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Abstract
The field of Artificial Immune Systems (AIS) concerns the study and development of
computationally interesting abstractions of the immune system. This survey tracks the
development of AIS since its inception, and then attempts to make an assessment of
its usefulness, defined in terms of ‘distinctiveness’ and ‘effectiveness.’ In this paper,
the standard types of AIS are examined—Negative Selection, Clonal Selection and Im-
mune Networks—as well as a new breed of AIS, based on the immunological ‘danger
theory.’ The paper concludes that all types of AIS largely satisfy the criteria outlined
for being useful, but only two types of AIS satisfy both criteria with any certainty.
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1 Introduction

What is an artificial immune system (AIS)? One answer is that an AIS is a model of the
immune system that can be used by immunologists for explanation, experimentation
and prediction activities that would be difficult or impossible in ‘wet-lab’ experiments.
This is also known as ‘computational immunology.’ Another answer is that an AIS is
an abstraction of one or more immunological processes. Since these processes protect
us on a daily basis, from the ever-changing onslaught of biological and biochemical
entities that seek to prosper at our expense, it is reasoned that they may be computa-
tionally useful. It is this form of AIS—methods based on immune abstractions—that
will be studied here.

Although AIS is a relatively young field, advancing on many fronts, some central
themes have become apparent—the question is, are these AIS delivering anything use-
ful, or are they just another addition to the increasingly long line of approaches that are
biologically inspired? These approaches include established paradigms such as genetic
and evolutionary computation (GEC), artificial neural networks (ANN) and various
forms of artificial life; as well as less established topics such as ant colony dynamics
(Dorigo, 1992; Dorigo, 1999) and cell membrane computing (Paun, 2002). The intention
here is to provide an assessment of prior developments in AIS, its current strengths,
weaknesses and its overall usefulness.

There have been several surveys of AIS, and a few comparisons between AIS and
other methods, e.g. (Dasgupta, 1997; Dasgupta, 1999; Perelson and Weisbuch, 1997; ?;
?). Unfortunately, most of this work is now somewhat out-of-date; only Perelson has
reviewed three of the main themes of AIS, but did so from an immunological point of

c©2005 by the Massachusetts Institute of Technology Evolutionary Computation 13(2): 145-178



S. M. Garrett

view; none have discussed danger theory, and there has been no specific attempt to
assess the usefulness of AIS, with a view to its future development, which is the central
focus here. It would appear that answers to the following questions are of value as an
introduction and critique of AIS, and its relationship to other paradigms:

• How have the various types of AIS developed, and what are their positive and
negative features?

• What are the criteria for deciding whether methods, such as AIS, are useful?

• If ‘distinctiveness’ is one criterion of usefulness, how distinct are AIS from other
paradigms, such as GEC and ANN?

• If ‘effectiveness’ is another criterion of usefulness, what can AIS do uniquely, better
or faster than other methods?

• Having applied the assessment criteria, are AIS useful? What does this suggest for
the future development of AIS?

The paper is organized as follows: Section 2 argues that a computational method
is ‘useful’ when it is both distinct and highly effective, and it explores what is meant
by these terms. Sections 3 to 6 provide a survey of the most important types of AIS,
namely Negative Selection, Danger Models, Clonal Selection and Immune Network
Models. Each section explores how one type of AIS has been developed to the current
state-of-the-art; lists its key applications, and applies the ‘usefulness criteria’ as defined
in Section 2. Section 7 summarizes the results of applying the usefulness criteria to
each type of AIS (for ease of comparison) and, in light of these assessments, answers
the question, ‘Are AIS useful?’

2 Defining ‘Useful’ in Terms of ‘Distinct’ and ‘Effective’

An algorithm may be distinctly different from other algorithms but ineffective, or it
may be highly effective but be reducible to other, existing paradigms, and therefore
lacking in distinctiveness. However, if a method is both distinct and effective, then
it offers a truly useful means of computation. These criteria of ‘distinctiveness’ and
‘effectiveness’ will be used for assessing the usefulness of AIS. They may also prove to
be relevant in testing the usefulness of other computational methods.

The terms ‘distinctiveness’ and ‘effectiveness’ will be further defined; however,
due to the imprecision of language, and the difficulties of comparing any two non-
trivial systems, these two criteria can only ever hope to be somewhat blunt instruments
for assessing usefulness. The definitions and criteria given here for the words ‘useful’,
‘distinct’ and ‘effective’ may not agree with the reader’s, or anyone else’s for that mat-
ter, but they can provide an approximation of ‘usefulness’ when applied consistently.

What Makes a Research Paradigm Distinctive? With a biologically inspired para-
digm, such as AIS, there may be a temptation to appeal to its source of inspiration as
an indication of its distinctiveness; this appears to be a mistake. Firstly, it is possible to
envisage methods that have different sources of inspiration, but which result in mathe-
matically identical methods. Secondly, a single source of inspiration, such as immunol-
ogy, has given rise to several types of AIS. Thirdly, even biologically implausible, or
unlikely, ideas can inspire distinct mathematical algorithms. The source of inspiration
is not a reliable test for distinctiveness.
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A less ambiguous way to assess how distinct one method is from another is to
convert both methods to a shared, common language. Algorithmic or mathematical
expressions appear to be an ideal formalism that allow reliable comparisons to be
made, and such an approach also helps avoid anthropomorphisms (or immunomor-
phisms!) as highlighted by (McDermott, 1981). The problem is that the comparison
process is often non-trivial. For example (Smith et al., 1996) and (Hart and Ross, 2002)
discuss the intricate relationship between AIS, Sparse Distributed Memory and ANNs.
Even comparing two AIS methods that are closely related, such as clonal selection and
immune network models, requires careful thought.

The following test questions are suggested, which somewhat relate to the defin-
ition of the Physical Symbol System (PSS) (Newell and Simon, 1976), taking just the
main features of the PSS; namely a set of symbols that are organized into expressions,
operated on by processes that change those expressions over time. Given a supposed
new method, the test questions are:

D.1 Does the new method contain unique symbols, or can the features of this method
be transformed into the features of the another method, without affecting the dy-
namics of the new method?

D.2 Are the new method’s symbols organized in novel expressions, or can its expres-
sions be transformed to become the same as some other method, without affecting
its dynamics?

D.3 Does the new method contain unique processes that are applied to its expressions,
or can its processes be transformed to become identical to some other method,
without affecting its dynamics?

If the answer is ‘no’ to all these questions then there is almost certainly nothing
distinctive in the supposedly new method. The more questions that can be answered
‘yes’, the more likely that the method is distinct in some way from the existing method.

No single researcher can claim to have tested their ‘new method’ in this way
against every other existing method—this duty also falls to members of the wider aca-
demic community, who can attempt to falsify any assertion of distinctiveness made
about the new method. However, it is not enough to state, for example, that an AIS
method is indistinguishable from GEC or ANN, because it contains a mutation oper-
ator, or uses the concept of a network of entities. Many systems will partially share
symbols, expressions and/or processes, but methods can be said to be distinct if their
symbols, expressions and processes as a whole can not be made equivalent.

The outcome of successfully passing the tests above is that the new method truly
adds to the choice of methods that were previously available. For example, if one is
choosing which method to use for automatically generating a robot controller, what
matters is the mathematically predictable performance of the methods. Iff a method is
distinct from other methods then it adds to this choice of methods.

What Makes a Research Paradigm Effective? A similar set of questions can help
when assessing the effectiveness of an AIS method, although they are more obvious
because assessing effectiveness is standard scientific practice:

E.1 Does the method provide a unique means of obtaining a set of results?

E.2 Does the method provide better results than existing methods, when applied to a
shared benchmark task?
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E.3 Does the method allow a set of results to be obtained more quickly than another
method, on a benchmark test? The same types of experiments should be run in
both cases: there is no point, for example, in comparing the average best fitness in
one test with the best fitness in another test.

For a method to be effective, the answer must be ‘yes’ to at least one of these ques-
tions; unfortunately there is a complication with AIS methods. Since at least some of the
AIS methods described below can be reduced to search algorithms, the No Free Lunch
(NFL) theorem applies (Wolpert and Macready, 1995); i.e. no method is more effective
than any other when compared over all possible functions. The questions E.1–E.3 are
valid, however, over a restricted class of tasks; therefore, a method will be regarded
as ‘effective’ if there is a positive answer to one of the questions above, and when the
method is applied to a well-defined subset of applications or function tasks. Where the
NFL theorem does not apply to an AIS algorithm, points E.1 to E.3 are still important;
however, E.3 becomes easier to demonstrate.

Finally, the NFL theorem says that every search algorithm will excel in at least one
subset of search problem, so there is an additional requirement: ‘Is this subset of prob-
lems of practical interest?’ In conclusion, if an AIS method is better, faster or unique in
solving tasks of practical interest, then it will be regarded as effective.

Combining Distinctiveness and Effectiveness Since distinctiveness is assessed by
static, formal analysis of an algorithm, relative to one or more other algorithms, and
effectiveness is measured by their active relative performance in experiments, there is
likely to be a certain amount of redundancy when using both criteria. For example, two
indistinct methods will have identical effectiveness, and two equally effective methods
may be reducible to a shared algorithmic form. Nevertheless, due to the difficulties of
applying the criteria outlined above, it is prudent to be over-cautious and require that
an AIS method must be both effective and distinct before it can be said to be useful.

