cecma

ancalrt ECMA-269
- | | 8"Edition/ June 2009

Services for Computer
Supported
Telecommunications
Applications (CSTA)

Phase I1I

i

Rue du Rhéne 114 CH-1204 Geneva T:+41 22 849 6000 F: +41 22 849 6001

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2009 — All rights reserved

~2ecChna

Brief History

This Standard defines Phase Ill of Services for Computer Supported Telecommunications Applications
(CSTA). This Standard is part of a Suite of Standards and Technical Reports for Phase Ill of CSTA. All of
the Standards and Technical Reports in the Suite are based on practical experience of Ecma member
companies and each one represents a pragmatic and widely-based consensus.

Phase Il of CSTA extends the previous Phase | and Phase Il Standards in major theme directions as well
as numerous details. This incorporates technology based upon the versit CTl Encyclopedia (Version 1.0),
which was contributed to Ecma by versit.

This 8th edition of ECMA-269 includes the following major enhancements:
« new features that enables the establishment and control of advanced types of conferences
* new set of location-based features that enable location-aware applications
« call control enhancements that include the ability to deflect a call to multiple destinations

+ enhanced devicelD formats to indicate when a number and/or name associated with a devicelD is
private

« new features that enhance the ability of applications to synchronize with a CSTA implementation

"DISCLAIMER

This document and possible translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published, and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this section
are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to
Ecma International, except as needed for the purpose of developing any document or
deliverable produced by Ecma International (in which case the rules applied fo
copyrights must be followed) or as required to translate it info languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by Ecma
International or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
ECMA INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE."

Adopted as 8th Edition of Standard ECMA-269 by the General Assembly of June 2009.

patrick
Stamp

~ecna

Table of Contents

1 Scope

2 Conformance

w

(o2}

2.1 Switching Function

2.1.1 Conformant Services

2.1.2 Conformant Events

2.1.3 CSTA Profiles

2.1.4 Support of Service Requests And Manual Mode
2.2 Special Resource Function Conformance

2.2.1 Conformant Services

2.2.2 Conformant Events

2.2.3 Support of Service Requests And Manual Mode
2.3 Computing Function Conformance
References

Definitions and Abbreviations

Functional Architecture

CSTA Operational Model

6.1

6.2

6.3

6.4

6.5

Switching Sub-Domain Model
6.1.1 Device
6.1.2 Call
6.1.3 Connection
6.1.4 Call State Definitions
6.1.5 Referencing Devices, Elements, Appearances and Device Configurations
6.1.6 Management of Dynamically-Assigned Identifiers
I/O Services
6.2.1 Data Path Definition
6.2.2 1/O Registration Services
6.2.3 Data Path States and Operational Model
6.2.4 /O Services Example
Call Detail Record (CDR) Services
6.3.1 CDR Services Examples
Capabilities Exchange
6.4.1 Switching Function Capabilities
6.4.2 Device Capabilities
6.4.3 Dynamic Feature Availability
Switching Function Information Synchronization
6.5.1 Switching Function Level Information
6.5.2 Device Level Information

O oo aoaN NN NN -

(o]

\l

41
49
53
54
56
56
57
58
58
58
59
59
61
61
62
62
63
63
63

»ecind

6.5.3 Call Level Information 63

6.6 Status Reporting Services 64

6.6.1 System Status 64

6.6.2 Monitoring 65

6.6.3 Snapshot Services 69

6.7 Additional Services, Features & Behaviour 69

6.7.1 Forwarding 69

6.7.2 Connection Failure 71

6.7.3 Recall 73

6.7.4 Call Back 73

6.7.5 External Calls 74

6.7.6 Tracking a Diverted Call 75

6.7.7 Media Stream Access 75

6.7.8 Routeing Services 79

6.7.9 Device Maintenance 84

6.7.10 Prompting 84

6.7.11 Telephony Tones Features 84

6.7.12 DTMF and Rotary Pulse Digits Features 84

6.7.13 Data Collection Services 85

6.8 Location Features 85

6.8.1 Location Information 85

6.8.2 Polling for Location Information 87

6.8.3 Location Information in Call Control Events 87

6.8.4 Location Tracking Session 87

6.8.5 Setting Location Information 20

7 Association Establishment 91
7.1 Implicit Association created using CSTA System Status service (initiated by Switching Function)

92
7.2 Implicit Association created using CSTA Request System Status service 92
7.3 Explicit Association created using ACSE 93

