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ABSTRACT
George Eastman House International Museum of Photography Conservation Laboratory and the University of Rochester
Department of Computer Science are researching image analysis techniques to distinguish daguerreotype plate and image
features from deterioration, contaminant particulates, and optical imaging error occurring in high resolution photomicrog-
raphy system. The images are captured at up to 30 times magnification and composited, including the ravages of age and
reactivity of the highly polished surface that obscures and reduces the readability of the image. The University of Rochester
computer scientists have developed and applied novel techniques for the seamless correction of a variety of problems. The
final output is threefold: an analysis of regular artifacting resulting from imaging conditions and equipment; a fast au-
tomatic identification of problem areas in the original artifact; and an approximate digital restoration. In addition to the
discussion of novel classification and restorative methods for digital daguerreotype restoration, this work highlights the
effective use of large-scale parallelism for restoration (made available through the University of Rochester Center for Re-
search Computing). This paper will show the application of analytical techniques to the Cincinnati Waterfront Panorama
Daguerreotype, with the intent of making the results publically available through high resolution web image navigation
tools.
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Fig. 1. The Cincinnati Waterfront Panorama Daguerreotype (as mosaic of eight plates, courtesy of www.cincinnatilibrary.org)

Fig. 2. Cincinnati Panorama by James Blakeway (courtesy of fabframes.wordpress.com)

1. INTRODUCTION
The daguerreotype (also written as daguerréotype) is the first photographic form, used to record some of the most important
images of the mid-19th century. Captured in a lattice of gold-coated silver-mercury amalgam on a polished silver plate,
these images are unique, cannot be duplicated, and are in danger of being lost forever.

Many of these cultural treasures have suffered atmospheric and physical degradation over time. Many of the earliest
images, taken before more robust techniques were developed,1 are imperiled not only by their age, but by their fragility,
which forbids the application of even the mildest physical and chemical conservation and restoration techniques.

The very sensitive surface microstructure of daguerreotypes, formed in silver and mercury surface particles is easily
disrupted by atmospheric agents and can be damaged by the slightest physical contact. In many cases, the image is obscured
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by corrosion systems, extraneous deposits, or physical damage interrupting its ultra fine microstructure . In this way, the
original images have lost critical visual information to dust particles, scratches, and chemical damage. Throughout the
past century, numerous cleaning processes have been developed to restore parts of damaged daguerreotypes,2–7 but current
conservation research shows that even the gentlest of these processes can irreversibly alter the image or introduce potential
for later damage. While researchers continue to develop conservation techniques, it is imperative that historically-important
daguerreotypes be digitally imaged as soon as possible lest they suffer irreversible degradation in the meantime.

The nature and fragility of daguerreotypes not only means that they are constantly at risk of degradation, but that access
to them must be limited, restricting their potential value to the public and the academic community. Digitized copies of
these images, however, can be made available instantaneously through the Internet, and can serve as both a “virtual viewing
room” and as a testing ground for new advances in simulated art conservation and the modeling of damage over time. Using
these digital images, scientists may freely explore daguerreotype conservation techniques, safely providing insight into the
preservation, conservation, and display of these images to the public at large.

We present the initial results of a collaboration between conservationists at the George Eastman House International
Museum of Photography & Film and computer scientists at the University of Rochester: a full scan of the Cincinnati Water-
front Panorama Daguerreotype, an image owned by the Public Library of Cincinnati and Hamilton County, along with au-
tomatic tools for polishing-mark identification, dust detection, and image restoration. It is our intention to make this dataset
(and accompanying algorithms) available for non-profit academic use; please contact ardis@cs.rochester.edu for
details. It is our hope that other scientists will explore this massive dataset and develop techniques that go beyond the
provided “baseline” curatorial tools, leading to the increased public availability of annotated and restored daguerreotypes.

The rest of this paper is structured as follows: Section 2 describes the construction of the Cincinnati dataset, Section 3
summarizes associated tools for automatic annotation, Section 4 outlines the use of Self-Similarity Inpainting8 to provide
an initial restoration, and Section 5 concludes.

2. CINCINNATI DATASET
Conservation research staff at the George Eastman House have imaged the Cincinnati Waterfront Panorama Daguerreotype,
also commonly known simply as “The Cincinnati Panorama” (Fig 1). Taken in September of 1848 and attributed to Charles
Fontayne and William S. Porter∗, the image consists of eight whole plate (6.5 × 8.5 inch) pieces with minor (< 10%)
overlap and provides a panoramic view of Cincinnati’s waterfront. Imaged from Newport, KY, approximately five miles
from the city center, this panorama captures minute details of the city’s layout and construction (including seventeen boats
identifiable by name and six historical landmarks), and has been compared with James Blakeway’s Cincinnati panoramas of
the 1990s (Fig. 2). A large-scale mural reproduction of the panorama may be found in the Atrium of the Public Library of
Cincinnati and Hamilton County’s South Building, with archival paper prints and postcards available for purchase through
the library’s website.

