
I

A Logic for Real-Time Discrete Event
Processes

Jonathan S. Ostroff

ABSTRACT: Temporal logic can be used to
design controllers for real-time discrete event
systems. The underlying plant dynamics is
most economically described by a state tran-
sition structure with time bounds on the tran-
sitions. Temporal logic may then be used to
1) specify the problem to be solved and 2)
help in the derivation and verification of a
suitable controller.

Introduction
This article gives an overview of the use

of temporal logic for the design of systems
composed of real-time discrete event pro-
cesses. Typical applications include process
control, flexible manufacturing systems, ro-
botics, communication networks, traffic sys-
tems, avionics and embedded real-time com-
puter systems.

Timed transition models are used to model
or represent real-time discrete event pro-
cesses. Real-time temporal logic is the spec-
ification, verification and analysis language
for reasoning about transition systems. The
models economically describe the underly-
ing state transition structure of plants and
controllers, whereas the logic specifies at a
high-level the control problem to be solved.
The logic allows for the treatment of some
infinite state systems because it is not nec-
essary to check finite state reachability graphs
for the existence of required properties. In-
stead, the logic provides the capability for
performing an inductive correctness proof
the initial states must be acceptable, and
every transition in the system preserves the
desired behavior.

In the rest of this article we will first dis-
cuss the nature of real-time discrete event
processes, next examine the software veri-
fication literature, give a brief overview of
the model and logic framework, and finally
provide a small example of controller de-
sign. The material of the first three sections
is taken mainly from the introductory chapter

Jonathan Ostroff is with the Department of
Computer Science, York University, North York,
Ontario, Canada, M3J 1P3. This work was sup-
ported by the Natural Sciences and Engineering
Research Council of Canada.

of [30]. The reader is referred to [32], 1301,
[29] for complete technical detail, as this ar-
ticle only provides an overview of the key
concepts.

Real-Time Discrete Event Systems

The main components of a discrete event
process are its states and events. A state has
duration in time, e.g., “the conveyer belt is
moving” is a state that the conveyer might
be in for some ticks of the clock. In the rest
of this article a “state” in the above sense
will be called an “activity,” whereas the
word state will be reserved for the “global
state” of all the different devices and pro-
cesses taken together. An event occurs in-
stantaneously, e.g., “the conveyor fails.” A
transition from one state to another has the
general form: “if the event a occurs in state
A , then the condition C must be true and the
system instantaneously transfers from A to
state B.” The following items include some
of the characteristic features of real-time dis-
crete event processes:

Events occur at discrete times and states
have discrete values.

Processes are event-driven rather than
clock-driven.

Processes are typically nondeterministic
(capable of “choices” by some mecha-
nism unmodeled by the system analyst).
No explicit stochastic feature is postu-
lated-the focus is on the possibility rather
than the probability of event occurrence.

Processes generally have internal dynamic
behavior, and also interact and react with
their environments (the interaction is often
nonterminating).

Processes operate concurrently and com-
municate with each other (e.g., via mes-
sage-passing over channels).
“Hard” real-time deadlines must often be
met for safe operation. System correctness
depends not only on the logical result of
the system behavior but also on the time
at which the results are produced.

line. Spray painting a car on a moving con-
veyor must be initiated at some suitable time
and terminated some later time. When an
aircraft enters an air traffic control region,
the flight controller must be informed in a
timely fashion. Once the approach of a train
is detected, car and pedestrian traffic at the
train intersection must be halted before the
train reaches the intersection. If the com-
puter controlling a robot does not command
it to stop or turn in time, the robot might
collide with another object on the factory
floor.

There is general consensus in the software
and control systems literature [44], (121, (51,
[18], [41] that real-time discrete event sys-
tems are difficult to model, specify and de-
sign. In addition, experience has shown that
software components of systems are prob-
lematic (perhaps even more so than mechan-
ical or other hardware components).

Software is complex (consider the docu-
mentation needed for even simple modules),
nonrobust (small errors have major conse-
quences) and software is notoriously difficult
to test (the number of test cases that must be
checked becomes unmanageably large even
in small systems) [33]. It does not come as
a surprise that the first flight of the space
shuttle was delayed by a subtle timing error,
which was traced to an improbable race con-
dition in the flight control software [lo]. Al-
though no loss of life occurred in this in-
stance, other real-time computers are at the
heart of systems in which software errors can
have catastrophic consequences.

Since real-time discrete event processes
occur in so many safety critical systems,
there is obviously a need to model, specify,
design and verify such processes to ensure
their safe behavior.

It has long been conjectured that a formal
mathematical approach would be useful in
overcoming some of the difficulties in the
specification, design and implementation of
complex systems. Turning this conjecture
into sound practice has proved to be ex-
tremely difficult-many practically-oriented
engineers will probably consider the conjec-

There are many examples where hard real-
time deadlines must be met. If the temper-
ature of a nuclear reactor core is too high an
alarm must be generated within some dead-

ture to face insurmountable hurdles.
But what benefits do “theorists” hope to

obtain by the use of a formal framework? A
list of the benefits includes:

0272-1708/90/0600-0095 $01 .OO 0 1990 IEEE
June 1990

--1

95

1

I

in the process of formalizing informal re-
quirements, ambiguities, omissions, and
contradictions will often be discovered,

the formal model may lead to hierarchical
semi-automated (or even automated) sys-
tem development methods,

the formal model can be verified for cor-
rectness by mathematical methods (rather
than by intractable case by case testing),

a formally verified subsystem can be in-
corporated into a large system with greater
confidence that it behaves as specified, and

different designs can be compared.

