals of two different types of circuit 
breakers under identical conditions can be different. 

To simplify both rating and application, the power system TRV 
is defined / calculated ignoring the effect of the circuit breaker.

An ideal circuit breaker has no modifying effects on the 
electrical characteristics of a system, when conducting its 
impedance is zero, at current zero its impedance changes 
from zero to infinity.
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Effects on TRV

Effect of a circuit breaker on TRV

When a circuit breaker is fitted with grading capacitors or with 
line-to-ground capacitors, these capacitors can reduce 
significantly the rate-of-rise of TRV during short-line faults.

In the past, opening resistors (R) were used to assist interruption 
by air blast circuit breakers. 

ZR
R
+

RRRV is reduced by this factor: 

where Z is the surge impedance

of the system.

Air blast Generator Circuit Breaker with 
opening resistor
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Terminal fault
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Terminal fault TRV 
First pole to clear factor
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Terminal Fault TRV

Current - TRV - Recovery Voltage

CURRENT

TRANSIENT RECOVERY
VOLTAGE 

RECOVERY 
VOLTAGE

The recovery voltage is function of the system grounding 
and the type of fault.
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Terminal Fault TRV
First Pole to Clear Factor (kpp)

During 3-phase faults, the recovery voltage is higher on 
the first pole to clear. 

The first-pole-to clear factor is the ratio of the power 
frequency voltage across the first interrupting pole, before 
current interruption in the other poles, to the power 
frequency voltage occurring across the pole after 
interruption in all three poles.

The ratio between the recovery voltage (RV) across the 
first pole to clear and the phase to earth voltage of the 
system  

is called the first pole to clear factor.

3
rU
RVkpp =
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Terminal Fault TRV

First Pole to Clear Factor (kpp)

A BER

ES

ET

3
rUkpp ×

3
rU
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Terminal Fault TRV

When tests are performed single-phase, as substitution to 
three-phase tests, the supply voltage must be multiplied by kpp
in order to have the recovery voltage that would be met during 
three-phase tests.

The first–pole–to-clear factor (kpp) is a function of the 
grounding arrangements of the system and of the type of fault. 

For systems with non-effectively grounded neutral, kpp is 1.5.

For three-phase to ground faults in systems with effectively 
earthed neutral, kpp is 1.3.

For three-phase ungrounded faults, kpp is  1.5.
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Terminal Fault TRV

Three-phase faults in non-effectively grounded systems 
or three-phase ungrounded faults 

In these cases, kpp is 
1.5
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Terminal Fault TRV

Three-phase faults to ground in effectively earthed 
neutral systems

The value of kpp is dependent upon the sequence impedances 
from the location of the fault to the various system neutral 
points: X0 (zero sequence reactance of the system) and X1
(positive sequence reactance of the system). 

For these systems the ratio X0/X1 is taken to be ≤ 3.0. 

Hence, for systems with effectively grounded neutral kpp is 1.3.

Single-phase in an effectively grounded system

In this case, kpp is 1.0.
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Terminal Fault TRV

Equation for the first-pole-to-clear factor

where 

X0 is the zero sequence reactance of the system, 

X1 the positive sequence reactance of the system.

If X0 >> X1,  kpp = 1.5 as in non-effectively grounded systems

If X0 = 3.0 X1 :  kpp = 1.3 as in effectively grounded neutral 
systems (three-phase to ground faults)

01

0
2

3
XX

X
k pp +

=
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Terminal Fault TRV

Equations for the other clearing poles
a) In systems with non-effectively grounded neutral, after 

interruption of the first phase (R), the current is interrupted by the 
last two poles in series under the phase-to-phase voltage (ES –
ET) equal to         times the phase voltage

ER

ES

ET

I

I

ES - ET

3
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Terminal Fault TRV

It follows that, in systems with non-effectively grounded 
neutral, for the second and third pole to clear:

87.0
2
3
==ppk

Current in each phase TRV in each phase
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Terminal Fault TRV

In systems with effectively grounded neutrals, the second pole 
clears a three-phase to ground fault

with a factor   

If  X0 / X1 = 3.0  the second pole to clear factor is 1.27. 

