
Secure Databases: Protection Against
User Influence

DAVID DOBKIN

University of Arizona

ANITA K. JONES

Carnegie-Mellon University

RICHARD J. LIPTON

Yale University

Users may be able to compromise databases by asking a series of questions and then inferring new

information from the answers. The complexity of protecting a database against this technique is
discussed here.

Key Words and Phrases: database, security, protection, information flow, inference, compromise,
statistical query
CR Categories: 13.5, 4.33, 5.5

1. INTRODUCTION

In computer systems we encode information in databases. We often want to
control what information a user can obtain from these databases. For example,
we may wish to control the use of a census database so that, although it contains
records describing individuals, only statistical information is available. No se-
quence of queries should be sufficient to deduce exact information about any
individual described in the database. Determining and then enforcing a policy
specifying what information in a database can be given in response to queries is
the database security problem [6,7].

Security is also an issue for operating systems; unfortunately, the solutions for
operating systems are not sufficient to solve the database security problem. Most
operating system protection mechanisms are “access control mechanisms” [5],
that is, they enforce rules about who can perform what operation or access what

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported in part by the Office of Naval Research under Grant NOOO14-75-C-0450, in
part by the National Science Foundation under Contract DCR-75-07251, and in part by the National
Science Foundation under Contract DCR-74-24193.
Authors’ addresses: D. Dobkin, Department of Computer Science, University of Arizona, Tucson, AZ
85721; A. K. Jones, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213; R. J. Lipton, Department of Computer Science, Yale University, New Haven, CT 06520.
0 1979 ACM 0362-5915/79/0300-0097 $00.75

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979, Pages 97-106.

98 - D. Dobkin, A. K. Jones, and R. J. Lipton

information. For example, users can access file objects via READ, WRITE,
SORT, DELETE FILE, or APPEND. But different users may be permitted
different access to individual fties. While user A may be permitted to READ and
WRITE File X, user B may be able only to READ and APPEND it. And user A
may be permitted only to READ File Y, while user B may both READ and
WRITE that one. There are two common schemes for effecting such protection
mechanisms; one is the “authority list mechanism” used in most file systems (e.g.,
the MULTICS file system [111) and the other is the capability mechanism [9, 11,
121.

In operating systems, protection mechanisms allow different users different
access to an object; they allow some users to read part or all of the contents of a
file and others to alter it in perhaps limited ways. We consider databases in which
all users are essentially performing read access. An access control mechanism
that only distinguishes between read and alter accesses is not useful. Thus the
operating system approach is not sufficient for the database problem.

Another contrast between databases and operating systems concerns queries
that involve many data elements. In the operating system, a complex operation
can be broken down into a set of accesses to individual objects and each access
permission determined independently of the others. In a database, a decision
must be made whether the entire query should be permitted in the first place.
This decision depends not only on the relationship of data elements being
interrogated but also on the query history, the information that has already been
divulged to the user.

Newer access control mechanisms take into account the flow of information
out of one object and into another as part of the effect of an access. These access
control mechanisms incorporate remembering the source from which information
encoded in an object was derived [3, 4, 81. Yet even such sophisticated mecha-
nisms make no interpretation of the content of the database and have no notion
of a history of information already given out. We conclude that such mechanisms
are not appropriate tools for solving the database security problem.

Table I

Contributing group Amount

Steel 270,000
sugar 120,000
Oil 540,000

Democrats 186,ooO
Republicans 564,000
Independents 180,000

High favoritism 510,000
Low favoritism 174,000
Medium favoritism 246,000

Northeast
West

9f-J~
330,000
510,000

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

Secure Databases - 99

Let us now restate the database security problem: There is a set of data
elements in the database called the UNKNOWN set that user U is not permitted
to know. For some reason, perhaps as a result of previous queries, user U knows
a set of data elements called the KNOWN set. Some elements in KNOWN may
not be explicitly encoded in the database. User U asks a sequence of queries ql,
Qz, ***, qn and enlarges his set of KNOWN data elements. The security of the
database is compromised if the KNOWN and the UNKNOWN sets intersect.