Imaging of each whole plate was performed at 16x magnification using a visible light to image fixed-size overlapping
regions, for a total of 70,749,020,160 pixels (8 whole plates, each decomposed into 111× 57 individually imaged regions
of 1040 × 1344 pixels). At the time of writing, the entire dataset has been imaged, although annotation and restoration
(Sections 3 and 4) has only been performed for one plate. Multiple diffused lights were positioned at approximately
15◦ − 25◦ from horizontal to avoid reflection or hot spots in the captured image, although the result was not uniform in
intensity and resulted in gradiation that is noticeable in mosaic (Fig. 3(a)). This nonuniformity was compensated for,
however, by using very large expert-identifed regions of uniform texture (i.e., cloudless sky) and computing the average
intensity image for each pixel across all of the uniform-textured 1040 × 1344 sub-images (Fig. 3(b)), thereby identifying
spatial intensity bias that was then corrected prior to further processing. The entirety of the imaged result is included
in the dataset that we are making available, hereafter referred to as the Cincinnati dataset, including automatic tools for
annotation and restoration as described below.
∗The makers’ mark for this piece lists both daguerreians, although contemporary speculation is that Porter was the sole artist involved

in this particular capture.



(a) Plate 4 (as mosaic of individually imaged portions) (b) Average Image of Featureless Daguerreotype Regions

Fig. 3. Pre-correction Scan Results due to Nonuniform Lighting

3. ANNOTATION
Our work on automated daguerreotype annotation cover two very different observable phenomena: polishing scratches
and embedded dust. While the latter is the result of imaging foreign particulates that are trapped in the oxygen-deprived
housing of the physical daguerreotype,9 the former refers to approximately parallel disturbances of the silver plate that are
the result of polishing the plate with a regularly-textured material prior to image capture.10, 11 These different sources of
image noise highlight both the variety of sources of degradation faced by daguerreotypes, and the extremely fine spatial
detail that they offer.

3.1 Polishing Scratches
Polishing marks are roughly parallel due to the woven construction of the buffing materials used (e.g., muslin, flannel).
Weaving produces approximately periodic variation in the material, which then causes fine, similarly periodic micro-
scratches of the plate as it is applied (Fig. 4(a)). While only visible at very high magnification, these marks prove highly
informative: as particular daguerreotypists and daguerreotype studios have traditionally made use of particular polishing
materials and procedures, producing uniquely-identifying patterns of scratches. As a result, a conservator trained in the
study of these marks could potentially identify forgeries and hypothesize likely artists or photographers for pieces without
provenance, using an image where scratches have been enhanced for visibility. Therefore, we provide a simple algorithm
(Algorithm 1) for the automatic detection and enhancement of these scratches.

Algorithm 1: Baseline Enhancement of Polishing Scratches
Divide image I into n fixed-sized regions I1, I2, . . . , In;
for i = 1 to n do

A← FFT(Ii) ; // Convert to Fourier (frequency) domain
B ← HPRF(A) ; // Isolate strong approximately periodic signals
C ← IFFT(B) ; // Convert back to image domain
D ← norm(C · Ii) ; // Multiply with original and renormalize
Ii ← D ; // Store resulting (enhanced) image

The functions and symbols used in the algorithm are defined as follows:

• FFT(. . .) indicates the Fast Fourier Transform of the portion of the image under consideration (Fig. 4(b)).



• HPRF(. . .) indicates a High Pass Radial Filter of the FFT image (Fig. 4(c)). That is, perform a logarithmic trans-
formation of the FFT image, then zero out all rays whose average intensity (normalized within a fixed window of
angle ψ) is below a threshold ρ. For the purposes of our initial experiments, ρ = 20 and the window size was 16◦.

• IFFT(. . .) indicates the Inverse Fast Fourier Transform of the filtered FFT image (Fig. 4(d)).

• norm(. . .) indicates the linear renormalization of the multiplied images to fit the original discretization (Fig. 4(e)).

This algorithm works because scratched portions of the silvered plate do not reflect as much light directly due to topical
deformation, meaning that they appear as lines that are slightly darker than their surrounds. This enhancement process will
“wash out” other textures, bringing the scratches into higher contrast for human viewing, and can be repeated (or otherwise
magnified) as needed. While we have received reports that this process is helpful for trained conservation and curatorial
staff, we do not yet have an objective measure of its effectiveness, and hope to eventually be able to experimentally validate
and quantify it.

3.2 Dust
Unlike polishing scratches, which contain important information, dust primarily obscures image information and degrades
daguerreotypes. Annotation of dust is therefore intended as a preliminary stage of image enhancement. Unfortunately, due
to the massive size of the images, and the very small size of dust particles, it is an extraordinarily time-consuming process to
manually identify portions of the imaged daguerreotype that correspond to obscuring dust. For instance, randomly sampled
hand-labeled portions of the Cincinnati dataset contain dust at a rate of 0.2% (1 in every 500 pixels). This implies that our
dataset contains approximately 140 million pixels corresponding to interfering particulates rather than the daguerreotype
image. While the automatic detection of expert-identifiable damage is a well-studied task in image processing and com-
puter vision,12, 13 such techniques have not yet become commonplace in the daguerreotype conservation community. This
suggests a new set of challenging problems of unprecedented visual scale, where techniques are trained upon specialist-
labeled data in the hopes of automatically annotating daguerreotypes for damage modeling, age and atmospheric analysis,
and automatic restoration (Section 4).

