
iPhone Rootkit? There’s an App for That!

Eric Monti – Sr. Security Researcher
emonti@trustwave.com

Copyright Trustwave 2010

Overview

Understanding Jailbreaks
•  Security hurdles
•  Background
•  Applying security attack patterns for “good”

… to modify and leverage them for some “mayhem”
•  Reverse Engineering iPhone jailbreaks and apps
•  Repurposing and patching available tools
•  “Malicious” PoC
•  Rootkits - also in the PoC sense ... please don’t root my phone “for reals”

Not 0-day, the real “star” of the show isn’t even mine
•  Jailbreak community are the real rockstars!!!
•  The bug is patched and fully disclosed since research began
•  But… I did some tinkering and am still covering relatively new subject-

matter and hopefully interesting attack patterns

Copyright Trustwave 2010

My Motivation

I am not a iPhone Jailbreak team member but I’m a fan

JailbreakMe.com 2.0 Launched around BH/Defcon 2010
•  Whole security community got intrigued
•  I’ve been focused on product engineering last several months

−  Really enjoy it (not knocking it!!!) but sometimes I miss embedded stuff

•  And… defcon had me all “fired up” for reversing and vuln research

•  SpiderLabs pen-testers officially propose an exploit
−  “It’d be cool to demo a nefarious jailbreak to clients”

•  !!! \o/ !!! Sounds fun!
•  Drop everything. Start reverse engineering jailbreakme.com

Copyright Trustwave 2010

Agenda

•  iPhone Security Overview
•  Jailbreaking Background
•  Reversing Redux
•  Weaponization
•  Demo

iPhone/iOS Security Overview

Copyright Trustwave 2010

History

2007	 2008	 2009	 	 	 	 	 	 	 	 	 	 2010	
lib$ff	 vulnerability	 found	
by	 Tavis	 Ormandy	

Jailbreakme.com	 1.0	
based	 on	 lib$ff	 exploit	

Metasploit	 got	 ac$ve	 on	
iPhone	 hacking	 by	 now	

Charlie	 Miller	 rocks	 SMS	
fuzzing	 on	 iPhone	 and	
other	 smartphones	

End	 of	 June:	
Jailbreakme	 2.0	
Released	

Mid-‐August:	
-‐	 Apple	 releases	 patch	
-‐	 Saurik	 releases	 patch	 	
(saurik’s	 supports	 old	
versions)	

“star”	 source	 released	 by	
Comex	 shortly	 thereaQer	

Apps	 harves$ng	 user	 data	
start	 geRng	 pulled	 form	
app	 store	

More	 user	 data	 and	
privacy	 breaches	 by	
approved	 apps.	 More	
apps	 pulled	

Worms	 break	 out	 on	
jailbroken	 iphones	
-‐	 Ikee	
-‐ 	 Dutch	 5	 Ransomware	
-‐ 	 …	 Varia$ons	

Everybody	 gets	 one	 but	 Eric.	
Eric	 thinks	 the	 iPhone	 is	
whack	

S$ll	 saying	 things	 like:	

“Pfft.	 My	 Nokia	 N95	 has	 had	
GPS	 for	 like…	 AGES!!!”	 	
…	 and	 …	
“Tether	 much???”	

Eric	 has	 his	 N95	 and	 a	
Blackberry	 die	 on	 him	 in	 short	
order.	 	

!@#$’ing	 	 keypads	 die	 on	
both	 right	 as	 warran$es	
expire!	

…	 realize	 iPhone	 has	 no	
keypad	

Eric	 walks	 into	 Apple	 store	
and	 humbly	 buys	 an	 iPhone	

Jailbreaks	 it	 first	 day	 for	 no	
good	 reason.	 It’s	 super-‐easy!	

…	 realize	 just	 how	 awesome	
Jailbreak	 teams	 hackers	 are.	

Eric	 wastes	 winter/spring	
playing	 “Peggle”	 on	 iPhone.	

…	 finally	 gets	 into	 figuring	 out	
how	 the	 iPhone	 and	 jailbreaks	
actually	 work.	 	

I’m	 hooked!	

Copyright Trustwave 2010

iOS Security From 10,000 Meters

•  Bootloader verifies…
•  Signed firmware, verifies…
•  Signed kernel, verifies…
•  Signed Applications installed from the app store

•  Apple signed everything!

Actually a sound design on paper (barring implementation problems)

Copyright Trustwave 2010

Architecture Overview

Applications Processor
•  ARM (6 or 7 depending on idevice/version)
•  XNU Based Kernel (think OS X lite on ARM)
•  Implements Kernel and Application Signing from bootloader

down.

Baseband Modem
•  ARM
•  Largely separated from App. processor
•  Mostly interesting to carrier unlock, but not rootkit (yet?)