We will now proceed by introducing an example to highlight the issues germane
to database security.

Example. The following data describe fund raising for major political parties.
Cl, . . .) C9 are specific contributors with the following attributes:

Contributor
Business Political

area leaning

Favoritism
shown by

administration
Geographic

area

Cl
a
c3
c4
c5
CT?3
c7
C&3
c9

Steel
Steel
Steel
sugar
sugar
sugar
Oil
Oil
Oil

Democrat
Republican
Independent
Democrat
Republican
Independent
Democrat
Republican
Independent

High
Medium
Low
Medium
Low
High
Low
High
Medium

Northeast
West
South
Northeast
Northeast
West
South
South
West

Suppose that the only data that can be obtained from the database is the sum
given by all contributors sharing a common attribute-contributions from the
steel industry (Cl + C2 + C3) or contributions from those with Republican
leanings (C2 + C5 + CB). The information that can be obtained from all possible
queries is listed in Table I.

The political fund database is considered secure if the precise contribution of
an inidividual cannot be determined. Is this database secure?

No, we can compute that Cl gave $60,000. Values for contributors C2, . . . , C9
can also be computed on the basis of the query responses listed in Table I.

We are interested in obtaining criteria that allow us to determine exactly when
a database can be compromised.

2. BASIC CONCEPTS

We are interested in the question of determining the security of databases. We
now define precisely what this means by presenting a general model. This model
is an abstraction of the concept of database; we do not suggest that it be used in
place of, say, the relational database model [l]. But we do propose this model as
realistic for our discussion.

Definition. A database D is a function from (1, . . . , n} to N, the natural
numbers. n is the number of elements or objects in the database; N is the set of
possible attributes.

In our fund-raising example, D (1) is $60,000. D (i) is the contribution of Ci. We
will often use the following notation for databases. Instead of defining D explicitly

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

100 * D. Dobkin, A. K. Jones, and R. J. Lipton

we just say that {&, . . . , &} is a database. We mean of course that D(i) = di for
15i5n.

We will now define “query” and “compromise.”
Definition. Fix n as the number of objects in the database. A query q is a

function of n variables. If D = {d,, . . . , d,} is a database and q is a query, then
q(D) = q(d1,. . . , dn) is the result of the query q on the database D.

Inourexampleq(di,..., dg) is an allowed query provided

q(dl, ck) =kc, dk

where A is a set of contributors that corresponds to an entry in Table I. Thus
there are exactly 12 queries of this form.

A security problem has several components:

(1) A particular database D = {dl, . . . , d,} is given.
(2) A subset Do of D is given. We interpret di E Do as meaning that di is known

to the user before he begins his queries.
(3) A set of queries is given. We assert that not all sets of queries are allowed.

(In Section 3 we restrict the “overlap” of queries.)

Given these components, we are to determine whether or not there is an allowed
sequence of queries that can determine the value of some di @ DO. Thus a
sequence of allowed queries ql, . . . , q,,, compromises a database provided there
is an i such that, for any database D’ with the same responses to the queries
Ql,..., qm as D, di = dl (D’ = {dl’, . . . , dn’}).

Our claim that Cl gave $60,000 is equivalent to the statement: Any database
with the same responses to the 12 queries of Table I must have D(1) = $60,000.

Our definition of a security problem has two important features. First, we allow
that a user may know in advance parts of the database. For example, suppose
that Cl’s contribution is known in advance. Then two queries suffice to determine
the contribution of C6 as

C6 = sugar - northeast + Cl.

Second, we allow that not all sequences of queries may be permitted. Suppose
that a particular database allows averages of size k and a user knows just one
value. Then in just two queries he can compromise the database. He asks:

(1) What is the average of X, yl , . . . , y&l ?
(2) What is the average of x’, yl , . . . , y&i ?

If he already knows X, he can determine x’. The reason the user was so successful
is that he was allowed to ask two queries that overlapped greatly; his queries
overlapped in k - 1 elements. In the next section we will consider the problem of
whether one can compromise such a database if no two average queries can
overlap very much.

