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Abstract This paper explains how mathematical computation can be constructed

from weaker recursive patterns typical of natural languages. A thought experiment

is used to describe the formalization of computational rules, or arithmetical axioms,

using only orally-based natural language capabilities, and motivated by two

accomplishments of ancient Indian mathematics and linguistics. One accomplish-

ment is the expression of positional value using versified Sanskrit number words in

addition to orthodox inscribed numerals. The second is Pān
˙
ini’s invention, around

the fifth century BCE, of a formal grammar for spoken Sanskrit, expressed in oral

verse extending ordinary Sanskrit, and using recursive methods rediscovered in the

twentieth century. The Sanskrit positional number compounds and Pān
˙
ini’s formal

system are construed as linguistic grammaticalizations relying on tacit cognitive

models of symbolic form. The thought experiment shows that universal computation

can be constructed from natural language structure and skills, and shows why

intentional capabilities needed for language use play a role in computation across all

media. The evolution of writing and positional number systems in Mesopotamia is

used to transfer the thought experiment of “oral arithmetic” to inscribed computa-

tion. The thought experiment and historical evidence combine to show how and why

mathematical computation is a cognitive technology extending generic symbolic

skills associated with language structure, usage, and change.
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The Problem

Modern computation exists—What makes it possible? Computation here includes

all styles of computer and device programming, school arithmetic calculation,

algorithm design, and alternative theoretical expressions of computation itself.

Perhaps most humans have computed or enumerated in some way, using media

including notched sticks, body-parts, speech, colored rods, knotted ropes, the

abacus, electronic devices, and clay, sand or paper inscription. But the computa-

tional representations found in most civilizations fall short of “universal,” meaning

the theoretical power of typical programming languages, many axiomatic systems,

universal Turing machines, or many equivalents. Ancient Greek mathematics, while

containing proofs by contradiction, and intricate geometric constructions, did not

master general exponentiation, c = ab, and Greek multiplication is wedded to

measurement units.1 In contrast, children trained to use positional numbers (i.e. in

3050, 3 is three thousand, 5 is fifty), have the computing skills of priests long ago.2

From the perspective of human cognition, arithmetic going beyond addition and

multiplication—“ + and 9”—all the way to modern computation, represents quite

an achievement. It’s not obvious how such symbolic processing is possible.

Computations are expressed in language, however formalized, but even elementary

methods for efficient multiplication or division are not implicit in the recursive

patterns found in typical natural languages.3 Useful number words or symbols

facilitate arithmetic of some scope in many languages and cultures. But, without

some language change or expansion, we don’t find natural languages whose

grammar (including phonology, morphology, syntax, semantics) can be implicitly

used to represent much multiplication, not to mention behavioral and interpretative

skills for utilizing new number words or symbols. So what cognitive skills make it

possible to transcend the weak computing power of natural languages, and what

relationships hold between linguistic and mathematical recursion, or the kinds of

symbolic generativity possible in natural and mathematical language? Taking an

ethological stance, we can ask what kinds of symbolic or cognitive skills make

modern computation possible when our innate number skills are apparently limited

to the perception of small “numerosities,” meaning collections of like objects or

1 Fowler (1999, chap. 1) discusses Greek mathematics as “non-arithmetical” and (Unguru 1991; Fowler

1994) debate the scope of Greek induction, a close relative of recursion.
2 For example, Egyptian mathematics used an additive number system which, through a clever trick,

could also be used for reasonably efficient multiplications. But that construction, while effective and

correct, is not efficient enough for much further algorithmic design. Similarly, one can use high school

Roman numerals for multiplication, but they quickly become difficult to manipulate further. The great

historical and cognitive solution here is positional value, whose compact linguistic expression in ancient

India plays a key role below. See also note 25 below.
3 “It is in this sense than an arbitrary Turing machine, or an unrestricted rewriting system, is too

unstructured to serve as a grammar. By imposing further conditions on the grammatical rules, we arrive at

systems that have more linguistic interest but less generative power”(Chomsky 1963, 359). Hence natural

language recursion, however complex, is still computationally weak; see also (Pullum and Scholz 2005;

Chomsky 1980, 123).
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perceived patterns (Dehaene 1997). Lacking needed leverage, we could just be stuck

with addition and some bounded multiplicative algorithms.4

Franz Boas once remarked that, though the complex languages of North America

Indians often lacked number words beyond small values, he could easily introduce

additional number terms, and their use, to speakers as new grammar.5 “Primitive”

language therefore was a red herring, and Boas’ student Edward Sapir argued that

all languages were, roughly, functionally equivalent.

Implicit in these observations is a capacity for extending a language to a new one.

Whether that is advantageous or desirable is a contingent cultural value; but

apparently less so are possibilities for linguistic and cognitive transformation.

Uncoincidentally, Sapir was a great analyst of language change, saying even that

languages, including their syntax and semantics, were always in flux, just usually

unconsciously and not on temporal or geographical scales perceived by individual

speakers (Sapir 1921, 144). The first goal of this paper is to show that ordinary

language change, including the cognitive skills making it possible, is typically

sufficient for increasing the computational power of natural language to that needed

for universal computation. In a nutshell, mathematical recursion can be constructed

from linguistic recursion through the same intentional skills found in language use,

but oriented to the creation of artificial languages needed for arbitrary computations

and hence modern mathematics.6 The paper’s second goal is to map processes

occurring in speech, and in natural language change, to parallel processes for

computation in written or other media. For all this, we need means for thinking

about formal computing languages in terms of natural language constructions and

their transformation.

A Thought Experiment

Suppose an energetic Boas introduces into, say, spoken Nootka or Haida, in addition

to some number terms and arithmetic, an entire computational scheme, sufficient to

represent any axiomatic system, algorithm, or computing idiom you please. Such a

generative system would be as good as any for producing potentially infinite sets:

4 I focus on the transition from additive to multiplicative algorithms because: (1) additive number

systems, while not universal across languages, are common and easy to construct in many grammars, with

number words coordinating, e.g., body-part counting and other one–one enumeration behaviors, possibly

sufficient for bounded multiplication; (2) in formal models of arithmetic, addition and multiplication (but

not addition alone) are sufficient to represent universal compution; (3) with multiplication and universal

computation, intensional phenomena occur in the formation of consistency statements (Boolos and

Jeffrey 1979, 186), and these are a symptom of, but not identical with, intentionality (Searle 1983, 24).
5 Boas and Powell (1911). More recently, (Everett 2005) controversially argues that the Amazonian

Pirahã language lacks recursive syntax in ways challenging Chomsky’s claim that recursion is a linguistic

universal; Everett also conjectures that a stringently local and finitist worldview makes some abstractions

and syntactic forms mostly unnecessary. My approach is a complement: given certain types of linguistic

recursion, whether universal or not, then one can construct mathematial recursion from it as discussed

below. As with Everett, the material and cognitive setting is all important to the development of

grammatical form.
6 See (Dehaene 1997, chap. 9) on cognition and modern mathematics; the present paper addresses some

of the issues raised there.
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distant digits of pi, the computing programs in some idiom, algorithm calculations

for a potentially infinite set of inputs, consequences of axiomatized theories, logical

truths, grammatical fragments of natural languages, planetary positions and tidal

flows, numbers of mating rabbits, a traveling salesman’s shortest tours.

We allow that the fictive Boas might know his logic from written sources. But

Boas and the speakers whom he instructs, and whose language is being expanded,

use no writing or kindred inscription in a significant way. They construct an oral
arithmetic in natural language: a heard and recited computational system able to

represent, and compute with, any algorithm you like, just like a modern

programming language. Computations, in addition to needed definitions, axioms

and rules, are also carried out orally, limitations on time and memory notwith-

standing—a standard assumption in computational theory. For this thought

experiment to work means being able to introduce notions of a finite discrete

symbol set on which the whole construction is based, conveniently organized in

finite lists or matrices; recursive rules applied to symbol sets to define categories

like numerals, data types, constants, variables, formulas, terms, equations,

programs, proofs, and computations; and sufficient flexibility to recursively

combine and modify algorithms in typical ways for achieving computational goals.

Thus would Boas’ students’ create a computational space equal to that of a universal

Turing machine or its many equivalents, including most modern computing

languages.

