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In this paper, I argue that social science and genomics can be integrated; however, the
way this marriage is currently occurring rests on spurious methods and assumptions
and, as a result, will yield few lasting insights. However, recent advances in both
econometrics and in developmental genomics provide scientists with a novel opportu-
nity to understand how genes and environment interact to produce social outcomes.
Key to any causal inference about the interplay between genes and social environment
is that either genotype be exogenously manipulated (i.e. through sibling fixed effects)
while environmental conditions are held constant, and/or that environmental variation
is exogenous in nature, i.e. experimental or arising from a natural experiment of sorts.
Further, initial allele selection should be motivated by findings from genetic
experiments in model animal studies linked to orthologous human genes.  Likewise,
genetic associations found in human population studies should then be tested through
knock-out and over-expression studies in model organisms.

Introduction

Studying genetic-environmental (GE) interactions has long been a goal of social scientists
fond of stressing the dependence of genetic expression on social structure. However, how do
we get from the adage that “a gene for aggression lands you in prison if you’re from the
ghetto, but in the boardroom if you’re to the manor born” to a serious empirical research pro-
gram on the study of GE interactions? Even if we are only interested in “pure” environmen-
tal or genetic effects, how does one deal empirically with the fact that environmental
conditions may affect gene expression and that genes may influence environments? This
article will address best practices for integrating genetic markers into social science research
with a particular emphasis on what social scientists can draw from existing genetic models in
non-human organisms and on what biologists can learn from social scientists.

Gene markers in nationally representative social surveys can be deployed for at least
three important uses: assessing the direct impact of specific genetic influences on socio-
economic and behavioral outcomes; modeling genetic-environmental interactions; and
tracing genealogies across time and space. In this article, I will address only the first two
issues given that the last is a topic that has been thoroughly addressed by the human genet-
ics literature elsewhere (for an example using Icelandic data, please see Price et al. 2009).
I conclude the article with a discussion of some of the data quality and sensitivity concerns
that surround DNA collection and analysis. Further, it is important to note that because
this article is being written for a social scientific audience primarily, I will focus on
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explanations of genetics at the expense of survey or sampling methodology. However, the
flow of knowledge across these disciplines should not be one-way. As we shall see, coming
out of a medical science tradition of case-control studies on small samples, human geneti-
cists have generally paid insufficient attention to issues of sampling, measurement of behav-
ioral outcomes, and survey design. The findings from human geneticists would be
strengthened if adequate attention were paid to the expertise developed by in survey method-
ology that has been developed in the social sciences as well as the techniques of inference
from observational data pioneered most notably by applied econometricians. Though the
current article will not go into depth regarding sampling and survey design, I will discuss
econometric techniques as they can be applied to genomic data, which should be of utility to
those in the biological sciences doing observational studies (as opposed to experiments).

Recently there has been intense interest in collecting biomarkers, in general, and
genetic data in particular, among social scientists—particularly those conducting panel
studies. Within the United States, the National Longitudinal Survey of Adolescent Health
(Add Health) has been a pioneer in the collection of biological data, including DNA markers
from a sample of monozygotic and dizygotic twins. Add Health has collected markers that
indicate zygosity as well as information on alleles for seven putatively important genes,
six on autosomal chromosomes (ones for which each individual has two copies) and one
marker on the X-chromosome. Investigators associated with the study plan to expand this
number greatly in future waves. In 2006, along with other biomarkers such as levels of
high-density lipoprotein cholesterol in blood, the Health and Retirement Survey began
collecting saliva samples to extract DNA for sequencing and analysis. The Wisconsin
Longitudinal Survey is also collecting DNA samples, and the Panel Study of Income
Dynamics (PSID) is considering adding such a module as well. This last possibility is par-
ticularly promising because none of the earlier studies have the degree of intergeneration-
ality of the PSID, nor are they nationally representative samples of the entire adult
population across the age spectrum. In many ways, the United States is a laggard in col-
lecting such data—possibly due to the increased salience of privacy concerns as compared
to other societies. Iceland’s Decode project has DNA data on almost the entire citizen pop-
ulation. The United Kingdom has launched an ambitious study that will attempt to collect
genetic data on 500,000 respondents. And the Scandinavian countries already have
genetic samples that can be linked to rich administrative datasets.

Genetic Effects on Behavior

For a long time, modeling the effect of genes on social outcomes among human populations
was the province of behavioral geneticists who relied on adoption and twin studies as indi-
cators of unmeasured genetic background. These methods often rested on a number of crit-
ical assumptions that have been challenged elsewhere (see, e.g., Goldberger 1979). More
recently, genetic markers on specific loci—such as single-nucleotide polymorphisms
(SNPs)—have seemed to offer hope for those interested in an explicit research program
aimed at specifying and measuring gene-specific effects for complex traits such as behav-
ioral phenotypes (what geneticists call quantitative traits). Polymorphisms are genetic vari-
ants that occur in at least 1 percent of the population. They could include base-pair
substitutions that may affect the amino acid produced out of that codon if the polymor-
phism is in an open reading frame (ORF) of a gene (i.e., the protein-related coding region)
and is nonsynonymous; they may truncate the protein by causing the transcription machin-
ery to stop there (by producing a stop codon); or they may do nothing (what are called
silent or synonymous mutations) because multiple three-letter codes may result in the same
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240 D. Conley

amino acid being produced (though, perhaps at different efficiency levels, something called
codon bias). Hence, these nonlethal polymorphisms, which result from mutations, may
present an opportunity to study how specific alleles may result in different outcomes.

