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1. INTRODUCTION 

In computer systems we encode information in databases. We often want to 
control what information a user can obtain from these databases. For example, 
we may wish to control the use of a census database so that, although it contains 
records describing individuals, only statistical information is available. No se- 
quence of queries should be sufficient to deduce exact information about any 
individual described in the database. Determining and then enforcing a policy 
specifying what information in a database can be given in response to queries is 
the database security problem [6,7]. 

Security is also an issue for operating systems; unfortunately, the solutions for 
operating systems are not sufficient to solve the database security problem. Most 
operating system protection mechanisms are “access control mechanisms” [5], 
that is, they enforce rules about who can perform what operation or access what 
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information. For example, users can access file objects via READ, WRITE, 
SORT, DELETE FILE, or APPEND. But different users may be permitted 
different access to individual fties. While user A may be permitted to READ and 
WRITE File X, user B may be able only to READ and APPEND it. And user A 
may be permitted only to READ File Y, while user B may both READ and 
WRITE that one. There are two common schemes for effecting such protection 
mechanisms; one is the “authority list mechanism” used in most file systems (e.g., 
the MULTICS file system [ 111) and the other is the capability mechanism [9, 11, 
121. 

In operating systems, protection mechanisms allow different users different 
access to an object; they allow some users to read part or all of the contents of a 
file and others to alter it in perhaps limited ways. We consider databases in which 
all users are essentially performing read access. An access control mechanism 
that only distinguishes between read and alter accesses is not useful. Thus the 
operating system approach is not sufficient for the database problem. 

Another contrast between databases and operating systems concerns queries 
that involve many data elements. In the operating system, a complex operation 
can be broken down into a set of accesses to individual objects and each access 
permission determined independently of the others. In a database, a decision 
must be made whether the entire query should be permitted in the first place. 
This decision depends not only on the relationship of data elements being 
interrogated but also on the query history, the information that has already been 
divulged to the user. 

Newer access control mechanisms take into account the flow of information 
out of one object and into another as part of the effect of an access. These access 
control mechanisms incorporate remembering the source from which information 
encoded in an object was derived [3, 4, 81. Yet even such sophisticated mecha- 
nisms make no interpretation of the content of the database and have no notion 
of a history of information already given out. We conclude that such mechanisms 
are not appropriate tools for solving the database security problem. 

Table I 

Contributing group Amount 

Steel 270,000 
sugar 120,000 
Oil 540,000 

Democrats 186,ooO 
Republicans 564,000 
Independents 180,000 

High favoritism 510,000 
Low favoritism 174,000 
Medium favoritism 246,000 

Northeast 
West 

9f-J~ 
330,000 
510,000 
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Let us now restate the database security problem: There is a set of data 
elements in the database called the UNKNOWN set that user U is not permitted 
to know. For some reason, perhaps as a result of previous queries, user U knows 
a set of data elements called the KNOWN set. Some elements in KNOWN may 
not be explicitly encoded in the database. User U asks a sequence of queries ql, 
Qz, ***, qn and enlarges his set of KNOWN data elements. The security of the 
database is compromised if the KNOWN and the UNKNOWN sets intersect. 

We will now proceed by introducing an example to highlight the issues germane 
to database security. 

Example. The following data describe fund raising for major political parties. 
Cl, . . . ) C9 are specific contributors with the following attributes: 

Contributor 
Business Political 

area leaning 

Favoritism 
shown by 

administration 
Geographic 

area 

Cl 
a 
c3 
c4 
c5 
CT?3 
c7 
C&3 
c9 

Steel 
Steel 
Steel 
sugar 
sugar 
sugar 
Oil 
Oil 
Oil 

Democrat 
Republican 
Independent 
Democrat 
Republican 
Independent 
Democrat 
Republican 
Independent 

High 
Medium 
Low 
Medium 
Low 
High 
Low 
High 
Medium 

Northeast 
West 
South 
Northeast 
Northeast 
West 
South 
South 
West 

Suppose that the only data that can be obtained from the database is the sum 
given by all contributors sharing a common attribute-contributions from the 
steel industry (Cl + C2 + C3) or contributions from those with Republican 
leanings (C2 + C5 + CB). The information that can be obtained from all possible 
queries is listed in Table I. 

The political fund database is considered secure if the precise contribution of 
an inidividual cannot be determined. Is this database secure? 

No, we can compute that Cl gave $60,000. Values for contributors C2, . . . , C9 
can also be computed on the basis of the query responses listed in Table I. 