3. APPLICATIONS TO A PARTICULAR MODEL: AVERAGES

In this section, we assume that we are given a database {xl,. . . , x,} of numbers
and that queries may be made about the sum of any subset of the database
ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

Secure Databases * 101

consisting of exactly k elements (this is equivalent to averages of k-element sets).
We assume the further restriction that no two queries may overlap in more than
r positions. And we assume that the values of xl, . . . , XI are known in advance by
the user (0 5 I< k - 1). We then wish to study the behavior of the quantity S(n,
k, r, I), the smallest number of queries that suffices to compromise the database.
Compromising the database will consist of generating the value of one previously
unknown element, e.g., x1+1.

Before proceeding, we present some sample values of the function S (n, k, r, I).
Example. S(n, 3,2,0) 5 4, n S- 4. Let the queries be Q1, Qz, Q3, Q4 where

Q, = x, + x2 + x3

Q2 = x, + x2 + x4

Q3 = x, + x3 + x4

Q4 = xz + x3 + x4.

Then x4 can be found as $(-2Q1 + QZ + Q3 + Q4) and this is optimal.
Example. S(n, 4, 1, 1) I 6, n r 11. Let the queries be Q1, . . . , Q6 where

Q, = x1 + x3 + x4 + x5

Q2 = XI + xs + x7 + x8

93 = xl +x9+x,0 + xl,

Q4 = x2 + x3 + xc + x9

Qr, = x2 + x4 + x7 + xlo

Qs=xz+x5+xs+x,,.

Then ~[(QI + QZ + Q3) - (Q4 + QS + Q6)l = xl - XZ, which yields the value of
x2 since xl is known.

We begin our study of the properties of the function S by establishing a lower
bound on its value.

THEOREM 1. S(n, k, r, I) I 1 + (k - (Z+ l))/r.
PROOF. Suppose that after t queries we can determine the value of XI+~, and let

the queries be represented as

Qi = Jil “$3 i=1,...,t

for 1s 6 < . . . <ik(nwhereweassumetheset {iI,...,&} rl ~,,...,j~} has
at most r members. This can then be represented as being able to satisfy the
relation

i, aiQi =i Pi% (1)

in terms of coefficients of the xi with j3 [+I # 0. We proceed now by a counting
argument, observing that the left-hand side of (1) can be rewritten as

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

102 - D. Dobkin, A. K. Jones, and R. J. Lipton

where SiO is 1 if x, belongs to query i and 0 otherwise. Thus t must be such that
at most I + 1 of the terms

,$, aJbp a=l,...,n

are nonzero. In order for such a term to be zero, it must be the case thatSiO = 0,
i = 1, . ..) t, or that i, j are distinct such that Sim = S,O = 1. Thus every X, that
appears in some query must appear in at least two queries for a > I+ 1. After the
first query k Xi have been accessed, and (k - (1+ 1))/r more queries are required
to access all the xi (i > 2 + 1) at least twice, since at most r of these elements can
occur in each new query due to the overlap restriction. Hence t I 1 + (k - (I +
l))/r is a lower bound for S(n, k, r, 1). 0

As a dividend of the argument above, we observe that k - pr new variables of
the database are added in the p +’ lth query, 1 I p 5 (k - (I + l))/r, and thus
the following corollary results, giving a lower limit on the size of a database which
can be compromised.

COROLLARY. If n < k2/2r -t- k/2 + (I + 1)/2 - ((I + U2)/2r, then S(n, k, r, I)
= CC corresponding to a noncompromisible database.

PROOF. This follows from the argument above since

k+ ‘kw’g:)“r (k - ir) = C - 1 + !-$I - I!$? .
2r 2

These results provide, then, a measure of the limitations of compromising a
database. We turn next to the question of actually implementing algorithms to
perform these functions in order to get a sense of the tightness of these bounds.

THEOREM 2.
(a) S(n, k, 1, 0) 5 2k - 1, nrk2-k+l
(b) S(n, k, 1, 1) I 2k - 2, n 2 (k - 1)2 + 2
(c) S(n, kr + a, r, 2a - 1) 5 2k, nrk2r+2a
(d) S(n’, kr, r, r- 1) rS(n, k, l,O), n’ 2 rk’.