10

2
110

2
0

2
3

XX
XXXX

k pp +
++

=

Currents TRVs
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Terminal Fault TRV

In systems with effectively grounded neutral, for the third pole-to-
clear:

1=ppk

E I3

I2

I1

V3

V2

V1
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Terminal Fault TRV

Pole-to-clear factors (kpp) for each clearing pole, 3-phase to 
ground case

Note

Values of the pole-to-clear factor are given for X0/X1 = 1.0 to 
indicate the trend in the special case of networks with a ratio 
X0/X1 of less than 3.0. 

kpp= 1.5 is taken for all systems that are not effectively grounded, 
it includes (but is not limited to) systems with isolated neutral (it is 
also taken for three-phase ungrounded faults).

Neutral X0/X1

first pole 2nd pole 3rd pole

isolated infinite 1.5 0.87 0.87

effectively
grounded 3.0 1.3 1.27 1.0

see note 1.0 1.0 1.0 1.0

Pole to clear factor
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Terminal fault
TRV Ratings
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Terminal Fault TRV Rating

Transient Recovery Voltage
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Terminal Fault TRV Rating

The TRV ratings for circuit breakers are applicable for 
interruption of three-phase faults 

with a rated symmetrical short circuit current

at the rated voltage of the circuit breaker. 

For values of fault current other than rated and for line faults, 
related TRV capabilities are given in ANSI/IEEE C37.04 and 
IEEE C37.06. 
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Terminal Fault TRV Rating

For circuit breakers applied on systems 72.5 kV and below, the 
TRV ratings assume that the systems can be non-effectively 
grounded.

For circuit breakers applied on systems 245 kV and above, the 
TRV ratings assume that the systems are effectively grounded.

Two-parameter and four-parameter envelopes have been 
introduced in order to facilitate the comparison between a TRV 
obtained during testing and a specified TRV. 

In a similar way it is possible to compare a circuit-breaker 
specified TRV capability and a system TRV obtained by 
calculation.
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Terminal Fault TRV Rating
A two-parameter envelope is used for oscillatory (under-
damped) TRVs.
For standardization purposes, two-parameter envelopes are 
specified 

for circuit breakers rated less than 100kV, at all values of 
breaking current, and
for circuit breakers rated 100 kV and above if the short-circuit 
current is equal or less than 30% of the rated breaking current.
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Terminal Fault TRV Rating

A four-parameter envelope is specified for circuit breakers rated 
100 kV and above if the short-circuit current is more than 30% 
of the rated breaking current.
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Terminal Fault TRV Rating

A circuit breaker TRV capability is considered to be sufficient if 
the two or four parameter envelope drawn with rated 
parameters is equal or higher than the two or four parameter 
envelope of the system TRV. 

System TRV envelope

Circuit breaker rated TRV envelope

time

Voltage
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Terminal Fault TRV Rating
During testing,  the envelope of the test TRV must be equal or 
higher than the specified two or four parameter envelope. 

This procedure is justified as it allows to compare TRVs in the two 
regions where a restrike is likely i.e. during the initial part of the TRV 
where the RRRV is maximum and in the vicinity of the peak voltage (uc).

U
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t (µs)t2t1
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u1

u'

t'

Reference line of specified TRV

Envelope of prospective test TRV

Prospective test TRV

Delay line of specified TRV

0 td

A

B

C



> Transient Recovery Voltages,  D.Dufournet October 200854 54

Terminal Fault TRV Rating

The peak value of TRV is defined as follows: 

where

kpp is the first pole to clear factor  

kaf is the amplitude factor (ratio between the peak value of 
TRV and the peak value of the recovery voltage at power 
frequency). In IEEE C37.04, kaf is 1.4 at 100% rated breaking 
current.

