
I 

A Logic for Real-Time Discrete Event 
Processes 

Jonathan S. Ostroff 

ABSTRACT: Temporal logic can be used to 
design controllers for real-time discrete event 
systems. The underlying plant dynamics is 
most economically described by a state tran- 
sition structure with time bounds on the tran- 
sitions. Temporal logic may then be used to 
1) specify the problem to be solved and 2) 
help in the derivation and verification of a 
suitable controller. 

Introduction 
This article gives an overview of the use 

of temporal logic for the design of systems 
composed of real-time discrete event pro- 
cesses. Typical applications include process 
control, flexible manufacturing systems, ro- 
botics, communication networks, traffic sys- 
tems, avionics and embedded real-time com- 
puter systems. 

Timed transition models are used to model 
or represent real-time discrete event pro- 
cesses. Real-time temporal logic is the spec- 
ification, verification and analysis language 
for reasoning about transition systems. The 
models economically describe the underly- 
ing state transition structure of plants and 
controllers, whereas the logic specifies at a 
high-level the control problem to be solved. 
The logic allows for the treatment of some 
infinite state systems because it is not nec- 
essary to check finite state reachability graphs 
for the existence of required properties. In- 
stead, the logic provides the capability for 
performing an inductive correctness proof 
the initial states must be acceptable, and 
every transition in the system preserves the 
desired behavior. 

In the rest of this article we will first dis- 
cuss the nature of real-time discrete event 
processes, next examine the software veri- 
fication literature, give a brief overview of 
the model and logic framework, and finally 
provide a small example of controller de- 
sign. The material of the first three sections 
is taken mainly from the introductory chapter 
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of [30]. The reader is referred to [32], 1301, 
[29] for complete technical detail, as this ar- 
ticle only provides an overview of the key 
concepts. 

Real-Time Discrete Event Systems 

The main components of a discrete event 
process are its states and events. A state has 
duration in time, e.g., “the conveyer belt is 
moving” is a state that the conveyer might 
be in for some ticks of the clock. In the rest 
of this article a “state” in the above sense 
will be called an “activity,” whereas the 
word state will be reserved for the “global 
state” of all the different devices and pro- 
cesses taken together. An event occurs in- 
stantaneously, e.g., “the conveyor fails.” A 
transition from one state to another has the 
general form: “if the event a occurs in state 
A ,  then the condition C must be true and the 
system instantaneously transfers from A to 
state B.” The following items include some 
of the characteristic features of real-time dis- 
crete event processes: 

Events occur at discrete times and states 
have discrete values. 

Processes are event-driven rather than 
clock-driven. 

Processes are typically nondeterministic 
(capable of “choices” by some mecha- 
nism unmodeled by the system analyst). 
No explicit stochastic feature is postu- 
lated-the focus is on the possibility rather 
than the probability of event occurrence. 

Processes generally have internal dynamic 
behavior, and also interact and react with 
their environments (the interaction is often 
nonterminating). 

Processes operate concurrently and com- 
municate with each other (e.g., via mes- 
sage-passing over channels). 
“Hard” real-time deadlines must often be 
met for safe operation. System correctness 
depends not only on the logical result of 
the system behavior but also on the time 
at which the results are produced. 

line. Spray painting a car on a moving con- 
veyor must be initiated at some suitable time 
and terminated some later time. When an 
aircraft enters an air traffic control region, 
the flight controller must be informed in a 
timely fashion. Once the approach of a train 
is detected, car and pedestrian traffic at the 
train intersection must be halted before the 
train reaches the intersection. If the com- 
puter controlling a robot does not command 
it to stop or turn in time, the robot might 
collide with another object on the factory 
floor. 

There is general consensus in the software 
and control systems literature [44], (121, (51, 
[18], [41] that real-time discrete event sys- 
tems are difficult to model, specify and de- 
sign. In addition, experience has shown that 
software components of systems are prob- 
lematic (perhaps even more so than mechan- 
ical or other hardware components). 

Software is complex (consider the docu- 
mentation needed for even simple modules), 
nonrobust (small errors have major conse- 
quences) and software is notoriously difficult 
to test (the number of test cases that must be 
checked becomes unmanageably large even 
in small systems) [33]. It does not come as 
a surprise that the first flight of the space 
shuttle was delayed by a subtle timing error, 
which was traced to an improbable race con- 
dition in the flight control software [lo]. Al- 
though no loss of life occurred in this in- 
stance, other real-time computers are at the 
heart of systems in which software errors can 
have catastrophic consequences. 

Since real-time discrete event processes 
occur in so many safety critical systems, 
there is obviously a need to model, specify, 
design and verify such processes to ensure 
their safe behavior. 