PROOF. In each case, our proof consists of an algorithm that performs the given
task within the desired bound.

(a) Let the queries be (see Figure la)

Qi= i Xk,(i-l)+j, i = 1, . . . , k - 1
j-l

k-l

Then

Qk+i-1 = c xk(i-l)+i + X@-k+l, i = 1, . . . , k.
j=l

k-l k-l

z. Qk+i - C Qi
i=l

k
= x@-k+l.

(b) Let the queries be (see Figure lb)
k

Qi = Xl + C x(k-l)(i-l)+jp
j=Z

k-l

i = 1, . . . , k-l

Qk-l+i = c xl+i+(i-l)(k-1) + X(k-1)2+2,
j=l

i = 1, . . . , k - 1.

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

Secure Databases - 103

Qk-l

Qh XI
x2

‘&-1 Xh

XkZ-2+1 * * Xk?-k

w-m+1 I Xkd-k+l

XkZ-Zk+Z xk”k+l

.

X2k X11-k Xk2-k+1

Fig. la. The queries for Theorem 2(a)

QM XI X(k-l)(k-2)+2 - - - X(k-INR--2)+b

Qk X2 a+1 Xlk-N-2)+2 -b-1)*+2

Qa+l * x3 x1+2 Xl&l)(k-2)+3 X(k-1P+2

QZk-2 xk X2&1 X(k-lH-?l+k q-v+2

Fig. lb. The queries for Theorem 2(b)

Then
k-l

Jl (Qi - Qk-l+i)

k-l
= x1 - XC&1P+2

and x(~-~)z+~ may be determined since x1 is known in advance.
(c) Let the queries be

kr u

Qi = C ar(i-l)+j + x mr+l, i= l,...,k.
j=l 1-l

k r a

Qk+i = C 2 Xkrti-l)+(i-l)r+l+ 2 ~~~r+ol+m i = 1, . . .) k.
;=1 1=1 m-l

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

104 * D. Dobkin, A. K. Jones, and R. J. Lipton

Then

il (Qi - Qh+i) = k i xh2r+l - i xk%+u+m
I=1 m=l I

and xk++l can be determined if the values of XG.+L~+~, . . . , xk++r+u,
mr+m+1, . . . , XkZ,+%, are known in advance.

(d) This statement follows by letting yi = x+l),+l + . . . + xi,., 1 li I k2 -
k + 1 using an algorithm for S (n, k, 1, 0) to find yl, and using known
valuesofxl,..., xrel and yl to find x1.

The reason we are interested in the results of this section is that we feel they
are hard evidence of how complex it will be to secure a database. The complex
and obscure techniques used in Theorem 2 to crack the database demonstrate
how difficult it will be to determine whether a series of simple queries can
compromise a database. On the other hand, Theorem 1 points out that there do
exist mechanisms (bounding the overlap and the number of queries) that can
protect a database.

4. APPLICATIONS TO A PARTICULAR MODEL: MEDIANS

In this section we assume that we are given a database {x1, . . . , x~} of distinct
numbers’ and that queries can be made about the median of k elements for some
fixed odd k. A median query q (yl , , . . , yk) returns the median’s value but not
which yi is equal to this value. We also assume that no values are known in
advance. We then wish to study the quantity M(n, k), the smallest number of
queries that suffices to determine some element of the database perfectly. Our
main result is the following theorem.

THEOREM 3. M(n, k) 5 3/2(k + 1) + 2prouided n 2 k + 2.
PROOF. Letp = (k + 1)/2. Also let x1, . . . , xk+p be k + 2 objects of the database.

First perform all possible k medians involving the objects x1, . . . , $&+I. Clearly
k+l

there are k
()

such medians. These medians result in exactly two answers,

say h and 1 with h < 1. Let

H = {xi [xi 5 h}

and

L = {Xi 1 Xi 2 I} .

Then Xi E H iff the median of {xl, . . . , rk+1) - {Xi} is I; Xi E L iff the median is
h. An easy argument shows that 1 H(=) L 1 = p.