The basic logic is the following: A certain proportion of a population sample is found
to have a variant of a particular allele. If this allele is shown to be randomly distributed
across demographic subgroups (or, for example, within a particular subgroup such as ethnic
group), and, likewise, it is found to be associated with a specific social outcome or ten-
dency (such as addictiveness, shyness, or schizophrenia, to name a few) within that same
population (or subgroup as the case may be), then researchers may try to look for specific
outcomes that seem to covary with the presence or absence of that particular allele. This has
been the approach of most work to date in both the social and biological sciences that have
worked with population (nonexperimental) data. However, the immediate problem is that
alleles are not necessarily distributed randomly across subpopulations, thus potentially
biasing the observed phenotypic associations with those alleles.

The location of the genetic effect in specific places on the genome is seen as a key step
forward from earlier behavioral genetics (BG) research. (Recent models also allow for genetic
dominance—that is, nonlinear interactions between alleles.) However, because the object of
study is typically just one allele, such analysis tells us little about the overall genetic heritability
of an outcome.

To complicate matters even further, absent genetic experiments that knock out or over-
express specific genes, we can never be sure that the allele in question is what is causing
any observed effect (irrespective of environmental interactions) thanks to the possibility of
genetic linkage mentioned above. Namely, genes are “shuffled” across the chromosomes of
a parent during the recombination period of meiosis. (Meiosis results in the formation of the
1N gamete—i.e., the sperm or egg.) However, two alleles are more likely to stay paired
together in a given gamete the closer they are to each other on the chromosome—hence the
term linkage or linkage disequilibrium—because they are more likely to be found on the
same pieces of DNA that are exchanged. A helpful analogy is the shuffling of a deck of
cards: It is more likely that cards right next to each other will not get separated in the shuf-
fling process than it is for cards separated by a longer “distance.” So even when we know
that a given gene is associated with a quantitative trait, we cannot be 100 percent sure
(absent genetic experiments on non-humans) that said gene is causally responsible. The best
we can say is that that area of the genome is associated with the phenotype under study. If
we allow for different degrees of genetic linkage of particular genes with other genes by
population, then we cannot even plausibly say (for sure) that a given gene is responsible for
the outcome in two different populations even if we observe the same marker-phenotype
association (never mind GE interactions). And indeed, microsatellites (groups of geneti-
cally linked genes) have been shown to vary across conventionally defined population
groups (such as our folk-racial categories). Further, the lengths of microsatellite repeats
(also known as simple sequence repeats) of DNA base pair motifs are, in fact, one way that
geneticists identify human population origins because such repeats are frequently occurring
(i.e., the DNA replication machinery makes this sort of coding error more frequently than
other types) and because these repeats do not appear to be under any selective pressure (at
least about which we know; however, some recent work on dogs suggests that these repeats
may, in fact, face selection pressures, particularly when they occur in a coding region). For
the most part, these repeated sequences appear to be junk DNA in noncoding regions that
produce neither protein products nor peptides nor other important forms of RNA such as
micro-RNAs, transfer RNAs, or ribosomal RNAs. However, they may influence the degree
to which important parts of the genome (such as genes themselves) are separated—and thus
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linked or delinked—during recombination. (As a side note, this also means that the assump-
tion of a complete lack of selective pressure on such microsatellite repeats may be incorrect
to the extent that these repeats fall between genes [or other important DNA products] that
interact with each other in functionally important ways.)

The real rub is that, because we can plausibly postulate second-, third-, fourth-, and,
ultimately, Nth-order interactions across alleles, there simply would not be enough
degrees of freedom in the approximately 7 billion human beings currently living to prop-
erly test a fully specified model (21,000! = 9.58 E 81648 > 7,000,000,000). The discovery
of about 21,000 genes—a figure much lower than originally hypothesized—is good news in
that it is a tractable number of alleles for geneticists to study. However, the irony lies in
the fact that, if this lowly number of genes explains the development of human beings in
all their glorious forms, then gene-gene interactions are probably quite important. There
has also been a recent explosion of discoveries relating to the important role of micro-
RNAs in affecting how messenger RNAs are spliced (and therefore can produce multiple
products) and whether or not they get translated at all (as well as increased interest in other
nonprotein products of DNA once considered “junk”).

Of course, in order to mitigate the possibility of admixture or linkage confounding the
results, one should begin such a project with a theory about why the expression of a given
gene (that is, the causal pathway from gene to protein to outcome) would covary with an
important socioeconomic outcome (such as education or income)—rather than just going in
with a fishing net to troll for associations. The way to accomplish this is through reference to
experimental literature based on animals. For example, Add Health, as mentioned above, has
collected and sequenced DNA from a twin subsample of its respondents. The gene regions
that were analyzed were picked based on results from genetic experiments among mammals.
Take the monoamine oxidase A (MAOA) gene, for instance. Cases et al. (1995) and Shih
and Thompson (1999) studied knockout mice (those with the MAOA gene removed) and
found that they had increased dopamine, serotonin, and norepinephrine levels and increased
aggression among males. Likewise, some polymorphisms in the dopamine receptor allele
DRD4 have been linked to attention deficit hyperactivity disorder (ADHD) in humans
through associational study (Brookes et al. 2006) and by virtue of experimental studies in
animals. DRD4 is a g-coupled protein receptor that forms part of a signaling pathway in neu-
rons in certain brain circuits responsible for pleasure. (The activated conformation of the
receptor inhibits the activity of the enzyme adenylyl cyclase, which, in turn, lowers the con-
centration of cyclic AMP, an important intracellular signaling molecule.) Finally, Murphy
et al. (2001) studied mice with a disrupted 5-HTT (serotonin transporter) gene and found
that those with risky alleles were more fearful and had higher stress hormone levels in
response to stress but no differences by genotype without environmental stress. Research on
rhesus macaques found different biological reactions depending on 5-HTT genotype for
those raised in stressful environments but no differences among those raised normally
(Bennett et al. 2002). Krishnan and Nestler (2007) conducted a study on inbred (genetically
identical) mice in a carefully controlled environment to try to explain differences in resil-
ience to stressful life events. They found differences in stress-induced outcomes even con-
trolling environment. Previous studies attributed such outcomes to environmental or early
development differences (e.g., Wong et al., 2005; Peaston and Whitelaw, 2006). 