Hardware Encryption Introduced in iPhone 3GS
•  Low-level data encryption on NAND storage

Copyright Trustwave 2010

OS Environment

Two partitions make up filesystem
•  Root partition at / (read-only from factory)

− Kernel, Base OS, Core APIs

•  User Partition at /private/var (read-write)
− All third party apps
− User data

Two users for pretty much everything
•  “root” - system services, kernel
•  “mobile” - apps and data running as you, the user
•  Basic Unix security rules apply

System libraries and APIs approximate OS X / Darwin

Copyright Trustwave 2010

Application Security

Code signing
•  All apps must be signed by Apple
•  Signatures stored in mach-o header section
•  Check implemented in kernel as an enhanced execv()

Sandbox
•  Applications run as “mobile”
•  Chroot sandbox ostensibly restricts apps to their own data
•  Can’t alter the OS or other apps

Reality:
Apple’s .app authorization process plays the biggest role in iOS security

•  Private APIs are accessible but apps using them are usually rejected
•  Advanced functionality is all there, just not “approved of”

Exploit code running in signed apps or on jailbroken devices can still do lots of
interesting things with and to the underlying system.

Jailbreaks

Copyright Trustwave 2010

Jailbreak Landscape

Remote client-sides have been few and far between
•  Obviously more exciting for security research
•  Obviously more potential for abuse

Par for exploits is in restore and FW updates over USB
•  Fertile territory for jailbreaks, JB nerds, and still very cool
•  Security impact for ‘evil maid’ style bad-guy attacks

Very impressive work is consistent from the JB community
•  It takes a real !$$-hole to taint their awesome efforts…
•  But this is just how I do adoration and idolization

Internets have loads of tech details for learning
•  Patience! Gotta wade through lots of fanboi noise to find the good stuff
•  JB teams have cool info on wikis, but it’s not always up to date
•  Github!!! Jailbreak-team stalker’s paradise!

Copyright Trustwave 2010

Jailbreakme.com: A Thing to Behold

Author: Comex backed up by other jailbreak team

•  Exploit and jailbreak package dubbed “star”
•  Every iDevice Apple makes, almost all modern versions affected
•  Handled like pros

•  Implementation, to presentation, to disclosure, to the timing of the
release

•  Jailbreak released around BH / Defcon
•  iPhone 4G out for just a month or so.

•  Jailbreakers had been waiting patiently and were not disappointed
•  Released right after a crucial US legal decision on jailbreaking

•  Now officially legal in US
•  Prior status was fuzzy

•  Source for exploit released after Apple releases security fix (iOS 4.0.2)
•  See http://github.com/comex/star

Copyright Trustwave 2010

What?

hcp://jailbreakme.com	 Star	 exploit	 execu$on	 Finished.	 Precy	 safe	 and	 easy!	

Copyright Trustwave 2010

How?

The “star” PDF Exploit – Code execution
•  Classic stack overflow
•  BoF in CoreGraphics CFF(Compact Font Format) handling long strings
•  Overwrites $pc (EIP for ARM)
•  Code still runs as “mobile” at this point
•  Leverages IOSurface (IOKit) bug for privilege escalation and sandbox

escape

The IOKit Vulnerability – Priv. escalation / escaping the sandbox
•  Kernel integer overflow in handling of IOSurface properties
•  Calls setuid(0) inside Safari getting root
•  Dominoes all fall down from there

The Jailbreak Phase – Set up residence on the iDevice
•  Patches out Kernel code signing
•  Installs a basic jailbreak filesystem along with Cydia (apt-get)

“Polite” and clean - Even calls setuid(501) back to “mobile” once it’s finished.

Reversing the Binary “star” Exploit

Copyright Trustwave 2010

Reversing the Exploit Binaries (pre-source)

First few weeks, no source was released for JailbreakMe.com
•  Curious and impatient. Not sure if Comex would release
•  Began reversing the binaries within a few days of the JB release

−  Staring at opaque hex-dumps and peeling the onion one layer at a time
−  Fun and soothing – Like catnip for my O.C.D.

Copyright Trustwave 2010

All for Naught?

Got a patch working. Was happy! Turned out to be a total waste of time

Comex released the source about a week after I’d finished testing my PoC

No use crying over spilled code. Better to smarter and proceed by branching his github
project and working source for the demo in this presentation.

“star” turned out to be pretty awesome as a source package too and patching was much
easier.

Bonus: Been meaning to apply some objective-C reading I’d done months back.

Maybe not a total waste?

Got to dabble in iPhone reversing and ARM assembly

Was fun and I scratched an itch I’d needed to. Pure source patching was too easy

Process makes for a more interesting talk

Copyright Trustwave 2010

Reversing Steps

Analyzed the PDF
•  Barebones PDF. Viewer shows one “empty” page
•  Compare PDFs between iOS device/version

−  A single zlib deflated font section is the only difference
•  Deflate this chunk

−  Strings and investigation show an un-stripped Mach-O DYLIB lives here
•  Wrote a quick file splitter “extract_payload”
•  Found 3 parts

−  CFF Font egg
−  Macho_1
−  Macho_2

Copyright Trustwave 2010

… continued: egg
Malformed	 Times-‐Roman	 CFF	 Font	

...	