What might such a thought experiment show, assuming sufficiently realistic steps

to carry it out? First, that advanced mathematical computation is a cognitive

technology which can be constructed using the same resources by which new

language patterns get constructed from old. Language change occurs through

communicative usage, so the requisite skills include capabilities for coordinating

grammatical forms with attention, mental models, common knowledge, and

communicative intentions generally. Here these skills would be directed to counting

and algorithmic behavior, especially the manipulation of computing symbols

themselves. We assume these intentional skills, as far as they play a role in language

change, to be just as necessary for our imaginary Boas as for language use

generally.7 And language change is no fiction, but a well-documented phenomenon

occurring across many language families (McWhorter 2001). Modern English

grammar uses word order to distinguish syntactic roles in man bites dog from dog
bites man, but in Old English the latter can be either canis hominem mordet or
hominem canis mordet, with grammatical roles carried by word affixes. Over

centuries of changing usage and contact with other languages, the intricate Old

English case system eroded as sound changes rendered many inflections and word

endings inoperable. Functional roles of the old syntax were gradually replaced,

mostly unconsciously over generations, in a variety of ways. New grammatical

function words emerged, like will as an “auxiliary” to mark future tense I will ___,
when it earlier had only ordinary meanings of capability or skill; similarly for the

auxiliaries can, should and must (Barber 2000). Then many case endings were

supplanted by generically useful prepositions like of, in, with, by, for, which keep

7 See (Clark 1996; Tomasello 1999, 2003) on language use and the coordination of intentionality.
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words separate in ordered relations instead of conjoining words to marking affixes,

the latter enabling free word order. The development of new function words, along

with new roles for word order, are all good examples of grammaticalization. The
syntactic differences between Old and Modern English could be greater—tones and

clicks, for example, were never adopted to mark syntactic roles—but the structural

changes are dramatic and representative of many other examples. Empirical

language change extends far into language structure, well beyond “mere” sound

change, vocabulary modifications, or dialect formation. So in our thought experiment

for oral arithmetic, we assume typical cognitive skills making comparable linguistic

innovation possible. Assuming sufficient realism for our thought experiment,

computation then is similarly possible as an artifice of language and mind.

For oral arithmetic, we further assume that grammatical change is motivated by

some domain-relevant cognitive model. All kinds of perspectives get marked

through a language’s patterns of affixing, inflection, tones, or word ordering. If the

need, conscious or not, is to mark control, or broadly construed “ownership,” that

may be indicated by a grammatical possessive—the cat’s anger, my left foot; if the
cognitive function is a conception of time or its passage, then the marking is of tense

or aspect; if there is motivation to indicate the quality of knowledge the speaker has

of a topic, then, as in modern Turkish, “evidentiary” marking can indicate direct,

indirect, or hearsay information; if a specialized conception of direction and place is

useful, then spatial syntax can be used, as in some Mesoamerican languages; or

distinctive physical relationships can be indicated, as in Korean prepositions

indicating “tightness of fit.” Thus all kinds of folk knowledge or heuristic models of

the life world get grammaticalized. The total grammaticalization of arithmetic,

mathematics, and logic in our Boasian thought experiment may be unusual, but all

that really differs is the role of counting and symbolic manipulation as the relevant

functional domain.8

The many exotic examples of grammaticalization from the world’s languages do

not entail radical differences in sensory perception, nor that various cognitive

perspectives are either determined as either necessary or impossible.9 Depending on

the language involved, relevant perceptual tasks using different languages may be

easier for fluent speakers, and thought correlated with notions codified in the

grammar can be, all else being equal for the language user, easier to formulate,

express, or communicate. The various options for a language’s syntax means users

need to notice the presence or absence of marking correlates in the world. Concepts

expressed directly in grammars—evidence for assertions, spatial marking, time

and aspect, physical patterning paradigms, etc.— conditions users to process

8 Number systems abound in history which extend counting behaviors, especially one–one enumerations,

through number words and their productive rules. But not found are non-written linguistic examples with

much computing power beyond simple addition or very limited multiplication, and so these systems don’t

reveal much about cognition for modern computation and mathematics.
9 Gentner and Goldin-Meadow (2003) revisit the Sapir-Whorf hypothesis, not generally thought of as

including writing and computation (Whorf 1956). While the thought experiment in the text shows that, in

principle, linguistic change can lead to language in which all computations are possible, in reality the

change relies on our perceptions of inscribed computations. So for computation, the increase in

conceptual power depends critically on changing media to realize the more intricate symbolic apparatus.
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information differently, and measurable outcomes, while neither radically creative

nor limiting, are demonstrable.10

But there is a difference with number language. Even simple arithmetical tasks

are sufficiently complex that much progress is virtually impossible without

specialized syntax and semantics. Mathematical knowledge is a case where the

cognitive limits are a real obstacle, not just an inconvenience or inefficiency. Some

barriers to the recursive constructions needed for computation are overcome by

inscription or other prosthetics (e.g. an abacus), which change the modality for

symbolic perception and relax memory constraints on symbolic processing. That

shift in media is essential, but it also occludes the construction of stronger

computational language and qualitative differences in what can be counted,

structured, and perceived in numeric or logical terms.11 Hence the need for the oral

arithmetic thought experiment, in which the benefits of inscription are temporarily

set aside.

This need to bypass inscription, and the role for changing media, is already

suggested by modern logic. Formal systems are usually thought of as being written,

but no mathematics should depend on that, at least directly, just as geometry should

not depend on its realization as perceived objects in perceived space. Inscription,

mathematically, has to be a dispensable heuristic metaphor.12 Mathematical

computation can occur in what media you like of whatever discrete symbols you

like. Formally, the construction of oral arithmetic involves two languages, L and L´,
the latter a transformed version of the former with greater computational power: in

L´ elements of a formal system can be listed, new terms recursively defined, and

rules applied to program, prove, or otherwise compute in ways not possible in L.
The challenge, for the thought experiment, is that while language change can

involve radical differences in structure, expressive power, or efficiency, that doesn’t

imply significant jumps in mathematical strength. The puzzle is to create that

increment of computing power, respecting an “experimental” constraint for the

transformation L → L´ limiting us to known features of language change,

principally grammaticalization and allied cognitive skills. Following that, we can

more realistically consider similar changes realized in writing rather than speech. In

this way, natural language change becomes a model of symbolic computation.

The next step is to see in detail how the recursive constructions needed for

universal computation can be expressed in natural language.

10 See (Slobin 2003) on “thinking for speaking”; (Dehaene 1997, 102) on counting skills for native

Chinese speakers; and (Levinson 2003) on spatial marking.
11 See (Bloom 1994) on the transfer of recursion across cognitive domains; my approach focuses on

external media as perceived and leveraged by fixed cognitive capacities.
12 For example, in logic, “alphabet” and “rewrite” should be metaphors whose mathematical content has

nothing to do with inscription per se, just as Plato advised that geometry “…is in direct contradiction with

the language employed in it by its adepts…they speak as if they were doing something [practical]… their

talk is of squaring and applying and adding and the like, whereas in fact the real object of the study is pure

knowledge” (Republic 518d, 527). Difficult though, is understanding what an abstract discrete symbol is

outside of any language or semiotic system at all; see “Grammaticalization in Script” below.
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Constructing an Oral Formalism in Ancient India

A “programming,” “formal,” or “symbolic” system is defined by a finite set of

discrete symbols combined according to precise recursive rules for generating a

potentially infinite target set of symbolic expressions. We leave open the

computational power of the rules, and the mathematical content of generated

expressions, but have in mind systems like modern programming languages or

computing paradigms which can be tailored to various uses. Remarkably, nearly all

the intellectual technology needed for a formal computing system built directly

from natural language resources has existed for over two thousand years. The first

formal system, before Gottlob Frege’s 1879 Begriffsschrift for first-order logic, is
Pān

˙
ini’s approximately fifth-century BCE Sanskrit grammar. Unlike modern

systems, Pān
˙
ini’s grammar is defined for oral recitation. Its finite symbol set

consists of Sanskrit phonemes, word stems, and roots; these form the system’s

inductive basis, to which are applied explicit rules for generating a potentially

infinite set of target expressions of classical Sanskrit. While having no mathematical

content, the system uses many techniques essential to modern logic and

computation.13

Because knowledge of this achievement is familiar mostly to Sanskritists and

linguists, attention has to made at the outset to this historical lacuna. Pān
˙
ini is

indeed the Indian Euclid: his interest is in language rather than number or shape; his

expertise is formal recursive generation rather than axiomatic deduction; and his

habitus is the oral world of Sanskrit speech, the language of exact science in ancient

India (Staal 1988, 2006). Pān
˙
ini’s grammar is mentioned as a generative ancestor on

the first page of Chomsky’s Aspects of the theory of Syntax, and was lauded by

Leonard Bloomfield as one of the greatest intellectual accomplishments ever

(Bloomfield 1933, 11), its rules being codified as about 4,000 mnemonically

efficient aphorisms formulated as versified Sanskrit sūtras; these define the

“programming manual,” so to speak.14 From a linguistic perspective, the rules are

purely descriptive with no intended psychological meaning, and are organized

generally through “tiered” constructions coordinating semantics, syntax, morphol-

ogy, and phonology, much as in modern linguistics.