3
2 r

ppafc
U

kkU ×××=
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Terminal Fault TRV Rating

TRV envelopes for terminal fault  (Ur < 100 kV)

(I is the rated short-circuit current)
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0.3 I
0.1 I
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Terminal Fault TRV Rating
Amplitude factor for terminal fault  (Ur < 100 kV) 
Outdoor circuit breakers
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Terminal Fault TRV Rating

TRV envelopes for terminal fault (Ur ≥ 100 kV)

(I is the rated short-circuit current)
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Terminal Fault TRV Rating

Amplitude factor for terminal fault  (Ur ≥ 100 kV) 
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Terminal Fault TRV Rating
Rate-of-rise-of-recovery-voltage for terminal fault
(Ur ≥ 100 kV)
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Terminal Fault TRV Rating

Tests are required at 100% (T100), 60% (T60), 30% (T30) 
and 10% (T10) of rated short-circuit current with the 
corresponding TRVs and recovery voltages. 

6 tests are required with 100% of rated short-circuit current, 
3 tests with symmetrical currents and 3 tests with 
asymmetrical currents (when interrupting asymmetrical 
currents, the rate-of-rise and peak value of TRV are 
reduced but the energy in the arc is higher).

In IEEE standards, for each test duty T10; T30, T60: 2 tests 
are required with  symmetrical currents and 1 test with 
asymmetrical current. IEC requires 3 tests with symmetrical 
currents, considering that interruption with asymmetrical 
currents is covered by T100a (test duty with 100% rated 
short-circuit current and required asymmetry).
In a network, the initial part of the TRV may have an initial 
oscillation of small amplitude, called ITRV, due to reflections 
from the first major discontinuity along the busbar (see 
separate chapter).
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Terminal fault
TRV & Arcing times
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Terminal Fault TRV & Arcing Times

Arcing time
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Terminal Fault TRV & Arcing Times

Current interruption during three-phase fault breaking 

Contacts 
separation

1st pole 
clears

last poles 
clear

Arcing time 
1st pole

Arcing time 
last poles

Three-phase faults in non-
effectively grounded 
systems or three-phase 
ungrounded faults
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Terminal Fault TRV & Arcing Times

In the case of periodic 
phenomena, durations can 
be expressed in 
milliseconds or in electrical 
degrees.

For a system frequency of 
50 Hz, the duration of one 
current loop is 10 ms, it 
corresponds to 180° el. It 
follows that 18° el. = 1 ms

For a system frequency of
60 Hz: 18° el. = 0.83 ms

-1,5

-1

-0,5

0

0,5

1

1,5

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

Example with f = 50 Hz

10 ms



> Transient Recovery Voltages,  D.Dufournet October 200865 65

Terminal Fault TRV & Arcing Times
Minimum & maximum arcing times (60 Hz)
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Minimum arcing time (blue 
phase) Tmin = 12 ms

Contact separation 
delayed by 18° el. 
(or 0.83 ms)18° el.

Maximum arcing time 
(blue phase) = 18.1 ms

(13.94 ms + 90°
= Tmin + 132°)

Arcing time 1st phase 
(red phase) = 13.94 ms

(Tmin + 60° - 18°
= Tmin + 42°)

Three-phase faults in 
non-effectively grounded 
systems or three-phase 
ungrounded faultsTmin = 12 ms

T max = 18.1 ms

Contact 
separation

Iarc

Iarc

Contact 
separation
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Terminal Fault TRV & Arcing Times
Minimum & maximum arcing times (50 Hz)

Minimum arcing time (blue 
phase) Tmin = 12 ms

Contact separation 
delayed by 18° el. 
(or 1 ms)

Maximum arcing time 
(blue phase) = 19.33 ms

(14.33 ms + 90°
= Tmin + 132°)

Arcing time 1st phase 
(red phase) = 14.33 ms

(Tmin + 60° - 18°
= Tmin + 42°)
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Terminal Fault TRV & Arcing Times
Three-phase fault currents & TRVs 

Three-phase faults in 
non-effectively grounded 
systems or three-phase 
ungrounded faults

Three-phase faults in 
effectively grounded
systems

Currents TRVs

1.3

1.27

1.0

1.5

0.87

0.87

90°

120°

Maximum arcing time
= Tmin + 132°)

Maximum arcing time
= Tmin + 162°)
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Terminal Fault TRV & Arcing Times