If a method is not useful, this does not mean it should not be researched further.
In 1969, ANNs were somewhat lacking in effectiveness, as famously pointed out by
(Minsky and Papert, 1969), but research (eventually) continued and produced the back-
propagation method, which is one of the most effective AI methods reported.

Overall, the focus here is on these practical aspects of comparing methods, not on a
theoretically complete analysis. In the next four sections, these usefulness criteria will be
applied to Negative Selection, Danger Models, Clonal Selection and Immune Network
Models in turn, after a description of their development and current state-of-the-art.

3 Artificial Negative (and Positive) Selection

3.1 Background Immunology

There is significant debate about the nature of the immunological mechanism that dis-
tinguishes between an organism’s ‘self’ molecules and cells and an invading ‘nonself’
entity (Medzhitov and Janeway, 2002; ?), and indeed some doubt this dichotomy ex-
ists at all (Bersini, 2002). However, let us assume here that there is an immunological
mechanism for self-nonself classification, and focus on an abstraction of one aspect of
that mechanism called negative selection. The principle of positive selection has also been
studied, but its symbols, expressions and processes are very similar to those of negative
selection so it will it only be specifically mentioned where required.

The biological negative selection of T-cells in the thymus occurs when T-cells that
attack ‘self’ are eliminated, and only T-cells that respond weakly to self, if at all, are
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released from the thymus (Medzhitov and Janeway, 2002). These cells then respond, in
various degrees, to the different types of invading ‘nonself’ that need to be removed
from the bloodstream, lymph, tissue, etc. Often in the AIS literature, this process is
called virus detection but essentially the process of negative selection should provide a
set of T-cell detectors that can detect any change in ‘self’, or any form of nonself (viruses
or otherwise). It is this process that has been abstracted to form an algorithm for the
detection of change in a predefined set of objects.

3.2 The Development of Artificial Negative Selection

Early Work Negative selection1 was introduced in 1994 (Forrest et al., 1994), and is
now often called negative detection. It is a loose abstract model of biological negative
selection that concentrates on the generation of change detectors. These detectors are
intended to detect when elements of a set of self strings have changed from an estab-
lished norm. The algorithm of (Forrest et al., 1994) is as follows, in which they assume
all strings are binary,

1. Create a set of self strings, S, by some means (e.g. see (Forrest et al., 1994).)

2. Create a set of randomly generated strings, R0.

3. For each r0 ∈ R0, form a set, R, of those r0 that do not strongly match any s ∈ S. A
strong match is defined by a matching function m(r0, s), such that: (i) m(r0, s) ./ θ;
(ii) ./ is an operator, such as ≥, that defines whether high or low value of m(r0, s)
indicates greater similarity between the strings, and (iii) θ defines a threshold. An
example of the use of m(x, y) will be given below.

4. For each r in R, ensure that no s ∈ S matches above (or ‘below’, depending on the
form of ./) the threshold.

5. Return to step 4 while change detection of S is required.

Steps 1, 2 and 3 form the censoring stage of the algorithm, and steps 4 and 5 form the
protection stage. The R0 strings are censored until the desired repertoire, R, of detector
strings is obtained. Note that all Forrest et al’s original papers speak of ’r-contiguous
bits’, whereas we have ’k-contiguous bits’. This is because we want to use ’r’ to help
define the members of the set ’R’.

In (Forrest et al., 1994), the matching function was the k-contiguous bits function,
such that m(r0, s) returned the largest number of contiguous, matching bits, ./ was ≥,
and θ = k. In later work another matching function was used, as described below.
Wierzchoń has pointed out that even a simple thresholded Hamming distance rule,
mH(x, y), would be suitable (Wierzchoń, 2000); however, whereas Hamming distance
is irreflexive, and mH(x, x, ) = 0, requiring ./ to be ≤, k-contiguous bits distance is
reflexive, and mC(x, x) = |x|. For example, the k-contiguous bits measure operates as
follows,

01101001
10101010

---- <-- four matching bits,
so m(r_0,s) = 4.

1In AIS research the adjective ‘artificial’ is dropped when discussing any type of AIS. We will also adopt
this convenience.
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Figure 1: The principle of self protection: each nonself detector, which need not be
(hyper)spherical or circular as shown here, covers an area of the state space outside the
desired self state space. If self should change, e.g. as indicated by the arrow, the change
will ideally overlap one of the nonself detectors, triggering a detection event.

The repertoire subset, R, resulting from application of the algorithm, is also known
as the detector set since it contains elements that can detect dissimilarities to self. If self
has changed it is likely that it will have become more similar to a nonself string, increas-
ing the match with that string, and registering as a detection event (see Figure 1.) It is
also possible to create detectors to cover the self strings; this is called positive selection
or positive detection and, then, detection occurs when a self element leaves a detector.

One important measure of the negative selection algorithm is the probability of
failing to detect a change to self. This is related to the probability that two random
strings will match, which can be stated as,

PM ≈ m−k[(l − k)(m− 1)/m + 1], (1)

where m = the number of symbols available for choice at any locus on the string, l =
the number of symbols in a string (i.e. its length), and k = the number of contiguous
matches required for a match (Percus et al., 1993). Then the probability that |R| detec-
tors will fail to detect an intrusion is,

Pf = (1− PM )|R|. (2)

Problems of Scalability and Coverage Despite this successful abstraction of negative
selection, further analysis showed that there was a scalability problem. The number
of random strings, |R0|, grows exponentially with |S|, if Pf and PM are fixed in the
equation,

|R0| =
−lnPf

PM × (1− PM )|S| . (3)

Somewhat related to the required improvements in scalability, negative detection was
inefficient in its choice of detectors. Some parts of the state space might be covered
by overlapping detectors; other parts might not be covered at all. Worse still, it could
be shown that certain sets of self strings would induce holes that could not be covered
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by any nonself string(s) without also covering a self string. Improvements in detector
coverage algorithms were required (see Figure 1).

Analyzing the Scalability and Coverage Problems Two suggestions for more scal-
able detector production were made by D’haeseleer, namely the ‘linear’ and ‘greedy’
algorithms (D’haeseleer et al., 1996).

The linear algorithm works for specific matching rules, and again assumes the use
of the k-contiguous bits matching function; it works in two phases. Phase 1 solves a
counting recurrence for the number of strings that are not matched by S. Phase 2 ran-
domly picks detectors from this enumerated counting recurrence. In other words, the
full possible detector set R0 can be calculated directly, instead of by wasteful random
generation, improving scalability. Then the detector set, R, can be randomly chosen
from this set, in linear time, although with high space complexity.

The greedy algorithm generates detectors in a similar manner but in Phase 2 it
attempts to improve the efficiency of detector coverage by choosing detectors that are as
far apart as possible (D’haeseleer, 1996). This makes it slower than the linear algorithm.
The reader is referred to (D’haeseleer et al., 1996) for further details of these analyses.

In addition to his work in scalability, D’haeseleer’s work in detector coverage iden-
tified a serious problem, “Even though the . . . [negative detection]. . . algorithm is capable of
constructing a complete detector repertoire, this does not necessarily mean it can construct a de-
tector set capable of recognizing . . . all strings not in S.” (D’haeseleer, 1996). He continues
by showing that almost all practical matching rules could exhibit these ‘holes.’ If there
are two strings in the self set that match each other at k-contiguous bits, for example
00111100 and 11111111 when k=4, then any other string that contains these k bits, such
as the strings 00111111 and 11111100, can not be detected as nonself because any candi-
date detector would also match the self strings. D’haeseleer made a statistical analysis
to estimate the number of strings that would be impossible to detect (D’haeseleer et al.,
1996; ?).

Solutions to the Scalability and Coverage Problems In contrast to previous statisti-
cal analyses (Percus et al., 1993; D’haeseleer, 1996), Wierzchoń presented a deterministic
analysis of negative selection (Wierzchoń, 2000; Wierzchoń, 1999). The ability to calcu-
late the exact number of detectable strings was used to construct minimal size detector
sets, and a similar analysis allows the number of holes to be computed, i.e. the strings
that can not be detected by a given detector set, (D’haeseleer et al., 1996).

Wierzchoń’s ability to determine the exact number came from analysis of substring
templates. A template is a substring of length k of a string of length l, with the remain-
ing l − k bits set to a ‘don’t care’ character such as ‘*’. For example, the string 100110
has the following contiguous templates of length 4: 1001**, *0011* and **0110. Tem-
plates were originally introduced by (Helman and Forrest, 1994). Wierzchoń observed
that substring templates can be organized to form a binary tree, and since two tem-
plates can overlap there will be a smaller overall number of string holes than might
be expected. Analysis of these template trees, allows the construction of much smaller
detector sets, thus attacking both the coverage and scalability problems. Although it
is impossible to avoid holes when using the k-contiguous bits rule, Wierzchoń showed
how to minimize them.

At about the same time as Wierzchoń’s work, Hofmeyr and Forrest developed an
alternative approach to the coverage problem (Hofmeyr and Forrest, 2000). Figure 1
shows the detectors as the same size and shape, and consequently they can not ‘fit’ into
the hole. However, by using a permutation mask is it possible the change their shape
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in the state space (for example, by making them thin ovals), thereby allowing holes to
be covered by detectors without also covering self strings. The permutation mask is
used to re-order a string. For example, applying permutation mask 5-3-1-2-4 to a string
‘00101’ gives the string ‘11000’. This is, in effect, a way of relaxing the ‘contiguous’
constraint. By using several permutation masks, which are randomly generated, it is
possible to minimize the chance of failing to cover a hole with a detector set.