Though these studies all relied on genetic experiments in animals for guidance, a
number of counterexamples can be found where associational fishing expeditions have led
to more tenuous findings that have not withstood the rigors of replication. One notable
example can be found in the so-called gay gene. In 1993, Hamer, Hu, Magnuson, Hu, and
Pattatucci published an article in Science showing an association between a microsatellite
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242 D. Conley

on the X-chromosome (called Xq28) and homosexuality in men. The conclusion rested on
the greater propensity of gay brothers to share genetic markers at this locus as well as ped-
igree analysis that showed a greater likelihood of gay men to have other gay male relatives
on their maternal side (because the X that males receive always comes from their mother).
Later work (see Rice, Anderson, Risch, and Ebers 1999) failed to replicate the findings
among a similar sample of Canadian brothers and a heated debate ensued. Hamer et al.’s
study is among the better of the associational studies given its pedigree-based analysis, but
like many others in the field it relies on a small, nonrepresentative sample and purports to
explain a complicated phenotype: stated sexual orientation. I emphasize stated for a reason:
Even if the results could be routinely replicated, it may be the case that the Xq28 locus is
associated with willingness to reveal homosexuality in a survey rather than to homosexu-
ality itself, given its sometimes stigmatizing status in North American culture.

Multiple hypothesis testing—with so many potential genetic loci of study—is of major
concern here. Luckily, biologists have elaborated on the Bonferroni correction to produce a
series of ways to approach the problem of false positives (see, e.g., Thornton and Jensen
2007). However, as the cost of sequencing continues to drop, the temptation for social (and
biological) scientists will be to conduct genome-wide association studies (GWAS) with little
regard for theory and experimental evidence about target genes of interest. The result, I fear,
will be many association studies for complex quantitative traits that result from a mix of
environmental and genetic influences and interactions. Such analyses will inevitably pro-
duce a number of false positives that survive even the most conservative false discovery rate
threshold and which, in turn, will send researchers down many fruitless paths.

However, if allele variation of experimentally verified gene loci is studied within
families (i.e., across siblings or conditional on parents’ genotype), then such markers mea-
sured in social surveys do indeed offer a potential way to measure specific genetic influ-
ences with some certainty (Allison 1997; and Allison, Mooseong, Kaplan, and Martin 1999
offer mixed models for such analysis). One would then compare the expression of that
allele—compared to the sibling without the polymorphism, for example—using fixed or
random effects. One illustration of this approach is provided by Ding et al. (2006), who use
sibling fixed effects to identify “random” genetic variation within families and thereby hold
constant parental genotype as well as shared environment.

Another example is provided by Fletcher et al. (2008), who, rightly, examined animal-
identified genes—the same ones Caspi et al. (2002; 2003) used plus two dopamine recep-
tor alleles DRD4 and DRD2 and the dopamine transporter gene DAT1. Indeed, they do
find effects of some of the genes of interest on behavioral phenotypes (such as depression
and attention-deficit hyperactivity disorder [ADHD] as well as obesity); however, the
authors then pushed the data too far. They asserted that these randomized genes can be
used as instrumental variables (Z) in order to predict such behavioral outcomes (X) and, in
turn, instrumented behavior (X*) can be used to generate unbiased estimates of the effects
of child behavior on schooling outcomes. Of course, though the genes-as-instruments
meet the first qualification of a valid instrument—that Z predicts X strongly enough (oth-
erwise known as the weak instrument test)—they fail the second requirement, the exclu-
sion restriction (namely, that Z has no effect on Y net of X). In other words, for genes to
be used as instrumental variables (IVs), they must not only be randomized within a popu-
lation (such as between nonidentical twin siblings), they must have no other effect on the
ultimate outcome of interest other than through their causal impact on the intermediary
phenotype measured. Does DRD4 only affect school performance through the pathway of
diagnosed ADHD? Of course not. ADHD is a complicated syndrome that involves lots of
measurement error and thus most likely reflects a whole host of other unmeasured traits.
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The Promise and Challenges of Genetic Data 243

And even if ADHD were measured perfectly by the researchers, there may be other effects
of the genes in question on educational outcomes through any number of mechanisms,
thereby violating the exclusion restriction necessary for unbiased IV estimation.

By way of example, a quick check on the National Center for Biotechnology Informa-
tion Expressed Sequence Tags database shows that DRD4 is also expressed in the kidney,
in various components of the eye (including the lens), and in ovarian tumors. This list, of
course, is incomplete and will inevitably grow longer the more the gene is studied. So any
claim that polymorphisms in this gene are causing ADHD through a specific pathway in
the brain may be called into question. Similarly, any second-order effects of DRD4-
related ADHD on other outcomes (as well as putative environmental interactions with
DRD4 or gene-gene interactions) may be underidentified due to the fact that DRD4 may
be having other, unmeasured effects on phenotype through its actions in the kidneys or
eyes (or elsewhere). In other words, if DRD4 were observed to lead to ADHD and, in turn,
if ADHD were associated with poor academic outcomes only in students who are in class-
rooms with more than 25 students, we could not be sure whether it was genetically caused
ADHD that was interacting with class size through a brain-behavior mechanism or
whether larger classes merely placed these students further from the blackboard and that a
DRD4 effect on eyesight was responsible for poorer academic performance. Or worse yet,
perhaps the associated ADHD diagnosis itself was attributable to the eyesight effect that
led to a lack of concentration in school. In other words, by virtue of its multiple occasions
of expression, multiple causal pathways are possible, throwing into jeopardy a social sci-
entist’s claims.