We now form the median of H’ U L U {xh+Z!} where

H’ = H - any two elements of H.

There are three cases:

(1) The answer = 1. Then Xk+Z < 1.
(2) The answer > 1. Then xk+2 > 1.

(3) The answer < 1. This is impossible.

’ As observed in [2], this assumption is not very restrictive.

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

Secure Databases - 105

Thus this query determines whether xk+2 > or < 1. Without loss of generality
assume that xk+2 < 1.

We now fix LO as a set of p - 1 elements of L. Let us finally examine the
medians of the sets

H U {x&+2) U LO - {Xi} for each Xi E H U {X&+2}.

We now claim that one median (say m) occurs p times and one median occurs
once. This follows by a simple argument. Then m = Xi where xz is not in the set
when m does not occur. cl

This result demonstrates clearly that even the simple operation of median can
be used to compromise a database; indeed, this can be done in very few queries.

5. CONCLUSIONS

A precise model of the security problem for databases has been presented. In this
model we were able to demonstrate how to control the queries a user could make
in order to stop him from compromising the database. While we did this only for
queries about averages and medians, we can extend the model to handle queries
of other types. This model gives rise to a number of interesting combinatorial
problems which have applications to problems of applicability to designers or
databases. While we have presented an introduction to problems in this area
here, a number of related problems remain open. For example, suppose we change
our constraints on overlapping queries to ahow queries to overlap only in certain
coordinates. Or, suppose we allow queries of varying lengths. Or, suppose we may
ask for medians but wish to determine a specific database entry. Furthermore, in
each case studied here, we have considered worst case behavior, the number of
queries necessary to guarantee that the database is compromised. We could do a
similar analysis for best case behavior, asking for the fewest queries after which
the database may be compromised. Many of these issues will be studied in a
forthcoming paper [2].

ACKNOWLEDGMENT

We wish to thank Rich DeMillo, Mary-Claire van Leunen, and Steven Reiss for
a number of helpful comments on an earlier draft.

REFERENCES

1. CODD, E.F. A relational model of data for large and shared data banks. Comm ACM 13, 6 (June
1970), 377-387.

2. DEMILLO, R., DOBKIN, D., AND LIPTON, R. Even data bases that lie can be compromised. IEEE
Trans. Software Eng. SE-4, 1 (1978), 73-75.

3. DENNING, D.E. A lattice model of secure information flow. Comm. ACM 19, 5 (May 1976),
236-243.

4. FENTON, J.S. Memoryless subsystems. Comptr. J. 17, 2 (1974), 143-147.
5. GRAHAM, G.S., AND DENNING, P.J. Protection-principles and practice. Proc. AFIPS 1972 SJCC,

Vol. 40, AFIPS Press, Montvale, N.J., pp. 417-429.
6. HAQ, M. Insuring individuals’ privacy from statistical data base users. Proc. AFIPS 1975 NCC,

Vol. 43, AFIPS Press, Montvale, N.J., pp. 941-946.
7. HOFFMAN, L.J., AND MILLER, W.F. Getting a personal dossier from a statistical data bank.

Datamation 16,5 (May 1970), 74-75.

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

106 m D. Dobkin, A. K. Jones, and R. J. Lipton

8. JONES, A.K., AND LIPTON, R.J. The enforcement of security policies for computation. Proc. 5th
Symp. Oper. Syst. Principles. Oper. Syst. Rev. (ACM) 9,5 (1975), 197-206.

9. JONES, A.K., AND WULF, W.A. Towards the design of secure systems. Software--Practices and
Experience 5,4 (Oct. 1975),321-336.

10. LAMPSON, B.W. Protection. Proc. 5th Princeton Symp. Inform. Sci. and Syst., 1971, pp. 437-443.
11. ORGANICK, E.I. The MZJLTZCS System: An Examination of Its Structure. M.I.T. Press, Cam-

bridge, Mass., 1972.
12. WULF, W.A., ET AL. HYDRA: The kernel of a multiprocessor system. Comm. ACM 17, 6 (June

1974), 337-345.

Received March 1976; revised June 1978

ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979.