Another approach (Ayara et al., 2002), based on work by Timmis and de Castro,
investigates simple detector generation by random means, with the addition of clonal
selection (see Section 5). As in Forrest et al’s original algorithm, detectors are chosen
randomly, but then clonal selection is applied to any detectors that match self strings.
The aim is to gradually adjust the detectors until they (just about) no longer match any
of the self strings, without the complexity of the deterministic work of Wierzchoń, or
Hofmeyr and Forrest’s variable shape detectors, and in this respect it was successful.
Parthasarthy has reported similar work (Parthasarathy, 2003), as have Kim and Bentley
(Kim and Bentley, 2001), who have also explore the benefits of negative selection, clonal
selection and methods of self-string generation.

The State-of-the-Art González and Dasgupta described a similar approach to
Hofmeyr and Forrest’s (Hofmeyr and Forrest, 2000), which uses random sized hyper-
cubes as detectors (González and Dasgupta, 2002). They report that this gives improve-
ments over the traditional form of detector, but do not appear to make comparisons
with existing results until later work, which extends the model to real-valued ‘negative
selection’ (Gonzlez and Dagupta, 2003). They explain that, “This method does not use
positive or negative detection. Rather it tries to find a boundary between normal and abnor-
mal classes”, and their work combines AIS with a standard self-organizing map clas-
sification algorithm. In another combination of AIS with existing methods, Gomez,
González and Dasgupta present a fuzzy version of negative detection (Gomez et al.,
2003).

Recently Esponda, Forrest, Helman and Balthrop have introduced the terms r-
chunks (Balthrop et al., 2002) and crossover closure (Esponda and Forrest, 2003) to nega-
tive selection. The r-chunks approach simply allows detectors of any size to be used,
as opposed to the uniform-sized k-contiguous bit detectors of earlier work. This has a
surprisingly large improvement on the ability to fully cover the self state space without
holes. Crossover closure can be explained by the following example from Esponda’s
paper (Esponda and Forrest, 2003). Consider two self strings, 0000 and 1011. These may
be stored as relations with an attribute for each bit of the strings, where each attribute
is either a one or a zero,

R(A1, A2, A3, A4)
0 0 0 0
1 0 1 1

However, for efficiency reasons, larger tables of this sort of relation scheme might
be decomposed into three separate tables, for example three tables of two attributes
each (assuming k=2),

R(A1, A2) R(A2, A3) R(A3, A4)
0 0 0 0 0 0
1 0 0 1 1 1

To reconstruct the original strings one computes the natural join of the three rela-
tions above. However, this will produce more than the original strings; it will return

152 Evolutionary Computation Volume 13, Number 2



An Assessment of the Usefulness of AIS

the crossover closure of those strings—i.e. all possible crossovers (single point crossover,
in GEC terms) of the original strings.

R(A1, A2, A3, A4)
0 0 0 0
0 0 1 1
1 0 0 0
1 0 1 1

The table above shows the total set of strings that are undetectable, X , given the
k-width r-chunks in the preceding table. Esponda et al organize their r-chunks in a
graph structure (Esponda and Forrest, 2003) to show the relationships between the r-
chunks of the members of X . For more details, as well as coverage of positive selection
and an up-to-date, comprehensive review of negative selection work at Santa Fe, see
(Esponda et al., 2003).

Crossover closure can be reduced to a form similar to Wierzchoń’s binary tree tem-
plate analysis. The main difference is that Wierzchoń worked with k-contiguous bit
detectors, where Esponda et al have variable-length r-chunk detectors, and Esponda et
al’s work appears to have been developed entirely separately from Wierzchon’s work,
being inspired by observations of efficient ways of storing relational data in a database.

Ceong et al have developed a system that combines positive and negative selection
so that they effectively cross-check the results of each other, and allow for changes in
self, over time (Ceong et al., 2003). This is a simple but powerful development.

Bersini and others have taken a different view of the self-nonself issue, and have in-
troduced the concept of self-assertion in its place (Bersini, 2002). This suggests that the
immune system generates its own sense of self, based on its interaction with the world
(and the antigenic material therein), by somewhat linking the ideas of self-nonself and
immune networks.

Finally, Esponda and Forrest have developed a prototype ‘negative database’
based on the principles of negative selection. Unlike a normal database, a negative
database stores information about the inverse of the data we wish to store. Since all
data can be expressed as a set of strings, and since there are a finite set of strings of any
given length, it is possible to generate generalist strings that cover the non-data space
using negative selection. This may seem to be a rather odd way of proceeding but this
approach has one distinct advantage: it is an extremely secure way of (not) storing data
since it can be shown to be and NP-complete problem to decipher the self data, given
the nonself data stored in the database (Esponda and Forrest, 2004).

3.3 Typical Applications

Neither this section, nor later, similar sections will attempt to provide an in-depth re-
view of applications because the main focus here is the methods themselves, not their
applications. A fairly recent, comprehensive review of applications in all three AIS
methods has been made by (de Castro and Von Zuben, 2000). Typical applications are
presented here only to give a sense of how each type of AIS may be used for negative
detection; these include:

• Change detection (Forrest et al., 1994), in which a negative detection AIS has been
used to detect changes made to computer machine code programs caused by com-
puter viruses, to distributed change detection (Forrest and Hofmeyr, 2000), and to
network security (Hofmeyr and Forrest, 2000).
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• Dasgupta and Forrest’s comparative application of negative selection to ‘tool
breakage detection’ in a milling operation (Dasgupta and Forrest, 1995), and their
work in benchmark problems (Dasgupta and Forrest, 1999) indicates that it has
significant advantages over ANN and some standard fault detection methods.

• Fault detection and diagnosis, such as work by (Ishida, 1993), (Ishiguru et al.,
1994) and Bradley and Tyrell’s application to build hardware fault-tolerant sys-
tems (Bradley and Tyrell, 2002).

• Deaton et al’s work (Deaton et al., 1997) that proposed a means of implementing
the negative selection algorithm in a DNA computer.

• Network intrusion detection (Anchor et al., 2002), which also combined negative
selection with multiobjective evolutionary programming.

Some have questioned the logic of attempting to randomly cover the potentially
infinite nonself hyperspace with finite-sized detectors. Ebner et al have suggested that
it is instead preferable to generate detectors to cover the self strings (i.e. a form of pos-
itive detection), because it is usually finite and smaller than the nonself space (Ebner
et al., 2002). Moreover, since methods like ANN and support vector machines (SVM)
can form a hypersurface that can divide a state space into two (or more) subspaces,
what is the point of randomly generating multiple detectors that are likely to leave
gaps or contain redundancies and therefore provide less accurate classification? The re-
sponses are two-fold (Dasgupta and Forrest, 1999): (i) having multiple detectors allows
a non-self event to be approximately located in the state space, and (ii) detectors can be
created with requiring any knowledge of the state space, unlike standard techniques.
Dasgupta and Nino had compared positive versus negative selection two years ear-
lier (Dasgupta and Nino, 2000). Furthermore, Esponda et al evaluate the benefits and
tradeoffs of positive and negative selection (Esponda et al., 2003) and, although they
do not specifically reference Ebner et al (Ebner et al., 2002), they present an effective
response to their comments. In some cases it may be more appropriate to cover the self
strings with detectors; in other cases negative selection is appropriate. So, is negative
selection distinct and effective?

3.4 Applying the Usefulness Criteria

Consider again the distinctiveness criteria of Section 2. What are the symbols, expres-
sions and processes in negative selection?

D.1–Symbol Distinctiveness: The symbols are binary (or real-valued) numbers. These
symbols are frequently used in many methods and are not distinct. [D.1 = No]

D.2–Expression Distinctiveness: These symbols are organized in vector expressions
that are called detectors. Very many other methods use vectors of values: most
GEC systems and some ANN systems, to name just two paradigms. However,
detectors can be used differently to the vectors in other systems, e.g. they can
be distributed easily across many computers, and this provides some degree of
differentiation.

One might argue that the meaning of the expressions in positive selection is differ-
ent to the meaning of those expressions in negative selection, because they express
different aspects of the detection problem, but the counter argument is that what
is really being defined (in both positive and negative selection) is the dividing line
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between the positive and negative cases. If this is true, then the expressions repre-
sent the same entity, which is the dividing line. Others have specifically focused on
exploring the formal nature of positive and negative detection in detail (Esponda
et al., 2004). [D.2 = No, with some exceptions]

D.3–Process Distinctiveness: The central question is, are the processes on these vec-
tor expressions reducible to existing processes? There does not seem to be any
similarity to ANN methods (although others may wish to attempt a proof of such
similarity!), but there is a link with at least one GEC-based method.

Hofmeyr and Forrest make a comparison between negative selection and classifier
systems (Hofmeyr and Forrest, 2000). They then set out a table of synonymous
terms between classifier systems and negative selection, and make a connection in
all but one case (there are multiple representations in negative selection). How-
ever, Hofmeyr and Forrest are not saying that classifier systems are indistinct from
negative selection, “There is no direct analog of the IS negative-selection algorithm in
classifier systems except for the learning rules . . . under which new classifiers are gener-
ated.,” which indicates a degree of distinctiveness. They highlight other distinct
properties, e.g. the ‘condition’ in a classifier system is in the alphabet 0,1,# not
the k-contiguous bits of negative selection (Hofmeyr and Forrest, 2000). Similar
work is presented in (Hofmeyr and Forrst, 1999) where they say, “. . . [although] the
AIS outlined . . . resembles the architecture of a classifier . . . most of the details are different
. . . [and]. . . there is no direct analog of our negative selection algorithm in classifier sys-
tems.” In other words, they consider the overall design of negative selection to be
distinct from classifier systems.