For our thought experiment, what’s relevant is Pān
˙
ini’s complete mastery of

formal language definition, using an extension of Sanskrit as a metalanguage for

13 While modern generative linguistics borrowed formalist ideas from mathematical logic, ancient Indian

linguists mostly developed them directly, building on basic ideas of recursive system construction

developed to exactly describe generatively patterned rituals, with portions of the early Vedas known as

“ritual manuals” (Renou 1941, Staal 1990). Included here are the earliest phonological theories and the

segmentation of continuous recitation into discrete units (sam
˙
hitā vs. padapāt

˙
ha) for analytical purposes

(Staal 2006, 77). On expressions of generality and the potential infinity of language generated by finite

means in Indian grammatical theory, see (Staal 1990, 89).
14 “These sūtras are like nothing so much as the rules in a comptuational grammar of a modern language,

such as might be used in a machine translation system: without any musical or ritual element, they apply

according to abstract formal principles. This is not a metaphor, or anachronistic interpretation of Sanskrit

grammar, but a straightforward description of the working of the sūtras in Pān
˙
ini’s system”(Ostler 2005,

181). This is a slight overstatement because of initializing kāraka rules, requiring user-based assignments

of categories of “agent,” “patient,” etc.; see (Gillon 2007).
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spoken Sanskrit as the object language. The extension involves only constructions

already appearing in Sanskrit. Pān
˙
ini’s rules use special sounds, affixed to

expressions being constructed, as markers indicating grammatical roles or linguistic

constraints. Among other techniques, these phonemic signs control repeated

“rewriting”—really “respeaking”—so that word stems and roots, with which

linguistic derivations begin, are transformed into genuine Sanskrit expressions.

For example, to derive devadatta is cooking rice in a pot for yajñadatta
(devadatta odanam yajñadattāya sthālyām pacati), devadatta is to be marked as a

singular agent who is neither the speaker or hearer of the utterance; cook/pac is the
verbal root of action and must be in agreement with the agent; rice/odana is the

patient of the cooking action; yajñadatta is the beneficiary of cooking; pot/sthāli is
the cooking location. That semantical information, set by the user, is marked by

affixes to give devadatta + sU, pac + LAT
˙
, odana + am, yajñadatta + Ṅe, sthali-Ṅi

(Gillon 2007). The capitals represent “indicatory” or auxiliary sounds, called IT
(from the Sanskrit particle iti used for oral quotation), and identify relevant syntactic
information; in modern terms, these “non-terminal” auxiliary symbols control the

correct production of “terminal” Sanskrit speech sounds. The auxiliaries ultimately

are deleted in the derivation with other sounds (here in lower case) combined with

the initial verbal stems and nominal roots. IT markers are used in clever ways to

define oral lists and matrices, and are also used to define categories, such as derived

compounds, which then are recursively referenced for further compounding or other

uses. Many phonological sandhi rules, for fusing sounds across word or affix

boundaries (the s in devadatta + sU), are rigorously context-sensitive, reflecting

local constraints for rule application. Pān
˙
ini’s use of auxiliary markers is completely

systematic, repeated in dozens of rules and metarules (paribhās
˙
ā) defining system

use. The grammar characterizes linguistic case agreement, anaphor, the formation of

complex compounds, word order, and much else.15

Pān
˙
ini’s oral system follows a contemporary standard of computing design: the

method of rewrite rules studied by Emil Post in the 1930s. A Post production system

is defined by a finite alphabet of symbols, a finite set of axioms over the symbol set,

and a finite set of rules which produce target expressions through repeated

application starting from the axioms(Davis 1965, 288; Minsky 1967, chaps. 12–13).

For example, starting with symbols {a, b}, the rules {X → aXa, X → bXb} generate
two-letter palindromes starting with axioms {a, b} and X an auxiliary “variable”

symbol standing for any expression, possibly empty. Post showed such systems in

full generality could be used to represent any Turing machine construction, and

therefore had universal computing power: any effective procedure or algorithm, or

the expressions generated by any typical axiomatic system, can be replicated by a

suitable alphabet and Post production rules.

Post’s proof of the scope of his systems is directly relevant to Pān
˙
ini’s method of

auxiliary symbols. Post showed that the formal language LP generated by any

production system P could be replicated using rules and axioms in a standard format

(gX → Xh, with g and h fixed strings), using additional auxiliary symbols to control

15 For introductions to Pān
˙
ini’s grammar see (Gillon 2007; Sharma 1987) On the evolution of

metalinguistic concepts in India see (Staal 1975).
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the exact production of LP. Post showed in a canonical way how to construct

systems P* and metalanguages LP* suitable to generate exactly any object-language

target LP. Pān
˙
ini’s target was ancient Sanskrit, while Post’s was recursively

enumerable sets of natural numbers; both faced the challenge of devising a finite set

of replacement rules to exactly reproduce various series of potentially infinite

patterns. Post’s key idea, similar to what was exploited by Pān
˙
ini and his

predecessor linguists, is the expansion of the initial symbol set and addition of new

axioms and metarules to control production of the object language. Post showed

Pān
˙
ini’s procedure was a general one, and that rewrite systems have the same

algorithmic power as Turing machines or any other standard computational model.

So it makes perfect mathematical sense that Pān
˙
ini repeatedly exploited the method

of auxiliary symbols, and he probably saw that he could construct any rule he

needed to describe useful grammatical categories, expression forms, or arcane

linguistic constraints. Historically, it’s appropriate to consider Post as rediscovering

and generalizing Pān
˙
ini’s technique in the context of modern mathematical logic

and early modern theories of computation.

It follows that if a grammarian, like our fictive Boas, can define rules using the

method of auxiliary symbols, and apply them in “affixing” patterns gX → Xh, he
can in principle reproduce the expressions defined by any Post production system.

The same holds therefore for Pān
˙
ini’s grammar taken as a paradigm for system

construction, and expressed orally using Sanskrit sounds, stems and roots as its

“formal symbols.” Pān
˙
ini not only created a formalism, he tacitly discovered how to

represent any typical formal system with a finite basis and recursively defined rules.

The remarkable accomplishment of Indian linguistics was to see that the devices

needed to accomplish that could be created via Sanskrit grammaticalization.16

Pān
˙
ini’s grammar shows that formal systems of virtually arbitrary computational or

axiomatic power can be directly constructed from mastered speech. Such artificial

languages, in principle, are a continuation of natural language grammar by its own

means, and their computational power should be understood as extensions of

otherwise typical natural language skills. Hence the oral arithmetic thought

experiment is: add to Pān
˙
ini’s grammar additional rules, in sūtra form if you like,

codifying whatever computations you like, using the Pān
˙
ini-Post method of

auxiliary symbols and rewrite rules, then applying rules in recitation, perhaps as

instructions for dustboard calculations. For the thought experiment, all the basic

computing technology is in place. All that is missing are axioms and rules to

generate target computations of contemporary interest, perhaps codified using

additional sounds to demarcate “proofs,” “computations,” or “number statements”

in the extension L → L´. All that differs from more typical language change is that

16 It was essential that Pān
˙
ini’s artificial langauge extend Sanskrit in a natural way for its use would

otherwise be seen as polluting, or at least vulgar, given the privledged status given language (vac or

bráhman) in Vedic culture. Pān
˙
ini’s grammar was meant to ensure exact oral reproduction across

generations because the linguistic expression itself, when a correct copy of the original, was sacred, the

voices of men speaking the language of gods. But pragmatically, Sanskrit was also intended as an

efficient and accurate means of oral communication across a huge land, and the grammar provided needed

consistency. Hence the grammar is descriptive but was taken as prescriptive for a combination of

metaphysical, pragmatic-communicative, and socio-political reasons (Staal 1995).
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the modifications here are deliberate, reflective, and conscious, none of which

eliminates the intentional skills needed for constructing this computational system;

if anything, just the opposite.