It has long been conjectured that a formal 
mathematical approach would be useful in 
overcoming some of the difficulties in the 
specification, design and implementation of 
complex systems. Turning this conjecture 
into sound practice has proved to be ex- 
tremely difficult-many practically-oriented 
engineers will probably consider the conjec- 

There are many examples where hard real- 
time deadlines must be met. If the temper- 
ature of a nuclear reactor core is too high an 
alarm must be generated within some dead- 

ture to face insurmountable hurdles. 
But what benefits do “theorists” hope to 

obtain by the use of a formal framework? A 
list of the benefits includes: 
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in the process of formalizing informal re- 
quirements, ambiguities, omissions, and 
contradictions will often be discovered, 

the formal model may lead to hierarchical 
semi-automated (or even automated) sys- 
tem development methods, 

the formal model can be verified for cor- 
rectness by mathematical methods (rather 
than by intractable case by case testing), 

a formally verified subsystem can be in- 
corporated into a large system with greater 
confidence that it behaves as specified, and 

different designs can be compared. 

Control theorists have extensively studied 
the problem of designing continuous variable 
dynamic systems. Modem control theory has 
been successful in solving a variety of prob- 
lems such as ensuring stability, regulation, 
filtering, and optimal control of large scale 
systems. The solution of these problems has 
been applied to many real world problems 
(e.g., the application of control theory to the 
Apollo moon landing). However, since the 
focus of control theory has been on contin- 
uous variable systems modeled by differen- 
tial or difference equations, it is ill-equipped 
to cope with systems in which discreteness, 
modularity and communication are funda- 
mental [18], [45]. In addition, modem con- 
trol theory is often mathematically too spe- 
cific to model qualitative system properties. 
An analogy (cited in [15]) compares the ab- 
stract and discrete description of digital logic 
circuits via boolean functions, to the lower- 
level view of the digital circuit as a contin- 
uously changing numerical vector. The bool- 
ean description is useful because it elimi- 
nates unnecessary numerical detail. In 
response to the need to develop theories for 
discrete event systems, control theorists have 
recently investigated formal language theory 
and mathematical logic [42], [37], [Is], [41, 

In the software verification literature, 
mathematical logic has played an important 
role in the specification and analysis of pro- 
gram correctness. Some of these ideas can 
be used in the design of control systems. 

[31. 

Software Verification 
In the software verification literature, much 

attention has been focused on the description 
and verification of parallel programs (see [2] 
for a survey and comparison of methods). 
Although the focus is usually on programs, 
many of the techniques are applicable either 
explicitly or implicitly to complex discrete 
event systems having mechanical or other 
hardware components as well as software 

components (e.g., [24], [34], [8], [ 171, [43], 
1231, [131, 1361, [111). 

There is an important distinction to be 
made between a “dual-language’’ approach 
and a “single-language’’ approach [39]. The 
timed transitionheal-time temporal logic 
framework of this paper is an extension of 
the dual-language fair transition systems/ 
temporal logic framework introduced by 
Manna and Pnueli [35], [21], [19], [36]. 

The single-language approach (e.g., 1241) 
works on the premise that the same language 
should be used both for specification and im- 
plementation of computational tasks. Thus 
the language should have a well-identified 
fragment that can be effectively and effi- 
ciently executed. The initial specification 
emphasizes the desired behavior and pays 
little attention to implementation details. A 
sequence of transformations is then applied 
to the initial specification to produce the final 
implementation. An algebraic framework 
usually supports the transformations so that 
meaning is preserved. 

In the dual-language approach, one lan- 
guage is the computer executable program- 
ming (or representation) language R, which 
is prescriptive and algorithmic in nature. R 
is the language in which we program and 
which is computer executable. The second 
language is the specification (or assertion) 
language S, which is descriptive and expres- 
sive enough to specify program requirements 
(without specifying how the programs are to 
be implemented). Language S is usually 
based on mathematical logic. 

In the dual-language approach, the main 
problems that are studied are program veri- 
fication, development and synthesis. Given 
a specification s E S and a program r E R,  
the verification problem involves the dem- 
onstration that the program r satisfies the 
specification s E S, and a method is sought 
whereby disciplined humans can be helped 
to construct a program r that satisfies s. If 
program development is fully automated, 
then it is called program synthesis. 

Program synthesis is closely related to 
controller synthesis. In controller synthesis, 
a plant p E R and a specification s E S of the 
control problem to be solved are provided. 
The problem is then to automatically derive 
a controller c E R that in conjunction with p 
will ensure that the closed loop system sat- 
isfies s. 

In what way is controller design different 
from program synthesis? The representation 
language R must be flexible enough to model 
not only programs but also the plant dynam- 
ics (e.g., there must be spontaneous as well 
as controlled events). A mechanism for ob- 
servation and control must be provided. Fur- 

thermore, in program synthesis the dcsigner 
is free to develop any program from scratch 
that will satisfy the specification. By con- 
trast, in controller design, there is a fixed 
component (viz., the plant) that cannot be 
altered by the designer, and yet it is the ap- 
propriate behavior of the plant that is of vital 
concern. Finally, in program synthesis the 
designer is mostly interested in ensuring that 
the program delivers certain services to the 
environment. By contrast, the purpose of the 
controller is to ensure that the internal be- 
havior of the plant satisfies appropriate re- 
quirements. 