7.4 Explicit Association created using Ecma Application Session (ECMA-354) Services 94

8 Security Service 95
9 Generic Service Requirements 95
9.1 Service Request 95
9.2 Service Response (Acknowledgements) 96
9.2.1 Positive Acknowledgement Models 96

9.2.2 Negative Acknowledgement 97

9.3 Diagnostic Error Definitions 97
9.3.1 Error Categories 97

9.3.2 Error Values 98

~ecna

9.4 Vendor Specific Extensions 98
9.4.1 Private Data 99

9.4.2 Escape Services and Private Event 99

9.5 General Services and Event Functional Requirements 100
9.5.1 Services 100

9.5.2 Events 102

10 CSTA Device Identifier Formats 102
10.1 Device Identifier Formats 102
10.1.1 Diallable Digits 103

10.1.2 Switching Function Representation 104

10.1.3 Device Number 106

10.1.4 URI Representation 106

10.2 DevicelD Tags 106
10.3 Functional Requirements 107
11 Template Descriptions 107
11.1 Service Template 107
11.1.1 Service Description 107

11.1.2 Service Request 108

11.1.3 Service Response 109

11.1.4 Operational Model 109

11.2 Event Template 109
11.2.1 Event Description 109

11.2.2 Event Parameters 109

11.2.3 Event Causes 110

11.2.4 Functional Requirements 110

11.3 Parameter Type Template 110
11.3.1 Parameter Type Description 110

11.3.2 Format 110

11.3.3 Functional Requirements 110

12 Parameter Types 111
12.1 Definitions 111
12.2 Defined Parameter Types 112
12.2.1 Accountinfo 113

12.2.2 AgentPassword 113

12.2.3 AuthCode 113

12.2.4 CallCharacteristics 114

12.2.5 CallLinkageData 114

12.2.6 CallQualifyingData 116

12.2.7 Charginginfo 116

12.2.8 Connectioninformation 117

oecind

12.3

12.2.9
12.2.10
12.2.11
12.2.12
12.2.13
12.2.14
12.2.15
12.2.16
12.2.17
12.2.18
12.2.19
12.2.20
12.2.21
12.2.22
12.2.23
12.2.24
12.2.25
12.2.26
12.2.27
12.2.28
12.2.29

Identifier
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9

12.3.10
12.3.11
12.3.12
12.3.13
12.3.14
12.3.15
12.3.16
12.3.17
12.3.18
12.3.19
12.3.20
12.3.21
12.3.22

ConnectionList
CorrelatorData
CSTAPrivateData
CSTASecurityData
DeviceHistory
ErrorValue
EventCause
LanguagePreferences
LocalConnectionState
LocationInfo
LocationInfoList
MediaCallCharacteristics
MediaServiceType
Messagelnfo
MonitorFilter
ServicesPermitted
SimpleCallState
SubjectOfCall
SystemStatus
Timelnfo

UserData

Parameter Types
AgentID
AssociatedCalledDevicelD
AssociatedCallingDevicelD
AuditoryApparatusID
ButtonID
CalledDevicelD
CallingDevicelD
CDRCrossRefID
ConnectionID
DCollCrossRefID
DevicelD

DisplayID
EscapeRegisterID
HookswitchID
I0CrossReflD
IORegisterReqID
LampID
MediaServicelnstancelD
MediaStreamI|D
MessagelD
MonitorCrossRefID
NetworkCalledDevicelD

-iv -

118
119
119
120
120
121
132
136
136
137
138
138
140
141
141
142
142
143
143
144
144

145
146
146
146
147
147
147
148
148
148
150
150
151
151
151
151
151
152
152
152
152
152
152

~ecna

12.3.23
12.3.24
12.3.25
12.3.26
12.3.27
12.3.28
12.3.29
12.3.30
12.3.31

13 Capability
13.1 Services

13.1.1

13.1.2

13.1.3

13.1.4

13.1.5

13.1.6

NetworkCallingDevicelD
RedirectionDevicelD
ResourcelD

RingerID
RouteingCrossReflD
RouteRegisterReqID
ServiceCrossReflID
SubjectDevicelD
SysStatRegisterlD

Exchange Services

Get CSTA Features

Get Logical Device Information

Get Physical Device Information
Get Switching Function Capabilities
Get Switching Function Devices

