
Higher-Order and Symbolic Computation 12, 381–391 (1999)
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Partial Evaluation of Computation Process—
An Approach to a Compiler-Compiler

YOSHIHIKO FUTAMURA
Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan 185

Abstract. This paper reports the relationship between formal description of semantics (i.e., interpreter) of a
programming language and an actual compiler. The paper also describes a method to automatically generate
an actual compiler from a formal description which is, in some sense, the partial evaluation of a computation
process. The compiler-compiler inspired by this method differs from conventional ones in that the compiler-
compiler based on our method can describe an evaluation procedure (interpreter) in defining the semantics of a
programming language, while the conventional one describes a translation process.

Keywords: partial evaluation, program transformation, compiler, interpreter, Futamura projections

1. Introduction

It is known that there are two methods to formally describe the semantics (meaning) of
programming languages. One of them is to describe the procedure by which the language
to be defined is translated into another language whose semantics are already known, i.e.,
a description of a translator. The other is to describe a procedure evaluating the results of
a statement belonging to the language to be defined (a source program), i.e., a description
of an interpreter.

In a conventional compiler-compiler, the description of a translator is used to describe
the semantics of a programming language. That is, the users of a conventional compiler-
compiler have to write the translation program in terms of a translator description language
in defining the semantics of a programming language.

The difficulty in writing a translator has been pointed out by Feldman [2] as follows:
“One of the most difficult concepts in translator writing is the distinction between actions

done at translate time and those done at run time. Anyone who has mastered this difference
has taken the basic step towards gaining an understanding of computer languages.”

In describing the semantics of a programming language by an interpreter, it is not nec-
essary to set up a distinction between those actions. Therefore, describing an interpreter
seems easier than describing a translator. Actually, description by an interpreter is implicitly
used at many places in the report on ALGOL 60 [6] and in manuals of many programming
languages. The interpreters of such complex languages as ALGOL 60 and PL/I also have
been described formally [3, 8].

∗This is an updated and revised version ofPartial Evaluation of Computation Process—an Approach to a
Compiler-Compiler by Yoshihiko Futamura , originally published in “Systems.Computers.Controls”, Volume
2, Number 5, 1971, pages 45–50. Reprinted by permission of John Wiley & Sons, Inc.

382 FUTAMURA

Figure 1. Structure of a compiler-compiler. The large bold-line block is the generated compiler. The object
language of this compiler is a semantic metalanguage in which an interpreter is described. An object program is
translated into machine codes by the metacompiler.

However, for reasons described in Section 3, a so-called interpreter is often not as efficient
as a so-called compiler in language processing.

This paper describes an algorithm to automatically transform an interpreter to a compiler
and its application to a compiler-compiler. The algorithm is a sort of partial evaluation
procedure (see figure 1).

Partial evaluation of a computation process is by no means a new concept [4]. Even
in programming languages, POP-2 [1] implies a somewhat similar concept called “partial
application.” Nevertheless, it is the author’s belief that this paper is the first instance in which
the concept is applied in a compiler-compiler. What kind of partial evaluation algorithm is
applicable to a compiler-compiler? It is the purpose of this paper to probe the properties of
that algorithm.

2. Partial evaluation

The following transformation is called a partial evaluation of a computation processπ

with respect to variablesc1, . . . , cm, at the valuesc′1, . . . , c
′
m. “In a computation processπ

containingm+ n variablesc1, . . . , cm, r1, . . . , rn, evaluate the portions ofπ which can be
evaluated using only the valuesc′1, . . . , c

′
m assigned to variablesc1, . . . , cm, respectively,

and constants contained inπ . The portions which cannot be evaluated unless the values of
the remaining variables are given are left intact. Thus,π is transformed into a computation
process havingn variables. When the computation process thus obtained is evaluated for
valuesr ′1, . . . , r

′
n assigned to variablesr1, . . . , rn, respectively, its result is equivalent to

the result of the evaluation of it for the valuesc′1, . . . , c
′
m, r ′1, . . . , r

′
n given to variables

PARTIAL EVALUATION 383

c1, . . . , cm, r1, . . . , rn, respectively.” We denote this transformation by the equation

π(c′1, . . . , c
′
m, r

′
1, . . . , r

′
n) = α(π, c′1, . . . , c′m)(r ′1, . . . , r ′n) (1)

We callα the “partial evaluation algorithm,”c1, . . . , cm the “partial evaluation variables,”
andr1, . . . , rn the “remaining variables,” respectively. We may refer to the usual evaluation
as a total evaluation as opposed to a partial evaluation.