The TTM/RTTL Framework 
The connection between timed transition 

models (TTMs) and real-time temporal logic 
(RTTL) is made via an extension to Manna 
and Pnueli’s notion of a fair transition sys- 
tem. A fair transition system consists of a 
(possibly infinite) state space, a set of tran- 
sitions defining state transformations, a set 
of initial states, and a fairness family. Fair- 
ness means that if a process is continuously 
(or infinitely often) enabled then it must 
eventually make progress. Although fairness 
notions are easily incorporated into the TTM/ 
RTTL framework [30], for simplicity we will 
not further develop these notions in this pa- 
per. 

A computation is a sequence of states 
whose initial state is in the initial state set, 
whose successor states are obtained by ap- 
plying enabled transitions, and where the 
fairness families are used to ensure that cer- 
tain sets of transitions that are continuously 
enabled or infinitely often enabled in the 
computation eventually occur. A computa- 
tion can be used to interpret formulas of tem- 
poral logic. To determine if a concurrent 
program satisfies a temporal logic specifi- 
cation S, the program is first translated into 
a fair transition system. Translation is usu- 
ally a straightforward, easily automated pro- 
cess. The program satisfies S exactly when 
all the program computations satisfy S. 

The following extensions are made to fair 
transition systems to obtain the TTM/RTTL 
framework: 

Transitions have associated lower and up- 
per time bounds (measured with respect to 
a global clock) so that real-time properties 
(including delays and timeouts) can be 
represented. 
Two distinguished variables are added: a 
time variable r (the current clock time) and 
the next-transition variable n (for referring 
to the events of complex systems). 

Instead of computations, the transition 
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system now generates trajectories or se- 
quences of states that take into account the 
lower and upper time bounds of transi- 
tions. 

The trajectories can be interpreted in real- 
time temporal logic (which uses standard 
operators together with the time variable 
to express quantitative timing properties). 
No expressive power is lost in making the 
transition from a fair transition system to 
the TTMIRTTL framework. The upper 
and lower time bounds impose additional 
constraints on transitions, thus necessitat- 
ing additional proof rules for verifying 
real-time properties, but preserving the 
standard temporal logic proof rules for 
verifying qualitative behavior. 

TTMs are useful for representing the pro- 
cesses of discrete event systems. TTMs 
model spontaneous events, controlled 
events, nondeterministic choice of events, 
events shared by two or more TTMs, in- 
ter-TTM communication and parallel 
composition of TTMs. TTMs can also 
represent the constructs of real-time pro- 
gramming languages. 

The plant of a complex discrete event sys- 
tem can be represented by a TTM PLANT 
(which itself is composed of many TTMs 
with each TTM representing one of the plant 
processes). A specification S of required 
plant behavior can be formulated in RTTL. 
A controller (possibly implemented in real- 
time concurrent programming language) can 
be represented by a TTM CONTROLLER. 
The controller verification problem can be 
stated as follows: given PLANT and 
CONTROLLER, check if PLANT 11 CON- 
TROLLER (the parallel composition of plant 
and controller) satisfies S. The controller 
synthesis problem can be stated as: given a 
specification S for PLANT, is there an au- 
tomatic way to produce CONTROLLER so 
that the closed loop system given by 
PLANT 1) CONTROLLER satisfies S. 

RTTL specifications may be applied to any 
model of computation addressed by fair tran- 
sition systems including: shared variables, 
asynchronous communication, and Petri net 
models [36], [30]. 

The state machine formalism is one of the 
oldest models of digital computing. It has 
been used extensively in requirements spec- 
ifications for real-time computing [46], [ I ] ,  
[ l l ]  because it is a natural, visual medium 
for describing the dynamic behavior of a 
complex system. This is the reason for 
choosing TTMs for representing plants and 
controllers. TTMs are (possibly infinite) state 
machines, enhanced with the standard pro- 

gramming notions of data variables, guarded 
events, concurrency and communication. 

Temporal Logic 

Temporal logic has its origins in philoso- 
phy, where it was used to analyze the nature 
of time [38]. In recent years, it has found 
application in computer science, especially 
in the areas of software verification and 
knowledge-based systems [7]. 

In physics and mathematics, time has tra- 
ditionally been represented as just another 
variable. First order predicate calculus is 
used to reason about expressions containing 
the time variable, and there is thus appar- 
ently no need for a special temporal logic. 

Philosophers found it useful to introduce 
special temporal operators, such as 0 
(henceforth) and 0 (eventually), for the 
analysis of temporal connectives in lan- 
guage. The new formalism was soon seen as 
a potentially valuable tool for analyzing the 
topology of time. For example, various types 
of semantics can be given to the temporal 
operators depending on whether time is lin- 
ear, parallel of branching. Another question 
that may be asked is whether time is discrete 
or continuous. 

The temporal operators have been found 
useful for specifying program behavior. A 
structure of states (e.g., a sequence or tree 
of states) is the key concept that makes tem- 
poral logic suitable for program specifica- 
tion. A formula, containing temporal logic 
operators, is interpreted over a structure of 
states. In programming languages, the struc- 
tures represent the computations executed by 
a program. Such a computation may be used 
to interpret a temporal formula. In this way, 
a programming language is said to be en- 
dowed with a temporal semantics. 