Switching Function Devices

14 System Services

14.1 Registration Services

141.1
14.1.2
14.1.3
14.1.4

14.2 Services
1421
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6

Change System Status Filter
System Register

System Register Abort
System Register Cancel

Request System Status
System Status

Switching Function Capabilities Changed

Switching Function Devices Changed
Get Registrations
Registration Info

15 Monitoring Services

15.1 Services
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5

Change Monitor Filter
Monitor Start

Monitor Stop

Get Monitors

Monitor Info

16 Snapshot Services

16.1 Services
16.1.1

Snapshot Call

153
154
154
154
154
155
155
155
156

157

157
158
160
169
173
189
191

195

195
196
198
201
202
203
204
206
208
209
210
213

215

215
216
218
222
223
225

227

227
228

oecind

16.1.2
16.1.3
16.1.4

Snapshot Device
Snapshot CallData
Snapshot DeviceData

17 Call Control Services & Events

17.1

17.2

Services

1711
17.1.2
17.1.3
17.1.4
17.1.5
17.1.6
17.1.7
17.1.8
17.1.9
17.1.10
17.1.11
17.1.12
17.1.13
17.1.14
17.1.15
17.1.16
17.1.17
17.1.18
17.1.19
17.1.20
17.1.21
17.1.22
17.1.23
17.1.24
17.1.25
17.1.26
17.1.27

Events
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.2.7
17.2.8
17.2.9

17.2.10

Accept Call

Alternate Call

Answer Call

Call Back Call-Related
Call Back Message Call-Related
Camp On Call

Clear Call

Clear Connection
Conference Call
Consultation Call

Deflect Call

Dial Digits

Directed Pickup Call
Group Pickup Call

Hold Call

Intrude Call

Join Call

Make Call

Make Connection

Make Predictive Call
Park Call

Reconnect Call

Retrieve Call

Send Message

Single Step Conference Call
Single Step Transfer Call
Transfer Call

Bridged

Call Cleared
Conferenced
Connection Cleared
Delivered

Digits Dialled
Diverted
Established

Failed

Held

-Vi-

231
234
237

240

240
242
244
247
249
252
255
257
260
264
267
273
279
282
286
289
291
295
299
305
310
316
319
321
323
328
333
337
340
341
343
346
352
356
361
364
369
374
379

~ecna

17.2.11
17.2.12
17.2.13
17.2.14
17.2.15
17.2.16
17.2.17
17.2.18

Network Capabilities Changed
Network Reached

Offered

Originated

Queued

Retrieved

Service Initiated

Transferred

18 Call Associated Features

18.1

18.2

19 Media Attachment Services & Events

191

19.2

Services
18.1.1
18.1.2
18.1.3
18.1.4
18.1.5
18.1.6

Events
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5

Services
19.1.1
19.1.2

Events
19.2.1
19.2.2

Associate Data

Cancel Telephony Tones
Change Connection Information
Generate Digits

Generate Telephony Tones
Send User Information

Call Information

Charging

Digits Generated

Telephony Tones Generated
Service Completion Failure

Attach Media Service

Detach Media Service

Media Attached
Media Detached

20 Routeing Services

20.1

20.2

Registration Services

20.1.1
20.1.2
20.1.3
Services
20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6

Route Register
Route Register Abort
Route Register Cancel

Re-Route
Route End
Route Reject
Route Request
Route Select
Route Used

- Vii -

381
384
388
393
396
400
402
406

411

411
412
414
416
419
422
425
427
428
431
432
434
437

440

440
441
445
448
449
450

452

452
453
456
457
458
459
461
463
465
468
470

»ecind

21 Physical Device Features

21.1 Services

21.1.1
21.1.2
21.1.3
21.1.4
21.15
21.1.6
21.1.7
21.1.8
21.1.9
21.1.10
21.1.11
21.1.12
21.1.13
21.1.14
21.1.15
21.1.16
21.1.17
21.1.18
21.1.19
21.1.20
21.1.21
21.1.22
21.1.23
21.2 Events
21.2.1
21.2.2
21.2.3
21.2.4
21.25
21.2.6
21.2.7
21.2.8
21.2.9
21.2.10
21.2.11

Button Press

Get Auditory Apparatus Information
Get Button Information

Get Display

Get Hookswitch Status

Get Lamp Information

Get Lamp Mode

Get Message Waiting Indicator
Get Microphone Gain

Get Microphone Mute

Get Ringer Status

Get Speaker Mute

Get Speaker Volume

Set Button Information

Set Display

Set Hookswitch Status

Set Lamp Mode

Set Message Waiting Indicator
Set Microphone Gain

Set Microphone Mute

Set Ringer Status

Set Speaker Mute

Set Speaker Volume

Button Information
Button Press
Display Updated
Hookswitch

Lamp Mode
Message Waiting
Microphone Gain
Microphone Mute
Ringer Status
Speaker Mute