Now, in spite of such a quick route to oral arithmetic, the approach is

unfortunately distanced from numeric representations and the transition to higher

computation. Pān
˙
ini’s target is language, not mathematics, even if his rules can be

contrived to apply to numbers. More useful would be specifics of how a linguistic

number system gets an increase in computational power. As it turns out, such a

bridge also exists between Sanskrit and modern mathematics, via the Indian method

of positional value, their world-historical contribution to all subsequent quantitative

reasoning. True to the standard of oral Sanskrit as the sine qua non for scientific

expression, the Indians developed a spoken system of positional number words. The
conjectured development of these Sanskrit expressions provides an example of

linguistic grammaticalization involving one of history’s most powerful and

ingenious computational devices.

Perhaps as early as 200 BCE, Indians knew the positional principle, either

learned elsewhere or discovered themselves (Datta and Singh 1935). Unusually, the

earliest extant expressions are positional number words, not traditional number

signs, making possible representations of very large numbers in sūtras involving

cosmological theories, astronomical events, or special calendrical values, such as

ritual start days. For example, the number word śara.yama.rasa (“.” to separate

words) is composed of śara (= 5, as in five arrows of Kama, god of love), yama (= 2,

“a pair”) and rasa (= 6, for the six tastes); the value 625 (read right to left) is defined

by the standard positional rule. The symbol set for these decimal representations

consists of large finite set of names for each of 0 → 9 (or 1 → 9 before the zero); e.

g. two can be yama, aśvin (twin sons of the Sun), netra (the eyes), kara (hands),

pakśa (wings), etc. The many options make it easier to create euphonious and

memorable expressions for any represented value, especially large ones: e.g.

agniśūnyāśvivasusarpārn
˙
ava names 488,203 and vasvagniyamāśviśikhidasra names

232,238 (Ifrah 2000, 411). So defined, positional number words are not unique, but

are completely unambiguous. The number words are Sanskrit compounds, perhaps

the central generative form of the language (Williams 1846). Indeed the

compactification achieved by the decimal positional rule—just n linear places

encode 10n values—epitomizes the extreme concision characteristic of Sanskrit

verse. Pān
˙
ini’s grammar, devised before the appearance of positional number words,

can easily be used to define these new compounds, including the use of multiple

names as synonyms, so the multiplicative number words, intended for oral delivery,

are definable in an orally defined formalism. Thus we have a real example of a

significant increase in numeric representation, directly expressible in an oral

formalism whose artificial language is just more natural language.17 Since our focus

17 Positional value can be defined by a schema for concatenated symbols a1…an+1 such as posn: a1…an
+1 = (10 9 a1…an) + an+1. These equations can be defined in formal arithmetics for addition and

multiplication, as can a single master formula Pos(n, S) from which all posn can be derived for a finite

symbol set S. In fact, addition alone (e.g. the complete and decidable formal theory Presburger arithmetic)

is sufficient to individually define each posn, but a formula Pos(n, S) involves general multiplication and

so cannot be defined using addition alone. Simple formalisms including addition and general
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is on just such transitions, we proceed with a linguistic conjecture about how this

new symbolic machinery was devised, and what it achieves.

In 1863 Franz Woepcke, a prolific historian of Arabic and Indian mathematics,

suggested that Sanskrit names for powers could be the means by which simpler non-
positional number words were grammaticalized into positional number words.

Names include padma (109), kharva (1010), nikharva (1011), mahāpadma (1012),
and assorted special names above 1017, such as asaṅkhyeya (10140), meaning

“innumerable.” As with names for 0 → 9, individual powers can have numerous

names. Woepcke noticed that all powers to 1017 were named in Sanskrit. Therefore

for values below 1018, number words could be formed in which there were no

“skipped” powers, as we have in English with millions, billions, trillions (106, 109,
1012) increasing powers by three. Coefficients in English therefore require

multiplicative hybrids, like two-hundred and thirty million. Instead, in Sanskrit,

the consecutive named powers imply coffiecients can be limited to names for

0 → 9, at least below 1018. So a non-positional number word can be formed akin to

9 and 3 daśa and 4 śata and 2 sahasra for 9342 (= 2,439), with and (Sanskrit ca) left
out in the word compound. With many alternative names for powers possible, no

name is essential, and its information is carried exactly by its perceived position in

the number word. Hence the named powers can drop out, leaving the positional

pattern to define higher units. With a last defined unit, say trillions, one is stuck at a

bounded level of polynomial representation using a highest fixed power. The fate of

most non-positional number systems, like the –illions model, is failure to

recursively automate the formation of higher number units, exactly the benefit of

positional grammaticalization.18 The grammar of Sanskrit non-positional number

words, using consecutively named powers combined with many alternatives for

those names, plausibly defines a perceived gestalt of the required symbolic form for

positional value. The new construction automates the otherwise “manual” formation

of consecutively higher powers.

Linguistically, position as a grammatical marker plays some role in perhaps all

languages; even for largely free order Sanskrit, position determines meaning inside
many compounds, so here too the linguistic resource is entirely orthodox. The

motivation to compactify in Sanskrit is paramount, and creative compounding is

ubiquitous; hence positional number words are, in Sanskrit, a natural grammatical

formation. The new pattern requires only ordinary linguistic skills, but motivated by

a mental model of symbolic perception, rather than more typical grammaticalizations

Footnote 17 continued

multiplication are sufficient for universal computation and metasymbolic operations generally, leading to

incompleteness and undecidability results, including the intensional unprovability of consistency (cf. note

4 above). The two formal theory classes, of additive and multiplicative arithmetics, are useful correlates

for the changes L → L´ discussed in the text (Kadvany 2007).
18 The problem of automating number units was expressed by Archimedes in The Sand Reckoner, a tour
de force in which he used a geometrical model to estimate the number of “atoms” in the universe as a
myriad-myriad units of the myriad-myriad-th order of the myriad-myriad-th period, or [(108)10^8]10^8

(Dijksterhuis 1938); a myriad is 104 and a myriad-myriad is 108. Cognitively, positional value, not

discovered by Archimedes or other Greek mathematical giants, is a principal means by which algorithms

using multiplication and exponentiation are easily formed, as described by Fowler in note 25 below. On

“automation” as a product of grammaticalization see (Bybee 2003).
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of time, possession, evidence, physical pattern, or other non-symbolic notions. Most

unusual in the positional grammaticalization is the use of symbolic position as a

numeric parameter—the first, second, etc. place—in the formation rule to create

higher units, perhaps a unique example of that among the world’s languages. In the

terminology of modern linguistics, the named powers are perceived as grammatical

“slots” which could be filled by any name appropriate for that position, with the

generalizing linguistic construction being added to the user’s mental lexicon.19 Sapir

says that all grammars leak, which here means the opportunity to reinterpret non-

positional patterns and eliminate their redundancy. Of course, it is likely that

positional value was known through writing, and the number words are what remain

of that low status medium in Vedic culture.20 Woepcke’s proposed grammatical-

ization may be mostly hypothetical and unrepresentative of the ultimate positional

source. But whether the positional concept originated directly in Sanskrit doesn’t

matter greatly for us. Positional number words are fully consistent with Sanskrit

grammar overall, especially given the hegemony of Pān
˙
ini’s rules, the “predicate

logic” of its day. Pān
˙
ini models compounds in detail, and the hypercompact number

words are just further excellent examples of a preferred linguistic paradigm

motivated by legitimate communicative needs for efficiency and precision in the oral

register.