Conversely, running DRD4 through a web-interface that searches for similar genes
yields a total of 172 homologous genes in the human species alone, including dopamine
receptors (see Figure 1). Obtaining such results suggests—but by no means proves—that
DRD4 might be “redundant” in the human body. Indeed, its change through mutation to a

Figure 1. Homologous genes of DRD4 in Homo sapiens. 

Source: Jeong, Msason, Barabási, and Oltvai (2001).

gi|4503389 dopamine receptor D4; D(2C) dopamine receptor [H... 832 0.0 gi|4503387 dopamine receptor D3 isoforma [Homo sapiens] 256 3e-68 gi|17986270
dopamine receptor D2 isoformshort [Homo sapiens] 243 1e-64 gi|4503385 dopamine receptor D2 isoformlong [Homo sapiens] 234 6e-62 gi|15718670 alpha-
2A-adrenergic receptor; alpha-2AAR subtyp... 207 1e-53 gi|4501967 alpha-2C-adrenergic receptor; alpha2-AR-C4 [Homo... 207 1e-53 gi|4501965 alpha-2B-
adrenergic receptor; alpha-2-adrenergic... 206 3e-53 gi|4504531 5-hydroxytryptamine (serotonin) receptor 1A [Hom... 188 5e-48 gi|16445398 dopamine 
receptor D3 isoformc [Homo sapiens] 173 2e-43 gi|16445402 dopamine receptor D3 isoforme [Homo sapiens] 173 2e-43 gi|4557265 beta-1-adrenergic 
receptor [Homo sapiens] 169 3e-42 gi|4557267 adrenergic, beta-3-, receptor [Homo sapiens] 166 2e-41 gi|4504539 5-hydroxytryptamine (serotonin) receptor 
2B [Hom... 156 3e-38 gi|6005782 histamine receptor H3; G protein-coupled recepto... 151 7e-37 gi|16445396 dopamine receptor D3 isoformb [Homo sapiens] 
150 1e-36 gi|16445400 dopamine receptor D3 isoformd [Homo sapiens] 147 1e-35 gi|4502821 cholinergic receptor, muscarinic4; muscarinica... 145 7e-35 
gi|4504533 5-hydroxytryptamine (serotonin) receptor 1B; 5-H... 145 7e-35 gi|4502815 cholinergic receptor, muscarinic1; muscarinica... 142 4e-34 gi|4501957
alpha-1D-adrenergic receptor; adrenergic, alpha-... 135 4e-32 gi|10880131 5-hydroxytryptamine receptor 7 isoformb; serot... 129 3e-30 gi|10880129 5-
hydroxytryptamine receptor 7 isoformd; serot... 129 3e-30 gi|4504547 5-hydroxytryptamine receptor 7 isoforma; seroto... 129 3e-30 gi|10835175 5-
hydroxytryptamine (serotonin) receptor 2A [Ho... 129 5e-30 gi|4502817 cholinergic receptor, muscarinic2; muscarinica... 127 1e-29 gi|4501959 alpha-1B-
adrenergic receptor; adrenergic, alpha ... 126 3e-29 gi|15451761 alpha-1A-adrenergic receptor isoform4; adrener... 123 2e-28 gi|15451759 alpha-1A-
adrenergic receptor isoform2; adrener... 123 2e-28 gi|15451757 alpha-1A-adrenergic receptor isoform3; adrener... 123 2e-28 gi|4501961 alpha-1A-adrenergic 
receptor isoform1; adrenerg... 123 2e-28 gi|4504541 5-hydroxytryptamine (serotonin) receptor 2C [Hom... 120 1e-27 gi|29727439 similar to 5-HT5B serotonin 
receptor [Homo sapi... 118 7e-27 gi|4503383 dopamine receptor D1 [Homo sapiens] 114 1e-25 gi|30150689 similar to D(1B) dopamine receptor (D(5) dopami... 
114 1e-25 gi|4504545 5-hydroxytryptamine (serotonin) receptor 6 [Homo... 111 1e-24 gi|4503391 dopamine receptor D5; dopamine receptor D1B; D1b... 110
1e-24 gi|13236497 5-hydroxytryptamine (serotonin) receptor 5A [Ho... 110 2e-24 gi|4504537 5-hydroxytryptamine (serotonin) receptor 1E [Hom... 100 2e-21 
gi|30148127 similar to D(1B) dopamine receptor (D(5) dopami... 99 7e-21 gi|4504535 5-hydroxytryptamine (serotonin) receptor 1D [Hom... 99 7e-21 
gi|30148324 similar to D(1B) dopamine receptor (D(5) dopami... 97 2e-20 gi|13435405 histamine receptor H2; gastric receptor 1 [Homo... 96 5e-20 gi|10835197
5-hydroxytryptamine (serotonin) receptor 1F; 5-... 96 6e-20 gi|4502819 cholinergic receptor, muscarinic3; muscarinica... 95 8e-20 gi|11321563 5-