Dasgupta made a comparison between AIS and ANNs (Dasgupta, 1997) but much
of the discussion simply places the symbols, expressions and processes of both
systems alongside each other, without establishing any form of equivalence. He
did, however, note a series of differences (and some similarities) in the processes
of both methods. Overall, however negative selection appears distinctive.

Observe that negative selection is a form of positive-only learning, using ‘positive-
only’ in the sense used by inductive logic programming (ILP) (Muggleton, 1996).
In both negative selection and some forms of ILP, only positive examples are avail-
able (i.e. examples of self, or some other class); there is no direct knowledge about
the nature of nonself, just the assumption that nonself is equivalent to not(self)
and therefore defined exclusively by reference to self. There may be potential in
sharing ideas from both fields but, this does not appear to have been reported yet,
with the possible exception of (Nikolaev et al., 1999). The question is, are the two
learning processes the same? There certainly are some similarities in their sym-
bols and expressions. As Esponda et al have pointed out (Esponda et al., 2003)
instances of self can be converted to relational format, and it is exactly this format
that is used in ILP. The organization of relations into a tree or lattice, as suggested
by Wierzchoń and Esponda et al, is also common in ILP. However, the processes
on this lattice seem to differ: in ILP, search is the most common operator; in nega-
tive selection the lattice is used to count the number of strings. Negative selection
appears to be sufficiently distinct here too. [D.3 = Yes]

The effectiveness criteria of Section 2 require that a method is either alone, better
or faster in its ability to perform a task, and that the task should be of some value. Is
this true of negative selection?
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E.1–Does the Method Provide Unique Results? D’haeseleer, writing in 1996 before
some of the recent advances in efficiency, described above, acknowledges that neg-
ative selection may not be as effective as some other systems for detecting change
but, he says, the security of such specific systems are liable to be circumvented,
and negative provides a generalized ‘safety net’ that could detect change events
(D’haeseleer, 1996). Other advantages he lists include the ability to check parts of
objects for change (rather than whole objects); several different detector sets can be
applied to the same object, making detection failure exponentially less likely with
the number of detector sets used. Related to this, subsets of the detector set can
be used in an autonomous, distributed manner (D’haeseleer, 1996). The negative
database approach also seems to be entirely unique. [E.1 = Yes]

E.2–Does the Method Produce Better Quality Results than Existing Methods?
Dasgupta and Forrest list a number of other techniques that have been used for
anomaly detection, namely, control charts, model-based methods, knowledge-
based expert systems, pattern recognition and clustering, hidden Markov models,
and neural networks (Dasgupta and Forrest, 1999). Other methods exist, such
as Parzen windows (Lane and Brodley, 1997). Dasgupta and Forrest have also
explored the effectiveness of negative selection relative to an ART ANN (Dasgupta
and Forrest, 1999; Dasgupta, 1997), finding the negative selection AIS was more
precise in detecting changes in a signal that the ART ANN. [E.2 = In some cases,
perhaps]

E.3–Is the Method Faster than Existing Methods? There does not appear to have been
any investigation into the speed of negative detection, relative to other methods.
This may be because time complexity has been a major problem for negative de-
tection, although this appears to be changing (Esponda et al., 2003). [E.3 = No]

Dasgupta appears to be alone in comparing negative selection to other methods
(Dasgupta and Forrest, 1999; Dasgupta, 1997), in this case to ANNs, and this limits
the confidence with which one can declare negative detection to be effective. In part,
this is because AIS is still a young field, in future, however we should expect more
comparisons with the performance of other methods on the same application.

Another issue, which impacts on the potential usefulness of this form of AIS, is
how appropriate negative (and positive) selection are for intrusion detection. By their
very nature, computer intrusions are planned and initiated by intelligent agents (usu-
ally humans) and this contrasts with the highly-evolved-but-dumb behavior of bacteria
and viruses. One argument might be: “If the natural immune system were under attack
by intelligent agents it is likely that it could be made to fail, and indeed this is exactly
what happens during treatments given after skin grafts and transplants.” However,
others, such as Stephanie Forrest, powerfully argue that, “... in the biological warfare
arena, the best that engineers have accomplished so far (thankfully) is minor tweak-
ing of pathogens that were evolved by nature,” (personal correspondence) and these
pathogens, such as the Ebola virus, are worse threats to human health than anything
that man has engineered. In the same way, negative selection can be a very strong
approach for intrusion detection.

In any case, there certainly are some classes of applications in which negative se-
lection is the method of choice. For example, consider the abstract (but useful) case
where the self strings themselves are not directly available, only a function that deter-
mines whether a string belongs to the self set or not. In this case, negative selection
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would probably be the most effective algorithm available, since the alternate methods
listed above would fail.

4 Danger Theory: An Alternative Approach?

This section considers an emerging AIS technique for intrusion detection that is based
on an abstraction of Matzinger’s danger theory (Matzinger, 2002). Danger theory AIS
is given a section to itself because it is a distinct, fast growing alternative/addition to
negative detection.

4.1 Background Immunology

By the mid-1990s, immunology had made several modifications to the self-nonself the-
ory. The original self-nonself theory did not fit experimental observations, such as why
there is no immune response to bacteria in our gut, or to air, both of which are clearly
nonself, and Matzinger suggested a radical, alternative approach. What if, instead of
responding directly to a nonself element of some sort, the immune system responds to
cells that are under stress; cells that are raising an alarm to some form of danger, such
as an attack from a bacterium or virus? Matzinger characterizes this danger theory as
a means of detecting ‘some self from some nonself,’, thus explaining why there is no
immune response to harmless nonself, but why there is usually an immune response
to harmful self, such as cancerous cells. This is the basis of danger theory.

Cells can die in two ways: via apoptotic, normal death that has been requested
by the body’s internal signaling system, or via necrosis, a form of unexpected death
caused by something going wrong with the cell, which often causes an inflammatory
response. Matzinger suggested that the immune system is particularly activated by
cell necrosis. Thus, under the danger theory, the immune response is contextualized
to the location in which necrosis is occurring and is no longer a system-wide response.
Despite Matzinger’s departure from more established theories, such as the work of
Janeway, e.g. (Medzhitov and Janeway, 2002), both require two signals for an immune
response to be initiated. This helps to avoid false positive reactions in nature (causing
autoimmune effects), and may be of use in AIS. However, the major problem with the
Matzinger’s theory is that the exact nature of the danger signal(s) is still unclear.

4.2 The Development of Danger Theory AIS

It appears that danger theory might help intrusion detection systems by focusing atten-
tion only on those internal or external events that are likely to be harmful—generally a
smaller subset of events than the nonself subset. Whether or not this danger theory has
validity in any natural immune system response is of little importance here because
danger theory AIS (DT-AIS) is an abstraction of this process for purely computational
purposes; it is not a model of the immune system. Several researchers are pursuing this
approach (Aickelin and Cayzer, 2002; Williamson, 2002; Burgess, 1998).

It may seem pointless for DT-AIS to simply change the self-nonself dichotomy for a
danger-nondanger dichotomy, but there are some important differences. The concepts
of self and nonself are both relative to the self strings, which are not necessarily the full
set of true self, may change over time, and may contain many features or attributes.
However, the concepts of ‘dangerous’ and ‘non-dangerous’ are grounded in undesirable
events, and a detection system based on these concepts should, in principle, only report
the specific attributes or features that are causing concern. These danger signals may
be positive—e.g. the presence of an event or state such as high memory or disk activity,
frequency of file changes, unusual signals (e.g. SIGABRT in UNIX), and the presence
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of nonself (Aickelin and Cayzer, 2002)—or the signals may be negative, such as the
absence of such signals or states. In addition, the possibility of requiring two signals
to be present before an immune response is initiated seems to be a way of minimizing
false positives. (Secker et al., 2003) describe one possible application, email mining and
spam detection. Their paper includes some pseudocode, but as yet the system has not
been fully implemented, mainly because the nature of the danger signals is unclear.

4.3 Assessment of Its Promise

In the natural immune system, it is not immediately clear which signals are danger
signals (if any), and it already appears that this is the major problem in implementing a
DT-AIS too. Another drawback is that the DT-AIS system will apparently have to wait
for damage to occur to self at least once before any protection steps can occur, because
it requires examples of dangerous states. This is not the case with negative detection,
which can give a response based solely on positive examples data of self.

Issues of scaling also need to be considered. DT-AIS is a more complex theory
than standard negative selection (e.g. the algorithm in (Secker et al., 2003)) because it
is based on a much expanded version of Burnet’s original work in negative selection
and the proliferation of B-cells (Burnet, 1959). It is also unclear how best to involve a
human in the loop (if at all). Nevertheless, the possibility of using DT-AIS to obtain
key features from a set of attributes is an interesting problem, with relevance in many
areas. If DT-AIS can find an automated solution to this problem it would have great
benefits within, and beyond, AIS.

There is very little point in applying the usefulness criteria (Section 2) to such a new
development in AIS, but current developments are distinct in their use of existing novel
AIS processes (Secker et al., 2003), and (Aickelin et al., 2003) have shown that DT-AIS
might favorably compare with existing (non-AIS) approaches to intrusion detection.