We are interested in obtaining criteria that allow us to determine exactly when 
a database can be compromised. 

2. BASIC CONCEPTS 

We are interested in the question of determining the security of databases. We 
now define precisely what this means by presenting a general model. This model 
is an abstraction of the concept of database; we do not suggest that it be used in 
place of, say, the relational database model [l]. But we do propose this model as 
realistic for our discussion. 

Definition. A database D is a function from (1, . . . , n} to N, the natural 
numbers. n is the number of elements or objects in the database; N is the set of 
possible attributes. 

In our fund-raising example, D (1) is $60,000. D ( i) is the contribution of Ci. We 
will often use the following notation for databases. Instead of defining D explicitly 
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we just say that {&, . . . , &} is a database. We mean of course that D(i) = di for 
15i5n. 

We will now define “query” and “compromise.” 
Definition. Fix n as the number of objects in the database. A query q is a 

function of n variables. If D = {d,, . . . , d,} is a database and q is a query, then 
q(D) = q(d1,. . . , dn) is the result of the query q on the database D. 

Inourexampleq(di,..., dg) is an allowed query provided 

q(dl, . . . . ck) =kc, dk 

where A is a set of contributors that corresponds to an entry in Table I. Thus 
there are exactly 12 queries of this form. 

A security problem has several components: 

(1) A particular database D = {dl, . . . , d,} is given. 
(2) A subset Do of D is given. We interpret di E Do as meaning that di is known 

to the user before he begins his queries. 
(3) A set of queries is given. We assert that not all sets of queries are allowed. 

(In Section 3 we restrict the “overlap” of queries.) 

Given these components, we are to determine whether or not there is an allowed 
sequence of queries that can determine the value of some di @ DO. Thus a 
sequence of allowed queries ql, . . . , q,,, compromises a database provided there 
is an i such that, for any database D’ with the same responses to the queries 
Ql,..., qm as D, di = dl (D’ = {dl’, . . . , dn’} ). 

Our claim that Cl gave $60,000 is equivalent to the statement: Any database 
with the same responses to the 12 queries of Table I must have D(1) = $60,000. 

Our definition of a security problem has two important features. First, we allow 
that a user may know in advance parts of the database. For example, suppose 
that Cl’s contribution is known in advance. Then two queries suffice to determine 
the contribution of C6 as 

C6 = sugar - northeast + Cl. 

Second, we allow that not all sequences of queries may be permitted. Suppose 
that a particular database allows averages of size k and a user knows just one 
value. Then in just two queries he can compromise the database. He asks: 

(1) What is the average of X, yl , . . . , y&l ? 
(2) What is the average of x’, yl , . . . , y&i ? 

If he already knows X, he can determine x’. The reason the user was so successful 
is that he was allowed to ask two queries that overlapped greatly; his queries 
overlapped in k - 1 elements. In the next section we will consider the problem of 
whether one can compromise such a database if no two average queries can 
overlap very much. 

3. APPLICATIONS TO A PARTICULAR MODEL: AVERAGES 

In this section, we assume that we are given a database {xl,. . . , x,} of numbers 
and that queries may be made about the sum of any subset of the database 
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consisting of exactly k elements (this is equivalent to averages of k-element sets). 
We assume the further restriction that no two queries may overlap in more than 
r positions. And we assume that the values of xl, . . . , XI are known in advance by 
the user (0 5 I< k - 1). We then wish to study the behavior of the quantity S( n, 
k, r, I), the smallest number of queries that suffices to compromise the database. 
Compromising the database will consist of generating the value of one previously 
unknown element, e.g., x1+1. 

Before proceeding, we present some sample values of the function S (n, k, r, I). 
Example. S(n, 3,2,0) 5 4, n S- 4. Let the queries be Q1, Qz, Q3, Q4 where 

Q, = x, + x2 + x3 

Q2 = x, + x2 + x4 

Q3 = x, + x3 + x4 

Q4 = xz + x3 + x4. 

Then x4 can be found as $( -2Q1 + QZ + Q3 + Q4) and this is optimal. 
Example. S( n, 4, 1, 1) I 6, n r 11. Let the queries be Q1, . . . , Q6 where 

Q, = x1 + x3 + x4 + x5 

Q2 = XI + xs + x7 + x8 

93 = xl +x9+x,0 + xl, 

Q4 = x2 + x3 + xc + x9 

Qr, = x2 + x4 + x7 + xlo 

Qs=xz+x5+xs+x,,. 