TRV & Arcing Times

Minimum arcing time + 180° -18°Reference: Minimum arcing time

Pole to clear factor

° el.
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Terminal Fault TRV & Arcing Times

TRV & Arcing Times

Minimum arcing time + 180° -18°Reference: Minimum arcing time

Single-phase "umbrella" test with 
kpp=1.3

Increased 
stress

Pole to clear factor

° el.
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Terminal fault
Generator Circuit breakers
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Generator Circuit-Breakers
Terminal fault breaking

Special case of Generator circuit breakers

Special TRV requirements are applicable for generator circuit 
breakers installed between a generator and a transformer. 
Two types of faults need to be considered

A1 System-source fault B1   Generator-source fault
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Generator Circuit-Breakers
Terminal fault breaking

For the two types of fault, the TRV has an oscillatory waveshape
and the first pole to clear factor is 1.5 in order to cover three-
phase ungrounded faults. TRV parameters, i.e. peak voltage uc, 
rate-of-rise (RRRV) and time delay, are listed in ANSI/IEEE 
C37.013. 

TRV for system-source faults

RRRV for system-source faults is 3 to 5 times higher than the 
value specified for distribution or sub-transmission circuit 
breakers ANSI/IEEE C37.04. This is due to the fact that the TRV 
frequency is dominated by the natural frequency of the step-up 
transformer.

IEEE has defined TRV parameters in several ranges of 
transformer rated power.
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Generator Circuit-Breakers
Terminal fault breaking

TRV parameters for System Source Faults

Table 5a– TRV parameters  for  system - source  faults

Inherent  TRV
Transformer

Rating T2 -Time  to - Peak E2 -Peak Voltage TRV  Rate

(MVA) (µs) (kV) (kV / µs)

Line Column 1 Column 2 Column 3 Column 4

1 10  -  50 0.68 V 1.84 V 3.2

2 51  -  100 0.62 V 1.84 V 3.5

3 101  -  200 0.54 V 1.84 V 4.0

4 201  -  400 0.48 V 1.84 V 4.5

5 401  -  600 0.43 V 1.84 V 5.0

6 601  -  1000 0.39 V 1.84 V 5.5

7 1001  or  more 0.36 V 1.84 V 6.0
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Generator Circuit-Breakers
Terminal fault breaking

TRV for system-source faults

The RRRV can be significantly reduced if a capacitor is installed 
between the circuit breaker and the transformer. It is also 
reduced in the special cases where the connection between the 
circuit breaker and the transformer(s) is made by cable(s). This
is covered in amendment 1 to ANSI/IEEE C37.013 (2007).

TRV RATE FOR SYSTEM FED FAULTS TRANSFORMER 50MVA<<=100MVA

2

2,2
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2,6
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3,6
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V 

R
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100MVA
81MVA

65,5MVA
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Generator Circuit-Breakers
Terminal fault breaking

TRV for generator-source faults

RRRV for generator-source faults is roughly 2 times the values 
specified for distribution or sub-transmission circuit breakers. 

Asymmetrical currents

Due to the large time constants of generators and transformers 
(high X/R), generator circuit breakers are required to interrupt
currents with a high percentage of dc component (high 
asymmetry). 

The rate-of rise and peak value of TRV during interruption of 
currents with large asymmetry are significantly reduced.
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Short-line-fault (SLF)
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Short-line-fault (SLF)

Short-line faults occur from a few hundred meters up to several 
kilometers down the line.

After current interruption, the line side voltage exhibits a 
characteristic triangular waveshape.

line

Circuit breaker
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Short-line-fault (SLF)

The line side voltage oscillates as travelling waves are 
transmitted with positive and negative reflections at the open 
breaker and at the fault, respectively. The supply voltage rises
much more slowly.

line

Line side
voltage

Supply side
voltage

V = (LS + LL ) di/dt

LS LLLS

V



TL = Travel time for wave to travel from one end of line to the other and back.