Speaker Volume

22 Logical Device Features

22.1 Services

2211
22.1.2
22.1.3
22.1.4

Call Back Non-Call-Related

Call Back Message Non-Call-Related
Cancel Call Back

Cancel Call Back Message

- Viii -

472

472
473
474
476
478
480
481
483
486
487
488
489
491
492
493
494
496
497
499
500
502
503
505
506
508
509
510
511
513
514
515
516
517
518
520
521

522

522
523
524
526
527

~ecna

22.1.5 Get Agent State 528

22.1.6 Get Auto Answer 530

22.1.7 Get Auto Work Mode 532

22.1.8 Get CallBack 533

22.1.9 Get Caller ID Status 535

22.1.10 Get Do Not Disturb 536
22.1.11 Get Forwarding 538
22.1.12 Get Last Number Dialled 541
22.1.13 Get Routeing Mode 542
22.1.14 Set Agent State 543
22.1.15 Set Auto Answer 547
22.1.16 Set Auto Work Mode 549
22.1.17 Set Caller ID Status 551
22.1.18 Set Do Not Disturb 552
22.1.19 Set Forwarding 554
22.1.20 Set Routeing Mode 556

22.2 Events 558
22.2.1 Agent Busy 559

22.2.2 Agent Logged Off 560

22.2.3 Agent Logged On 561

22.2.4 Agent Not Ready 562

22.2.5 Agent Ready 564

22.2.6 Agent Working After Call 565

22.2.7 Auto Answer 567

22.2.8 Auto Work Mode 568

22.29 CallBack 569

22.2.10 Call Back Message 570
22.2.11 Caller ID Status 571
22.2.12 Do Not Disturb 572
22.2.13 Forwarding 573
22.2.14 Routeing Mode 576

23 Device Maintenance Events 577
23.1 Events 577
23.1.1 Back In Service 578

23.1.2 Device Capabilities Changed 579

23.1.3 Out Of Service 580

23.1.4 Partially In Service 581

24 1/0O Services 582
24.1 Registration Services 582
24.1.1 /O Register 583

24.1.2 /O Register Abort 585

24.1.3 1/O Register Cancel 586

-iX -

»ecind

24.2

I/0 Services
24.2.1 Data Path Resumed
24.2.2 Data Path Suspended
24.2.3 Fast Data
24.2.4 Resume Data Path
24.2.5 Send Broadcast Data
24.2.6 Send Data
24.2.7 Send Multicast Data
24.2.8 Start Data Path
24.2.9 Stop Data Path
24.2.10 Suspend Data Path

25 Data Collection Services

25.1

Services

25.1.1
25.1.2
25.1.3
25.1.4
25.1.5
25.1.6
25.1.7

Data Collected

Data Collection Resumed
Data Collection Suspended
Resume Data Collection
Start Data Collection

Stop Data Collection
Suspend Data Collection

26 Voice Services & Events

26.1

26.2

Services

26.1.1
26.1.2
26.1.3
26.1.4
26.1.5
26.1.6
26.1.7
26.1.8
26.1.9
26.1.10
26.1.11
26.1.12
26.1.13
26.1.14
26.1.15
26.1.16
26.1.17
Events
26.2.1
26.2.2

Activate

Clear

Concatenate Message
Deactivate

Delete Message

Play Message

Query Voice Attribute
Queue

Record Message
Reposition

Resume

Review

Set Voice Attribute
Start

Stop

Suspend

Synthesize Message

Bookmark Reached
Completed

587
588
589
590
593
594
596
598
600
602
603

604

604
605
608
609
610
611
613
614

615

615
616
617
619
620
621
622
624
630
632
634
636
638
640
644
646
649
651
652
653
654

~ecna

26.2.3
26.2.4
26.25
26.2.6
26.2.7
26.2.8
26.2.9
26.2.10
26.2.11
26.2.12
26.2.13
26.2.14
26.2.15
26.2.16
26.2.17
26.2.18

DTMF Detected
Emptied

Interruption Detected
Not Recognized

Play

Recognized

Record

Review

Silence Timeout Expired
Speech Detected
Started

Stop

Suspend Play

Suspend Record

Voice Attribute Changed
Voice Error Occurred

27 Call Detail Record (CDR) Services

27.1 Services

27.11
27.1.2
27.1.3
27.1.4
27.15

Call Detail Records Notification

Call Detail Records Report

Send Stored Call Detail Records

Start Call Detail Records Transmission

Stop Call Detail Records Transmission

28 Location Services

28.1 Location Services

28.11
28.1.2
28.1.3
28.1.4
28.15
28.1.6
28.1.7
28.1.8
28.1.9
28.1.10
28.1.11
28.1.12