Some of the different types of temporal 
semantics include: 

Interval semantics [40], [25], 1261. The 
semantics is based on intervals of time, 
thought of as representing finite chunks of 
system behavior. An interval may be di- 
vided into two contiguous subintervals, 
thus leading to the “chop” operator “ ;”. 
“ A ;  8” is true on an interval just so long 
as that interval can be decomposed into 
two contiguous subintervals in such a way 
that A is true over the first interval and B 
over the second. 

Point semantics, in which temporal for- 
mulas are interpreted as requiring some 
system behavior with respect to a certain 
reference point in time. Past operators re- 
fer to the time prior to the reference point, 
and future operators to the time after the 

reference point. Obviously, a point cannot 
be divided, and the there is thus no simple 
definition of the chop operator. 

Point semantics may be further divided 
into three classes. 
- Linear semantics [22], [36], [20]. In 

linear semantics, each moment has 
only one possible future correspond- 
ing to the actual history of the devel- 
opment of the system. 

- Branching semantics [9], [6]. In 
branching time semantics, time has a 
tree-like nature in which, at each in- 
stant, time may split into alternative 
courses representing different choices 
made by a system. 

- Partial order semantics. Partial order 
semantics has been explored only re- 
cently. The reader is referred to [20] 
and other articles in the same volume 
as [20] for further information. 

RTTL is based on Manna-Pnueli temporal 
logic, and therefore has a linear, point se- 
mantics. Having decided on the type of 
structure to be used for interpreting temporal 
formulas, there is still a further decision to 
be made, viz.,  how are the structures to rep- 
resent program executions or computations. 
There are at least two possibilities. 

Maximalparallelism [14], [16]: The num- 
ber of instructions in concurrent processes 
that can be executed simultaneously is 
maximized. Thus, two processes are never 
both waiting to achieve a shared com- 
munication. 

Interleaved executions: Concurrent activ- 
ity of two parallel processes is represented 
by interleaving their atomic actions (in- 
terleaving is conceptually similar to au- 
tomata products). Fairness and time bound 
constraints are then used to exclude in- 
appropriate interleavings (e.g., a sequence 
in which a continuously enabled action is 
never executed). 

The trajectories (or executions) of  concur- 
rent TTMs are constructed from interleav- 
ings of their atomic actions. TTMs may 
therefore be thought of as being endowed 
with a linear order temporal semantics, in 
which the trajectories of TTMs are con- 
strained to real-time, fair interleavings. 

RTTL uses as its base the linear time 
quantified temporal logic proof system in 
[22]. The proof system uses the future frag- 
ment of temporal logic. Thus, although the 
future behavior of a system is easily de- 
scribed, there are no temporal operators 
which directly express past behavior, e.g., 
“once in the past the device failed.” Past 
properties can be expressed indirectly, but 
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not in the same natural fashion as future 
properties. 

An Example 
Fig. 1 shows two TTMs called TRAIN 

and GATE representing two concurrent pro- 
cesses. Before the train (the first process) 
reaches a level-crossing, a gate (the second 
process) is to be lowered so as to prevent 
pedestrian or automobile traffic from cross- 
ing over while the train is passing through. 

A TTM M is defined as a 3-tuple (V, 8, 
3 )  consisting of a set of variables V, an ini- 
tial condition 8 and a finite set of transitions 
3. The initial condition is any boolean val- 
ued expression in the variables. The transi- 
tions are explained in more detail below. An 
example of a TTM is TRAIN which is de- 
fined by 

def 

TRAIN = ( V T R A I N ,  @TRAIN, 3TRAIN) 

where V T R A , ,  = {xI, t ,  n}, @TRAIN is defined 
by (xl = traveling A n = initial), and STRAIN 

= {aI,  a2, 6, initial, tick} as listed in 
Table I. 

The two distinguished variables t (the cur- 
rent time) and n (the next transition variable) 
are present in all TTMs. Each TTM has an 
activity variable, e.g., for TRAIN the activ- 
ity variable is xI with t ype(x , )  = {traveling, 

approaching, ingate}. In addition, there may 
be one or more data variables for represent- 
ing numeric information (such as pressures, 
temperatures or fluid levels) or other infor- 
mation (such as sets and queues). The TTM 
GATE has a data variable y which counts 
the number of times the gate is lowered after 
each maintenance cycle. 

Each v E V has an associated type(v), and 
(R is the disjoint union of all these types. For 
the time variable, type ( t )  is usually the non- 
negative integers union with infinity, and 
type(n) = 3. 

A state s of a TTM M = (V, 8, 3) is a 
mapping s: V -+ (R such that s(  U )  E type ( a )  
for each v E V. Each state s has an associ- 
ated state-assignment 9 which is the restric- 
tion of s to (V - {n}). An example of a 
state of TRAIN is s2 = {(xI, traveling), ( r ,  
I) ,  (n, CY,)},  and the corresponding state- 
assignment is 92 = {(x,, traveling), ( t ,  I)}. 
The set of all state-assignments is Q. 