hydroxytryptamine (serotonin) receptor 4 [Hom... 94 2e-19 gi|17484441 similar to Alpha-1D adrenergic receptor (Alpha ... 92 5e-19 gi|7108336 cholinergic 
receptor, muscarinic5; muscarinica... 91 1e-18 gi|4501969 adrenergic, beta-2-, receptor, surface; beta-2 a... 89 4e-18 gi|4505925 putative neurotransmitter 
receptor [Homo sapiens] 88 1e-17 gi|21361153 cholecystokininB receptor [Homo sapiens] 86 6e-17 gi|19923823 neuromedinU receptor 2 [Homo sapiens] 86
6e-17 gi|28173558 trace amine receptor 4 [Homo sapiens] 85 8e-17 gi|4504491 histamine receptor H1; histamine receptor, subcl... 85 8e-17 gi|24432089 G
protein-coupled receptor 66 [Homo sapiens] 85 8e-17 gi|28875799 cholecystokininB receptor [Homo sapiens] 85 1e-16 gi|4557637 orexinreceptor 1 [Homo 
sapiens] 83 3e-16 gi|4501951 adenosine A2b receptor [Homo sapiens] 82 7e-16 gi|28173562 trace amine receptor 3 [Homo sapiens] 82 7e-16 gi|21264324
trace amine receptor 1 [Homo sapiens] 82 7e-16 gi|5921992 adenosine A2a receptor; adenosine A2 receptor; a... 82 9e-16 gi|4557865 somatostatinreceptor 5 
[Homo sapiens] 81 1e-15 gi|9506747 G protein-coupled receptor 27; super conserved r... 79 5e-15 gi|4501947 adenosine A1 receptor [Homo sapiens] 78 1e-14 
gi|5453666 G protein-coupled receptor 19 [Homo sapiens] 77 2e-14 gi|4557863 somatostatinreceptor 4 [Homo sapiens] 75 7e-14 gi|16751917 G protein-
coupled receptor 102; trace amine rec... 75 8e-14 gi|16876435 G protein-coupled receptor 101 [Homo sapiens] 73 4e-13 gi|4503903 galaninreceptor 1; Galanin
receptor [Homo sapiens] 72 6e-13 gi|4557857 somatostatinreceptor 1 [Homo sapiens] 72 6e-13 gi|4503907 galaninreceptor 3; galaninreceptor, family mem... 
72 7e-13 gi|4557861 somatostatinreceptor 3 [Homo sapiens] 72 7e-13 gi|11545887 neuropeptideFF 1; RFamide-related peptide rece... 72 7e-13 gi|4501953
adenosine A3 receptor [Homo sapiens] 72 9e-13 gi|4758468 G protein-coupled receptor 50 [Homo sapiens] 71 1e-12 gi|14211847 G protein-coupled receptor 
54; G protein-couple... 71 1e-12 gi|4758474 G protein-coupled receptor 10; prolactin-releasi... 71 1e-12 gi|4557639 orexinreceptor 2 [Homo sapiens] 71 1e-12 
gi|4505513 opiate receptor-like 1; opioidreceptor-like 1; ... 70 2e-12 gi|7657142 G protein-coupled receptor 58 [Homo sapiens] 70 2e-12 gi|4503905 galanin
receptor 2 [Homo sapiens] 70 3e-12 gi|4503639 coagulation factor II (thrombin) receptor-like 3... 69 6e-12 gi|15150803 opsin4 (melanopsin); melanopsin
[Homo sapiens] 69 6e-12 gi|14251205 histamine H4 receptor [Homo sapiens] 68 1e-11 gi|29729009 similar to seven transmembranehelix receptor [... 68 1e-11 
gi|27734717 opioidreceptor, delta 1 [Homo sapiens] 68 1e-11 gi|5174593 melatonin receptor 1A; melatonin receptor type 1... 68 1e-11 gi|30151598 similar to 
seven transmembranehelix receptor [... 68 1e-11 gi|17437027 similar to seven transmembranehelix receptor [... 68 1e-11 gi|4758434 growth hormone 
secretagoguereceptor [Homo sapiens] 67 2e-11 gi|4505515 opioidreceptor, mu 1 [Homo sapiens] 66 5e-11 gi|9507143 super conserved receptor expressed in 
brain 3 [H... 65 9e-11 gi|7705316 CC chemokinereceptor 10 [Homo sapiens] 64 2e-10 gi|4557859 somatostatinreceptor 2 [Homo sapiens] 64 2e-10 
gi|14210484 G protein-coupled receptor slt; melanin-concent... 64 2e-10 gi|16604258 G protein-coupled receptor 74; neuropeptideG p... 64 2e-10 gi|4758820
G protein-coupled receptor 74; neuropeptideG pr... 64 2e-10 gi|4505447 neuropeptideY receptor Y2 [Homo sapiens] 64 2e-10 gi|24476016 G-protein coupled 
receptor [Homo sapiens] 64 3e-10 gi|6677701 G-protein coupled receptor [Homo sapiens] 64 3e-10 gi|5174595 melatonin receptor 1B; melatonin receptor type 
1... 63 3e-10 
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244 D. Conley