29 Vendor Specific Extensions Services & Events

Get Location Information

Set Location Information

Location Tracking Session Resumed
Location Tracking Session Suspended
Resume Location Tracking Session
Location Information Report

Start Location Tracking Session
Stop Location Tracking Session
Suspend Location Tracking Session
Get Location Tracking Capabilities
Get Location Tracking Sessions
Location Session Info

29.1 Registration Services

29.1.1
20.1.2

Escape Register
Escape Register Abort

-Xi -

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
671

673

673
674
675
680
682
684

686

686
687
688
690
691
693
694
696
700
701
702
704
706

709

709
710
711

acma

29.1.3 Escape Register Cancel

29.2 Services
29.2.1 Escape
29.2.2 Private Data Version Selection

29.3 Events
29.3.1 Private Event

Annex A Device Appearances

Annex B ISDN User-User Information Element Encoding for CSTA
Annex C Capability Bitmap Parameter Types

Annex D Connection State Transition Examples

Annex E Summary of changes in this edition

- Xii -

712

713
714
715

716
717

719

729

731

795

805

»ecma

Scope

This Standard specifies the Services and Event Reports for Computer-Supported Telecommunications
Applications, Phase Il (CSTA).

This Standard is focused on providing application service interfaces to a Switching Function, Computing
Function and a Special Resource Function. A CSTA application interface is disassociated from the
various user-network interfaces and network-network interfaces CSTA applications may serve, observe or
manipulate. Because CSTA operates with existing telecommunications interfaces indirectly, it operates
generically, so that differences among various existing interfaces are hidden from CSTA applications.
Support of user-to-network interfaces is outside the scope of CSTA.

Although most terminal equipment (TE) are suitable for use with CSTA there will be instances of TE that
will not be suitable in certain circumstances. Examples are:

* FAX terminals and modems that are unable to adjust their transmission modes to prevent carrier
conflict when both parties are alerted via CSTA during call establishment;

» Functional terminals that perform telecommunication functions outside the control of the Switching
Function.

Services defined in this Standard allow functional integration between a computing network and a
telecommunications network. Computing platforms (i.e., Application Programming Interfaces - APIs) that
support such functionally-integrated applications are outside the scope of this Standard.

Communication between the computing and switching (i.e., telecommunications) networks may take
place via intervening networks ranging from simple point-to-point connections to local- or wide-area
telecommunications networks.

This Standard is part of a suite of CSTA Standards and Technical Reports that provide a comprehensive
description of the architectural and practical issues involved in applying, implementing, and utilizing
CSTA-based CTI applications.

Conformance

This Clause specifies the conformance requirements for a Switching Function, Special Resource
Function, and a Computing Function.

Conformance requirements specify the parts of this Standard that a CSTA conformant implementation
shall support.

This Standard specifies an operational model (Clause 6, “CSTA Operational Model” and Clause 9,
“Generic Service Requirements”) that defines a collection of objects (e.g. domains and sub-domains,
logical and physical elements, calls) and the relationships between these objects.

The behaviours of CSTA-conformant services, features, and event reports are determined by this model.

acma

2.1 Switching Function

In order to conform to this Standard a switching function shall support the following as a minimum:

1. the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model".

2. the requirements as specified in Clause 9, “Generic Service Requirements”.

3. the Get Switching Function Capability service for all CSTA profiles specified in 2.1.3, “CSTA Profiles”

unless otherwise noted in the profile.

4. at least one of the Application Association Establishment sequences, including the mandatory

services specified in the sequence, as specified in Clause 7, “Association Establishment”.
5. atleast one of the profiles as specified in 2.1.3, “CSTA Profiles”.

2.1.1 Conformant Services

In order to conform to a specific CSTA service an implementation shall support the following as a

minimum:

1. the requirements of the service as specified by its service description, service request parameters,
service response parameters, and operational model including connection state transitions,

monitoring event sequences, and functional requirements.

2. the requirements associated with each parameter used in the service as specified by its parameter

description, format, and functional requirements in Clause 12, “Parameter Types”.

3. all of the events that are associated with its service completion criteria, as documented in its event

monitoring tables.