Control theorists have extensively studied
the problem of designing continuous variable
dynamic systems. Modem control theory has
been successful in solving a variety of prob-
lems such as ensuring stability, regulation,
filtering, and optimal control of large scale
systems. The solution of these problems has
been applied to many real world problems
(e.g., the application of control theory to the
Apollo moon landing). However, since the
focus of control theory has been on contin-
uous variable systems modeled by differen-
tial or difference equations, it is ill-equipped
to cope with systems in which discreteness,
modularity and communication are funda-
mental [18], [45]. In addition, modem con-
trol theory is often mathematically too spe-
cific to model qualitative system properties.
An analogy (cited in [15]) compares the ab-
stract and discrete description of digital logic
circuits via boolean functions, to the lower-
level view of the digital circuit as a contin-
uously changing numerical vector. The bool-
ean description is useful because it elimi-
nates unnecessary numerical detail. In
response to the need to develop theories for
discrete event systems, control theorists have
recently investigated formal language theory
and mathematical logic [42], [37], [Is], [41,

In the software verification literature,
mathematical logic has played an important
role in the specification and analysis of pro-
gram correctness. Some of these ideas can
be used in the design of control systems.

[31.

Software Verification
In the software verification literature, much

attention has been focused on the description
and verification of parallel programs (see [2]
for a survey and comparison of methods).
Although the focus is usually on programs,
many of the techniques are applicable either
explicitly or implicitly to complex discrete
event systems having mechanical or other
hardware components as well as software

components (e.g., [24], [34], [8], [171, [43],
1231, [131, 1361, [111).

There is an important distinction to be
made between a “dual-language’’ approach
and a “single-language’’ approach [39]. The
timed transitionheal-time temporal logic
framework of this paper is an extension of
the dual-language fair transition systems/
temporal logic framework introduced by
Manna and Pnueli [35], [21], [19], [36].

The single-language approach (e.g., 1241)
works on the premise that the same language
should be used both for specification and im-
plementation of computational tasks. Thus
the language should have a well-identified
fragment that can be effectively and effi-
ciently executed. The initial specification
emphasizes the desired behavior and pays
little attention to implementation details. A
sequence of transformations is then applied
to the initial specification to produce the final
implementation. An algebraic framework
usually supports the transformations so that
meaning is preserved.

In the dual-language approach, one lan-
guage is the computer executable program-
ming (or representation) language R, which
is prescriptive and algorithmic in nature. R
is the language in which we program and
which is computer executable. The second
language is the specification (or assertion)
language S, which is descriptive and expres-
sive enough to specify program requirements
(without specifying how the programs are to
be implemented). Language S is usually
based on mathematical logic.

In the dual-language approach, the main
problems that are studied are program veri-
fication, development and synthesis. Given
a specification s E S and a program r E R,
the verification problem involves the dem-
onstration that the program r satisfies the
specification s E S, and a method is sought
whereby disciplined humans can be helped
to construct a program r that satisfies s. If
program development is fully automated,
then it is called program synthesis.

Program synthesis is closely related to
controller synthesis. In controller synthesis,
a plant p E R and a specification s E S of the
control problem to be solved are provided.
The problem is then to automatically derive
a controller c E R that in conjunction with p
will ensure that the closed loop system sat-
isfies s.

In what way is controller design different
from program synthesis? The representation
language R must be flexible enough to model
not only programs but also the plant dynam-
ics (e.g., there must be spontaneous as well
as controlled events). A mechanism for ob-
servation and control must be provided. Fur-

thermore, in program synthesis the dcsigner
is free to develop any program from scratch
that will satisfy the specification. By con-
trast, in controller design, there is a fixed
component (viz., the plant) that cannot be
altered by the designer, and yet it is the ap-
propriate behavior of the plant that is of vital
concern. Finally, in program synthesis the
designer is mostly interested in ensuring that
the program delivers certain services to the
environment. By contrast, the purpose of the
controller is to ensure that the internal be-
havior of the plant satisfies appropriate re-
quirements.

The TTM/RTTL Framework
The connection between timed transition

models (TTMs) and real-time temporal logic
(RTTL) is made via an extension to Manna
and Pnueli’s notion of a fair transition sys-
tem. A fair transition system consists of a
(possibly infinite) state space, a set of tran-
sitions defining state transformations, a set
of initial states, and a fairness family. Fair-
ness means that if a process is continuously
(or infinitely often) enabled then it must
eventually make progress. Although fairness
notions are easily incorporated into the TTM/
RTTL framework [30], for simplicity we will
not further develop these notions in this pa-
per.

A computation is a sequence of states
whose initial state is in the initial state set,
whose successor states are obtained by ap-
plying enabled transitions, and where the
fairness families are used to ensure that cer-
tain sets of transitions that are continuously
enabled or infinitely often enabled in the
computation eventually occur. A computa-
tion can be used to interpret formulas of tem-
poral logic. To determine if a concurrent
program satisfies a temporal logic specifi-
cation S, the program is first translated into
a fair transition system. Translation is usu-
ally a straightforward, easily automated pro-
cess. The program satisfies S exactly when
all the program computations satisfy S.

The following extensions are made to fair
transition systems to obtain the TTM/RTTL
framework:

Transitions have associated lower and up-
per time bounds (measured with respect to
a global clock) so that real-time properties
(including delays and timeouts) can be
represented.
Two distinguished variables are added: a
time variable r (the current clock time) and
the next-transition variable n (for referring
to the events of complex systems).

Instead of computations, the transition

96 I€€€ Control Systems Magazine

I

system now generates trajectories or se-
quences of states that take into account the
lower and upper time bounds of transi-
tions.

The trajectories can be interpreted in real-
time temporal logic (which uses standard
operators together with the time variable
to express quantitative timing properties).
No expressive power is lost in making the
transition from a fair transition system to
the TTMIRTTL framework. The upper
and lower time bounds impose additional
constraints on transitions, thus necessitat-
ing additional proof rules for verifying
real-time properties, but preserving the
standard temporal logic proof rules for
verifying qualitative behavior.

TTMs are useful for representing the pro-
cesses of discrete event systems. TTMs
model spontaneous events, controlled
events, nondeterministic choice of events,
events shared by two or more TTMs, in-
ter-TTM communication and parallel
composition of TTMs. TTMs can also
represent the constructs of real-time pro-
gramming languages.