shorter version is nonlethal (hence our ability to study human variation). Perhaps one of
these other 172 genes is overexpressed to compensate for a deficient DRD4 allele. Thus
we face a similar problem of inference as with the expression data: Is any observed associ-
ation with quantitative traits the direct result of DRD4 changes or the indirect affects of
“compensation” in other parts of the genetic network?

Gene-Environment Interactions

Despite the formidable complications described above, I argue that it is, in fact, possible to
obtain empirically robust estimates of genetic environmental interaction effects. However,
the strategy needed to parameterize such effects relies on the proper estimation of truly
exogenous, causal environmental effects. Once an exogenous source of environmental varia-
tion has been identified, it is possible to look for differential treatment effects based on geno-
typical characteristics—polymorphisms, haplotypes (groups of polymorphisms that cluster
uniquely together), and the like—that vary randomly within a given subpopulation (family,
ethnic group, and so on). So, in short, the first task at hand for the social scientist who desires to
show environmental-genetic interactions is the same task facing all social scientist who seek to
rule out genetic (or other unobserved) factors when assessing causal, environmental effects.

There are a number of statistical approaches that economists have pioneered to obtain
causal estimates. First, there are IV strategies (also called two-stage least squares) dis-
cussed above in relation to the work of Fletcher et al. (2009), which deploy a source of
exogenous variation (i.e., the instrument, Z) to predict the covariate of interest (X) and
then use the predicted covariate (X*) to model the outcome. (For a general review see
Winship and Morgan 1999.) A particularly notable example of instrumental variable esti-
mation is provided by Angrist (1990), who estimated the effect of military service during
the Vietnam War period on subsequent earnings, using the draft lottery as a source of
exogenous variation in veteran status. Another example is provided by Conley and
Glauber (2006) who estimated effects of sibship size on parental educational investment,
using the sex mix of the first two children born into a family to instrument whether or not
parents have a third child (the sex of a child depends on the random segregation of X and
Y chromosomes in the paternal gametes and U.S. parents are more likely to have a third
child if the first two are of the same sex). More recently, economists have deployed
regression discontinuity (RD) designs (see, e.g., van der Klaaw 2002, on the effects of
financial aid on college enrollment decisions) where researchers compare subjects that fall
just on either side of an otherwise arbitrary cutoff point—such as those who score a few
points above or below an admissions test. And then, of course, there is actual experimenta-
tion in which researchers determine what sorts of conditions subjects are exposed to (see,
for example, research on the randomized housing program, Moving to Opportunity; Katz,
Kling, and Liebman 2001). In any of these cases, if genetic information were available for
respondents, researchers could have estimated GE interactions—because they had prop-
erly estimated the “E” part in a way that we could be sure was uncorrelated with G.
Another benefit of having genetic information is that researchers can demonstrate that a
given genetic trait is not correlated with the presumed exogenous variation (e.g., the
instrument or the randomized experiment) and that it is randomly distributed across at least
measurable social categories. The major problem with the natural experiment approach,
however, is that IV and RD approaches typically require huge sample sizes because they
are inefficient estimation strategies. These are precisely the data sources—Social Security
records, census samples, to name a couple—that are not likely to have genetic information.
But there are other forms of putatively exogenous variation in social conditions that require
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smaller sample sizes akin to that of social surveys such as the PSID. One such example is
provided by the work of Strully (2009), who examined the health effects of job loss by
comparing the impact of plausibly exogenous employment shocks (such as plant closings)
to outcomes resulting from putatively endogenous sources of unemployment (such as dis-
missal for cause) using the PSID. If Strully had enjoyed access to genetic markers within
the PSID, she may have been able to estimate a GE interaction with some confidence using
her approach, even given the relatively small sample size (∼1,500 persons).

Once we have an exogenous source of variation in, let us say, schooling, then we can
identify an interaction effect between years of schooling and some genetic marker in look-
ing at outcomes such as income, criminality, shyness, and so on. Let us take the example
of Lleras-Muney (2005): She estimated the mortality returns to an additional year of high
school by focusing on educational variation generated by changes in compulsory school-
ing laws during the first half of the twentieth century. These changes in state laws gener-
ated an exogenous change in the environmental characteristics of schooling because they
affected everyone, regardless of genetic makeup or other characteristics. If she had
enjoyed access to genetic information in her sample (which she did not, having used the
U.S. Census as her data source), she would have been able to interact instrumented years
of schooling (predicted based on these exogenous law changes and individual-level char-
acteristics) with a given genetic marker when estimating the mortality effects of schooling
(assuming that the genetic marker was not significantly associated with education and was
randomly distributed across existing population divisions—such as race and socioeco-
nomic status). In this way, she would have been able to tell whether certain genetic profiles
receive larger health benefits from additional schooling than other genotypes—controlling
for population-level stratification of alleles.

The linchpin to the approach, of course, is the validity of the claim to exogeneity of
the environmental shock. By way of example, a paper by Caspi et al. (2002) that has
become a classic in this area of research claims to have uncovered a GE interaction by
comparing male children who have a particular functional polymorphism in the MAOA
gene (monoamine oxidase A)—an enzyme that breaks down various neurotransmitters
once they are chaperoned out of the synaptic cleft—with those who do not among a longi-
tudinal sample of 1,037 white Australians followed from ages 3 to 26. Those individuals
who showed a variable number tandem repeat (VNTR) in the promoter region of the gene
(the area that precedes the actual coding portion but that is important to transcriptional
activation and regulation) putatively transcribe (and by extension translate) MAOA at a
lower rate than those without this polymorphism on their X-chromosomes. In turn, MAOA
activity as indicated by this genetic difference was interacted with degree of maltreatment
the respondents experienced between the ages of 3 and 11 to predict an index of antisocial
behavior that included four measures ranging from criminal convictions to antisocial per-
sonality disorder criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (American Psychiatric Association 1994). They argued that though there do exist
other MAO genes that may compensate for deficiencies in MAOA (in particular MAOB),
these are not yet fully expressed among children, thus making MAOA particularly impor-
tant with respect to moderating the effect of maltreatment during early childhood.

Eight percent of the sample experienced severe maltreatment, 28 percent experienced
“probable” maltreatment, and 64 percent experienced no maltreatment. In a multiple
regression context, the main effect of maltreatment level on the antisocial behavior index
was significant, whereas the main effect of MAOA activity level was not, but an interac-
tion effect between the two measures was statistically significant at the a = .01 level. Caspi
et al. (2002) argued that this is a true genetic-environmental interaction effect because
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the MAOA genotypes were not significantly differently distributed across maltreatment
levels—suggesting that this genotype did not itself influence exposure to maltreatment
(i.e., the environment is not standing in for the genotype).