4. service requests that contain a device identifier parameter, an implementation shall support, at a

minimum, the Diallable Digits format as specified in 10.1.1, “Diallable Digits”.

2.1.2 Conformant Events

In order to conform to a specific CSTA event an implementation shall support the following as a minimum:

1. the requirements of the event as specified by its event description, event parameters, event causes,

and functional requirements.

2. the requirements associated with each parameter used in the event as specified by its parameter

description, format, and functional requirements in Clause 12, “Parameter Types”.

3. events that contain a device identifier parameter, an implementation shall support, at a minimum, the
Switching Function Representation format as specified in 10.1.2, “Switching Function

Representation”.

2.1.3 CSTA Profiles

Some CSTA services and events are grouped together as profiles.
2.1.3.1 Basic Telephony Profile

This profile includes the following:

1. CSTA Services: Answer Call, Clear Connection, Make Call, Monitor Start (with the monitorType of

device-type), and Monitor Stop.

2. CSTA Events: Connection Cleared, Delivered, Established, Failed, Network Reached, Originated,

and Service Initiated.

Other CSTA services and events may be provided in any combination in addition to this set.
2.1.3.2 Routeing Profile

If the switching function supports Routeing Services as specified in Clause 20, “Routeing Services”, it
shall support a minimum set of Routeing Services that includes: Route Request, Route Select, and Route

End (from the switching function only).

~ecna

2.1.33

2134

2.1.35

2.1.3.6

2137

Other Routeing services may be provided in any combination in addition to this set.

If a switching function supports the routeing for digital data calls, then the Route Register and CSTA
Route Register Cancel shall also be included in the minimum set.
Level 1a Voice Browser Profile

This profile includes the following:

1. CSTA Services: Answer Call, Clear Connection, Single Step Transfer Call (of a connected call),
Monitor Start (with the monitorType of device-type), and Monitor Stop.

2. CSTA Events: Connection Cleared, Delivered, Established, Failed, and Transferred.
Note that the Get Switching Function Capability service is not a required service in this profile.

Other CSTA services and events may be provided in any combination in addition to this set.
Level 1b Voice Browser Profile

This profile includes the following:

1. CSTA Services: Answer Call, Clear Connection, Deflect Call (of a connected call), Monitor Start (with
the monitorType of device-type), and Monitor Stop.

2. CSTA Events: Connection Cleared, Delivered, Diverted, Established, and Failed.
Note that the Get Switching Function Capability service is not a required service in this profile.

Other CSTA services and events may be provided in any combination in addition to this set.
Level 2 Voice Browser Profile

This profile includes the following:

All of the services and events in either the Level 1a Voice Browser Profile or the Level 1b Voice Browser
Profile and the following:

1. additional CSTA Service: Make Call
2. additional CSTA Events: Network Reached, Originated.

Other CSTA services and events may be provided in any combination in addition to this set.
Minimal uaCSTA Call Control Profile

This profile includes the following:

1. CSTA Services: Answer Call, Clear Connection, Deflect Call, Hold Call, Make Call, Retrieve Call,
and Single Step Transfer.

2. CSTA Events: There are no CSTA events specified as part of this profile. This profile assumes that
an application uses mechanisms defined outside of this Standard (SIP Subscribe/Notify, for example)
to obtain call/connection information that can be used in CSTA services rather than using CSTA
events to obtain this information.

Note that the Get Switching Function Capability service is not a required service in this profile.

Other CSTA services (and events) may be provided in any combination in addition to this set.
Basic uaCSTA Call Control Profile

This profile includes the following:

1. CSTA Services: Answer Call, Clear Connection, Deflect Call, Hold Call, Make Call, Retrieve Call,
Single Step Transfer, Monitor Start (with a monitorType of device-type), and Monitor Stop.

2. CSTA Events: Connection Cleared, Delivered, Diverted, Established, Failed, Held, Network
Reached, Retrieved, Service Initiated, and Transferred.

Note that the Get Switching Function Capability service is not a required service in this profile.

Other CSTA services and events may be provided in any combination in addition to this set.

-3-

acma

2.1.3.8 Advanced uaCSTA Call Control Profile

2.1.3.9

2.1.3.10

21311

2.1.3.12

This profile includes the following:

1. CSTA Services: Alternate Call, Answer Call, Clear Connection, Consultation Call, Deflect Call, Hold
Call, Make Call, Reconnect Call, Retrieve Call, Single Step Transfer, Transfer Call, Monitor Start
(with a monitorType of device-type), and Monitor Stop.