The positional number words, along with Pān
˙
ini’s computing language, provide

means for carrying out the oral arithmetic thought experiment in numeric terms:

define numbers via positional number words, including synonyms, and then add

arithmetical axioms for + and 9 , or equivalent rules as desired. It’s as if one could

speak using an abacus and a programming language. The Sanskrit number words

show that the typically additive relations expressed in natural language, in which

multiplications are possible but bounded by largest named units, can be extended to

an unbounded multiplicative form using natural language grammar and intentional

skills needed to formulate the positional rule through a cognitive model of symbolic

form applied to an existing language and its use. The positional grammaticalization

varies from Pān
˙
ini’s auxiliary symbols, which are added to Sanskrit as new affixes

obeying case-like rules. Instead, redundant slots become functional place-holders

identified by counting across symbol locations. As mentioned, this positional count

is a variable parameter of the grammatical rule which bootstraps simpler additive

arithmetic into multiplicative position. While insufficient for universal computation

—for that one needs + and 9 in full generality and hence some axioms and logical

rules—the step is a neat transition from a weaker recursive linguistic pattern to a

stronger mathematical one. The positional number words approximate, but do not

quite define, full multiplication. Nonetheless, Pān
˙
ini’s methods and the positional

number words illustrate how an oral arithmetic can be grammaticalized from

ordinary speech, using almost entirely historical data. All that is needed are axioms,

19 See (Jackendoff 2002) on the generative power of grammatical constructions making limited

assumptions about syntactic structure; hence construction grammar does not imply “non-generative.”
20 See (Goody 1987, chap. 4) on the likely role of writing in the design of Pān

˙
ini’s complex matrix of

phonemes, the Śivasūtras, and many other observations on the difficulties of expressing formal concepts

(lists, tables, multiplication) in oral cultures. For other indicators of written influences on Pān
˙
ini see

(Datta and Singh 1935, I 18, 33).
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easily represented in Pān
˙
ini’s grammar, to enumerate all proofs, all computations,

all digits of pi, all sentences or phrases of a certain type. That final step is a truly

modern one, understood only in the 20th century, in which a potentially infinite set is

generated by execution of a single master rule, such as an enumerating universal

Turing machine. Except for that, all details relevant the thought experiment of oral

arithmetic are grounded in ancient Indian linguistics and mathematics.21

To summarize, we have:

a. Pān
˙
ini grammar as a fully formal, but oral grammar, grammaticalized from

Sanskrit via new affixing rules;

b. A simple hypothetical extension of Pān
˙
ini grammar to “oral arithmetic”

sufficient for universal computation;

c. Sanskrit positional number word compounds grammaticalized from non-

positional number words, the latter being found or easily formed in many

languages.

Pieces (a) and (b) give us oral arithmetic directly, but lack a more organic

connection to historical mathematics; yet it’s still all just grammaticalization

through Pān
˙
ini’s affixing technique. With (c), the construction is more direct

between number and language, and could be directly coded in (a) or (b), even in

ancient times; but positional notation alone, while multiplicative, is not equivalent

to general multiplication and so falls short of universal computation. So, while not

completely necessary, the “best” oral arithmetic can combine elements from all of

(a–c). The ensemble provides a robust idea of oral arithmetic constructed from

natural language resources via grammaticalization and the intentional skills making

such processes possible, primarily reflection on language structure itself.
As marvelous as Indian linguistics and mathematics are, they are here only means

to our next goal of identifying the intentional skills needed for modern computation.

Computation as Representational Redescription

In oral arithmetic, increased computational power comes about via grammatical-

ization, either via Pān
˙
ini’s affixes and categorical constructions, or the

generalization of the positional number word rule, or some combination of both.

However achieved, the increase in precision and computing power depends on the

intentional recognition of symbolic form, including the decomposition and

redescription of mastered language or numeric representations into new patterns.

This capacity to manipulate symbolic patterns so well is an expression of fully

21 The bridges existing today between mathematics, generative linguistics, and computation did not quite

exist for Indian linguistics and mathematics, even as each exploited aspects of algorithmic method unified

in the twentieth century. In India, linguists used powerful algorithmic formalisms, but applied to

language, not mathematical algorithms; the formalisms were not needed by mathematicians, who

nonetheless made algorithmic design a key heuristic tool and method of expression, as opposed to proof

structure. Shared features of linguistics and mathematics included the use of Sanskrit sūtras to describe

algorithms or linguistic rules; and Sanskrit number words to codify positional notation using compounds

ratified, in turn, by Pān
˙
ini’s linguistic rules.
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“triadic,” or “mindreading,” cognitive skills, argued by some to be fundamental for

language acquisition, some types of social interaction, and most importantly, the

production and comprehension of communicative intentions via symbolic behav-

ior.22 “Triadic” refers to the coordination and sharing of intentions—that’s at least

“two” or a dyad—to use a “third” symbol or symbolic pattern, simply to refer, or to

achieve general communicative goals. Mindreading, put simply, refers to facility in

processing triadic representations, ranging from the simplest types of symbolic

reference to complicated communicative intentions involving deception or irony.

In our context, the triadic nexus of signs and intentions involves alternative

semantical valuations, like “the 1 in 105 is one hundred, but ten in 510,” similar to

now well-worn false belief assessments like “Sally thinks the box has a candy in it,

but she is wrong because I saw someone take it away.” Such processing involves not

just mapping between symbols and world, but comparisons of multiple represen-

tations against some standard: Sally’s prior beliefs, the observer’s belief of what

Sally missed and her current goal, and knowledge of the candy box itself. Similarly,

composite number symbols require multiple identifications of constituent signs and

their positions, and combining these in a calculation leading to the intended value.

Many simple arithmetical tasks, including the use of positional value, involve

metalinguistic descriptions—symbol, list, positions, start, end—which also rely on

mindreading skills to coordinate symbol usage, especially regarding the production

of a potential infinity of expressions. More generally, mindreading skills are

essential to artificial language construction because they make possible represen-
tational redescriptions (Karmiloff-Smith 1992) of one language pattern into

another, transformations L → L´ as put above. These changing symbolic patterns

are objective indicators of underlying intentional capabilities, whose reflective

complexity enables increases in computing power, much as occurs with positional

grammaticalization.

Representational redescription first includes mastery of some existing symbolic

form, like non-positional notations, or some given level of language structure. In

contrast to basic competence, in which representations are manipulated holistically

—like use of a tourist dictionary—mastery means that perceived forms can be

conceptualized in terms of component “parts”—starts, ends, repeated patterns,

coefficients, positions—and these parts can then be interpreted in alternative roles,

much like Sally’s beliefs. Second is the redescription of such symbolic parts and

functional roles, when possible, into a new format for accomplishing some

representational, communicative, or for us, computational, goal, achieved by

repackaging the decomposed parts into a new symbolic form: a new word ending or

inflection, a role for word order, an arithmetic manipulation, heuristics for

interpreting jokes or irony.

In childhood language acquisition, representational redescription occurs through

overlapping mastery of phonemic inventories, morphemes, phrases and discourse

styles. Or, for Pān
˙
ini, ordinary Sanskrit is first sufficiently mastered, and after that it

22 See note 7 above, as well as (Baron-Cohen 1997) on mindreading and triadic representation. With

others, Baron-Cohen considers the inability to process triadic representations a critical factor in some

forms of autism, an important observable correlate of the cognitive abstractions.
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can be perceived as made up of words, word parts, syllables, and sound forms, along

with all kinds of regular and irregular structure. Such learning processes depend on

the child, or linguist, encountering a world in which languages already exist. For

numeric invention or learning, the prerequisite forms include computationally weak

arithmetic symbolism, itself a product of earlier historical development. In the case

of language change, social groups respond to existing languages to which they are

exposed, but responses are far slower than in language acquisition and with different

types of behaviors. Thus representational redescription is a spectrum phenomenon,

involving individual and social learning, and different kinds of symbolic change.