A transition (which updates e.g., 2 data 
variables y I ,  y z )  may be visualized by the 
illustration shown in Fig. 2 .  The transition 
may be interpreted as follows: “if the tran- 
sition 7 becomes enabled at time t = T(e.g., 
the TTM reaches the activity a,  with the 
guard guard evaluating to true), then the edge 
must be traversed between I and U ticks from 
T,  unless 7 is preempted by the occurrence 

~~ 

TRAIN 

PLANT=TRAINIIGATE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

e,, = (x, =travelling A x2 =up A y < IO) I 

rnoveup (7 

Oq(O,m): ?‘ > 0 - [KO] 

Fig. 1 .  The plant consisting of a train and gate. 
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Fig. 2. 
model. 

A transition of a time transition 

of some other transition which disables 7. 
When 7 occurs in a state-assignment q, the 
successor state-assignment 9 ’  is similar to q 
except x has the value a d ,  and y I ,  y2 have 
the values of d ,  , d2 respectively as evaluated 
in the state q.” 

A transition 7 is defined by a 4-tuple (e,, 
h,, I,, u ~ ) ,  where I,, U ,  are the lower and 
upper time bounds, respectively. The bounds 
may be any integer expression d so long as 
s ( d )  E type@). The enabling condition is e,  
defined by (x = a, A guard). Where no guard 
is indicated on the transition graph, the guard 
is assumed to be true. The transformation 
function is a partial function h,: Q -+ Q, 
where Q is the set of all state-assignments. 
The function is defined for all state-assign- 
ments q E Q such that q(e,) = true. The 
transformation function is often denoted by 
[x: ad, yI:  d l ,  y2:  d2] to indicate which vari- 
ables in the state-assignment are updated on 
making the transition. 

The train transition CY* has a lower time 
bound of 10, which represents the fact that 
it takes a minimum of 10 clock ticks from 
the time the train is detected until it reaches 
the gate. An upper time bound of infinity 
means that the transition is never forced to 
happen. A legal-trajectory U of TRAIN is 
any actual possible sequence of states that 
TRAIN may execute. For example, the fol- 
lowing is a legal trajectory of TRAIN which 
starts with the initial transition initial fol- 
lowed by one tick of the clock: 

a, ticklu 

u = ~ o +  41 + 92 - 9 7  + 

dcf inilldl tick 

a2 

9 4  - 9s . . .  -+ . . .  
= SOSlS2Sj . . . . ( 1 )  

The train then approaches the level-crossing, 
followed by 10 ticks of the clock. Finally 
the train reaches the level-crossing. The rest 
of the legal-trajectory is not shown. 

In addition to the transitions that arise from 
the transition graph of a TTM, the transition 
set of any TTM always contains two distin- 
guished transitions tick and initial as indi- 
cated in (1). The rick transition must occur 
infinitely often in any legal-trajectory, and if 
so is the initial state of a legal trajectory then 
so@) = true. Each state-assignment in the 
legal trajectory is related to its predecessor 
via the transformation function of the cor- 
responding transition. 

/E€€ Control Systems Magazine 



I I 

Name 

f f 1  

f f z  
6 

CM denotes the set of all legal trajectories 
of a TTM M .  C, completely characterizes 
the behavior of M ,  and thus provides an ab- 
stract operational semantics for the TTM. 

In the GATE TTM of Fig. 1, typical 
statechart [ l l ]  notation is used. The activi- 
ties moveup, down, movedown are clustered 
into a superstate. Thus, to indicate that there 
is a transition from each of the activities in 
the superstate to the maintenance activity, 
only a single edge p4 need be shown (thus 
replacing three edges by one). To be in the 
superstate one must be in exactly one of 
moveup, down, movedown. The superstate 
together with p4 is really an abstraction of a 
common property of the clustered activities, 
viz.,  that p4 leads from them to maintenance. 
Abstract edges such as p4 are easily repre- 
sented in TTMs. See Table I in which p4 has 
the enabling condition x2 E {moveup, down, 
movedown}, the transformation function [x2: 
maint] and lower and upper time bounds of 
0 and 03, respectively. The notation x2 E 

{moveup, down, movedown} is an abbre- 
viation for (xl = moveup v x2 = down V 

x3 = movedown)-since activities are dis- 
tinct, the “exclusive or” could be used. 

The transition p3 in GATE increments the 
data variable y by one every time the gate is 
lowered. The data variable y thus counts the 
number of times the gate has been lowered. 
The free behavior of GATE (before it is 
composed with other TTMs) allows for an 
infinite number of states to be reached as 
GATE has legal trajectories which infinitely 
often increment y .  A controller might use the 
counter to force a maintenance activity after 
the lowering mechanism has been used a cer- 
tain number of times. The counter is reset to 
zero (by p4) every time the gate is main- 
tained. 

When the gate is down it is possible for 
two transitions (i.e., 6 and p4) to be simul- 
taneously enabled; this represents the non- 
deterministic case in which any of the en- 
abled transitions may be taken. 