2. CSTA Events: Connection Cleared, Delivered, Diverted, Established, Failed, Held, Network
Reached, Originated, Retrieved, Service Initiated, and Transferred.

Other CSTA services and events may be provided in any combination in addition to this set.
Conferencing uaCSTA Call Control Profile

This profile includes the following:

1. CSTA Services: The CSTA services in this profile must include all of the services in either the Basic

or the Advanced uaCSTA Call Control Profile plus the Conference Call service and the Single Step
Conference service.

2. CSTA Events: The CSTA events in this profile must include all of the events in either the Basic or the
Advanced uaCSTA Call Control Profile plus the Conferenced event.

Other CSTA services and events may be provided in any combination in addition to this set.

Basic uaCSTA Device Feature Profile

This profile includes the following:

1. CSTA Services: The CSTA services in this profile must include all of the services in either the Basic

or the Advanced uaCSTA Call Control Profile plus the Set Do Not Disturb service and the Set
Forwarding service.

2. CSTA Events: The CSTA events in this profile must include all of the events in either the Basic or the
Advanced uaCSTA Call Control Profile plus the Do Not Disturb event and the Forwarding event.

Other CSTA services and events may be provided in any combination in addition to this set.
Speaker uaCSTA Device Feature Profile

This profile includes the following:

1. CSTA Services: The CSTA services in this profile must include all of the services in either the Basic
or the Advanced uaCSTA Call Control Profile plus the Set Speaker Mute and Set Speaker Volume
services.

2. CSTA Events: The CSTA events in this profile must include all of the events in either the Basic or the
Advanced uaCSTA Call Control Profile plus the Speaker Mute and Speaker Volume events.

Other CSTA services and events may be provided in any combination in addition to this set.
Basic Speech Service Profile

The Basic Speech Service Profile involves primarily the Listener and Prompt resources and includes the
following services and events:

1. Services and Events from one or more of the following profiles:
a. Basic Telephony Profile
b. Level 1a or 1b Voice Browser Profile
c. Level 2 Voice Browser Profile
d. Minimal uaCSTA Call Control Profile
e. Basic uaCSTA Call Control Profile

2. CSTA Services: Clear, Monitor Start (device type monitoring), Monitor Stop, Query Voice Attribute,
Set Voice Attribute, Start, Stop.

~ecna

2.1.3.13

214

2.2

221

222

2.2.3

3. CSTA Events: Bookmark Reached, Completed, Interruption Detected, Not Recognized, Recognized,
Silence Timeout Expired, Speech Detected, Voice Error Occurred.

Other CSTA services and events may be provided in any combination in addition to this set.
Advanced Speech Service Profile

The Advanced Speech Service Profile includes all the resources, services and events in the Basic
Speech Service Profile with additional Prompt Queue and DTMF resources and the following services
and events:

1. CSTA Services: Activate, Deactivate, Queue, Reposition, Resume, Suspend.
2. CSTA Events: DTMF Detected, Emptied, Started, Voice Attribute Changed.
Other services and events may be provided in any combination in addition to this set.
Support of Service Requests And Manual Mode
A conformant switching function may support a given service defined in this Standard through the CSTA
service boundary but is not required to support the equivalent service in a manual mode.

A conformant switching function may support a feature associated with an equivalent CSTA service
defined in this Standard through manual mode but is not required to support the equivalent service
through the service boundary.

Special Resource Function Conformance

In order to conform to this Standard a special resource function shall support the following as a minimum:
1. the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model”.
2. the requirements as specified in Clause 9, “Generic Service Requirements”.

3. for a supported service, the special resource function shall not reject as unsupported all of the
events specified in the monitoring event sequences associated with the service.

4. the atomic service request acknowledgment model as specified in 9.2, “Service Response
(Acknowledgements)”.

Conformant Services

In order to conform to a specific CSTA service an implementation shall support the following as a

minimum:

1. the requirements of the service as specified by its service description, service request parameters,
service response parameters, and operational model including connection state transitions,
monitoring event sequences, and functional requirements.

2. the requirements associated with each parameter used in the service as specified by its parameter
description, format, and functional requirements in Clause 12, “Parameter Types”.

3. all of the events that are associated with its service completion criteria, as documented in its event
monitoring tables.

Conformant Events
In order to conform to a specific CSTA event an implementation shall support the following as a minimum:

1. the requirements of the event as specified by its event description, event parameters, event causes,
and functional requirements.

2. the requirements associated with each parameter used in the event as specified by its parameter
description, format, and functional requirements in Clause 12, “Parameter Types”.