Short-line-fault (SLF)
Evolution of line voltage
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Short-line-fault (SLF)

Voltage on Circuit Breaker line-side terminal

-1,5

-1

-0,5

0

0,5

1

1,5

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

Line side Voltage
(p.u.)

Time / TL



> Transient Recovery Voltages,  D.Dufournet October 200881 81

Short-line-fault (SLF)

Short-line Fault  TRV

Supply voltage

Line voltage

TRV

Voltage (kV)

Time (µs)
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Short-line-fault (SLF)

The rate of rise of voltage on the line side is function of the 
slope of current before interruption and of the surge 
impedance of the line:

surge impedance of the line  (450 ohm)

L et C are respectively the self inductance and the 
capacitance of the line per unit length

I fault current (kA)

du/dt rate of rise of recovery voltage (RRRV)  (kV/µs)

ω pulsation

s multiplier = 0.20  (f = 50Hz) or 0.24  (f = 60 Hz)

C
LZ =

The slope of TRV (du/dt) is proportional to the current

)(2 scIMsIsIZ
dt
diZ

dt
du

==== ω
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Short-line-fault (SLF)

Percentage of SLF (or M)

S

LG
S X

VI =
LS

LG
L XX

VI
+

=
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Short-line-fault (SLF)

The transmission line parameters are given in terms of the 
effective surge impedance ( Z) of the faulted line and a peak 
factor  (d)

v  is the velocity of light  (0.3 km/µs)

ω is 2 π × system power frequency  (377 rad/s for a 60 Hz system)

vX
Z

d
L

effω2=

CDo

CDpCDo

V
VV

d
+

=
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Short-line-fault (SLF)

The rated values for the line surge impedance Z and the peak 
factor d are defined in IEEE C37-04 and IEC 62271-100 as 
follows:

Z = 450 Ω d = 1.6

The line side voltage contribution to TRV is defined as a 
triangular wave as follows (where I is the rated short-circuit 
current) :

the first peak of TRV decreases when M increases

the rate-of-rise of recovery voltage increases with M

There is a critical value of short-line-fault for which the circuit-
breaker has more difficulty to interrupt. This critical value of M is 
close to 90% for SF6 circuit-breakers, it is between 75% and 
80% for air blast circuit-breakers.

rL UMU
3
2)1(6.1 −= IMZ

dt
diZdtdu ω2)(/ ==



> Transient Recovery Voltages,  D.Dufournet October 200886 86

Short-line-fault (SLF)

The TRV seen by the circuit breaker is the sum of a 
contribution from the line side (eL) and a contribution from the 
supply side (eS):

with (in a first approximation)

where

TL is the time to peak of the line side TRV

td  is the time delay of TRV on the source side

SL eee +=

)(2 dLS tTMe −=
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Short-line-fault (SLF)
Example of calculation of SLF TRV : L90 245 kV 50 kA 50 Hz
Fault current = 0.9 x 50 = 45 kA

td= 2µs

Source side voltage

Line side voltage

U (kV)

t (µs)
0

-12

32 kV

34.8 kV
0.2 x 45 

= 9 kV/µs

0.9 x 2 kV/µs

TL=3.55 µs

1.55 µs

201.0
3

2245
=× 2.8 kV

UT = 34.8 kV   RRRV = 34.8/3.55 = 9.8 kV/µs

1.6 x 20 
= 32 kV
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Short-line-fault (SLF)

This rate-of-rise of TRV during SLF is much higher than the 
values that are met during terminal fault interruption:

Test duty RRRV 
(kV/µs)

I
(kA)

F
(Hz)

SLF
L90 50 kA 10.8 45 60

SLF
L90 50 kA 9 45 50

SLF
L90 40 kA 8.64 36 60

Terminal fault
T60 3 30 50/60

Terminal fault
T100 2 50 50/60

For SLF, this table gives the RRRV of the line side voltage
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Short-line-fault (SLF)

The high rate-of-rise of SLF associated with high fault currents 
(e.g. 57 kA at 60 Hz) can be difficult to withstand by circuit 
breakers.
In order to assist the circuit breaker during the interruption, a 
phase to ground capacitor, or a capacitor(s) in parallel to the 
interrupting chamber(s), may be used to reduce the rate-of-rise 
of recovery voltage (RRRV).
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Short-line-fault (SLF)