The plant of a complex discrete event sys-
tem can be represented by a TTM PLANT
(which itself is composed of many TTMs
with each TTM representing one of the plant
processes). A specification S of required
plant behavior can be formulated in RTTL.
A controller (possibly implemented in real-
time concurrent programming language) can
be represented by a TTM CONTROLLER.
The controller verification problem can be
stated as follows: given PLANT and
CONTROLLER, check if PLANT 11 CON-
TROLLER (the parallel composition of plant
and controller) satisfies S. The controller
synthesis problem can be stated as: given a
specification S for PLANT, is there an au-
tomatic way to produce CONTROLLER so
that the closed loop system given by
PLANT 1) CONTROLLER satisfies S.

RTTL specifications may be applied to any
model of computation addressed by fair tran-
sition systems including: shared variables,
asynchronous communication, and Petri net
models [36], [30].

The state machine formalism is one of the
oldest models of digital computing. It has
been used extensively in requirements spec-
ifications for real-time computing [46], [I] ,
[l l] because it is a natural, visual medium
for describing the dynamic behavior of a
complex system. This is the reason for
choosing TTMs for representing plants and
controllers. TTMs are (possibly infinite) state
machines, enhanced with the standard pro-

gramming notions of data variables, guarded
events, concurrency and communication.

Temporal Logic

Temporal logic has its origins in philoso-
phy, where it was used to analyze the nature
of time [38]. In recent years, it has found
application in computer science, especially
in the areas of software verification and
knowledge-based systems [7].

In physics and mathematics, time has tra-
ditionally been represented as just another
variable. First order predicate calculus is
used to reason about expressions containing
the time variable, and there is thus appar-
ently no need for a special temporal logic.

Philosophers found it useful to introduce
special temporal operators, such as 0
(henceforth) and 0 (eventually), for the
analysis of temporal connectives in lan-
guage. The new formalism was soon seen as
a potentially valuable tool for analyzing the
topology of time. For example, various types
of semantics can be given to the temporal
operators depending on whether time is lin-
ear, parallel of branching. Another question
that may be asked is whether time is discrete
or continuous.

The temporal operators have been found
useful for specifying program behavior. A
structure of states (e.g., a sequence or tree
of states) is the key concept that makes tem-
poral logic suitable for program specifica-
tion. A formula, containing temporal logic
operators, is interpreted over a structure of
states. In programming languages, the struc-
tures represent the computations executed by
a program. Such a computation may be used
to interpret a temporal formula. In this way,
a programming language is said to be en-
dowed with a temporal semantics.

Some of the different types of temporal
semantics include:

Interval semantics [40], [25], 1261. The
semantics is based on intervals of time,
thought of as representing finite chunks of
system behavior. An interval may be di-
vided into two contiguous subintervals,
thus leading to the “chop” operator “ ;”.
“ A ; 8” is true on an interval just so long
as that interval can be decomposed into
two contiguous subintervals in such a way
that A is true over the first interval and B
over the second.

Point semantics, in which temporal for-
mulas are interpreted as requiring some
system behavior with respect to a certain
reference point in time. Past operators re-
fer to the time prior to the reference point,
and future operators to the time after the

reference point. Obviously, a point cannot
be divided, and the there is thus no simple
definition of the chop operator.

Point semantics may be further divided
into three classes.
- Linear semantics [22], [36], [20]. In

linear semantics, each moment has
only one possible future correspond-
ing to the actual history of the devel-
opment of the system.

- Branching semantics [9], [6]. In
branching time semantics, time has a
tree-like nature in which, at each in-
stant, time may split into alternative
courses representing different choices
made by a system.

- Partial order semantics. Partial order
semantics has been explored only re-
cently. The reader is referred to [20]
and other articles in the same volume
as [20] for further information.

RTTL is based on Manna-Pnueli temporal
logic, and therefore has a linear, point se-
mantics. Having decided on the type of
structure to be used for interpreting temporal
formulas, there is still a further decision to
be made, viz., how are the structures to rep-
resent program executions or computations.
There are at least two possibilities.

Maximalparallelism [14], [16]: The num-
ber of instructions in concurrent processes
that can be executed simultaneously is
maximized. Thus, two processes are never
both waiting to achieve a shared com-
munication.

Interleaved executions: Concurrent activ-
ity of two parallel processes is represented
by interleaving their atomic actions (in-
terleaving is conceptually similar to au-
tomata products). Fairness and time bound
constraints are then used to exclude in-
appropriate interleavings (e.g., a sequence
in which a continuously enabled action is
never executed).

The trajectories (or executions) of concur-
rent TTMs are constructed from interleav-
ings of their atomic actions. TTMs may
therefore be thought of as being endowed
with a linear order temporal semantics, in
which the trajectories of TTMs are con-
strained to real-time, fair interleavings.

RTTL uses as its base the linear time
quantified temporal logic proof system in
[22]. The proof system uses the future frag-
ment of temporal logic. Thus, although the
future behavior of a system is easily de-
scribed, there are no temporal operators
which directly express past behavior, e.g.,
“once in the past the device failed.” Past
properties can be expressed indirectly, but

97 June 1990

-_ T 1

I

not in the same natural fashion as future
properties.

An Example
Fig. 1 shows two TTMs called TRAIN

and GATE representing two concurrent pro-
cesses. Before the train (the first process)
reaches a level-crossing, a gate (the second
process) is to be lowered so as to prevent
pedestrian or automobile traffic from cross-
ing over while the train is passing through.

A TTM M is defined as a 3-tuple (V, 8,
3) consisting of a set of variables V, an ini-
tial condition 8 and a finite set of transitions
3. The initial condition is any boolean val-
ued expression in the variables. The transi-
tions are explained in more detail below. An
example of a TTM is TRAIN which is de-
fined by

def

TRAIN = (V T R A I N , @TRAIN, 3TRAIN)

where V T R A , , = {xI, t , n}, @TRAIN is defined
by (xl = traveling A n = initial), and STRAIN

= {aI, a2, 6, initial, tick} as listed in
Table I.