Parallel Composition 

In Table I, the transition set of TRAIN and 
GATE each have a transition called &such 
transitions which share their label names are 
called shared-transitions. When composing 
two concurrent TTMs each containing a 
component of a shared-transition, a new 
composite transition (also labeled 6) in the 
composed TTM is formed. The composed 
transition represents the combined simulta- 
neous interaction of the component transi- 
tions. For example, the 6 component in 
TRAIN (i.e., exit from the level crossing) 
and GATE (i.e., start raising the gate) occur 
simultaneously thus modeling a mechanical 

Enabling condition Transformation Lower Upper 

(xi = tr) [xl  PI 0 W 

(-rl = ap) [ x ,  :in] I O  W 

(x, = in) [x, : tr1 0 W 

Table I 
The Transition Sets of TRAIN, GATE, and PLANT 

Name Enabling condition Transformation Lower 

PI (x2  = mvup) [x2 UP1 1 
P z  (x2 = UP) [xa : mvdn] 0 
P 3  (x2 = mvdn) [xz:down, y :y  + I] 1 
P4 (x2 E {down, mvup, mvdn} [xz  : maint, y : 01 0 

Ps (xz = maint) [xz  : down] 0 
6 (x2 = down) [xz : mvup] I 

A!: > 0 )  

Transitions of TRAIN 

Upper 
2 

2 
W 

W 

W 

m 

Name 

a1 
a2 
6 
P I  
Pz 
P3 
P4 

Ps 

I Transitions of GATE I 

Enabling condition Transformation Lower Upper 

(xl = tr) [xl  PI 0 m 

(xl = ap) [ x ,  :in] 10 03 

(x, = in A x 2  = down) [xl : tr, x2  : mvup] 1 W 

(x2 = mvw) 1x2 UP1 1 2 
( 1 2  = UP) [.rz : mvdn] 0 W 

(x2 = mvdn) [x2 : down, y : y + 11 1 2 
(x2  E {down, mvup. mvdn} [xz : maint, y : 01 0 W 

(x2 = maint) [xz :down] 0 W 

A j’ > 0)  

I Transitions of PLANT = TRAINIIGATE I 

interlock, which starts raising the gate when- 
ever the train exits. In the transition table 
(Table I) for PLANT = TRAIN 11 GATE the 
composite transition 6 is shown. 

Given any two component transitions A = 
(e,, h,, I,, U,) from TTM MA and B = (eB,  
hB, IBr uB) from TTM MB, the composite 
transition C is given by C = (ec, he. le, uc) 
where ec is defined by eA A eB ,  IC is defined 
by max ( IA ,  le) ,  and uc is defined by rnin (U,, 
uB). If h, = [q: d , ,  . . . , uI: 4.1 and hB = 
tuk+l: 4+,> . . . , uk+,,: dI +,,I, then he is 

aid in the easy identification of shared-tran- 
sitions, A ,  B ,  and C are all given the same 
transition label name (where no confusion 
will result) as illustrated in the case of the 6 
transition. 

The above method for computing the com- 
posite bounds allow shared transitions to be 
used for control. For example, some TTM 
M ,  may impose control over a transition 7 in 
another TTM, M2 by including a transition 

defined by [ U , :  d,,  . . . , u ~ + n :  d ~ + n I .  To 

(with some finite upper time bound) with the 
same label 7 in M I ,  thus forcing the com- 
posite transition 7 to occur by the upper time 
bound whenever the components are simul- 
taneously enabled. 

The definition of parallel composition of 
two TTMs can now be given. Let M ,  and 
M2 be two TTMs, i.e. 

If there are no shared-transitions then 
3,, 11 3,? is just the union 3,, U 3,? of the 
two transition sets. For each shared transi- 
tion, the components of the shared transition 
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must be removed from the union and re- 
placed by the resulting composite transition. 
The parallel composition of TTMs is itself 
a TTM. 

In (301, [32], parallel composition involv- 
ing communicating transitions (sending and 
receiving a message) is also defined. Parallel 
composition is important because it allows 
the designer to build complex systems from 
smaller component parts. 

An example of parallel composition is pro- 
vided in Table I in the case of PLANT = 

TRAIN I (  GATE. 

Imposition of Control 
A controller is a TTM which is composed 

in parallel with PLANT thereby imposing 
control over some of the actions of the plant 
in order to achieve suitable plant behavior. 

The set of observable variables of PLANT 
is some subset of VpLANT (time t is always 
observable and n is never observable). Ob- 
servable variables are treated by the plant as 
“read-only,” i.e., the observable variables 
may be used in guards of plant transitions 
and to compute updates to controller data 
variables-however, plant variables may 
never be changed by controller transitions. 

The set of controllable transitions of 
PLANT is some subset of 3 (tick and initial 
are never controllable). Controllable transi- 
tions are transitions that the controller can 
treat as shared-transitions, i.e., a control- 
lable transition 7 matching a plant transition 
(also called 7) may occur anywhere in the 
controller. The guard of 7 in the controller 
may use any of the observable plant vari- 
ables. Furthermore the bounds of 7 in the 
controller may be set to any values so long 
as the composite transition has its upper time 
bound at least as large as its lower time 
bound. The controller can therefore disable 
the corresponding plant transition under some 
conditions (via the guards) or force the oc- 
currence of the plant transition (via the time 
bounds and guards) under other conditions. 