Along with the Cincinnati dataset, we provide a baseline dust detector based upon the fast integration of semantically
naı̈ve low-level image features. Specifically, we apply Laplacian of Gaussians (LoG)14 filters of two forms: traditional
(where LoG(x, y) = − 1
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xy 6= 0 and LoG(0, 0) = δ for positive constant δ). By varying the parameterization of these filters (i.e., σ, δ), identifying
when these break a constant threshold ψ, and feeding the results (along with a small amount of expert-labeled ground truth
training data ) into a kernel Support Vector Machine (SVM),15, 16 we are able to produce a composite detection system that
outperforms any single filter and makes no prior assumptions about which parameterization will perform best.

This process is illustrated in Fig. 5: a portion of the dataset (Fig. 5(a)) is subjected to the (thresholded) convolution
of each of the filters (Fig. 5(b)-5(d), etc.), and is supplied to an SVM along with a corresponding image that has been
hand-labeled by experts (Fig. 5(e)), producing a composite classifier (Fig. 5(f)) intended for generalization to the entire
dataset. For our initial experiments, we performed SVM training on 1% of the dataset, using 7 parameterized filters (4
traditional LoG, 3 simplified) and 3 different kernels (Radial Basis Function, Sigmoid, Inhomogeneous Polynomial) each
of degree 3. Pixel label accuracies (compared to expert opinion, testing on 20% of reserved labeled data) are as follows:

• Average single-filter label accuracy: 99.811%
• Best single-filter label accuracy: 99.844%
• SVM [Radial Basis Function] label accuracy: 99.949%
• SVM [Sigmoid] label accuracy: 99.947%
• SVM [Inhomogeneous Polynomial] label accuracy: 99.949%

While all of these performance numbers may seem similar, these numbers reflect that thresholding a randomly pa-
rameterized filter produces inaccurate pixel labeling for 1 out of every 532 pixels, while thresholding an SVM-trained
combination of filters reduces this to 1 out of every 1961. Although this improvement is dramatic, it still leaves approxi-
mately 4.5 million pixels per plate incorrectly labeled. Therefore, we challenge other authors to outperform our classifiers.



(a) Original Image

(b) FFT Image (c) HPRF Image

(d) IFFT Image (e) Final Image

Fig. 4. Automatic Scratch Enhancement



(a) Original Image

(b) First Detector Results (red) (c) Second Detector Results (red) (d) Third Detector Results (red)

(e) Hand-Labeled Data (green) (f) SVM-based Detector Results (blue)

Fig. 5. SVM-based Dust Detection and Annotation



(a) Image Portion (prior to restoration) (b) Restored Image Portion

Fig. 6. Automatic Restoration through Self-Similarity Inpainting

4. RESTORATION
Beyond finding damaged parts of images, there is a corresponding interest in repairing that damage. Because of the fragile
and non-reproducible nature of daguerreotypes, digital restoration is an attractive alternative to risky chemical and physical
restorative techniques. While future work is planned that incorporates a more complex model of image formulation17 and
(in-process) observations of artificial atmospheric daguerreotype aging, we provide here our initial results in removing the
obscuring dust from Section 3.2 (Fig. 6(a)). We chose to restore all pixels corresponding to identified dust as well as
nearby pixels forming the smallest tight-fitting rectangle of 3× 3 squares.

Given the non-uniform, grainy texture of the daguerreotype under high magnification, we chose to restore it using Self-
Similarity Inpainting,8 a technique that emphasizes textural continuity. Self-Similarity Inpainting involves the insertion
of textured patches (in this case, 3 × 3 pixels) from an undamaged part of the image. This technique selects the patch to
insert based upon the similarity of the surroundings of the patch before and after copying. That is, a measure of local “self-
similarity”18 is computed for each fixed-sized window, then compared with the resulting measure when (hypothetically)
inserted to fill-in missing data. In order to perform this operation quickly for the entire dataset, and take advantage of
this dataset’s huge image sizes, we truncated the search for potential patches from the entirety of the image (which would
be intractable for the entire plate) to a 15 × 15 window around the hole. Results of this “windowed” application of Self-
Similarity Inpainting to a particularly challenging segment (of inhomogeneous texture) are shown in Fig. 6(b).

5. CONCLUSIONS
We have introduced an important new dataset of images of unprecedented visual scale. While we have presented a set
of baseline techniques for annotating and restoring these images, it is our hope that authors take up the challenge of
the Cincinnati dataset and pursue automatic daguerreotype annotation and restoration; interested parties should contact
ardis@cs.rochester.edu. In this way, such massive (gigapixel) images serve as more than archives of degrading
historical artifacts, but also act as interesting targets for contemporary image processing and computer vision techniques
aimed at image enhancement, understanding, and correction.
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