The two distinguished variables t (the cur-
rent time) and n (the next transition variable)
are present in all TTMs. Each TTM has an
activity variable, e.g., for TRAIN the activ-
ity variable is xI with t ype(x ,) = {traveling,

approaching, ingate}. In addition, there may
be one or more data variables for represent-
ing numeric information (such as pressures,
temperatures or fluid levels) or other infor-
mation (such as sets and queues). The TTM
GATE has a data variable y which counts
the number of times the gate is lowered after
each maintenance cycle.

Each v E V has an associated type(v), and
(R is the disjoint union of all these types. For
the time variable, type (t) is usually the non-
negative integers union with infinity, and
type(n) = 3.

A state s of a TTM M = (V, 8, 3) is a
mapping s: V -+ (R such that s(U) E type (a)
for each v E V. Each state s has an associ-
ated state-assignment 9 which is the restric-
tion of s to (V - {n}). An example of a
state of TRAIN is s2 = {(xI, traveling), (r ,
I) , (n, CY,)}, and the corresponding state-
assignment is 92 = {(x,, traveling), (t , I)}.
The set of all state-assignments is Q.

A transition (which updates e.g., 2 data
variables y I , y z) may be visualized by the
illustration shown in Fig. 2 . The transition
may be interpreted as follows: “if the tran-
sition 7 becomes enabled at time t = T(e.g.,
the TTM reaches the activity a, with the
guard guard evaluating to true), then the edge
must be traversed between I and U ticks from
T, unless 7 is preempted by the occurrence

~~

TRAIN

PLANT=TRAINIIGATE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

e,, = (x, =travelling A x2 =up A y < IO) I

rnoveup (7

Oq(O,m): ?‘ > 0 - [KO]

Fig. 1 . The plant consisting of a train and gate.

98

Fig. 2.
model.

A transition of a time transition

of some other transition which disables 7.
When 7 occurs in a state-assignment q, the
successor state-assignment 9 ’ is similar to q
except x has the value a d , and y I , y2 have
the values of d , , d2 respectively as evaluated
in the state q.”

A transition 7 is defined by a 4-tuple (e,,
h,, I,, u ~) , where I,, U , are the lower and
upper time bounds, respectively. The bounds
may be any integer expression d so long as
s (d) E type@). The enabling condition is e,
defined by (x = a, A guard). Where no guard
is indicated on the transition graph, the guard
is assumed to be true. The transformation
function is a partial function h,: Q -+ Q,
where Q is the set of all state-assignments.
The function is defined for all state-assign-
ments q E Q such that q(e,) = true. The
transformation function is often denoted by
[x: ad, yI: d l , y2: d2] to indicate which vari-
ables in the state-assignment are updated on
making the transition.

The train transition CY* has a lower time
bound of 10, which represents the fact that
it takes a minimum of 10 clock ticks from
the time the train is detected until it reaches
the gate. An upper time bound of infinity
means that the transition is never forced to
happen. A legal-trajectory U of TRAIN is
any actual possible sequence of states that
TRAIN may execute. For example, the fol-
lowing is a legal trajectory of TRAIN which
starts with the initial transition initial fol-
lowed by one tick of the clock:

a, ticklu

u = ~ o + 41 + 92 - 9 7 +

dcf inilldl tick

a2

9 4 - 9s . . . -+ . . .
= SOSlS2Sj (1)

The train then approaches the level-crossing,
followed by 10 ticks of the clock. Finally
the train reaches the level-crossing. The rest
of the legal-trajectory is not shown.

In addition to the transitions that arise from
the transition graph of a TTM, the transition
set of any TTM always contains two distin-
guished transitions tick and initial as indi-
cated in (1). The rick transition must occur
infinitely often in any legal-trajectory, and if
so is the initial state of a legal trajectory then
so@) = true. Each state-assignment in the
legal trajectory is related to its predecessor
via the transformation function of the cor-
responding transition.

/E€€ Control Systems Magazine

I I

Name

f f 1

f f z
6

CM denotes the set of all legal trajectories
of a TTM M . C, completely characterizes
the behavior of M , and thus provides an ab-
stract operational semantics for the TTM.

In the GATE TTM of Fig. 1, typical
statechart [l l] notation is used. The activi-
ties moveup, down, movedown are clustered
into a superstate. Thus, to indicate that there
is a transition from each of the activities in
the superstate to the maintenance activity,
only a single edge p4 need be shown (thus
replacing three edges by one). To be in the
superstate one must be in exactly one of
moveup, down, movedown. The superstate
together with p4 is really an abstraction of a
common property of the clustered activities,
viz., that p4 leads from them to maintenance.
Abstract edges such as p4 are easily repre-
sented in TTMs. See Table I in which p4 has
the enabling condition x2 E {moveup, down,
movedown}, the transformation function [x2:
maint] and lower and upper time bounds of
0 and 03, respectively. The notation x2 E

{moveup, down, movedown} is an abbre-
viation for (xl = moveup v x2 = down V

x3 = movedown)-since activities are dis-
tinct, the “exclusive or” could be used.

The transition p3 in GATE increments the
data variable y by one every time the gate is
lowered. The data variable y thus counts the
number of times the gate has been lowered.
The free behavior of GATE (before it is
composed with other TTMs) allows for an
infinite number of states to be reached as
GATE has legal trajectories which infinitely
often increment y . A controller might use the
counter to force a maintenance activity after
the lowering mechanism has been used a cer-
tain number of times. The counter is reset to
zero (by p4) every time the gate is main-
tained.

When the gate is down it is possible for
two transitions (i.e., 6 and p4) to be simul-
taneously enabled; this represents the non-
deterministic case in which any of the en-
abled transitions may be taken.