In the case of PLANT = TRAIN 11 GATE 
the observable variables could be {xI, x 2 ,  y }  
and the controllable transitions { p 2 ,  &} . The 
transition &, which denotes the command to 
the gate to move down, is a typical control- 
lable transition. The transition cyI is a typical 
uncontrolled (or “spontaneous” transition) 
because the controller cannot determine what 
the train will do (in this case start approach- 
ing the gate). Other examples of spontaneous 
events are failures, external interrupts and 
operator actions such as pushing on/off but- 
tons. 

The free behavior of the plant is described 
by the legal trajectories of PLANT prior to 

control, i.e., the controllable transitions are 
treated as spontaneous transitions. The be- 
havior of the open loop plant is usually un- 
satisfactory in some respect-specifying ap- 
propriate behavior is the task of the next 
section. 

Specification of the Control Problem 
to be Solved 

The control problem to be solved will be 
specified using real-time temporal logic 
(RTTL). A brief description follows below. 
For more detail the reader is referred to [ 3 0 ] ,  

A state-formula is any boolean-valued 
expression in the variables of a TTM, e.g., 
the state-formula (n = a2  A t I 10 A (xl 
= approaching V .s = 1)) is satisfied in the 
state s = {(xl, ingate), (y, I ) ,  (t ,  lo), (n, 
f f 2 ) ) .  

Unlike a state-formula which can be eval- 
uated in a single state, an RTTL formula can 
only be evaluated in a trajectory (infinite se- 
quence of states). For simplicity, we use two 
basic temporal operators 0 (next), and ’U 
(until) from which we can define many other 
useful operators including: 0 (henceforth), 
0 (eventually), U (unless), and 6 (pre- 
cedes). 

For an arbitrary trajectory U = soslsz 
. . .  , denote by ak the k-shifted trajectory 
suffix given by U‘ = s I s k +  I sa+z  . ’ . . The 
satisfaction relation for arbitrary temporal 
formulas is defined inductively as follows 
(the notation = ‘w means that the trajectory 
U satisfies the formula w): For temporal for- 
mulas U’, wl ,  w2, and trajectory U :  

~321. 

if w is a state-formula, then =Ow iff so(w) 
= true. 

0 w may be paraphrased: U’ will be true 
in the next stage. 

iff 3k 2 0 such that =OAw2 and Vi, 0 I 
i < k ,  =“wI. 
wI ‘U w, may be paraphrased: eventually 
w2 will hold and until then wI holds con- 
tinuously. 

= “ o w  iff r o ‘ w ,  

= WI ’U w, 

w, 6 w2 may be paraphrased: if w2 even- 
tually occurs then w, must precede w2. 

wI Uw, is an abbreviation for (0 wI) V 

w1 Uw2 may be paraphrased: w1 holds true 
unless w, becomes true, i.e., either w2 
never occurs and w1 is henceforth true, or 
wI holds true until the first occurrence of 
W? . 

The temporal formula 0 0 (n = tick) can 
be read as: “the clock ticks infinitely often.” 
The formula 

(WI’U w2). 

(wl A t  = T )  + 0 (wz A ( t  < T + 4)) 

(3) 

may be read as: “if wI is true at time Tthen 
w2 must happen before the clock reads T + 
4 (i.e., within 4 clock ticks).” 

In (3), the variable T is a “global” vari- 
able that has the same value in every state 
of a trajectory. In RTTL formulas quantifi- 
cation is allowed over global variables but 
not over the “local” variables (variables in 
V); local variables always occur free. Global 
variables range over fixed data domains 
(e.g., T ranges over type@)) and denote ele- 
ments thereof. Local variables change from 
state to state. 

All formulas with occurrence of global 
variables are assumed to have their global 
variables universally quantified. Thus (3) ac- 
tually means 

VT[(wl A 2 = T )  

+ O (W2 A ( t  < T + 4))]. 

Instead of using the time variable t explic- 
itly in RTTL formulas we may use abbre- 
viations such as: 

o , , , , , w f o r [ ( t = T ) - t  O ( w r \ ( T + l S  
t I T + U))], i.e., eventually between I 
and U ticks from now w will become true. 
The formula 0 ,dw abbreviates 0 [ O , d ] w ,  

and 0 dw abbreviates 0 [ d , d ] W .  

w1 ’U,,,ulw, abbreviates [(t = T )  + 

(wl’U(w2 A (T  + I 5 t 5 T + U ) ) ) ] ,  i.e., 
w2 will become true between 1 and U ticks 
from now, and until then wI remains true. 
The formula (w, ‘u,,wl) abbreviates . .. . 

New temporal operators may be defined from 

0 w is an abbreviation for (true ‘U w). 
0 w may be paraphrased: eventually w 
will hold true in some state. 