These changes vary in their associated level of conscious awareness, with arithmetic

and linguistic innovation requiring the most explicit expressions of the change to

occur. As a final illustration germane to computation, pretend play of children

“involves the violation of veridical description of reality as well as the manipulation

of explicit representations of agents, primary features of play objects, and decoupled

representations of those objects in their pretend roles.”23 A block of wood can be a

train or telephone, taken as a symbol, and then becomes again a material thing.

However this information is stored internally, the child develops powerful skills at

flexibly manipulating and coordinating distinct types of representations. Mindread-

ing in this context reflects the ordinary ways in which children become successful

semioticians, expressed through abilities to understand false beliefs, compare facial

expressions to emotions, guess at others’ attentive perceptions or states of mind,

grasp counterfactuals, and understand concepts of appearance versus reality. The

skill can be rapid, repetitive, and intricately coordinated with perceptual input and

behavioral responses.

The construction of artificial languages applies just such generalized mindreading

capabilities as semiotic skill. The setting is that of human computers, their perceived

languages, and associated intentions regarding arithmetical tasks and symbolic

manipulation. In the case of positional value, the relevant intentions involve shared

perspectives on the physical symbol in terms of places, how to count them, and the

process of forming higher number units. The function of positional rules is to

efficiently automate the formation of number units, otherwise carried out one-by-

one as a replicable piece of symbolic manipulation; that’s the redescribed pattern of

the mastered ability. A cognitive model of position gets applied to the once holistic

symbol pattern, now perceived as made up of constituent digit-signs taken as either

used or mentioned as needed. Neither logic nor biology implies this step has to be

possible for us, even given weaker but still substantial computational skills typically

afforded by natural languages and additive arithmetic. The innovation comes about

by directing intentional skills to language itself. Without that change, enacted by

reflection on symbol usage, there’s no obvious way that facile counting skills, even

basic multiplication and arithmetic, are humanly possible.24

23 (Karmiloff-Smith 1992: 132). See also (Leslie 1987, 1994) on pretend play and symbolic decoupling.

As with Baron-Cohen (note 22), Leslie’s modularist framework is not critical for many basic

observations.
24 Chomsky made Wilhelm von Humboldt the first hero of the linguistic infinite (Chomsky 1965, v). But

Johann von Herder was as visionary about the mind as Humboldt was about language, speculating that

language is the product of what we today identify as reflective intentional capacities (von Herder 1772,
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From this perspective, written numerals provide the stability and intersubjective

reliability needed to establish mastery and for representational redescription to

occur at all, either through grammaticalization or its relatives. Mindreading is

grounded in the attention-shifting abilities needed to associate symbol with objects,

behaviors, and other symbols (Baron-Cohen 1997; Tomasello 1999). With

inscription, one can literally point to a digit, count its place by hand, erase it,

replace it, copy it, move it, compare examples side-by-side. Vision makes it possible

for stable spatial features of inscribed symbols—physical linear order, symbol

concatenation, duplication, decomposition, and rearrangement—to be used in

counting procedures, thereby allowing the expansion of number language and the

construction of more powerful computations. To compute effectively, we need new

language, like positional notation or a programming language, to express and

coordinate computing goals.25 Inscription not only makes symbol formation easier

to describe, the descriptions can be taken as applying to the inscribed signs

themselves. Thus is created a remarkable illusion of formal self-sufficiency and

autonomy. In this way, core cognitive capabilities make possible considerable

computational sophistication, requiring no platonic entities or other special

explanations so often appearing in the philosophy of mathematics. Symbolic

language itself becomes a source of metaphors for bootstrapping arithmetical skills,

primarily through improved means of metalinguistic expression and interpretation.

As often with metaphorical transfer, a concrete domain is used to create abstract

meaning, here involving the perception of language itself, rather than the human

body, features of objects, or salient experience (Deutscher 2005, chap. 4). Modern

computation is as human as language and symbol usage itself, being a biologically

grounded and historically evolved technology of mind and behavior.

Let’s now summarize the various roles played by intentionality, symbolic

perception and cognitive models in computation by an extended Church-Turing
thesis. The ordinary Church-Turing thesis says, roughly, that all informally

effectively computable functions are represented by formalized Turing machine

definitions, or by any numerous equivalent definitions: Church’s lambda-calculus,

Post production systems, programming languages such as Fortran, Cobol, Java or C,

transformational or phrase structure grammars, first-order predicate logic, many

axiomatized arithmetical theories, and of course many oral arithmetics. All those

equivalencies are evidence that a generic concept of effective procedure has been

identified, along with the fact that no informally computable function has ever been

Footnote 24 continued

esp. 86–87). Intentionality does not start with Franz Brentano or Edmund Husserl, but has a longer history

associated directly with the linked philosophies of language and mind (Aarsleff 1982).
25 David Fowler writes of Simon Stevin’s 1585 introduction to positional notation De Thiende (“The
Tenth”) that “Decimal fractions gave a new fluency to arithmetic which permitted, perhaps for the first time

[sic: in Europe] the feelings that all such calculations could now be taken for granted, and this paved theway
to the next stage, their abstraction into symbolic algebra…the people who contribued to theis development

—principally Stevin himself, Viète, andHarriot—were themselves calculators…This confidence in decimal
arithmetic still lies, I believe, behind our basic intuitions, even today, underlying the real numbers, even

though it is a delusion…” (Fowler 1999, 406; emphasis added). By “delusion” Folwermeans that generating

decimal expansions for answers to simple arithmetic operations can be very complicated, e.g. because of

very slow convergence, such as occurs in many power series expansions for pi.
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found that is not representable by these formalisms. But as discussed, the formation

of oral arithmetic, as a grammaticalized extension of a natural language, requires

special intentional skills to create the necessary representational redescriptions. So

the extended Church-Turing thesis is: intentionality plays similar roles, and is

needed in commensurate ways, no matter what media is used to express a formal

system. The use of speech as a model in oral arithmetic means that intentionality

doesn’t disappear through inscription or alternate media, it just becomes more

automated and regimented through textual and visual registers. Computation relies

on the same processes needed for language use, especially language change, just

realized through writing or similarly stable media to overcome memory and

perceptual constraints. Intentionality plays similar roles in computation even as

different media make intentional skills easier to apply. Computational complexity

then increases in tandem with intended goals of enumeration, problem solutions, or

provability. The extended Church-Turing thesis means that computation never

completely eliminates the intentional requirements of these accomplishments, even

as they become more efficiently codified and independent of any single user.

“Merely formal” symbolic processing never entirely eliminates human intention-

ality, just as a child covering himself with a blanket can only pretend to disappear

from view.26

The next section concludes with a foundational perspective motivated by the role

of writing in grammar-like pattern formation.

Grammaticalization in Script

We can tether the oral arithmetic thought experiment to reality through two

historical observations about computation and inscription. The first involves

positional grammaticalization in writing rather than speech, and hence the validity

of a representational redescription model. The second, appealing to the same

historical setting, involves the role inscription plays in enabling our conceptual-

ization of discrete symbol systems, and hence modern computation, at all.