Then ~[(QI + QZ + Q3) - (Q4 + QS + Q6)l = xl - XZ, which yields the value of 
x2 since xl is known. 

We begin our study of the properties of the function S by establishing a lower 
bound on its value. 

THEOREM 1. S(n, k, r, I) I 1 + (k - (Z+ l))/r. 
PROOF. Suppose that after t queries we can determine the value of XI+~, and let 

the queries be represented as 

Qi = Jil “$3 i=1,...,t 

for 1s 6 < . . . <ik(nwhereweassumetheset {iI,...,&} rl ~,,...,j~} has 
at most r members. This can then be represented as being able to satisfy the 
relation 

i, aiQi =i Pi% (1) 

in terms of coefficients of the xi with j3 [+I # 0. We proceed now by a counting 
argument, observing that the left-hand side of (1) can be rewritten as 

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979. 



102 - D. Dobkin, A. K. Jones, and R. J. Lipton 

where SiO is 1 if x, belongs to query i and 0 otherwise. Thus t must be such that 
at most I + 1 of the terms 

,$, aJbp a=l,...,n 

are nonzero. In order for such a term to be zero, it must be the case thatSiO = 0, 
i = 1, . ..) t, or that i, j are distinct such that Sim = S,O = 1. Thus every X, that 
appears in some query must appear in at least two queries for a > I+ 1. After the 
first query k Xi have been accessed, and (k - ( 1+ 1 ))/r more queries are required 
to access all the xi ( i > 2 + 1) at least twice, since at most r of these elements can 
occur in each new query due to the overlap restriction. Hence t I 1 + (k - (I + 
l))/r is a lower bound for S(n, k, r, 1). 0 

As a dividend of the argument above, we observe that k - pr new variables of 
the database are added in the p +’ lth query, 1 I p 5 (k - (I + l))/r, and thus 
the following corollary results, giving a lower limit on the size of a database which 
can be compromised. 

COROLLARY. If n < k2/2r -t- k/2 + (I + 1)/2 - ((I + U2)/2r, then S( n, k, r, I) 
= CC corresponding to a noncompromisible database. 

PROOF. This follows from the argument above since 

k+ ‘kw’g:)“r (k - ir) = C - 1 + !-$I - I!$? . 
2r 2 

These results provide, then, a measure of the limitations of compromising a 
database. We turn next to the question of actually implementing algorithms to 
perform these functions in order to get a sense of the tightness of these bounds. 

THEOREM 2. 
(a) S(n, k, 1, 0) 5 2k - 1, nrk2-k+l 
(b) S(n, k, 1, 1) I 2k - 2, n 2 (k - 1)2 + 2 
(c) S( n, kr + a, r, 2a - 1) 5 2k, nrk2r+2a 
(d) S(n’, kr, r, r- 1) rS(n, k, l,O), n’ 2 rk’. 

PROOF. In each case, our proof consists of an algorithm that performs the given 
task within the desired bound. 

(a) Let the queries be (see Figure la) 

Qi= i Xk,(i-l)+j, i = 1, . . . , k - 1 
j-l 

k-l 

Then 

Qk+i-1 = c xk(i-l)+i + X@-k+l, i = 1, . . . , k. 
j=l 

k-l k-l 

z. Qk+i - C Qi 
i=l 

k 
= x@-k+l. 

(b) Let the queries be (see Figure lb) 
k 

Qi = Xl + C x(k-l)(i-l)+jp 
j=Z 

k-l 

i = 1, . . . , k-l 

Qk-l+i = c xl+i+(i-l)(k-1) + X(k-1)2+2, 
j=l 

i = 1, . . . , k - 1. 
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Qk-l 

Qh XI 
x2 

‘&-1 Xh 

XkZ-2+1 * * Xk?-k 

w-m+1 I Xkd-k+l 

XkZ-Zk+Z xk”k+l 

. 