5 Artificial Clonal Selection and Hypermutation

5.1 Background Immunology

Whereas negative selection and danger theory center on the detection of nonself or dan-
ger signals, in clonal selection the focus is on how B-cells (and T-cells) can adapt to
match and kill the invader. The immune system’s ability to adapt its B-cells to new
types of antigen is powered by processes known as clonal selection and affinity matura-
tion by hypermutation. In AIS literature, the shorthand ‘clonal selection’ is often used to
refer to both processes.

According to Burnet, biological clonal selection (Burnet, 1959) occurs to the degree
that a B-cell matches an antigen. A strong match causes a B-cell to be cloned many
times, and a weak match results in little cloning. These ‘clones’ are mutated from the
original B-cell at a rate inversely proportional to the match strength: a strongly match-
ing B-cell mutates little and thus retains its match to the antigen to a slightly greater or
lesser extent; a weakly matching cell mutates much more. See (French et al., 1989) for a
more recent appraisal of the role of somatic hypermutation.

As mentioned above, since 1959 there have been improvements to Burnet’s theory,
with respect to the way antigens are recognized, whether as nonself or as dangerous,
but his basic principles of clonal selection and affinity maturation by hypermutation
are sufficient for the purposes of AIS clonal selection.
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5.2 The Development of Artificial Clonal Selection and Networked Artificial
Selection

Early Work in Artificial Clonal Selection Early work in artificial clonal selection
grew out of computational models of the processes of clonal selection, such as Wein-
land’s work (Weinand, 1990), and more recently it has become an abstract method for
optimization, search and pattern recognition. There have been several degrees of em-
phasis between these two poles, such as Forrest and Smith’s more abstract work, and
Chowdhury’s more immunologically emphasized analysis of the computational prop-
erties of the immune system (including immune network elements, as well as clonal
selection) (Chowdhury et al., 1990; Chowdhury and Stauffer, 1992) that suggested that
clonal selection might be used for computational intelligence. Hightower, Forrest and
Perelson considered clonal selection from the point of view of the Baldwin Effect (High-
tower et al., 1996) and pattern matching (Forrest et al., 1993).

It was Fukuda, Mori and Tsukiyama’s often overlooked work (in the West at
least) that first developed an algorithm that included an abstraction of clonal selec-
tion to solve computational problems (Mori et al., 1993; Fukuda et al., 1998). They ap-
plied their algorithm to optimization applications, both uni-modal and multi-modal,
to scheduling and resource-allocation problems, and report its use in a semi-conductor
production line (see (Dasgupta and Yu, 2003) for complete references). Their algorithm
is quite complex—relative to later clonal selection algorithms—and contains a direct
means of concentration control that uses information theory to help choose the next set
of antibodies. Since their work also has a form of network control, it will be discussed
in detail in Section 6; nevertheless, it was the first to explicitly use an abstraction of
clonal selection and, although this approach has been largely ignored, their use of in-
formation theory is now being revived, with a new treatment, and applied to clonal
selection, and negative selection (Nicosia et al., 2003).

De Castro and Von Zuben’s CLONALG The artificial form of clonal selection has
been popularized mainly by de Castro and Von Zuben, beginning with an algorithm
they called CSA (de Castro and Von Zuben, 1999), which was then modified and re-
named CLONALG (de Castro and Von Zuben, 2000). CLONALG currently exists in two
forms (de Castro and Von Zuben, 2002)—one for optimization tasks and one for pattern
matching, however the pattern matching algorithm has only recently been more fully
investigated (White and Garrett, 2003). CLONALG has the advantage of being simple
to implement, relative to previous work such as Fukuda’s.

CLONALG for Optimization: The basic CLONALG optimization algorithm is as fol-
lows (see (de Castro and Von Zuben, 2000) for details):

1. Initialization: Create an initial, random population of antibodies, P0. Iterate steps
2–7 if a predefined termination condition is not met.

2. Evaluation and Selection 1: Select a subset, F , of the fittest antibodies from Pt ac-
cording to some fitness function, f(abi).

3. Cloning: For each ab ∈ F , create a set of clones, Ci, such that |Ci| = nc(abi). The set
of all clones, C =

⋃
i Ci.

4. Mutation: Mutate each clone c ∈ C by a function am(f(abi), ρ) Add the mutated
clones, C ′, to Pt to give P ′

t .

5. Evaluation and Selection 2: Select a subset, F ′ of the fittest antibodies from P ′
t .
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6. Diversity: Add r randomly generated new B-cells to F ′ give a new population P ′′
t .

7. Death: Retain only the best |Pt| members of P ′′
t to give Pt+1; all other B-cells are

considered to have died.

The effect, on average, is that each successive generation of B-cells tends to be
closer to the state space optima than the previous generation. The addition of ran-
dom members at each generation provides diversity (to search unexplored areas of the
state space) for still better approximations to the optima, but the evolutionary pressure
lessens as all antibodies tend to their (local) optima. De Castro presents results that
show convergence can be on several optima at the same time (multi-modal optimiza-
tion) (de Castro and Von Zuben, 2000).

CLONALG for Pattern Matching: The version of CLONALG for pattern recognition
is similar to the optimization version. However, when training the system on a set of
patterns, a step is added that selects the single best member of the population for each
generation. This population member is called a memory cell, since it remembers the best
approximation to the pattern being shown to the system, and it is retained if it has a
higher fitness than any previously stored memory cell for the pattern currently being
shown to the system. One memory cell is allocated for each pattern to be remembered
(de Castro and Von Zuben, 2002), giving a set of memory cells, M .

When training is complete, a pattern p is classified by the class of the memory cell
that has the minimum distance from p. I.e. pclass = mclass

i ∧min(dist(p,mi) : ∀mi ∈ M),
where dist(x, y) is an appropriate distance function between the pattern and winning
memory cell. De Castro and Von Zuben only provided a proof of principle (de Castro
and Von Zuben, 2002) that the pattern matching form of CLONALG could work, but
it was enough to show it had promise as a pattern recognition method. In fact, this
was not the first paper on this subject: Forrest et al. had studied the use of genetic
algorithms (GAs) for pattern matching in the context of the immune system (Forrest
et al., 1993). Their work used the binary schema approach common in GA work, and
they provided a formal analysis of the pattern matching abilities that draws heavily on
the analyses Forrest and others made on GA effectiveness at certain types of problem.

White and Garrett have recently presented a study that applied CLONALG to pat-
tern matching. They also introduced a more efficient version of the pattern matching
form of CLONALG called CLONCLAS, and compared both CLONALG and CLONCLAS
to simple Hamming distance methods in order to explore whether the complexity of
clonal selection was necessary for pattern matching (White and Garrett, 2003). Their
results show that clonal selection can be significantly more effective than Hamming dis-
tance methods (particularly CLONCLAS), although with increased computational cost.

One of the main problems with both forms of CLONALG is its scalability. Since
the number of clones rises in proportion to the value of f(ab), the number of objective
function evaluations will quickly increase as the majority of the population approaches
the (local and global) optima. If the nc(x) function is carefully formed then the average
number of clones per generation may asymptotically approach a constant value, oth-
erwise it will be unbounded. In both cases, however, it can cause the algorithm to run
very slowly.

The State-of-the-Art The method(s) of Nicosia and Cutello are similar to CLONALG
(e.g. (Cutello and Nicosia, 2002)) in its general form but have some important addi-
tions. Perhaps the most important of these is the introduction of a probabilistic half-
life for each B-cell, and the re-introduction of information theory into clonal selection
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(Nicosia et al., 2003; Cutello and Nicosia, 2002). Fukuda et al had used information the-
ory in their approach (Fukuda et al., 1998), but Nicosia and Cutello have simplified its
application to clonal selection and used it in a novel terminating condition: if the infor-
mation measure drops to zero then the run stops. As well as this, they define the initial
population of vectors by a Gaussian distribution, as opposed to the more common uni-
form distribution. There does not appear to be one single algorithm, like CLONALG,
produced at Catania, rather they improvise on a theme as required by an application
or theoretical exploration (Nicosia et al., 2003; Cutello and Nicosia, 2002; Castiglione
et al., 2001).

In contrast, AIRS is a form of clonal selection algorithm that has been developed
from the AINE immune network (pronounced ‘Ann-ee’), see Section 6.2. AIRS still uses
many of the elements from its immune network heritage, such as an unusual form
of resource limitation to control the population size, and the concept of the Antigen
Recognition Ball (ARB). An ARB is a data structure that represents multiple, identical
antibodies, thus a population of ARBs can represent a much larger population of anti-
bodies in an efficient manner. The ARB also introduces the concept of cell concentra-
tions into clonal selection, something that is totally absent in de Castro and Von Zuben’s
work, for example. AIRS is commonly used for supervised classification, which has ob-
vious connections with pattern matching, and has been comprehensively compared to
the LVQ method (Kohonen, 1990) with mixed results (Goodman et al., 2002; Watkins
and Timmis, 2002). Although AIRS can outperform LVQ, it tends to do so by requiring
more computing resources.

De Castro’s and Von Zuben have largely moved away from pure clonal selection,
towards a method, known as AINET, that combines CLONALG with aspects of immune
network models (de Castro and Von Zuben, 2001). The resulting network has been
shown to give better results than CLONALG in every test that they have performed.
Garrett has argued that clonal selection and immune networks are strongly related,
to the point that clonal selection may be considered a simplification of some forms
of immune network (Garrett, 2003). If this is the case, then the question, ‘how much
network is best?’ may be more appropriate than, ‘is clonal selection better than immune
networks?’