For example, consider the evaluation of a computation process given by the function
f (x, y) = x × (x × x + x + y+ 1)+ y× y with the valuesx = 1, y = 1, 2, . . . , l .

When we evaluatef (1, y) for each value ofy, i.e., when we execute

x := 1 ;
for y := 1 step1 until l do f [x, y] := x × (x × x + x + y+ 1)+ y× y

3l multiplications and 4l additions are performed. Representing the times elapsed in ad-
dition and multiplication bya andm respectively, the above computation requires about
(4a+ 3m)l .

If we haveα(f, 1)(y) = 1× (3 + y) + y × y by partial evaluation off (x, y) with
respect tox = 1, the elapsed time of the partial evaluation, e.g.,k, is more than 2a +m,
i.e.,k > 2a+m (because the partial evaluation involves the evaluation ofx × x + x + 1).

If we execute

for y := 1 step1 until l do f [1, y] := 1× (3+ y)+ y× y;

a computation time of about(2a+ 2m)l is required. Therefore, when the relation

k+ (2a+ 2m)l < (4a+ 3m)l or
k

2a+m
< l

holds, the partial evaluation gives a faster computation.

3. Generation of a compiler from an interpreter

An interpreter of a programming language is a computation process containing variables.
A sentence (source program) of the programming language is substituted for one of the
variables as a value. Variables contained in an interpreter, e.g., int, are classified into two
groups as follows. All variables to which a source program and information needed for
syntax analysis and semantic analysis are given as values are classified as a groups. The
other variables are classified as a groupr . Here, int is assumed to have two variabless and
r . The result of the partial evaluation of the interpreter with respect tos at a given value
s′ is α(int, s′)(r). With r ′ assigned tor as a value, the following relation is derived from
Eq. (1):

int(s′, r ′) = α(int, s′)(r ′) (2)

384 FUTAMURA

If all the computations concernings′ have been performed at partial evaluation time,
the generated computation processα(int, s′) does not contain the computation process for
syntax and semantic analysis of the source programs′. Moreover, it brings about the same
result as int(s′, r ′)when it is evaluated for the datar ′. Therefore,α(int, s′) can be viewed as
a computation process which is translated froms′ into the semantic metalanguage describing
the interpreter. Namely, it can be regarded as an object program corresponding tos′.

If α is partially evaluated with respect to int on the right side of Eq. (2), the following
relation is derived:

α(int, s′)(r ′) = α(α, int)(s′)(r ′) (3)

α(α, int) can be considered to be a compiler because it generates an object program from
s′ operating on it.

Supposeα has the following two properties.

p1. In partially evaluating a computation processπ , α evaluates as many portions ofπ
as possible which can be evaluated only with constants and values given to partial
evaluation variables.

p2. α evaluates as few portions ofπ as possible which are actually not evaluated when a
generated computation process is evaluated with the values of remaining variables.

Property p1 reduces the computation time of the process generated by a partial evaluation
when it is evaluated with the given value of remaining variables. Property p2 reduces the
computation time of a partial evaluation.

If a partial evaluation algorithm somehow possesses both properties p1 and p2, it is more
efficient to execute a source program once compiled than to interpret it directly when the
source program contains such iterations as loops and recursive calls or is iteratively executed
for many input data.

The simplest partial evaluation algorithm is the one which neglects property p1, i.e., the
one which only substitutes given values for partial evaluation variables.

The algorithmα1 considering the property p1 and fitted for the partial evaluation of an
interpreter is described in the rest of this section.