Parallel Composition

In Table I, the transition set of TRAIN and
GATE each have a transition called &such
transitions which share their label names are
called shared-transitions. When composing
two concurrent TTMs each containing a
component of a shared-transition, a new
composite transition (also labeled 6) in the
composed TTM is formed. The composed
transition represents the combined simulta-
neous interaction of the component transi-
tions. For example, the 6 component in
TRAIN (i.e., exit from the level crossing)
and GATE (i.e., start raising the gate) occur
simultaneously thus modeling a mechanical

Enabling condition Transformation Lower Upper

(xi = tr) [xl PI 0 W

(-rl = ap) [x , :in] I O W

(x, = in) [x, : tr1 0 W

Table I
The Transition Sets of TRAIN, GATE, and PLANT

Name Enabling condition Transformation Lower

PI (x2 = mvup) [x2 UP1 1
P z (x2 = UP) [xa : mvdn] 0
P 3 (x2 = mvdn) [xz:down, y :y + I] 1
P4 (x2 E {down, mvup, mvdn} [xz : maint, y : 01 0

Ps (xz = maint) [xz : down] 0
6 (x2 = down) [xz : mvup] I

A!: > 0)

Transitions of TRAIN

Upper
2

2
W

W

W

m

Name

a1
a2
6
P I
Pz
P3
P4

Ps

I Transitions of GATE I

Enabling condition Transformation Lower Upper

(xl = tr) [xl PI 0 m

(xl = ap) [x , :in] 10 03

(x, = in A x 2 = down) [xl : tr, x2 : mvup] 1 W

(x2 = mvw) 1x2 UP1 1 2
(1 2 = UP) [.rz : mvdn] 0 W

(x2 = mvdn) [x2 : down, y : y + 11 1 2
(x2 E {down, mvup. mvdn} [xz : maint, y : 01 0 W

(x2 = maint) [xz :down] 0 W

A j’ > 0)

I Transitions of PLANT = TRAINIIGATE I

interlock, which starts raising the gate when-
ever the train exits. In the transition table
(Table I) for PLANT = TRAIN 11 GATE the
composite transition 6 is shown.

Given any two component transitions A =
(e,, h,, I,, U,) from TTM MA and B = (eB,
hB, IBr uB) from TTM MB, the composite
transition C is given by C = (ec, he. le, uc)
where ec is defined by eA A eB , IC is defined
by max (IA , le) , and uc is defined by rnin (U,,
uB). If h, = [q: d , , . . . , uI: 4.1 and hB =
tuk+l: 4+,> . . . , uk+,,: dI +,,I, then he is

aid in the easy identification of shared-tran-
sitions, A , B , and C are all given the same
transition label name (where no confusion
will result) as illustrated in the case of the 6
transition.

The above method for computing the com-
posite bounds allow shared transitions to be
used for control. For example, some TTM
M , may impose control over a transition 7 in
another TTM, M2 by including a transition

defined by [U , : d,, . . . , u ~ + n : d ~ + n I . To

(with some finite upper time bound) with the
same label 7 in M I , thus forcing the com-
posite transition 7 to occur by the upper time
bound whenever the components are simul-
taneously enabled.

The definition of parallel composition of
two TTMs can now be given. Let M , and
M2 be two TTMs, i.e.

If there are no shared-transitions then
3,, 11 3,? is just the union 3,, U 3,? of the
two transition sets. For each shared transi-
tion, the components of the shared transition

June 1990 99

I

must be removed from the union and re-
placed by the resulting composite transition.
The parallel composition of TTMs is itself
a TTM.

In (301, [32], parallel composition involv-
ing communicating transitions (sending and
receiving a message) is also defined. Parallel
composition is important because it allows
the designer to build complex systems from
smaller component parts.

An example of parallel composition is pro-
vided in Table I in the case of PLANT =

TRAIN I (GATE.

Imposition of Control
A controller is a TTM which is composed

in parallel with PLANT thereby imposing
control over some of the actions of the plant
in order to achieve suitable plant behavior.

The set of observable variables of PLANT
is some subset of VpLANT (time t is always
observable and n is never observable). Ob-
servable variables are treated by the plant as
“read-only,” i.e., the observable variables
may be used in guards of plant transitions
and to compute updates to controller data
variables-however, plant variables may
never be changed by controller transitions.

The set of controllable transitions of
PLANT is some subset of 3 (tick and initial
are never controllable). Controllable transi-
tions are transitions that the controller can
treat as shared-transitions, i.e., a control-
lable transition 7 matching a plant transition
(also called 7) may occur anywhere in the
controller. The guard of 7 in the controller
may use any of the observable plant vari-
ables. Furthermore the bounds of 7 in the
controller may be set to any values so long
as the composite transition has its upper time
bound at least as large as its lower time
bound. The controller can therefore disable
the corresponding plant transition under some
conditions (via the guards) or force the oc-
currence of the plant transition (via the time
bounds and guards) under other conditions.

In the case of PLANT = TRAIN 11 GATE
the observable variables could be {xI, x 2 , y }
and the controllable transitions { p 2 , &} . The
transition &, which denotes the command to
the gate to move down, is a typical control-
lable transition. The transition cyI is a typical
uncontrolled (or “spontaneous” transition)
because the controller cannot determine what
the train will do (in this case start approach-
ing the gate). Other examples of spontaneous
events are failures, external interrupts and
operator actions such as pushing on/off but-
tons.

The free behavior of the plant is described
by the legal trajectories of PLANT prior to

control, i.e., the controllable transitions are
treated as spontaneous transitions. The be-
havior of the open loop plant is usually un-
satisfactory in some respect-specifying ap-
propriate behavior is the task of the next
section.

Specification of the Control Problem
to be Solved

The control problem to be solved will be
specified using real-time temporal logic
(RTTL). A brief description follows below.
For more detail the reader is referred to [3 0] ,

A state-formula is any boolean-valued
expression in the variables of a TTM, e.g.,
the state-formula (n = a2 A t I 10 A (xl
= approaching V .s = 1)) is satisfied in the
state s = {(xl, ingate), (y, I) , (t , lo), (n,
f f 2)) .