Garrett has recently presented an attempt to remove all the parameters from a
clonal selection method, or rather to remove all parameters that require tuning (Garrett,
2004). This approach attempts to predict the final fitness of various internal parameters,
and self-evolves various parameters during an single run. As a result, the method can
be used without any prior testing of parameter values on the given objective function;
this is useful when time is limited, or must be as accurate as possible.

5.3 Typical Applications

Typical applications of clonal selection include the following:

• CLONALG has been applied to uni-modal, combinatorial and multi-modal opti-
mization, and to the problem of initializing the centers of radial basis functions (de
Castro and Von Zuben, 2001).

• The use of CLONALG has been suggested for various types of pattern recognition
(de Castro and Von Zuben, 2002) and shown to work by (White and Garrett, 2003).

• Cutello and Nicosia have applied their clonal selection method to the graph col-
oring problem, to two NP-complete problems, and multiple character recognition
problem (Cutello and Nicosia, 2002; Nicosia et al., 2003).
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• (Hart et al., 1998) used a clonal selection-based method in automated scheduling.

• Greensmith and Cayzer have recently suggested the use of AIRS in document clas-
sification (Greensmith and Cayzer, 2003).

5.4 Applying the Usefulness Criteria

Several commentators have informally suggested that clonal selection is just another
form of GEC algorithm. To a degree this is true, because one of the central purposes of
natural clonal selection and affinity maturation is to ‘out-evolve’ bacteria, viruses and
other invaders, but is artificial clonal selection distinct from GEC and other methods?

Wierzchoń makes a distinction between GA-based methods, used in function op-
timization, and approaches that are inspired by the processes of the immune sys-
tem (Wierzchoń, 2002), where he also introduces a method similar to CLONALG and
presents a helpful list of GA and AIS methods used for optimization. However, as dis-
cussed in Section 2, appealing to the source of inspiration appears to have limited value
in distinguishing between methods.

D.1 - Symbol Distinctiveness: Some types of artificial clonal selection use binary vec-
tors, and some use real-valued vectors, but in both cases there is nothing particu-
larly distinct about the symbols used. [D.1 = No]

D.2 - Expression Distinctiveness: The organization of these symbols is also not dis-
tinct from very many other methods, the only notable exception is perhaps the
ARB, used in Watkin and Timmis’ work (Watkins and Timmis, 2002). [D.2 = Some
distinctiveness]

D.3 - Process Distinctiveness: One of the main questions asked about clonal selection
is, “How does clonal selection differ from other GEC algorithms, such as evolutionary
strategies?” Evolutionary strategies (Bäck and Schwefel, 1993)2 control the degree
of mutation of real-valued population members by one or more adjustable strategy
parameters. These parameters are altered each generation, either being multiplied
or divided by a constant value, usually 1.3 (Rechenberg, 1994). Mutation-based
genetic algorithms, which use mutation to find solutions, also exist (Lau and Tsang,
1996).

Where clonal selection differs from other GEC methods is in its mechanism for
adjusting mutation. Unlike ES and mutation-based GAs, which have constants
that control the degree of mutation (or the degree of change in mutation), clonal
selection’s degree of mutation is functionally related to the fitness of the solution—
solutions with small deviation from the optimum have small degrees of mutation.
It should be pointed out that Steve Hofmeyr did do some work on this in his MSc
thesis (unpublished), relating it to GAs, although the method for adjusting mu-
tation rates was different. This was the only work that could be found that was
similar to the AIS approach of adjusting mutation rates and the number of clones.

This is more than semantic gymnastics. An ES evolves low mutation rates for its
high fitness members; clonal selection functionally defines it. Although the results
are similar, the mechanisms are different, and this difference can be measured.
Walker and Garrett compared the performance of ES and (real-valued) clonal se-
lection over a number of functions, with different dimensionalities and found that

2Earlier versions exist in German, as cited in Back and Schwefel’s paper
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clonal selection tends to perform better than ES at low dimensionalities, whereas
ES performs better at higher dimensionalities (Walker and Garrett, 2003). These
results were shown to be true for stationary functions and for dynamic functions,
in which the locations of the optima change over time.

Similarly, the functional relationship between a vector’s fitness and the number of
clones it produces is unusual, if not unique to clonal selection. Not all clonal se-
lection algorithms have this feature: in the optimization version of CLONALG, for
example, the number of clones value is held constant! For clonal selection in gen-
eral, however, there is a functional relationship between the fitness of a population
member and the number of clones it produces. Garrett has investigated clonal se-
lection algorithms that evolve the function that decides this value (Garrett, 2004)
and compared them to an ES that has been pre-parameterized in the number of
children (clones) that each parent produces. The results indicate that parameter-
free clonal selection algorithms are more effective than pre-parameterized ES, over
the four functions used for testing.

This is not to say that hypermutation is a new idea in GEC research. Cobb and
Grefenstette have long been interested in its effects (Cobb, 1990; ?) but, in those
cases, the degree of hypermutation was linked to the diversity of the population
and not the fitness of a given solution vector. Although it may be possible to find
GEC algorithms that employ one or other of the distinctive elements of clonal se-
lection, only clonal selection appears to contain both of them in a single algorithm,
and only clonal selection has such a clearly functional relationship between the
fitness of a solution and its amount of mutation and number of clones. [D.3 = Yes]

E.1 - Does the Method Provide Unique Results?: There do not appear to be any
unique abilities of clonal selection algorithms. [E.1 = No]

E.2 - Does the Method Produce Better Quality Results than Existing Methods?:
(Hart et al., 1998) have shown that scheduling is much more robust using clonal
selection than using a simple GA. However, even if one can show that clonal
selection is the best choice of algorithm for some valuable subset of objective
functions, de Castro’s recent research has shown that networked versions of clonal
selection are usually more effective (de Castro and Von Zuben, 2001).

As well as noting that clonal selection was better than ES at low dimensions (by
several orders of magnitude), Walker and Garrett (Walker and Garrett, 2003), also
noted that at all dimensionalities the graph of ES optimization tended to be as-
ymptotic in style (given a log scale on the fitness axis), whereas the AIS graph
continued to optimize at roughly the same, slower, rate. This may suggest that
clonal selection has more consistent evolutionary pressure than the ES, and would
eventually out-perform an ES, given enough time; however, their work did not
properly address this point. A similar analysis has been reported by Gaspar and
Collard, although their work modified a GA to give an immune network, as op-
posed to a clonal selection algorithm, and the results were not as detailed (Gaspar
and Collard, 1999). [E.2 = Sometimes, but clonal selection may be superceded by aiNet-
like algorithms]

E.3 - Is the Method Faster than Existing Methods?: CLONALG can be very slow to run
because the number of clones, and therefore the number of fitness evaluations, in-
creases with the increase in the average fitness of the population; this is because
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the number of clones is functionally related to the fitness of the population. AIRS is
often more resource-hungry than Kohonen’s LVQ (Goodman et al., 2002) but per-
forms very well. New methods are appearing that are more efficient, but they have
not yet been compared to existing methods in terms of their speed and efficiency.
[E.3 = Not yet clear]

Clonal selection is an interesting evolutionary approach that has relevance not just
for immune network research, but also for GEC research. The work of Nicosia et al is
a promising new, efficient approach to building an abstraction of clonal selection, and
the connection with immune networks means that improvements to clonal selection
are doubly important.

6 Artificial Immune Network Models

6.1 Background Immunology

So far, we have seen that part of an antibody (known as its paratope) will bind to part of
an antigen (known as its epitope). Immune network models3 (Jerne, 1974) go further, in
that antibodies also have epitopes, which can be bound by other antibodies’ paratopes.
In all cases, the entity presenting the bound epitope is then eliminated or repressed, and
the antibody presenting the active paratope is proliferated. Under this assumption, a
network of stimulatory and suppressive interactions exists between antibodies that af-
fects the concentrations of each type of antibody, and it has been shown that this might
allow for a form of associative memory, somewhat like a Hopfield neural network or
sparse distributed memory (Hart and Ross, 2002).

An abstracted mathematical model of a Jerne’s immune network theory was first
suggested by (Farmer et al., 1986). As well as assuming that Jerne’s theory was correct,
Farmer et al. consciously made the simplifying assumption of a single epitope-binding
region on each antibody and antigen, and a single paratope-binding region on each
antibody. Having presented their model, they also discussed the possibilities for us-
ing these abstracted immunological descriptions as computational tools for machine
learning.

6.2 The Development of Artificial Immune Networks

The algorithms for immune network models are tightly linked to two equations. For
clarity in comparing types of network model, only the equations, not the algorithms,
are presented here. Algorithmic details may be found in the cited papers.

The ‘Farmer-Packard-Perelson’ (FPP) Model The model of (Farmer et al., 1986) (FPP)
is as follows. Consider a set of antigen and a set of antibody types, where ‘antibody
type’ means a concentration of antibodies that share exactly the same binding features.
Both antigen and antibodies are modeled as binary strings, and the mij matching affini-
ties between the two antibodies are defined as,

mij =
rng∑
k=1

G
( l∑

n=1

ei(n + k)⊕ pj(n)− s + 1
)
, (4)

where ‘⊕’ is the complementary XOR operator; k is the offset, measured in bits, be-
tween the paratope and epitope; ei(n) is the n’th bit of the epitope; pj(n) is the n’th bit

3Strictly speaking, these are not models, they are abstractions of immune processes; however, this is the
term generally used.
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of the paratope, and s is a threshold since G(x) = x if x > 0 and G(x) = 0 otherwise.
The number of bits in a string, l = min(len(ei), len(pj)), rng = l − s, s ≤ l. Therefore,
the value of k is in the range −rng ≤ k ≤ rng. Note that the variable rng has been
deduced here from (Farmer et al., 1986) to clarify k’s range. Also note that Equation 4
is not symmetric because mij means “epitope i binds with paratope j,” and mji means
“epitope j binds with paratope i.”