In a follow-up study (Caspi et al. 2003), they use the same cohort to examine the
interaction of stressful life events with alleles of the serotonin transporter gene (5-HTT)-
linked promoter region (5-HTTLPR). Specifically, individuals who have a short 5-HTT
(i.e., upstream) promoter may show more propensity toward depression than those with a
long promoter. However, previous studies found conflicting results; namely, many repli-
cations have failed to produce results claimed in earlier linkage studies. Some researchers
had despaired that psychiatric and other behavioral phenotypes were controlled by so
many quantitative trait genes that modeling genetic effects in a robust, direct way would not
be possible and/or would account for little of the variation (see, e.g., Hamer et al. 1993).
Caspi et al. argued instead that rather than complicated gene-gene interactions, the muddle
of results could be resulting from GE interactions. This muddle motivates their search for
an interaction effect of stressful life events and the 5-HTTLPR allele.

5-HTTLPR is an autosomal gene, so each individual has two copies.  Thus, Caspi
et al. (2003) compared three groups of individuals: those who were homozygous for the
short alleles; those who were homozygous for the long alleles; and the heterozygotes who
had one of each. They found that in the subsample who had experienced no stressful life
events between ages 21 and 26, there was no difference between the three genotypes in the
propensity to depression. However, as the number of self-reported stressful life events
increased, the genotypes diverged with respect to their likelihood of clinical depression at
age 26. They interpreted this as a GE interaction.

However, it could still be possible that what Caspi et al. (2002; 2003) were uncov-
ering was actually a gene-gene interaction in both studies, because they did not have an
exogenous source of environmental variation. In the latter case, those with the “at-risk,”
short alleles were, in fact, more likely to report stressful events than those who had long
alleles. We may conclude, then, that measured genotype did influence the measured
environmental factor. The researchers tried to get around this by reversing the time
order: measuring stressful life events between ages 21 and 26 and measuring depression
at age 21 (i.e., prior to the stressful life event). When they did this, they did not find the
significant interaction that emerged in the “correctly” ordered model. However, it still
may be the case that depression was induced by a gene-gene interaction because it may
be an underlying unmeasured gene that causes the phenotype of “negative life events” to
emerge in one’s early 20s: Imagine a gene that causes excessive thrill-seeking and risk-
taking, which, in turn, manifests as negative events during one’s early adulthood. As for
the MAOA interaction, we face the same issue: Though measured maltreatment did not
vary by MAOA status, it could very well have varied by other genes (present in the par-
ents and potentially passed on to the children). Thus, it would not be the maltreatment
that interacted with MAOA status but rather the underlying, unmeasured genotype,
which, in combination with given MAOA alleles, causes both parents and offspring to
act antisocially.

In the same vein, Guo, Roettger, and Cai (2008) conducted a gene-environment interac-
tion study, incorporating genotype into a social-control life-course model of delinquency. They
use the Add Health sibling sample, excluding females, resulting in a sample of 1,100 males.
They found interaction effects between MAOA, DAT1, and DRD2 genotype and family,
school, or friendship network processes on self-reported delinquent behavior. In all cases of
risky genotypes, increased social control from family, school, or peers reduced the genetic
effect on delinquency, whereas reduced social control amplified it. They innovatively included
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peer network information, including peer delinquency, network density, centrality, and popu-
larity, and found a significant gene-environment interaction only for peer delinquency.
However, like Caspi et al. (2002, 2003), they did not randomize environmental factors. Those
with risky genotypes could select into delinquent peer groups, for example. Thus, like other
gene-environment research, Guo et al. did not rule out a gene-gene interaction.

In fact, supporting the notional importance of gene-gene interactions (and offering a
competing model to GE interactions) is recent genetics research that has shown that
among the genes studied in humans (or other model organisms such as the fruit fly, Droso-
phila melanogaster, or the nematode worm, Caenorhabditis elegans), the vast majority of
known genes are linked in a single network component when measured by either protein-
protein interactions, regulatory relationships, or phenotypic covariation (as illustrated
by the human case shown in Figure 2). This suggests that, indeed, one cannot conceptual-
ize the perturbation of one gene as unrelated to the impact of other genes. Conversely, the
embeddedness of this network suggests that genomic systems are highly redundant and
robust and that other genes may be up- (or down-) regulated to compensate when a given
gene is nonfunctional (or hypertrophic). For example, Isalan et al. (2008) have shown that
even random rewiring of 598 promoter-gene relationships (one at a time) has little effect
on phenotypic outcome or expression levels in Escherichia coli compared to wild-type
bacteria of the same initial strain (95% survivorship among altered organisms)—suggesting
that networks that are highly robust to failure.

Figure 2. Protein-protein network in humans. 

Source: Stelzl et al. (2005).
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In sum, in order to investigate GE interactions, we need some source of exogeneity on
the environmental side as a lever for estimation as well as carefully selected candidate
genes that are chosen a priori based on their status as homologues to those manipulated in
experimental animal studies (and evidence that these markers are not significantly associated
with plausible subgroups in our sample or statistical controls for such possible associations).
In fact, the ideal study would randomize genes (within families) as well as environment.

Discussion

As the preceding discussion I hope has made clear, doing sociogenomics is difficult but
not impossible. There is much that human geneticists can learn from social scientists—
particularly applied econometricians—who have long wrestled with questions of exogeneity
and selection that are similar to complications facing human geneticists surrounding popula-
tion admixture (i.e., allele stratification), linkage disequilibrium, and so forth. Likewise,
social scientists who venture into this emerging subfield would be wise to team up with ani-
mal-based experimental geneticists. The interplay of human survey analysis (replete with
DNA marker data) and animal experiments (such as genetic knock-outs or knock-ins)
should be pursued in much the same way that rich ethnography confirms, refutes, elabo-
rates, or stimulates quantitative analysis within the social sciences. Biologists who are per-
forming genetic experiments might do well to read the social science literature for candidate
homologous loci to manipulate in their own experimentation. A future of complementary
wet-lab and survey research center collaborations is not too far-fetched to imagine.