Unlike a state-formula which can be eval-
uated in a single state, an RTTL formula can
only be evaluated in a trajectory (infinite se-
quence of states). For simplicity, we use two
basic temporal operators 0 (next), and ’U
(until) from which we can define many other
useful operators including: 0 (henceforth),
0 (eventually), U (unless), and 6 (pre-
cedes).

For an arbitrary trajectory U = soslsz
. . . , denote by ak the k-shifted trajectory
suffix given by U‘ = s I s k + I sa+z . ’ . . The
satisfaction relation for arbitrary temporal
formulas is defined inductively as follows
(the notation = ‘w means that the trajectory
U satisfies the formula w): For temporal for-
mulas U’, wl , w2, and trajectory U :

~321.

if w is a state-formula, then =Ow iff so(w)
= true.

0 w may be paraphrased: U’ will be true
in the next stage.

iff 3k 2 0 such that =OAw2 and Vi, 0 I
i < k , =“wI.
wI ‘U w, may be paraphrased: eventually
w2 will hold and until then wI holds con-
tinuously.

= “ o w iff r o ‘ w ,

= WI ’U w,

w, 6 w2 may be paraphrased: if w2 even-
tually occurs then w, must precede w2.

wI Uw, is an abbreviation for (0 wI) V

w1 Uw2 may be paraphrased: w1 holds true
unless w, becomes true, i.e., either w2
never occurs and w1 is henceforth true, or
wI holds true until the first occurrence of
W? .

The temporal formula 0 0 (n = tick) can
be read as: “the clock ticks infinitely often.”
The formula

(WI’U w2).

(wl A t = T) + 0 (wz A (t < T + 4))

(3)

may be read as: “if wI is true at time Tthen
w2 must happen before the clock reads T +
4 (i.e., within 4 clock ticks).”

In (3), the variable T is a “global” vari-
able that has the same value in every state
of a trajectory. In RTTL formulas quantifi-
cation is allowed over global variables but
not over the “local” variables (variables in
V); local variables always occur free. Global
variables range over fixed data domains
(e.g., T ranges over type@)) and denote ele-
ments thereof. Local variables change from
state to state.

All formulas with occurrence of global
variables are assumed to have their global
variables universally quantified. Thus (3) ac-
tually means

VT[(wl A 2 = T)

+ O (W2 A (t < T + 4))].

Instead of using the time variable t explic-
itly in RTTL formulas we may use abbre-
viations such as:

o , , , , , w f o r [(t = T) - t O (w r \ (T + l S
t I T + U))], i.e., eventually between I
and U ticks from now w will become true.
The formula 0 ,dw abbreviates 0 [O , d] w ,

and 0 dw abbreviates 0 [d , d] W .

w1 ’U,,,ulw, abbreviates [(t = T) +

(wl’U(w2 A (T + I 5 t 5 T + U)))] , i.e.,
w2 will become true between 1 and U ticks
from now, and until then wI remains true.
The formula (w, ‘u,,wl) abbreviates

New temporal operators may be defined from

0 w is an abbreviation for (true ‘U w).
0 w may be paraphrased: eventually w
will hold true in some state.

(wI w2), and (wl ‘ U r d W 2) abbrevi-

A variety of real-time properties can be
expressed using these abbreviations includ-
ing:

0 and ‘U as follows: ates (WI ’U[0.dlw2).

0 w is an abbreviation for
7 (0 (7 w)). 0 w may be paraphrased:
hencefoh, w holds true in all states.

~ x u c t time: 0 (wI -+ o w2)-every w1 is
followed by a w2 in exactly d ticks.

w1 6 w2 is an abbreviation for Maximum t h e : (wl + 0 .,w,)-every
wI must be followed by a w2 within d ticks. (1 ((W l) V W ?)) .

100 /€€E Control Systems Magazine

I

I

Minimum time: U (wI + 1 0 5 d ~ 2) - ~ I

and w2 are at least d ticks apart.
Periodicity with period d: 0 w A U [w +

0 (1 w’udw)]-w occurs regularly with an
exact period of d .

Let S be an RTTL specification character-
izing the behavior that a TTM M is required
to satisfy. Then S is M-valid iff all legal tra-
jectories of M satisfy S.

Development of a Controller
The designer may want to design a con-

troller so that PLANT will satisfy the fol-
lowing specifications.

SI -Safety

0 [xI # ingate V x2 = down)]

i.e., henceforth, if the train is on the level
crossing, the gate must be down.

The above property cannot be made
PLANT-valid if maintenance procedures are
to be performed on the gate. A more realistic
specification is thus

0 (x2 # maintenance)

+ 0 [xI # ingate V x2 = down]

(4)

i.e., so long as no maintenance is henceforth
performed, when the train crosses the gate
must be down.

Another safety property is O (y 5 125),
i.e., the gate should never be used more than
125 times without going through the main-
tenance procedures.

S2-No Unsolicited Response

0 [(x2 = down A xI = ingate)

+ (n = aI 6 n = &)I

i.e., henceforth if the gate is down and the
train is crossing then aI must precede the
next occurrence of &. Thus, the gate may
be lowered only after the approach of the
train. As in the case of (4) the complete
specification is an implication with Ox2 #
maintenance) as the antecedent.

S3-Real-time Response

0 [(n = all + 0 5g(n = &)I
i.e., henceforth the gate must be lowered no
more than 9 ticks after the train approaches
the level crossing. As in the case of (4) the
complete specification is an implication with
antecedent U (x2 # maintenance).

None of the above specifications is valid
for the free behavior of the plant. A con-
troller is therefore needed to impose the
proper controls.

CONTROLLER

Fig. 3. The timed transition model CONTROLLER.

The control problem for the train-gate plant
may now be specified as follows: given that
the variables x I , y of PLANT are observable,
and given that the transitions &, p4 are con-
trollable, find a TTM CONTROLLER, so
that for SYSTEM = PLANTIICON-
TROLLER, the formulas S1, S2, and S3 are
SYSTEM-valid.