For ease of explanation, a computation process is represented by a graph such as that in
figure 2. In figure 2, nodes (◦) represent conditional branching points, branches (arrows)
represent subcomputation processes not containing a branching point and a flow of control,
and the leaves (•) represent the termination points of the computation process. All nodes
and branches are markedni andbj (a different one is subscripted by a different number),
respectively. Letb1 denote the entry branch (there may be more than one entry branch, but
we assume that only one is selected at partial evaluation time) and letm denote the total
number of branches.
α1 determines partial evaluation variables and the remaining variables at each stage of

the partial evaluation depending on the following two criteria:

(i) Partial evaluation variables are (1) partial evaluation variables of the preceding stage
or (2) variables (or formal parameters of functions) to which values depending only on
constants or partial evaluation variables of the preceding stage are assigned.

(ii) Variables other than partial evaluation variables are remaining variables.

PARTIAL EVALUATION 385

Figure 2. Graph representation of computation processπ (Here,n1, . . . ,n7 denote nodes andb1, . . . ,b15 denote
branches).

The algorithmα1 is given by the five operations below (in the description of the algorithm,
integer variablesg, j (1), . . . , j (m) and a list variableL are used).

(1) Set each ofg, j (1), . . . , j (m) to 1 and setL to nil. Proceed to operation (2).
(2) Allocate the first address of the space in which the result of partial evaluation ofbg

is stored and memorize that address. (When the result is stored in the memory of a
computer as a program, the first address is that of the program. When the result is
written as a graph, the first address is that of a label attached to an entry point to branch
bg.) Namely,α1 enters the triplet (bg, Sj (g)

g , aj (g)
g) in list L, whereSj (g)

g denotes the set
of pairs of partial evaluation variables and their values (at the entry point of thej (g)th
entry tobg), andaj (g)

g denotes the first address of the space in which the result of the
j (g)th partial evaluation ofbg is generated. Proceed to operation (3).

(3) Evaluate the portions ofbg which can be evaluated only with partial evaluation variables
and constants. To those portions, attach marks indicating that they have already been
evaluated. Letbj (g)

g denote the new computation process generated frombg by this
operation (Note that the first address ofbj (g)

g is aj (g)
g , andbg is left intact). Increment

the value ofj (g) by 1 and proceed to operation (4).
(4) If the process next tobg (i.e., the arrowhead ofbg) is a termination symbol(•), stop

the partial evaluation. If the process next tobg is a conditional branching pointnk(i),
proceed to 4(A) or 4(B).

(A) If nk(i) can be evaluated only with the values of partial evaluation variables and
constants, then select one of two branches based upon the value ofnk(i). Let bp

express the branch selected. Set the value ofg to p and proceed to operation (5).
(B) If nk(i) cannot be evaluated unless the values of remaining variables are given, then

nk(i) is left intact. Letbp andbq denote two branches followingnk(i). Set the value
of g to p and proceed to operation (5). Next, set the value ofg to q and proceed
to operation (5).

386 FUTAMURA

(5) Examine listL to see whether there is a triplet whose first and second terms coincide
with bg andSj (g)

g respectively.

(A) If there is such a triplet, transfer control of the generated computation process to
the position indicated by the third termax

g of the triplet (if a generated computation
process is written on paper, draw an arrow to the place labeledax

g). Stop the partial
evaluation.

(B) If there is no such triplet, return to operation (2).

Example 1. Suppose that the conditional branching pointsn1, n3 andn6 can be evaluated
only with partial evaluation variables and constants, and that each evaluation ofn1, n3

andn6 selects the branchb3, b7 andb12 respectively. Then,π is transformed byα1 as
described in figure 3.

Example 2. Consider the case in whichn1 and n6 can be evaluated only with partial
evaluation variables and constants, and the value ofn3 depends on the values of remaining
variables. Letn1 always select branchb3 and letn6 select branchb13 for the first time and
select branchb12 for the second time. Then,π is transformed byα1 as described in figure 4.

Example 3. In Example 2, ifn6 invariably selectsb13, α1 does not always terminate its
computation and may generate such an infinite graph as described in figure 5. However, if
n6 always selectsb13 simply because the partial evaluation variables ofb7 cyclically take
the same values, the computation ofα1 is terminated by operation (5). It produces such a
result as described in figure 6 in the case when the values of partial evaluation variables of
b7 do not change. In partially evaluating an interpreter with respect to a source program
which contains loops or recursive calls, the above case occurs. Therefore, operations (2)
and (5) are essentially important for the compiler-compiler method described in this paper.