About two thousand years before the Indians, sometime around 2000 BCE,

Babylonian scribal accountants developed a sexagesimal positional system

combining base 60 and base 10. For example, 46 would be expressed by additively

26 Wilfried Sieg and Saul Kripke have argued that the Church-Turing thesis can be deduced as a theorem
from axioms for relevant combinatorial relations intended to represent what they take to be machine,

rather than human, computations. The Church-Turing thesis, they argue, therefore does not have to be

conceived as an informal thought-experiment about human computers as devised by Turing (Sieg 2008;

Kripke 2000). But such theorems rely on axiom systems which are further computational idioms,

expressed in artificial languages requiring apparatus for their construction as discussed in the text. Frege

also overreached with his wholesale rejection of “psychologism” in mathematics (Frege 1884), though of

course he lacked a modern view of how languages, including his own artificial language for predicate

logic, rely on specialized cognitive and symbolic skills. John Searle has pointed out the intentional role in

computation generally (Searle 1992, chap. 9), also arguing that any process can be identified as

“computation” by intentional fiat, an observation he takes as superceding his older “Chinese Room”

thought-experiment meant to demonstrate the intrinsically intentional status of language use. The text

supports those views by emphasizing the particular symbolic skills used in the formation and use of

artificial languages.
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combining cuneiform marks for units of 1 (“O”) and another for units of 10 (“T”),
as cuneiform TTTTOOOOOO. Larger numbers would use powers of 60, such as

1,000,000 = 4 9 604 + 37 9 603 + 46 9 601 + 40, reduced to symbols for 4; 37;
46; 40, representing the number calculation via “coefficients” applied to powers of

60 marked by position. For centuries there was no zero, with unused powers left

unmarked, or “skipped” by a blank, with the correct total determined by scribal

context. Sexagesimal fractions for 1/60, 1/602, … use the same notation as for 60,

602,…, with a “floating point” scale governed by accounting conventions for

recording inventories or estimating quantities of food production, land, worker

rations, and many other economic inputs and outputs. Positional notation was first

devised to facilitate common calculations, say calculating the labor to build a wall

as wall volume 9 bricks per unit volume 9 man-hours per brick. These calculations
are inherently multiplicative because of the ubiquitous dimensioned units, rates, and

other quantities. With cuneiform tables of constants available for typical tasks—

bricks per wall volume, man-hours per bricks laid, slaves per unit field, etc.—

multiplicative positional notation facilitated calculations through a cobweb of

qualitative categories. The notation was also compact enough for clay tablet

inscription at relatively high levels of precision, using layouts facilitating row and

column sums, and visual identification of maxima, minima, or simple trends

(Robson 2003).

Now, the model for Sanskrit number words was that positional value, as a

multiplicative rule, was a slot-like abstraction of non- but neo-positional number

words approximating the positional schema. Given that, what occurred with

Babylonian script as opposed to Indian speech? The answer follows by identifying

conditions for representational redescription, particularly mastery of an earlier

idiom and cognitive motivations for its efficient reformulation.

Starting in the early third millennium, various non-positional systems were used

to count quantities or objects of different types. There were special numeric signs,

and counting or measurement conventions using different units, such as ones

dedicated to calendar time; grain and cereal products; volumes of beer; dairy and

milk products; worker rations; animals; implements of various types; and land areas.

A typical counting system consisted of a starting unit and a finite number of

multiples, each with a designated symbol: e.g. a single accounting “day” would

have its sign, then this unit is counted in a “week” of 10, then three “weeks” made

up 1 “month,” and 12 months a “year.” Across different administrative domains,

like farming, construction, or food production, different multipliers defined higher

units. So 1 9 10 9 6 9 3 9 10 9 6 could define a sequence of area units; then

1 9 5 9 6 9 10 9 3 9 10 9 6 for some grains; 1 9 5 9 2 for dairy products; and so

on. These “metrological” systems only counted numbers of fish or volumes of beer,
with a number count coupled to the measured item, and, as typical for a non-

positional system, the highest number units fixed. There were also generic counting

numbers having no definitive qualitative associations. One such system was

sexagesimal with multipliers 1/2 (or 1/10) 9 1 9 10 9 6 9 10 9 6 9 10; the counts

therefore were 1/2; 1; 10; 60; 600; 3600; 36000. Higher powers of 60, like 603 and

604 also came into use, and likewise their fractional counterparts. The powers of 60

eventually were used, as in India, to form non- but neo-positional number symbols,
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probably the predecessor notations for the positional rule. By the end of the third

millennium, experienced scribes and their many students dealt with multiple

metrological systems, varying sequences of multiplicative factors, generic sexa-

gesimal counting systems, and estimation or inventory tasks involving repeated

multiplications across dimensioned units. Generic sexagesimal values, without

qualitative categories, were initially used to translate between metrological systems,

but at some time, probably stimulated by administrative dictate, it was seen that

position could stand for higher number units with respect to any counting or

estimation task.27

Cognitively speaking, this rich practical environment of multiplicative con-

structs, homologous or competing number systems, and the behavioral skills to

master and innovate with them, created the constructive basis for the positional

innovation. The Babylonians’ grammatical-like abstraction occurs in script rather

than speech, and its overdetermined symbolic basis is a loosely organized collection

of partially consistent, sometimes transient, systems requiring constant intertrans-

lation. There is no single redundant format awaiting simplification, and the

representational redescription differs considerably from that for Sanskrit number

words. But if anything, the contrasts confirm the grammaticalization model. New

sexagesimal unit formation occurs through variable position “slots” in Babylonian

script, the graphic analogue of recursive compounding or affixation in speech.

Cuneiform writing accelerates and facilitates symbolic accomplishments similar to

those appearing in speech. According to the extended Church-Turing thesis, the

intentional requirements are comparable. That completes the first observation, but

we continue with its prior history.

This process of abstracting inscribed numbers also has a dramatically important

precedent. The earliest number systems found in Mesopotamia counted objects, or

measured amounts, for a fixed category, such as “5 goats,” but no free “5” applying

to other objects, like fish, bricks, or workers. The earliest counting “tokens” were

three-dimensional clay shapes, such as small cones or cylinders, marked and/or

sized to count some number of particular items, akin to the conjunction of number

and category appearing in the later metrological systems. Use of number tokens was

widespread in the Middle East for several millennia before the advent of writing

around the early fourth millennium. Denise Schmandt-Besserat (1992) has argued

that this numeric technology is the basis for the first writing, meaning surface

inscription coordinated with general speech rather than counting. The number

tokens underwent their own evolution, probably via clay envelopes, or “bullae,”

used for contracts. A sealed envelope would contain multiple tokens, say for

numbers of fish promised and goats received. To communicate the contractual

information without breaking the seal (meant to prevent falsification), the envelopes

came to be marked on the outside surface with signs representing the tokens inside.

This redundant system, it’s further conjectured, led to the recognition that a marked

surface, initially the envelope exterior, using an inscribed icon, provided the same

27 Powell (1976) describes pre-Babylonian number words using multiplicative units like named powers

of ten in India. On the evolution of numbers, cuneiform signs, and positional notation see (Høyrup 1994;

Nissen et al. 1993). On measurement and multiplicative units see (Krantz et al. 1971, Ch. 10).
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information as the original tokens, and that the inscriptions could be seen and used

as independent symbols. Subsequently these new counters were replaced by

separate number signs which could freely combine with signs for grain, workers,

and so forth. These are the earliest “pure” numbers, created as yet another

representational redescription involving multiple media and cross-referenced sign

systems, and anticipating the problems of “coupled” units in much later and more

complicated metrological systems. For Schmandt-Besserat, the earlier separation of

number and category was the birth of pictographic writing to communicate

generally, because the “category” half of, say, a fused number sign “5 goats” could

be taken as “goats.” The writing concept is implied by a conceptual model which

allows either the number or category term to be treated as a variable “slot”, such as

__ goats or 5 __or __ __, hence involving similar intentional processes occurring in

grammatical constructions.

Whether this symbolic evolution is the first instance of writing or not, these early

inscriptions and number formations rely on the powerful decoupling skills we apply

to symbol formation in diverse media.28 Later still, in Mesopotamia, the Middle

East, and around the Mediterranean, elemental pictographs were taken as sounds,

like a picture of an eye taken as the sound for “I”, thereby allowing inscription to

become a simple model for speech. After that first “rebus”-style writing, pictures

were discarded by some as irrelevant, and icons radically evolved into streamlined

graphic stereotypes directly representing syllabic speech, thus taking speech

modeling a step further. Then later, syllabic sounds were analyzed into individual

phonemes using alphabetic renderings composed of consonant, or consonant and

vowel, signs. Sometimes considered a culmination of alphabetic technology, the

Greek alphabet probably arose because Greek needed vowels to differentiate words

(like bed vs. bad), while Semitic languages used vowels only for inflections and

lexical information carried completely by consonants: so in Arabic ktb/write can

inflect as katab/he wrote or katabi/I wrote. Perhaps because it was easier to leave

vowels unmarked, and determine them by context, some Semitic writing systems

did not use them. But in being transferred to Greek, too many words could not be

modeled, so an alphabetic system using consonants and vowels, much like ones

used today, was devised to make vowels easier to handle in the target language. The

procession of writing systems in the ancient world are historic examples of

cognitive technologies created through culturally transmitted and refined represen-

tational redescription. And begun, apparently, with number tokens and their “fused”

conceptual elements.