Equation 4 was then used in a dynamic differential equation for modeling the con-
centrations of changing antibody types. Given N antibody types, with concentrations
{x1, . . . , xN} and n antigen types, with concentrations {y1, . . . , yn}, the change in con-
centration of a given xi was modeled as,

dxi

dt
= c

[ N∑
j=1

mjixixj − k1

N∑
j=1

mijxixj +
n∑

j=1

mjixiyj

]
− k2xi. (5)

The xixj and xiyj elements model the probability that a paratope and epitope will
be close enough to attempt to bind, since high concentrations of either will increase
this probability. The first term in Equation 5 models the stimulation of an antibody
type’s paratope by the epitope of another antibody type. The second term indicates the
repression of an antibody type due to its epitope binding with the paratope of another
antibody type. The third term models the stimulation of an antibody type by binding
with the epitope of an antigen. The constant k1 indicates a possible inequality between
the simulation and repression terms. The equation ends with k2xi (where k2 > 0), a
‘death term’ that removes a quantity of xi antibodies. Farmer et al advise that the value
of k2 is adjusted until constant population size is obtained, as in the natural immune
system. Finally, c is a rate constant, common in kinetic equations, that depends on the
number of collisions per unit time and the rate of antibody production stimulated by a
collision.

Two negative issues arise from the FPP model. Firstly, it is strongly tied to the use
of binary data or, more precisely, to a binary representation of amino acid binding. It is
not clear whether it is valid to use the FPP model for other types of data, such as binary
representations of base-10 real-valued variables. For example, the binary numbers for
63 and 31 only differ by 63 having an extra ‘1’ bit, and yet these numbers are not clearly
related in base-10.

Secondly, standard kinetic equations (Cleland, 1963) suggest that there should al-
most certainly have been coefficient constants for the first three terms of Equation 5,
not just k1 for the second term, since this allows any term to dominate the others or to
become insignificant.

Having described the immune network in these terms, Farmer et al drew com-
parisons between the immune network and Holland’s classifier system. In later work,
Farmer broadened the scope of this comparison by suggesting that immune network
AIS, classifier systems, autocatalytic reaction networks and artificial neural networks
are all instances of connectionist systems (Farmer, 1990).

The Model of Fukuda et al The work of Fukuda (e.g. (Fukuda et al., 1998; Fukuda
et al., 1993) has some similarities with the FPP model, discussed above, in two respects:
it represents the paratopes as binary vectors, it is a network model, and it is concerned
with concentrations of antibody types. However, it differs in many other ways: the
equations are not specifically dynamic (no derivatives); there are many more equations,
each modeling a part of the immune system, such as the informative entropy of the an-
tibodies, the affinity between two antibodies, the affinity between each antibody and
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the set of antigen, the proliferation and suppression of antibodies, and so on. Never-
theless, the idea is the same as in the FPP model: simultaneously maximize the affinity
of each antibody to the antigen (so that there will be good solutions) and minimize the
concentration of any antibody type (so that the population remains diverse).

Fukuda et al apply their method to functions such as the Shubert function (Fukuda
et al., 1998) and to real-world applications. Their results are impressive, and they
demonstrate that it is possible to do multimodal optimization over the memory cells,
while doing global optimization with the population of antibodies. See (Fukuda et al.,
1998) for more information.

The ‘Timmis-Neal’ Model Hunt and Cooke took a similar approach to Farmer et al
(Cooke and Hunt, 1995), with some modifications. In the FPP model, it was assumed
that all antigen and antibodies will interact probabilistically; in Hunt and Cooke’s
model, the effects of an antigen were localized to k-nearest neighbors of a random point
in the network. They also took a slightly different approach to the process of creating
and destroying B-cells.

Timmis and Neal’s work (Timmis et al., 2000) originally extended Hunt and
Cooke’s work; however, after several implementational problems they decided to sig-
nificantly, and fundamentally, simplify the FPP model. Their model was a further ab-
straction of Equation 5, removing the ‘death term’ and constants, and changing the
representation of the data from binary to real-valued numbers. This change necessi-
tated a similarity measure in place of the complementary measure of the FPP model, and
it also required the data to be normalized. Furthermore, the change in representation
prevented variable-length strings being used as paratopes and epitopes. Finally, they
dispensed with concentration measures for the antibodies and antigen.

This ‘Timmis-Neal’ model introduced the idea of a network affinity threshold
(NAT), which is used to limit the connections between two antibodies to those that
are the strongest, to control the density of the network. Their algorithms have varied
over time, but the similarity measure and network equations are generic. Their equa-
tions can be re-written in a similar form to Farmer et al’s, for comparison. First the
distance metric is,

m(x, y) = H
(√√√√ l∑

n=1

(x(n)− y(n))2
)
, (6)

i.e. N -dimensional Euclidean distance, such that,

m(x, y) = H(x) if H(x) ≤ NAT

m(x, y) = 1 otherwise.

The results of m(x, y) are normalized to fall on or within the unit sphere, i.e. 0 ≤
m(x, y) ≤ 1. The dynamics of the Timmis-Neal model are defined by,

sl = 1 +
N∑

j=1

(1−m(xi, xj))−
N∑

j=1

m(xi, xj)−
n∑

j=1

m(xi, yj),

if sl > θ then xi = xi + k(sl) else xi = xi. (7)

with the NAT scalar selecting only those antibodies that are close enough to each
other. The overall limits of sl can be shown to be (1− 2N) ≤ sl ≤ (1 + N).

The Timmis-Neal model’s use of real-valued data led to several difficulties. Firstly,
it forced the use of a similarity measure (Euclidean distance) in place of the FPP model’s
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complementary measure, and the effects of such a change were not evaluated. Secondly,
the data required normalization, and the effects of normalization were not analyzed.
Consider a two-dimensional vector (x1, x2); if x1 is in the range [−100, 100] and x2 is in
the range [−0.01, 0.01] then normalizing the data will significantly change their relative
sizes. Thirdly, it made it difficult to implement variable-length strings, which limits
application to homogeneous data that can match in only one way (Freitas and Timmis,
2003).

In the original Timmis-Neal model, the network grew exponentially due to the
lack of a death term. It could therefore only be run for a few evaluations of Equation 7
(Knight and Timmis, 2001), and in any case it suffered from premature convergence.
Others have pointed this out too (Nasaroui et al., 2002a). Timmis prevented population
explosion by introducing competition for resources, a resource-limitation mechanism
that probabilistically chooses the best members of the current population for the next
generation, and removes B-cells with no resources. However, since Equation 7 ineffi-
ciently models individual cells, as opposed to the FPP model which models concentra-
tions of cells, Timmis also introduced the ‘artificial recognition ball’ (ARB), mentioned
above, to represent several identical B-cells in one data structure; this formed a new
resource-limited immune network model known as RLAIS (Timmis and Neal, 2000),
and later AINE. Since these changes, Neal has recently returned (to some degree) to the
FPP model by reintroducing a death term, and has successfully produced a self limiting
system (Neal, 2003; Neal, 2002).

Other Immune Network Models One area of immune network research that has not
yet been mentioned is investigation of the dynamics of such networks. In particular,
the connection between immune networks and chaos is important. De Boer, Kevrekidis
and Perelson specifically investigated the relationship between chaos and oscillating
states in immune networks (De Boer et al., 1992), and Bersini and Calenbuhr report
experiments with frustrated chaos in small immune networks (Bersini and Calenbuhr,
1997). Both of these reports illustrate the much-overlooked fact that immune networks
have to be highly abstracted before they become tame enough to be used in clustering
or optimization. Garrett has discussed several of these simplifying assumptions, such
as (i) the use of only a single binary or real-valued vector to represent both the epitope
and paratope of an antibody; (ii) the false assumption that antibodies will bind best
when similar, and (iii) generally simplifying both an antibody and antigen to have only
one binding element. In nature, antibodies have at least two paratopes, and antigens
may have several epitopes (Garrett, 2003).

Others have investigated alternatives to the FPP-style ordinary differential equa-
tion (ODE) models of immune networks. Stadler, Schuster and Perelson modeled the
immune network using replicator equations (Stadler et al., 1994), i.e. equations that
use Dawkin’s idea of a replicator, an abstract entity that gets copied and whose inher-
ited properties affect the copying process (Dawkins, 1976). Replicator equations are
differential equations of the form,

dxk

dt
= xk

[
Fk(x)−

n∑
j=1

xjFj(x)
]
, k = 1, . . . , n, (8)

and such equations can be used to model a large variety of natural systems, including
immune networks.

Ishida also notes that models of immune networks tend to be based around differ-
ential equations of one sort or another. He demonstrated that immune networks can,
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instead, be modeled by finite state automata (particularly state propagation and major-
ity networks) and showed that this allowed for a clearer, deterministic model (Ishida,
1995).

Vertosick and Kelly noted that most antigenic elements present more than one epi-
tope; since this may allow for better recognition properties, their model of the immune
system attempts to capture this aspect of the natural immune system. Since they see
the immune network as a form of neural network, they describe their immune network
system as a multi-epitope recognizing neural network (Vertosick and Kelly, 1991).