Example 4. Let us assume thatn1 in figure 7 depends on the remaining variables. In
this case, if the repetitive partial evaluation of processb3 does not produce the sameSx

3
more than once, then an infinite graph will be generated. But in totally evaluating the
process it is possible that, afterb3 has been computed several times,n1 selectsb2 and the
computation will terminate. Ifb3 does not contain remaining variables but contains an
infinite loop and ifn1 always selectsb2 in total evaluation, then it is a trivial example of a

Figure 3. Example 1.

PARTIAL EVALUATION 387

Figure 4. Example 2.

Figure 5. Example 3 (nonterminating case).

computation process whose total evaluation terminates but whose partial evaluation does not
terminate.

The evaluation of those portions of a computation process which are not evaluated at total
evaluation time, as in the last example, can be avoided by the following procedure. The

388 FUTAMURA

Figure 6. Example 3 (terminating case).

Figure 7. Example 4.

portions of a computation process (with the exception of conditional branching points) for
which it is not known whether they are evaluated at total evaluation time (i.e., the portions
following conditional branching points whose values depend on the values of remaining
variables) are not evaluated at partial evaluation time, but the values are only substituted
for the remaining variables. This procedure is necessary not only for the avoidance of
wasteful evaluations at partial evaluation time but also to guard against the printing of
erroneous statements and other troublesome portions of the interpreter which do not have
to be evaluated at partial evaluation time (e.g., input-output operations).

We make an exception of conditional branching points in the foregoing procedure. In
order to reduce the number of nodes and branches contained in the resulting computation
process of a partial evaluation, we evaluate as many conditional branching points at partial
evaluation time as possible. If the portions of a computation process, that follow conditional
branching points containing remaining variables, also contain remaining variables,α1 is
recursively applied to those portions. This is based on the idea that because the portions
of a computation process containing remaining variables often include recursive calls to
an interpreter, it is worthwhile to risk the partial evaluation of those portions. Therefore,
functions, procedures and pseudo-variables which do not have to be evaluated at partial
evaluation time must be marked and must be handled exceptionally

However, if we describe an interpreter carefully, we can avoid such a meaningless loop
as the one described in Example 4. Therefore, the desired algorithm can be obtained by
modifying α1 so that it evaluates all the portions of a computation process except those
marked as unnecessary to be evaluated at partial evaluation time.

The partial evaluation algorithm has been described in the preceding discussion, but
the details thereof have been omitted since they are quite different in each programming
language describing a computation process.

PARTIAL EVALUATION 389

Example 5. Partial evaluation of the LISP [5] function append[x;y] defined as

append[x; y] = [null[x] → y; T → cons[car[x]; append[cdr[x]; y]]]

Then,

α1[append; (A, B)][y] = cons[A; cons[B; y]]

α1[append; (A, B)][x] = f[x] = [null[x] → (A, B);
T → cons[car[x]; f[cdr[x]]]]

Note that the function name f in the above equation has been generated by the process (2)
of α1.

Example 6. Partial evaluation of ALGOL program. Leta and b denote lists of in-
tegers (i.e., integer arrays).a[0] and b[0] contain the length of each list respectively.
a[1],a[2], . . . ,a[a[0]] and b[1], b[2], . . . ,b[b[0]] contain the elements of the lists. The
program [7] concatenating listsa and b is described below (wherein bigm denotes the
subscript bound of arraya).

beginif a[0] + b[0] > bigm thengotooverfl;
for k := 1 step1 until b[0] do
a[k+ a[0]] := b[k];a[0] := a[0] + b[0];

end

The result of partial evaluation of the above program with respect tobatb[0] = 2,b[1] = 10,
b[2] = 20 is described below.

beginif a[0] + 2> bigm thengotooverfl;
a[1+ a[0]] = 10;
a[2+ a[0]] = 20;
a[0] = a[0] + 2;

end

4. Discussion

(a) What is the criterion for the possibility of generating a compiler from an interpreter,
i.e., a nontrivial sufficient termination condition of partial evaluation?