All this confirms the roles of cognitive models of symbolic form and

representational redescription in arithmetic, whether inscribed or not. But a new

twist has appeared too. Historical writing systems are devised via some linguistic

model, created through the design of the system itself, such as needed to perceive

whole words, or syllables, or phonemes, or some combination of these, while

28 “The ‘great invention’ [of writing] was almost certainly the prehistoric move from a token-iterative to

an ‘emblem-slotting’ [a generic number sign combined with a separate category] for recording numerical

information…Slotting is a structural technique we now regard as intrinsic to language; and nowhere more

typically than in the way languages deal with counting.” (Harris 1986, 145). On slotting see also

(Tomasello 2003, 122–126).
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ignoring, e.g., intonation, stress, melodic contours, or communicative intent (Olson

1994; Coulmas 2003). By such modeling, inscribed signs catalyze relevant memory,

and that success motivates us to see language in terms of whole word meanings,

syllabic parts, morphemes or phonemes. The writing system induces theory-laden

perceptions of the language to which it is applied, making it in turn amenable to

representation in script. In the case of the Greeks, for example, they saw that

Phoenician script was a poor model for Greek, so they added a set of vowels

separated from the consonants to make it work. But the new linguistic model still

leaves out many features of speech, and has no representation independently of the

new Greek alphabet. Consequently writing systems create a fuzzy, many-many

relationship between speech and text. Therefore it cannot be prima facie assumed

that the implicit linguistic models, however useful, are just copies of speech, or vice

versa. Writing systems rely for their use on our taking a certain view of language,

and once internalized, it is difficult not to experience those somewhat magical

effects.

Modern mathematics and logic take for granted these unusual powers afforded by

writing whenever a “foundation” assumes notions such as discrete symbols, lists of

symbols, their concatenation and organization into functional categories, and strict

rules automating the production of useful, and typically potentially infinite, sets of

proofs, theorems, or other computations. We freely assume that a formal system can

be realized in any media we like, and the nature of mathematical abstraction means

there’s nothing special about writing. But it is difficult to provide examples of

formalisms which don’t rely on the concrete, and especially spatial, expression of

writing to define formal, computational, or logical concepts.

Hence it is tempting to think of natural language and its allied usage skills as a

new computational foundation. As shown, we rely on similar intentional capabilities

for much modern arithmetic and mathematics. The oral arithmetic thought

experiment gets us constructively from natural language, conceived in terms of

discrete phonemes, stems, and roots, through a natural object-language, to artificial

metalanguages sufficient for generative grammar and universal computation. From

this perspective, phonemes are the paradigm of a discrete symbol as assumed for

mathematics; they define a physio-mechanical isomorphism, or duality, between the

phonetic sound form and a phonemic function as differentiating symbol. Certainly

modern mathematics takes such entities for granted, like physical points, lines, or

surfaces in geometry.29 The linguistic principle of duality of patterning (or “double

articulation”) is that phonemes are jointly “mere marks”—reductively defined via

matrices of distinctive features characterizing the flow of air through the vocal

apparatus—and functional signs. They are physical events serving as symbolic

atoms: e.g. the /s / in cats is both “just” a sound and a marker of plural function; or

/g / and /d / are “just” sounds but differentiate god from dog. Duality of patterning is

the naturalized counterpart to an unstated principle, ubiquitous in axiomatic and

computing thought, for creating useful symbolic forms nearly at will.

Unfortunately for this line of thought, duality of patterning, as a formal and

mathematical working assumption, cannot be discharged via natural language. The

29 See note 12 above and text.
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reason is that phonemes, as discrete forms, have generally not been found to have a

physical basis (Crystal 1987, 145). In speech, phonemes are constantly under

adjustment, conforming to requirements of adjacent sounds, making speech a quasi-

parallel and continuous process through which we unconsciously optimize, for

example, tongue position or needed breath for the upcoming sound. So much so

that, as put by Steven Pinker, boundaries between words, which would apparently

be identifiable through a phoneme’s distinctive features, are effectively “halluci-

nated.” Word and phonemic boundaries are generally imposed as a perceptual

gestalt on an otherwise continuous speech stream, a product of our considerable

powers of categorical perception (Pinker 1994, 159). The foundational role of

discrete symbols, if appealing to phonemes, abruptly returns us to their perception.30

And as far as we can describe those perceptions in discrete terms, we rely on models

motivated by descriptions enabled by writing systems, as just mentioned. If we

assume some discrete starting point, as in computation and logic, and as was done

by Pān
˙
ini, and after him many modern linguists, then we can construct computation

using only natural language and intentional skills as described through the oral

arithmetic thought experiment. But that “inductive basis” for a thoroughly

naturalized understanding of where computation and much of modern mathematics

comes from, itself has a dual nature combining form and function, as do higher-

order syntactical constructions.31 Thus the probable hypothesis that Pān
˙
ini’s

fabulous oral grammar itself has a written foundation through its discrete phoneme

set, the Śivasūtras (Goody 1987, chap. 4), here is exposed as a deep and remarkably

successful assumption for artificial language creation. In this way, mathematics

relies on a folk model of symbols and language, much as pre-relativistic physics

assumed a Newtonian commonsense framework of absolute space and time.

Does this matter for mathematics? Script facilitates virtual platonism, meaning

the useful and reproducible illusion that number concepts and systems are

independent of their historical origins and their reliance on intentional skills.

Virtual platonism, not real platonism, is all that is needed for mathematics and

symbolic computation. Arthur C. Clarke, late creator of 2001: A Space Odyssey,
wrote that “any sufficiently advanced technology is indistinguishable from magic.”

Which means there is no magic, just human skills and products so intricately

assembled and deployed to create the perfect illusions of symbolic algorithms: first

by Babylonian scribes, then Indian grammarians and mathematicians, and now

modern mathematicians, logicians, computer scientists, and linguists. Inscription

combined with symbolic intentionality together make it possible for us to bootstrap

the most elementary counting procedures, starting with notched sticks and a few

number words, into advanced computations of all kinds.

But that exquisite construction depends on a sleight-of-hand. With an inscribed

alphabet used to model speech, we can separate what is seen from what is heard, and

discern the differences between source and target. But with number symbols the

30 Stimulated by Donald Knuth’s TeX typesetting language, (Hofstader 1985) argues that no fundamental

criteria characterize variations across all font designs, say for the letter “a”. Thus graphemes are not better

defined than phonemes (Coulmas 2003, 204).
31 See (Jakobson 1990, 240) on this synthetic duality in phonemes, and (Tomasello 2003, chap. 5) and

references there on similar form-function dependencies in syntactical analysis.
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situation changes. For counting, inscription naturally becomes its own model. The

idealized characteristics we give to writing, enabling a logic of symbols, are taken

up without fanfare into the idea of a discrete formal system. Then we turn around

and use inscription as an intended realization, as in written proofs or computations.

That is how a mathematical idealization relies on a folk model of inscribed signs.

The situation is analogous to estimating parameters using the very dataset to be

forecast. Metamathematical thought is possible because mathematics and compu-

tation are so thoroughly metamathematical to begin with, just as writing systems are

metalinguistic. To be sure, it’s all pragmatically useful, but symbolic logic, in a root

sense, relies on this blur of hands as viewed by a willful audience of symbol users.

Mathematical language, thought of as formalized symbol processing, stands to itself
in the same way that alphabets and other inscription systems stand to natural

language. It is its own double.

As put by Ferdinand de Saussure—actually perhaps a student at Saussure’s

course in general linguistics, an irony of speech recorded as text if there ever was

one— “Language can also be compared to a sheet of paper: thought is the front and

sound the back; we cannot cut one side without also cutting the other. So also in

language, sound cannot be isolated from thought, or thought from sound”(Saussure

1915, 111). Computation similarly is a many-sided symbolic technology of mind,

media, and behavior. Its sheets, as we choose to find them, are sided with material

inscriptions and sounds; discrete symbols and symbolic patterns of many kinds;

calculations, computations and proofs; and descriptions of all these, their changes,

and transformations. On these pages are found the numbers and calculations of

modern mathematics and computation.
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