Copyright Trustwave 2010

… continued: Exploit ARM Code

*	 extract	 from	 comex/star	 source	

Copyright Trustwave 2010

IOKit Integer Overflow XML Extract

Copyright Trustwave 2010

installui.dylib Entrypoint

iui_go	 ini$alizes	 the	 installer	
environment	 and	 calls	 the	
objec$ve-‐C	 [Dude	 start]	 method	

Copyright Trustwave 2010

class-dump on installui.dylib (aka macho_1)

Copyright Trustwave 2010

Wad.bin

What gets downloaded and installed for the jailbroken device?
•  Wad.bin pseudo-code structure

•  XZ’ed tarball contents
−  Stripped down Unix dir structure and CLI programs (bash et al)
−  Cydia.app for downloading more packages

Weaponizing

Copyright Trustwave 2010

Patch Plan
Reversing the installui.dylib and wad.bin provided guidance.

Implementing a weaponized jailbreak required…

•  Patching out a “security” check comex had incorporated
•  The jailbreakme.com PDFs’ installui.dylib had code to ensure they’d been downloaded from

“jailbreakme.com”. I couldn’t leave that
•  Not sure what motivation Comex had for this

•  Patching out all the gui pop-ups
•  Didn’t want the victim to realized they were being ‘kitted
•  I hadn’t learned the wonders of usbmuxd and libimobiledevice for live syslog yet so I left a

single popup for debugging/troubleshooting
•  Would patch it out last

•  Preparing a modified wad.bin with our “rootkit”
•  Plenty to work from in userland from Cydia source packages

Copyright Trustwave 2010

Learn to Say “One Beer Please” in ARM
ARM was a new animal for me going into this:
• Instruction patching done by hand (a tad bit harder)
• Turns out you only really need to understand a few machine instructions to patch programs.
• Grok some pages from the instruction manuals, take quick/dirty notes, and IDA for the rest.

Copyright Trustwave 2010

Patching: Enhanced IDA DIF format
IDA	 DIF	 is	 a	 simple	 format.	 I	 hacked	 up	 a	 trivial	 DIF’er	 adding	 dynamic	 values	 with	 YAML.	 	

Copyright Trustwave 2010

Prison Riot: Serving the Exploit

riot_server:
A simple ruby sinatra web server.

1.  Serves up a page using JS to
ID the client

•  User Agent
•  Heavy JS Profile

2.  Assembles the PDF
components for our IP

3.  PDF exploit pulls down our
wad.bin rootkit filesystem

Copyright Trustwave 2010

My “Big Fat Rootkit”… In a Nutshell

Trimmed down:
Justify: Not really bleeding edge, so a nutshell will probably suffice

•  Custom-written and patched 3rd party programs for backdoors and kit
•  Patched unix utilities like ‘ls’, ‘ps’, ‘find’, ‘netstat’ from the JB filesystem

•  Hiding from actual jailbreakers (rockin’ it like it’s 1990)
•  Port knock daemon called “bindwatch” fakes its name on argv[0]
•  Spawns a bind-shell called, wait for it …. “bindshell” also fakes argv[0]
•  Trivial app to record AIFF on the mic – remote eavesdrop
•  Patched “veency” to hide itself a little better

•  Nice opensource iPhone VNC server by saurik
•  Runs via a DYLIB in MobileSubstrate
•  Mostly just removed the GUI config plist from System Preferences
•  Coded a trivial CLI obj-C program to configure and start veency without the gui

•  All user-land rootkit (excuses)
•  I’m still getting my feet wet in the kernel. Ongoing research…

•  More leveraging of JB kernel hacks and opensource iPhone apps for guidance
•  Kernel space on iPhone isn’t as “easy” as some other mobiles (cough Linux)
•  Jailbreak team are rockstars at hacking the iOS kernel too though

Demo

Copyright Trustwave 2010

The Demo Victim

Vanilla un-jailbroken iPhone 3g running iOS 4.0.1

Copyright Trustwave 2010

Thoughts on Delivery

Copyright Trustwave 2010

Conclusions

iPhone hacking is fun. I see what the fuss is about.

Mitigations: common sense
•  Jailbreak your iPhone/iPad/iPod before someone does it for you!
•  Once broken treat it just like the other computers you own

•  Patch! Cydia is your apt-get (literally)
•  Stripped services
•  Monitoring (periodic md5 filesystem checks are probably sane)

•  We need to see more AV and defense-ware for iOS
•  Don’t expect Apple to facilitate this very much
•  Any reasonable AV would fail .app approval from Apple on several counts

Copyright Trustwave 2010

Thanks!

Questions at the bar

Releases coming soon on github
http://github.com/emonti