(wI w2), and (wl ‘ U r d W 2 )  abbrevi- 

A variety of real-time properties can be 
expressed using these abbreviations includ- 
ing: 

0 and ‘U as follows: ates (WI ’U[0.dlw2). 

0 w is an abbreviation for 
7 ( 0 ( 7 w)). 0 w may be paraphrased: 
hencefoh, w holds true in all states. 

~ x u c t  time: 0 (wI -+ o w2)-every w1 is 
followed by a w2 in exactly d ticks. 

w1 6 w2 is an abbreviation for Maximum t h e :  (wl + 0 .,w,)-every 
wI must be followed by a w2 within d ticks. (1 (( W l ) V W ? ) ) .  
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Minimum time: U (wI + 1 0 5 d ~ 2 ) - ~ I  

and w2 are at least d ticks apart. 
Periodicity with period d: 0 w A U [w + 

0 ( 1 w’udw)]-w occurs regularly with an 
exact period of d .  

Let S be an RTTL specification character- 
izing the behavior that a TTM M is required 
to satisfy. Then S is M-valid iff all legal tra- 
jectories of M satisfy S. 

Development of a Controller 
The designer may want to design a con- 

troller so that PLANT will satisfy the fol- 
lowing specifications. 

SI -Safety 

0 [xI # ingate V x2 = down)] 

i.e., henceforth, if the train is on the level 
crossing, the gate must be down. 

The above property cannot be made 
PLANT-valid if maintenance procedures are 
to be performed on the gate. A more realistic 
specification is thus 

0 (x2 # maintenance) 

+ 0 [xI # ingate V x2 = down] 

(4) 

i.e., so long as no maintenance is henceforth 
performed, when the train crosses the gate 
must be down. 

Another safety property is O ( y  5 125), 
i.e., the gate should never be used more than 
125 times without going through the main- 
tenance procedures. 

S2-No Unsolicited Response 

0 [(x2 = down A xI = ingate) 

+ (n = aI 6 n = &)I 

i.e., henceforth if the gate is down and the 
train is crossing then aI must precede the 
next occurrence of &. Thus, the gate may 
be lowered only after the approach of the 
train. As in the case of (4) the complete 
specification is an implication with Ox2 # 
maintenance) as the antecedent. 

S3-Real-time Response 

0 [(n = all + 0 5g(n = &)I 
i.e., henceforth the gate must be lowered no 
more than 9 ticks after the train approaches 
the level crossing. As in the case of (4) the 
complete specification is an implication with 
antecedent U (x2 # maintenance). 

None of the above specifications is valid 
for the free behavior of the plant. A con- 
troller is therefore needed to impose the 
proper controls. 

CONTROLLER 

Fig. 3. The timed transition model CONTROLLER. 

The control problem for the train-gate plant 
may now be specified as follows: given that 
the variables x I ,  y of PLANT are observable, 
and given that the transitions &, p4 are con- 
trollable, find a TTM CONTROLLER, so 
that for SYSTEM = PLANTIICON- 
TROLLER, the formulas S1, S2, and S3 are 
SYSTEM-valid. 

Systematic development of controllers for 
safety properties using weakest precondi- 
tions is described in [29] and heuristics for 
real-time properties in [30]. A typical con- 
troller for PLANT is provided in Fig. 3 .  Note 
that a controller transition p2(0, 11) will not 
satisfy specifications SI and S3, whereas 
&(O, 6) does. 

Because the synthesis procedures employ 
the logical manipulation of RTTL formulas, 
the synthesis procedures are applicable to fi- 
nite state as well as infinite state TTMs. 
Complexity of verification in the finite state 
case is discussed in [28]. 

Concluding Remarks 

The example of the previous section in- 
dicates how temporal logic can be used to 
design controllers. An important area of re- 
lated interest involves the automation of ver- 
ification procedures, i.e., given a TTM and 
a specification of required behavior, auto- 
matically check whether the TTM satisfies 
its specification. The references below ex- 
plore finite state and infinite state verifica- 
tion. 

Automated Finite State Verification 

The articles in [27], [31], [28] give pro- 
cedures for verifying safety, liveness and 
real-time response properties of TTMs with 
finite state reachability graphs. The proce- 
dures have complexity linear in the size of 
the reachability graph. The procedures have 
been implemented in Prolog and are avail- 
able from the author. 

Semi-automated Verijcation of  In$nite 
State Systems 

Constraint logic programming (CLP) has 
been used to semi-automate the verification 
of some infinite state systems [31], [30]. 
Constraint logic facts and rules represent 
TTMs in a natural fashion that stays close to 
their mathematical representation. The 
knowledge about TTMs is separated from 
the use that the knowledge is put to. Thus it 
is relatively easy to effect changes in the 
TTMs. The designer is aided in the construc- 
tion of RTTL proofs of TTM correctness. 
The problem of combinatorial explosion of 
states is somewhat alleviated-CLP exploits 
the rich structure provided by real numbers 
to solve real-valued constraints using the 
simplex method for example, instead of 
solving constraints by state enumeration. 

Current research is focused on developing 
modular controller synthesis methods and the 
design of hierarchical controllers. 
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