After all, there is no reason why social scientists should be left out of the gold rush of
analysis that is ensuing from the decoding of the human genome. Of course, there are
potential risks, however, to the entire PSID effort if privacy or other concerns cause
increased attrition (particularly when PSID is now collecting data only every other year).
That said there is not much research to date on attrition in longitudinal panels that have
collected DNA data in particular (or even biomarkers in general), 

In sum, the factors that appear to affect participation in population studies that collect
genetic data are no different than those that social scientists are used to. Wrote Harge (2006):

The salience of the topic exerts the strongest effect on willingness. Incentives
enhance response, especially incentives given early in the recruitment process.
Personality, training, and experience of the recruiter have major effects,
whereas demographic attributes have lesser effects, depending more on the
specific setting. House-to-house or other in-person approaches typically (but
not uniformly) elicit higher response than initial telephone contacts, but they
are more expensive and harder to monitor for quality assurance. (p. 253)

With respect to DNA collection in particular, we are lucky that the field has coalesced
around a collection protocol that seems to yield both the highest participation rate as well
as very high-quality data: saliva samples. These are easy to collect—ideally face to face to
increase participation although collection can be done by mail if costs are prohibitive—
and they are the least invasive. Earlier approaches used either blood, which provided high-
quality data but depressed response rates for obvious reasons, or buccal (inner cheek)
swabs, which evinced higher participation but provided poor-data quality (only 31% of
samples could be amplified in one study compared to 100% for blood and about three
quarters of saliva samples; Hansen, Simonsen Finn, Nielsen, and Andersen Hundrup 2007).
Saliva collection protocols such as the Oragene proprietary system appear to provide the
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best of both worlds, with 80 percent participation rates in one study compared to 31 per-
cent for blood and 76 percent for buccal swabs (ibid). (Hansen et al. 2007) What is more,
they cost only a few dollars a sample, and prices are likely to fall over time. Finally, the
saliva samples can be stored at room temperature for extended periods without significant
degradation of DNA quality. This is particularly handy for researchers who face delays
between collection and sequencing due to funding or other issues.

A perhaps more subtle (and thus more worrisome) concern is that willingness to partici-
pate (in DNA collection) varies by the polymorphism of interest (or by hidden paternity status),
which would, obviously, lead to serious bias for all endeavors (Harge 2006). As such, it may be
reassuring that the first study that examined whether willingness to participate in same study
varied by haplotype found no impact (Bhatti, Sigurdson, Wang, et al. 2005) That said, the rub
for social scientists not faced by medical geneticists is that if alleles matter to the social out-
comes we care about, they are more likely to be related to willingness to participate ipso facto.
Thus, statistical models should take care to include nonrespondents on DNA collection into
their models, perhaps treating the nonparticipation flag as equivalent to a genotype itself.

There are also concerns on the “output” side. Namely, particularly in the United
States, genetics and race have a particularly dubious intellectual co-history. Most
recently, The Bell Curve (Herrnstein and Murray 1994) made a case (based on many
dubious assumptions) that racial and class stratification in the contemporary United
States was primarily a result of genetic differences in ability. Though the optimist may
claim that such unfounded claims are the very reason we need to collect “real” genetic
data, surely some who analyze the putative markers will be doing so with a political
agenda. So it would behoove social scientists running such surveys that integrate socio-
economic and behavioral outcomes, demographic data, and genetic markers to be extra
careful in how such data is managed and released. For example, perhaps only genes that
have been well established using animal models (and/or other human associational studies)
should be released to researchers to prevent “data mining” exercises that may lead to
lots of initial controversial findings that later turn out to fail the test of replication. This
would minimize the level of “unnecessary” political controversy over findings that turn
out to be for naught.

Therefore, once coded, such data should be treated with the same level of security
(or perhaps more) as the geo-coded sensitive data file now is. One model might be a
Luxembourg Income Study model where the genetic data are housed at the University of
Michigan’s Institute for Social Research (ISR) and approved researchers have to go there to
run models (and/or submit code over a secure web interface). Another model for data
delivery might be the Census research data center model, which requires a background
check and a research proposal before allowing access to researchers from contributing
institutions. Add Health currently requires project descriptions of much shorter length and
has a much speedier approval process (though a much less rigorous review). These models
convey the advantage of screening for potentially hot-button papers before analysis is
performed (a post-analysis, prepublication screen represents another option). The con-
cern is to balance the need for openness of scientific research to any well-formed investi-
gative endeavor with the concerns about misuse of the data for political ends.

In a similar vein, subjects themselves should be assured that even if they desire the
genetic data, they will not be able to obtain them. Perhaps this is Pollyanna-ish given some
research demonstrating that when subjects are told the results of their DNA analysis, their
anxiety levels decrease or remain constant—at least for certain a certain alleles such as the
hereditary hemochromatosis marker (Picot et al. 2009). However, providing subjects with
information on a marker for a “medical” condition is quite different from informing them
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about loci that may be linked (or erroneously linked) to socially sensitive outcomes such
as academic achievement, depression, or delinquency that may be subject to strong
Pygmalion effects. There is also, of course, subject concerns about revealed paternity and
other kinship-relatedness discrepancies that might even selectively depress participation if
absolute data anonymity is not assured.
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