X2k X11-k Xk2-k+1 

Fig. la. The queries for Theorem 2(a) 

QM XI X(k-l)(k-2)+2 - - - X(k-INR--2)+b 

Qk X2 a+1 Xlk-N-2)+2 -b-1)*+2 

Qa+l * x3 x1+2 Xl&l)(k-2)+3 X(k-1P+2 

QZk-2 xk X2&1 X(k-lH-?l+k q-v+2 

Fig. lb. The queries for Theorem 2(b) 

Then 
k-l 

Jl (Qi - Qk-l+i) 

k-l 
= x1 - XC&1P+2 

and x(~-~)z+~ may be determined since x1 is known in advance. 
(c) Let the queries be 

kr u 

Qi = C ar(i-l)+j + x mr+l, i= l,...,k. 
j=l 1-l 

k r a 

Qk+i = C 2 Xkrti-l)+(i-l)r+l+ 2 ~~~r+ol+m i = 1, . . . ) k. 
;=1 1=1 m-l 
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Then 

il ( Qi - Qh+i) = k i xh2r+l - i xk%+u+m 
I=1 m=l I 

and xk++l can be determined if the values of XG.+L~+~, . . . , xk++r+u, 
mr+m+1, . . . , XkZ,+%, are known in advance. 

(d) This statement follows by letting yi = x+l),+l + . . . + xi,., 1 li I k2 - 
k + 1 using an algorithm for S (n, k, 1, 0) to find yl, and using known 
valuesofxl,..., xrel and yl to find x1. 

The reason we are interested in the results of this section is that we feel they 
are hard evidence of how complex it will be to secure a database. The complex 
and obscure techniques used in Theorem 2 to crack the database demonstrate 
how difficult it will be to determine whether a series of simple queries can 
compromise a database. On the other hand, Theorem 1 points out that there do 
exist mechanisms (bounding the overlap and the number of queries) that can 
protect a database. 

4. APPLICATIONS TO A PARTICULAR MODEL: MEDIANS 

In this section we assume that we are given a database {x1, . . . , x~} of distinct 
numbers’ and that queries can be made about the median of k elements for some 
fixed odd k. A median query q (yl , , . . , yk) returns the median’s value but not 
which yi is equal to this value. We also assume that no values are known in 
advance. We then wish to study the quantity M(n, k), the smallest number of 
queries that suffices to determine some element of the database perfectly. Our 
main result is the following theorem. 

THEOREM 3. M(n, k) 5 3/2(k + 1) + 2prouided n 2 k + 2. 
PROOF. Letp = (k + 1)/2. Also let x1, . . . , xk+p be k + 2 objects of the database. 

First perform all possible k medians involving the objects x1, . . . , $&+I. Clearly 
k+l 

there are k 
( ) 

such medians. These medians result in exactly two answers, 

say h and 1 with h < 1. Let 

H = {xi [ xi 5 h} 

and 

L = {Xi 1 Xi 2 I} . 

Then Xi E H iff the median of {xl, . . . , rk+1) - {Xi} is I; Xi E L iff the median is 
h. An easy argument shows that 1 H( = ) L 1 = p. 

We now form the median of H’ U L U {xh+Z!} where 

H’ = H - any two elements of H. 

There are three cases: 

(1) The answer = 1. Then Xk+Z < 1. 
(2) The answer > 1. Then xk+2 > 1. 

(3) The answer < 1. This is impossible. 

’ As observed in [2], this assumption is not very restrictive. 
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Thus this query determines whether xk+2 > or < 1. Without loss of generality 
assume that xk+2 < 1. 

We now fix LO as a set of p - 1 elements of L. Let us finally examine the 
medians of the sets 

H U {x&+2) U LO - {Xi} for each Xi E H U {X&+2}. 

We now claim that one median (say m) occurs p times and one median occurs 
once. This follows by a simple argument. Then m = Xi where xz is not in the set 
when m does not occur. cl 

This result demonstrates clearly that even the simple operation of median can 
be used to compromise a database; indeed, this can be done in very few queries. 

5. CONCLUSIONS 

A precise model of the security problem for databases has been presented. In this 
model we were able to demonstrate how to control the queries a user could make 
in order to stop him from compromising the database. While we did this only for 
queries about averages and medians, we can extend the model to handle queries 
of other types. This model gives rise to a number of interesting combinatorial 
problems which have applications to problems of applicability to designers or 
databases. While we have presented an introduction to problems in this area 
here, a number of related problems remain open. For example, suppose we change 
our constraints on overlapping queries to ahow queries to overlap only in certain 
coordinates. Or, suppose we allow queries of varying lengths. Or, suppose we may 
ask for medians but wish to determine a specific database entry. Furthermore, in 
each case studied here, we have considered worst case behavior, the number of 
queries necessary to guarantee that the database is compromised. We could do a 
similar analysis for best case behavior, asking for the fewest queries after which 
the database may be compromised. Many of these issues will be studied in a 
forthcoming paper [2]. 
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