The State-of-the-Art De Castro and von Zuben’s CLONALG has been extended to
become a network model by adding a network interaction phase after clonal selection
has taken place. This network interaction removes B-cells that are close to other B-cells
in the state space. Once the network has been allowed to develop, it is then converted
to a minimum spanning tree, and the longest edges are removed. Finally, the resulting
trees are analyzed to show the location of clusters.

De Castro has shown that AINET is able to efficiently compress cluster data; auto-
matically find clusters, and can be applied in applications such as finding the center of
radial basis functions (de Castro and Von Zuben, 2001; ?). He also compared AINET to
a standard self-organizing map (SOMs) and showed that the results from AINET were
far superior terms of quality and predictive value; however, it is not clear that it can be
used in the same range of applications as SOMs.

The AINET method is interesting for its introduction of the network-to-tree con-
version and tree analysis stages, and it suggests the question, would the method work
without them? If not then is this still an immune algorithm? Would other means of
producing a network be more or less effective?

Although Neal’s work in providing a reliable means of stabilizing the Timmis-Neal
network may stimulate work in the Timmis-Neal model (and indeed in AIRS) others
take a different approach. Nasaroui, González and others have presented work in scal-
able, dynamic immune networks, which concentrates on their unsupervised learning
abilities (Nasaroui et al., 2003), and other work explores the effects of fuzzifying im-
mune networks (Nasaroui et al., 2002b).

Recent work combines the most recent elements of Timmis’ and Neal’s work to
develop the Context-Aware Immune System (CAIS) (Mohr and Timmis, 2004). CAIS
uses the data compression and generalization abilities of the network immune system,
and has been applied to the problem of cleaning up global positioning satellite (GPS)
data. Their results were very impressive and their method is currently the only way
GPS data can be stripped of problem reflections, and outliers.

6.3 Typical Applications

Network models have been applied to:

• detecting gene promoter sequences (Cooke and Hunt, 1995);

• data mining (Hunt and Fellows, 1996);

• diagnosis (Ishida, 1993);

• cluster analysis (Timmis et al., 2000).

6.4 Applying the Usefulness Criteria

D.1–Symbol Distinctiveness: The use of vectors of binary or real-valued numbers is
common in other methods. [D.1 = No]
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D.2–Expression Distinctiveness, and D.3–Process Distinctiveness: Farmer has sug-
gested that there is a general class of connectionist systems, with immune net-
works being just one example of such a system (Farmer, 1990). His analysis is
almost precisely that which was advocated in Section 2—he sets out to “...identify
a common language across several fields in order to make their similarities and differences
clearer.”

Farmer’s analysis is mostly concerned with ANNs that exhibit Hebbian learning,
but there also seems to be a distinct relationship between Timmis’ work on unsu-
pervised clustering and self-organizing maps such as Kohonen’s LVQ (Kohonen,
1990). His remaining analysis will not be repeated here; however, he concludes
that there is some distinctiveness in immune networks, and the intention of his
analysis was to allow results to be transferred between the various connectionist
approaches, particularly to help immune networks to grow as a field. The expres-
sions and processes used in immune networks may be similar to other methods,
but they are sufficiently different, Farmer says, that they should be pursued as a
separate field.

Dasgupta has made a comparison between AIS and ANNs in which he highlights
the similarities and differences in symbols, expressions and processes (Dasgupta,
1997).

Again, the ARB is quite an unusual data structure that has subtle effects on the
dynamics of the network by removing the effects of multiple, identical instances
of an antibody. [D.2. = No, except for the ARB; D.3 = Yes]

E.1–Does the Method Provide Unique Results?: No unique results appear to have
been presented for immune networks. [E.1 = Yes (in one case, (Mohr and Timmis,
2004))]

E.2–Does the Method Produce Better Quality Results than Existing Methods?:
(Cooke and Hunt, 1995) presented results for an early Timmis-Neal model, that
showed it was as accurate as a backpropagation neural network when predicting
gene promoter regions in DNA and, was only bettered by a method that was a
hybrid of two other algorithms, although these results are now rather dated. The
results of de Castro’s AINET are quite impressive, but more tests are required
to demonstrate how widely it can be used. [E.2 = Yes, but newer, more extensive
comparisons are required]

E.3–Is the Method Faster than Existing Methods?: Immune networks are usually
slow. Most immune network methods have a time complexity of O(N2) because
they make comparisons between each possible pair of antibodies in a set of an-
tibodies. Some methods are emerging that attempt to reduce this complexity by
allowing only a finite number of comparisons per ‘generation’, for example Gar-
rett’s cellular automata styled ARPEN method (Garrett, 2003), but the tradeoff is
that the results produced by the network are poorer due to the reduced number of
network interactions. [E.3 = No]

7 Are AIS Useful?

Summary This section summarizes the results of applying the ‘usefulness criteria’
from Section 2 to each AIS method and then makes some final conclusions. DT-AIS
will not be included in the assessment here, due to its underdeveloped status, although
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it is hoped the discussion above was useful as an initial critique. The distinctiveness
and effectiveness of the remaining AIS methods are summarized as in Table 1.

Table 1: The results of applying the ‘usefulness criteria’ to established types of AIS

Negative Detection Methods:
D.1 No E.1 Yes
D.2 No E.2 In some cases perhaps
D.3 Yes E.3 No

Overall : Yes Overall : Yes
Clonal Selection Methods:
D.1 No E.1 No
D.2 No, except for ARB E.2 Sometimes, but superceded by AINET?
D.3 Yes E.3 Not yet clear

Overall : Yes Overall : Sometimes, but superceded by AINET

Immune Network Methods:
D.1 No E.1 No
D.2 No, except for ARB E.2 Yes, but newer, extensive comparisons required
D.3 Yes E.3 Yes (at least one case)

Overall : Yes Overall : Yes, but newer, extensive comparisons required

Negative detection appears to be distinct, the closest analog probably being
positive-only learning in ILP. Comparison with many more techniques is required, but
this will come with time as the field of AIS matures. Although it has been shown that
there are application areas in which negative detection is uniquely able to work, the ev-
idence could be more convincing. The discovery of new application areas in which neg-
ative detection can triumph will not only strengthen its position, it will undoubtedly
help its theoretical development—perhaps negative databases (Esponda and Forrest,
2004) will prove to be one example.

Clonal selection has also been presented as a distinct method, albeit one that is an
immune-inspired form of GEC. The type of mutation, and method of reproduction, are
both novel, as is the two-stage evaluation-selection operation per generation. In terms
of effectiveness, CLONALG provides excellent results for optimization problems, but
are they superior to other methods? This is still unclear. A comparison to GEC may
help. GEC is widely studied despite there being deterministic methods that can opti-
mize faster and better under some circumstances. GECs provide an excellent, general
framework for optimization, and, furthermore, their study is worthwhile because in-
vestigating evolutionary processes is interesting, and can be simpler, than deterministic
methods. These arguments also hold true for clonal selection, which is a form of GEC.

The distinctiveness of immune network methods is inherited from clonal selection,
and has also been shown to be distinct from other, similar methods, such as classifier
systems. Hunt and Cooke’s now dated work is still one of the most effective, although
de Castro’s AINET may prove to be a better replacement for SOMs in a variety of appli-
cations, and Mohr and Timmis’ work on using network models for GPS data is notable.

Conclusion Perhaps the biggest difficulty faced by AIS is that it has few application
types for which it is undisputedly the most effective method. Despite the many points
in its favor, this single point is enough to allow it to be ignored by many. Although two
important areas have been identified in which AIS is unique in its ability to provide
solutions, further impressive demonstrations of effectiveness will be required if AIS is
to be pushed to the fore.
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In a related point, researchers in both negative (and positive) detection (Gonzlez
and Dagupta, 2003; Gomez et al., 2003), and various types of immune network (de Cas-
tro and Von Zuben, 2001; Nasaroui et al., 2002b), are beginning to produce algorithms
that are hybrids of AIS with other methods. This is perhaps an indication that gener-
alist versions of current AIS methods alone are not powerful enough for some tasks,
but it should not be taken to mean that tailored applications of AIS can not produce
excellent results.

It is notable that there is a strong relationship between clonal selection and immune
networks; in future, clonal selection may be classified as a form of network modeling
with the degree of networking set to zero (Garrett, 2003). This would leave two main
areas of AIS research, negative/danger detection and immune networks: one that fo-
cuses on detecting antigen or danger and the other that focuses on destroying it. The
immune system itself has much more to offer than this: the innate immune system, for
example, has been all but ignored, as has the immune system’s use of parallel attack
processes. As a whole, the immune system can be viewed as an adaptive, homeostatic
control system (Somayaji, 2002; Bersini, 1991), and this suggests interesting possibili-
ties, perhaps for a more unified AIS, and certainly for new applications in control.

In conclusion then, is AIS a useful paradigm? It has reliably provided three distinct
types of method, and in most cases has produced highly effective results; however, these
two aspects have not yet been reliably combined—therefore, in terms of the criteria in
Section 2, the current answer appears to be, ‘almost.’ However, it is only now that AIS
is beginning to mature: the annual ICARIS conferences, which began in 2002 to provide
a forum exclusively for AIS research, have already provided a good deal of stimulation
to the field; negative selection and danger theory appear to have a way forward from
the ‘detector impasse’, and both clonal selection and immune networks are exploring
new ground with encouraging results. It seems extremely likely that AIS will become
increasingly useful over the next few years.
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