Possible Connections of Capacitors

VLG

XS XL
C.B.
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Short-line-fault (SLF)

Reduction of TRV slope  by Capacitors

(file t rv2.pl4; x- var t )  v:P00     v:P1     v:P4     v:P10     
0 4 8 12 16 20[us]

0

10

20

30

40

50

60

[kV]

Line side voltage with different values of 
line  to ground capacitors
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ITRV
(Initial transient recovery voltage)
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ITRV

Due to travelling waves on the 
busbar and their reflections, a high-
frequency oscillation occurs which 
is similar to the one observed on a 
faulted line under short -line fault 
conditions. 

As the busbar is usually on the 
supply side of the circuit-breaker, 
this oscillation, which is called 
“Initial Transient Recovery 
Voltage (ITRV)” is superimposed 
to the very beginning of the 
terminal fault TRV. 

Compared with the short-line fault, 
the first voltage peak is much 
lower, and the time to the first peak 
is shorter, within the first 
microseconds after current zero. 
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ITRV

If a circuit breaker has a short-line fault rating and SLF 
tests are performed with a line having an insignificant time 
delay (“zero time delay”), the ITRV requirements are 
considered to be covered.

Since the ITRV is proportional to the busbar surge impedance 
and to the current, the ITRV requirements can be neglected for 
all circuit-breakers with a rated short-circuit breaking current of 
less than 25 kA and for circuit-breakers with a rated voltage 
below 100 kV.

In addition the ITRV requirements can be neglected for circuit-
breakers installed in metal enclosed gas insulated switchgear 
(GIS) because of the low surge impedance.
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ITRV
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Comparison of TRV for SLF with time delay (0.2 µs) and ITRV (solid line)
and TRV for SLF with insignificant  time delay and without ITRV (dotted line).
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Out-of-Phase
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Out-of-Phase 

Some circuit-breakers may 
have to interrupt faults that 
occur when two systems are 
connected in out-of-phase 
conditions. 

At current interruption, the 
voltage on each side of the 
circuit-breaker meets the 
voltage of the supply, with a 
transient voltage similar to 
that of terminal fault. The 
resulting peak TRV is 37% to 
48% higher than for terminal 
fault T100.

However the current is only 
25% of the rated short-circuit 
breaking current.
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Out-of-Phase 
Voltages during Out-of-Phase Interruption 

-3

-2

-1

0

1

2

3

0,005 0,007 0,009 0,011 0,013 0,015 0,017 0,019 0,021 0,023 0,025

TRV

Supply side voltage

Load side voltage

U  (p.u.)

Time (s)



> Transient Recovery Voltages,  D.Dufournet October 200899 99

Out-of-Phase

Out-of-Phase Factor for 3-phase faults

In standards the out-of-
phase factor for interruption 
tests performed single-
phase is

2.0 for effectively earthed 
systems   

2.5 for non-effectively 
earthed systems

The factor for making 
operations is 2.0
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(Long) Line Faults
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(Long) Line Faults

With some line faults conditions it may occur that the TRV is 
not covered by the standard TRV withstand capability defined 
for terminal fault and short-line fault. 

Such situations can occur, depending on the actual short-
circuit power of the source, during interruption of some three-
phase line faults (higher TRV peak on the first-pole-to-clear). 

Mutual coupling of lines between the first interrupted phase 
and the two other phases can increase the line side 
contribution to TRV on the first pole to clear.

The matter has been studied extensively by CIGRE WG A3-19, 
a Technical Brochure will be published by the end of 2008. 
Examples of TRV calculations by CIGRE WG A3-19 are given 
in the following.