Systematic development of controllers for
safety properties using weakest precondi-
tions is described in [29] and heuristics for
real-time properties in [30]. A typical con-
troller for PLANT is provided in Fig. 3 . Note
that a controller transition p2(0, 11) will not
satisfy specifications SI and S3, whereas
&(O, 6) does.

Because the synthesis procedures employ
the logical manipulation of RTTL formulas,
the synthesis procedures are applicable to fi-
nite state as well as infinite state TTMs.
Complexity of verification in the finite state
case is discussed in [28].

Concluding Remarks

The example of the previous section in-
dicates how temporal logic can be used to
design controllers. An important area of re-
lated interest involves the automation of ver-
ification procedures, i.e., given a TTM and
a specification of required behavior, auto-
matically check whether the TTM satisfies
its specification. The references below ex-
plore finite state and infinite state verifica-
tion.

Automated Finite State Verification

The articles in [27], [31], [28] give pro-
cedures for verifying safety, liveness and
real-time response properties of TTMs with
finite state reachability graphs. The proce-
dures have complexity linear in the size of
the reachability graph. The procedures have
been implemented in Prolog and are avail-
able from the author.

Semi-automated Verijcation of In$nite
State Systems

Constraint logic programming (CLP) has
been used to semi-automate the verification
of some infinite state systems [31], [30].
Constraint logic facts and rules represent
TTMs in a natural fashion that stays close to
their mathematical representation. The
knowledge about TTMs is separated from
the use that the knowledge is put to. Thus it
is relatively easy to effect changes in the
TTMs. The designer is aided in the construc-
tion of RTTL proofs of TTM correctness.
The problem of combinatorial explosion of
states is somewhat alleviated-CLP exploits
the rich structure provided by real numbers
to solve real-valued constraints using the
simplex method for example, instead of
solving constraints by state enumeration.

Current research is focused on developing
modular controller synthesis methods and the
design of hierarchical controllers.

References

[I] B. Auemheimer and R. A. Kemmerer.
“RT-ASLAN: A specification language for real-
time systems,” IEEE Trans. Sofrwure Eng., vol.
SE-12, no. 9, pp. 879-889, Sept. 1986.

H. Baninger, A Survey of Verijication Tech-
niques for Parallel Programs, vol. 191 of LNCS.
Berlin: Springer-Verlag, 1985.

A. Benveniste and P. Le Guemic, “Hybrid
dynamical systems theory and nonlinear dynamic
systems over finite field,” in Proc. 27th IEEE
Con$ Decision and Control, Austin, TX, Dec.
1988, pp. 209-213.

K. P. Brand and J . Kopainsky, “Principles
and engineering of process control with Petri
nets,” IEEE Trans. Automatic Control, vol. 33.
no. 2, pp. 138-149, Feb. 1988.

[5] J. F. Cassidy, T. 2. Chu, M. Kutcher, S .
B. Gershwin, and Y. Ho, “Research needs in
manufacturing systems,’’ IEEE Control Systems
Mag., vol. 5 , no. 3 , pp. 11-13, Aug. 1985.

[2]

[3]

[4]

June 1990 101

I

161 E. M. Clarke, E. A. Emerson, and A. P.
Sistla, “Automatic verification of finite state con-
current systems using temporal logic,” ACM
Trans. Programming Languages Sysr., vol. 8, no.
2, pp. 244-263, Apr. 1986.

A. Galton, Ed., Temporal Logics and Their
Applications. Academic, 1987.

E. A. Emerson and E. C. Clarke, “Using
branching time temporal logic to synthesize syn-
chronization skeletons,” Sri. Computer Prog. ,

E. A. Emerson and J . Y. Halpem. “ ‘Some-
times’ and ‘not never’ revisited: On branching
versus linear time temporal logic,” J . Assoc.
Computing Machinery, vol. 33, no. 1, pp. 151-
178, Jan. 1986.

[IO] J. R. Garman, “The bug heard round the
world,” ACM SIGSOFT Software Engineering
Notes, vol. 6 , no. 5, 1981.

[I 11 D. Harel, “Statecharts: A visual formalism
for complex systems,” Sri. Comp. Prog., vol. 8,
pp. 231-274, 1987.

1121 D. Harel and A. Pnueli, “On the develop-
ment of reactive systems,” in K. R. Apt, Ed.,
Logics and Models of Concurrent Systems, vol.
13, NATO A H , Springer-Verlag. 1985, pp. 477-
498.

[I31 C. A. R. Hoare, Communicating Sequential
Processes. Prentice-Hall, 1985.

[I41 J. Hooman and J. Widom, “A temporal
logic based compositional proof system for real-
time message passing,” Department of Computer
Science, Comell University, Ithaca, NY, June
1988, Tech. Rep. TR-88-919.

[I51 K. Inan and P. P. Varaiya, “Finitely re-
cursive process models for discrete event sys-
tems,” IEEE Trans. Automatic Control, vol. 33,
no. 7, pp. 626-639, July 1988.

[I61 R. Koymans, R. K. Shyamasundar, W. P.
de Roever, R. Gerth, and S . Ann-Kumar, Com-
positional Semantics for Real-time Distributed
Computing. Springer-Verlag, June 1985.

[I71 L. Lamport, “Specifying concurrent pro-
gram modules,” ACM Trans. Programming Lan-
guages Syst., vol. 5 , pp. 190-222, Apr. 1983.

[I81 A. H. Levis, “Challenges to control: A col-
lective view,” IEEE Trans. Automatic Control,
vol. AC-32, Apr. 1987.

[I91 Z. Manna and A. Pnueli, “How to cook a
temporal proof system for your pet language,” in
Proc. Symp. Principles of Programming Lan-
guages, Austin, TX, Jan. 1983, pp. 141-154.