(b) Which parts of the object program (i.e. the result of partial evaluation of an interpreter
with respect to a source program) are more efficient than the corresponding parts of the
source program and to what extent? What are the characteristics of the object program
and how may it be optimized (with respect to time and space)?

(c) Quantitatively, to what extent is describing an interpreter easier than describing a trans-
lator? Can we find a partial evaluation algorithm generating a compiler which is as
efficient as a compiler generated from a translator?

390 FUTAMURA

(d) What kind of semantic metalanguage shall we use to describe an interpreter in order to
achieve efficient partial evaluation of the interpreter?

At present, the author cannot answer the above questions clearly. It is considered that
investigations along the following lines will solve those questions.

(1) Understanding structures of interpreters of programming languages.
(2) Development of a semantic metalanguage which can be efficiently compiled and by

which we can easily describe the abstract syntax of programming languages, the states of
abstract machines (stack, table, list, etc.) and their transitions, numerical computation,
and list processing.

(3) Implementation of a complete partial evaluation algorithm for a specific semantic meta-
language.

(4) Theoretical study on the partial evaluation of computer programs.
(5) Optimization of semantic metalanguages.

The author has made a little progress on item (3). A partial evaluator which is almost
equivalent toα1 has been implemented in LISP, and a compiler of program features [5]
has been generated from the interpreter of program features by the partial evaluator. The
compiler translates ALGOL-like programs written in the program features into an equivalent
system of recursion equations. For example,

prog [[u; v];
u := n;

L1 [null[u] → return[v]];
v := cons[car[u]; v];
u := cdr[u];
go[L1]]

is translated into

g1[a] = g2[ppair[(U V); a]]
g2[a] = prog2[rplacd[assoc[U ; a]; eval[N;a]] ; g3[a]]
g3[a] = g4[a];
g4[a] = g5[a];
g5[a] = [eval[(NULL U); a] → eval[V; a]; T → g6[a]]
g6[a] = g7[a]
g7[a] = prog 2[rplacd[assoc[V; a]; eval[(CONS(CAR U) V); a]] ; g8[a]]
g8[a] = prog 2 [rplacd[assoc[U ; a]; eval[(CDRU); a]] ; g9[a]]
g9[a] = g4[a]

where g1–g9 are the function names generated by the compiler and g1[a] is the object
program. Superfluous equations such as g3[a] = g4[a], g4[a] = g5[a], etc., can be avoided
by optimization of the semantic metalanguage (in this case, LISP).

PARTIAL EVALUATION 391

5. Conclusion

The compiler generation method described in this paper is still in the conceptual stage. It
remains to determine whether or not the method can be put to practical use in the near
future. However, the author hopes that this paper explains the relationship between formal
methods of programming language description and actual compilers. It is also hoped that
this paper makes a contribution to the study of a compiler-compiler.

References

1. Burstall, R.M. and Popplestone, R.J. POP-2 reference manual.Machine Intelligence(2) (1968) 205–249.
2. Feldman, J.A. Formal Semantics for Computer-Oriented Languages. Technical Report, Comput. Ctr., Carnegie

Institute of Technology, 1964.
3. Lauer, P. Formal Definition of ALGOL 60. Technical Report TR 25.088, IBM Laboratory Vienna, 1968.
4. Lombardi, L.A.Advances in Computers, Vol. 8. Academic Press, New York, 1967.
5. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., and Levin, M.I.LISP 1.5 Programmer’s Manual,

M.I.T. Press, 1962.
6. Naur, P. (Ed.). Revised report on the algorithmic language ALGOL 60.Comm. of ACM(6) (January 1963)

1–17.
7. Rutishauser, H.Description of ALGOL 60. Springer, 1967.
8. Walk, K., Alber, K., Bandat, K., Bekic, H., Chroust, Gerhard, Kudielka, V., Oliva, P. and Zeisel, G. Abstract

syntax and interpretation of PL/I. Technical Report TR 25.082, IBM Laboratory Vienna, 1968.