The TRV withstand capability demonstrated by terminal fault 
test duties T10, T30, T60 and out-of-phase OP2 usually cover 
line fault TRVs (a revision of the TRV for T60 is in progress).
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(Long) Line Faults

Example 1: L30 and L10 in 735kV/40kA network
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Vn= 735 kV, Rated Isc= 40 kA, kpp= 1.3, L30
Source TRV parameters: Kaf= 1.40, RRRV= 2.0 kV/us
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Line & Source TRV
Pole-1 line TRV,TRV slope= 1.92 kV/us, d= 2.53
IEC Line TRV, L30, Zline= 450 ohms
IEC 2-parameter TRV - T30 (1308 kV - 262 us)
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Line & Source TRV
Pole-1 line TRV, TRV slope= 0.65 kV/us, d= 2.54
IEC Line TRV, L10, Zline= 450 ohms
IEC 2-parameter TRV - T10 (1299 kV - 186 us)

Comparison of  first (dotted blue) and last (dotted red) clearing pole 
TRVs for three-phase L30 and L10, with total TRV for first pole (blue)

L30 
(30% rated breaking current)

L10 
(10% rated breaking current)

Note: the standard 2 parameter TRV with kpp=1.3 is shown in green. In 
edition 2.0 of IEC 62271-100 and the draft revision of IEEE C37.06, kpp 
has been increased to 1.5 for test duty T10.
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(Long) Line Faults

Example 2: L30 and L10 in 420kV/63kA network

 TRV comparison for Long Line fault and IEC terminal fault and out of phase:
Calculations WG 3.19 with 100% of source short circuit power
IEC values for T30, T10, OP
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Comparison with TRV withstand capability demonstrated by T10, 
T30 and OP (out-of-phase, with shorter time t2 )
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(Long) Line Faults

Example 3: L30 and L10 in 245kV/50kA network

Comparison with TRV withstand capability demonstrated by T10, 
T30 and OP (out-of-phase)

 
TRV comparison for Long Line fault and IEC terminal fault and out of phase:
Calculations WG 3.19 with 100% of source short circuit power
IEC values for T30, T10, OP
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Application Considerations
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Transformer Limited Faults

Severe TRV conditions may occur in some cases, for instance 
when short-circuit occurs immediately after a transformer 
without any appreciable additional capacitance between the 
transformer and the circuit breaker. 
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Transformer Limited Faults

Such cases are covered in IEEE C37.011-2005 and ANSI 
Guide C37.06.1-2000 “Guide for HV circuit breakers 
designated Definite purpose for fast TRV rise time” (the content 
is included in a draft revision of IEEE C37.06).

Definite purpose circuit breakers could be specified or the 
system TRV can be modified by adding a capacitance, and 
then be within the standard capability envelope.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

TIME (µs)

VO
LT

A
G

E 
(k

V)

SYSTEM TRV CURVE
MODIFIED BY CAPACITANCE

TRV CAPABILITY FOR A STANDARD CIRCUIT BREAKER



> Transient Recovery Voltages,  D.Dufournet October 2008108 108

Series Reactor Limited Faults

Series reactor are used to limit the short-circuit current in a line.

A high rate-of-rise TRV is obtained in case of fault with a series 
reactor on the line side or the bus side of the circuit breaker.
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Series Reactor Limited Faults

If the system TRV exceeds a standard breaker capability, a 
capacitance can be added in parallel to the reactor in order to 
reduce the TRV frequency and have a system TRV curve within 
the standard capability envelope.

This mitigation measure is very effective and cost efficient.

It is therefore strongly recommended to add a capacitance in 
parallel, unless it can be demonstrated by tests that a circuit 
breaker can successfully clear faults with the required high 
frequency TRV.
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Selection of circuit breaker for TRV
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Selection of circuit breaker for TRV

The TRV ratings define a withstand boundary. A circuit TRV that 
exceeds this boundary is in excess of the circuit breaker’s rated 
or related capability. 

When the withstand boundary is exceeded:

either a different circuit breaker should be used, 

or the system should be modified in such a manner as to 
change its TRV characteristics. 

The addition of capacitors (e.g. to a bus or line) is one method
that can be used to improve the system’s recovery voltage 
characteristics. 

A typical example is the addition of a capacitor in parallel to a 
series reactor in order to reduce the RRRV to a value covered 
by the standard (i.e. by test duty T30). 
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