[20] Z. Manna and A. Pnueli, “The anchored
version of the temporal framework,” in J. W. de
Bakker, W. P. de Roever, and G. Rozenburg,
Eds., Models of Concurrency: Linear, Branching
and Partial Orders. Springer-Verlag, 1989.

[21] Z. Manna and A. Pnueli, “Verification of
concurrent programs, part 1: the temporal frame-

[7]

181

vol. 2, pp. 241-266, 1982.

[9]

work,” Department of Computer Science, Stan-
ford University, June 1981, Tech. Rep. STAN-

[221 Z. Manna and A. Pnueli, “Verification of
concurrent programs: a temporal proof system,’’
Dept. of Computer Science, Stanford University,
June 1983, Tech. Rep.

[23] Z. Manna and P. Wolper, “Synthesis of
communicating processes from temporal logic
specifications,” ACM Trans. Programming Lan-
guages Syst., vol. 6, pp. 68-93, Jan. 1984.

[24] R. Milner, A Calculus of Communicating
Systems. Springer-Verlag, 1980.

[25] B. Moszkowski, “A temporal logic for
multilevel reasoning about hardware,” Computer,
vol. 18, pp. 10-19, Feb. 1985.

[26] K. T. Narayana and A. A. Aaby, “Speci-
fication of real-time systems in real-time temporal
interval logic,” in Proc. Real-Time Systems
Symp., Dec. 1988, pp. 86-95.

[27] J . S . Ostroff, “Automatic verification of
timed transition systems,’’ in E. M. Clarke, A.
Pnueli, and J. Sifakis, Eds., Proc. Workshop Au-
tomatic Verijication Methods for Finite State Sys-
tems. Springer-Verlag, 1989.

1281 J. S . Ostroff, “Real-time temporal logic de-
cision procedures,” in Proc. 10th IEEE Real-Time
Systems Symp., Santa Monica, CA, Dec. 1989,
pp. 92-101.

[29] J. S . Ostroff, “Synthesis of controllers for
real-time discrete event systems,’’ in Proc. 28th
IEEE Con$ Decision and Control, Tampa FL,
Dec. 1989, pp. 138-144.

[30] J . S. Ostroff, Temporal Logic for Real-Time
Systems (Advanced Software Development Se-
ries). Research Studies Press Limited (distributed
by John Wiley and Sons), England, 1989.

[31] J. S. Ostroff, “Verification of finite state
real-time distributed processes.” in Proc. 9th IEEE
Int. Con$ Distributed Computing Syst., June 1989,
pp. 207-216.

1321 J . S . Ostroff and W. M. Wonham, “A
framework for real-time discrete event control,”
IEEE Trans. Automatic Control, Apr. 1990.

[33] D. L. Parnas, A. J . van Schouwen, and S .
P. Kwan, “Evaluation standards for safety-critical
software,” Department of Computer Science,
Queen’s University, Tech. Rep. TR 88-220, May
1988.

[34] J. L. Peterson, Petri Net Theory and the
Modelling of Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[35] A. Pnueli, “The temporal logic of pro-
grams,” in Proc. 18th IEEE Annual Symp. Foun-
dations of Computer Science., Providence, RI.
Nov. 1977, pp. 46-57.

[36] A. Pnueli, “Applications of temporal logic
to the specification and verification of reactive sys-
tems: A survey of current trends,” in J. de Bak-

CS-08 1-836.

ker, W. P. de Roever, and G . Rozenburg, Eds.,
Current Trends in Concurrency. Spnnger-Verlag,
1986.

[371 P. J. Ramadge and W. M. Wonham. “Su-
pervisory control of a class of discrete-event
proceses,” SIAM J . Control and Optimization,
vol. 25, pp. 206-230, Jan. 1987.

[38] N. Rescher and A. Urquhart, Temporal
Logic. Springer-Verlag, 1971.

[39] W. P. De Roever, “Questions to Robin
Milner-A responder’s commentary,” in H. J.
Kugler, Ed., Information Processing 86. Elsevier
Science Publishers B.V. (North Holland), 1986,
pp. 515-518.

1401 R. L. Schwartz and P. M. Melliar-Smith,
“From state machines to temporal logic: Specifi-
cation methods for protocol standards,” IEEE
Trans. Communications, vol. COM-30, Dec.
1982.
1411 J. A. Stankovic, “Misconceptions about
real-time computing: A serious problem for next
generation systems,” Computer, vol. 21, pp. 10-
19, Oct. 1988.

[42] J. G. Thistle and W. M. Wonham, “Con-
trol problems in a temporal logic framework,”
Int. Control, vol. 44, 1986.

[43] G. von Bochmann, Concepts for Distrib-
uted System Design. Springer-Verlag, 1983.

1441 N. Wirth, “Towards a discipline of real-
time programming,” Communicarions ACM, vol.
20, Aug. 1977.

[45] W. M. Wonham, “Some remarks on con-
trol and computer science,” IEEE Control Syst.
Mag., vol. 7, pp. 9-10, Apr. 1987.

1461 P. Zave, “An operational approach to re-
quirements specification for embedded systems,”
IEEE Trans. Sofrware Eng., vol. SE-8, pp. 250-
269, May 1982

Jonathan S. Ostroff re-
ceived the B.Sc. degree
from the University of the
Witwatersrand in Johan-
nesburg in 1976. and the
M.A.Sc. and Ph.D. de-
grees in electrical engi-
neering from the Univer-
sity of Toronto, Canada,
in 1979 and 1987 respec-
tively. From 1979 to 1981
he worked as a systems

analyst for Imperial Oil Limited designing process
control software. He has been an Assistant Pro-
fessor in the Department of Computer Science,
York University, Canada, since 1986, where he
is also a member of the ISTS (Institute for Space
and Terrestrial Science) Laboratoly. He is author
of the monograph Temporal Logic for Real-Time
Systems (Research Studies Press and John Wiley
and Sons), and is a member of IEEE and ACM.

102 /€E€ Control Systems Magazme

1