Support of Service Requests And Manual Mode

A conformant special resource function may support a given service defined in this Standard through the
CSTA service boundary but is not required to support the equivalent service in a manual mode.

-5-

acma

A conformant special resource function may support a feature associated with an equivalent CSTA
service defined in this Standard through manual mode but is not required to support the equivalent
service through the service boundary.

Computing Function Conformance

2.3

In order to conform to this Standard a computing function shall support the following as a minimum:

1. the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model".
2. the requirements as specified in Clause 9, “Generic Service Requirements”.
3. for a supported service, the computing function shall not reject as unsupported all of the events
specified in the monitoring event sequences associated with the service.
4. the “Single Physical and Logical Element” and “Logical Element Only” device configurations as
specified in 6.1.1.3, “Device Configurations”.
5. for service requests, the Diallable Digits format of Device Identifiers as specified in 10.1.1, “Diallable
Digits”.
6. for events, all formats of Device Identifiers as specified in 10.1, “Device Identifier Formats”.
7. the “No Appearance Addressability” and the “Individual Appearance Addressability” of referencing
device elements as specified in 6.1.5, “Referencing Devices, Elements, Appearances and Device
Configurations”.
8. both types of service request acknowledgment models (e.g., Atomic and Multi-Step) as specified in
9.2, “Service Response (Acknowledgements)”.
9. all failure models as specified in 6.7.2, “Connection Failure”.
10. both switching function options of handling unsupported parameters in service requests as specified
in the capability exchange services.
11. both the fixed and local view of the primaryOldCall and the secondaryOldCall parameters in the
Conferenced and the Transferred events.
12. all bi-directional services for which it registered, whether explicitly (i.e., via a service registration
service such as System Status Register) or implicitly (i.e., the switching function does not support
registration but does support (as indicated through the capabilities exchange services) a particular
bi-directional service and therefore may issue a service request to the computing function).
13. at least one of the Application Association Establishment sequences, including the mandatory
services specified in the sequence, as specified in Clause 7, “Association Establishment”. Note that,
in order to interwork with all Switching Functions, the Computing Function should support all of the
Application Association Establishment sequences.
References
ECMA-143 Private Integrated Services Network (PISN) - Circuit mode bearer services -
Inter-exchange signalling procedures and protocol (QSIG-BC), 4th edition
(December 2001)

ECMA-155 Private Integrated Services Networks - Addressing, 2nd edition (June 1997)

ECMA-165 Private Integrated Services Network (PISN) - Generic functional protocol for
the support of supplementary services - Inter-Exchange signalling
procedures and protocol (QSIG-GF), 4th edition (June 2001)

ECMA-354 Application Session Services (June 2004)

ECMA TR/72 Glossary of definitions and terminology for Computer Supported

Telecommunications Applications (CSTA) Phase lllI, 3rd edition (June 2000)

-6 -

»ecma

ISO/IEC 8649:1996 Information technology - Open Systems Interconnection - Service definition
for the Association Control Service Element (this corresponds to ITU-T Rec.
X.217 1995)

ISO/IEC 8824-1:2002 Information technology - Abstract Syntax Notation One (ASN.1):

Specification of basic notation
ITU-T Rec. E.131:1988 Subscriber control procedures for supplementary telephone services
ITU-T Rec. E.164:1997 The international public telecommunication numbering plan

ITU-T Rec. H.225.0:2000 Call signalling protocols and media stream packetization for packet-based
multimedia communications systems

ITU-T Rec. Q.2931:1995 B-ISDN - Digital subscriber signalling system No. 2 (DSS 2) - User-network
interface (UNI) layer 3 specification for basic call/connection control

ITU-T Rec. Q.931:1998 ISDN User-network interface layer 3 specification for basic call control
IETF RFC 3066 Tags for the Identification of Languages (January 2001)
IETF RFC 3261 SIP: Session Initiation Protocol (June 2002)

Definitions and Abbreviations
The definitions and abbreviations used in this Standard are defined in ECMA TR/72.

Functional Architecture

The objective of CSTA Architecture is to define the inter working mechanisms between the Computing,
Special Resource, and the Switching Functions independently from their physical implementations.

CSTA Operational Model

The CSTA domain contains Switching, Computing and Special Resource Domains separated by the
CSTA Service Boundary.

The CSTA domain concept is illustrated in Figure 6-1. It shows that the Switching and Computing
Domains comprise Computing Functions (1, 2 and 3) and Switching Functions (1, 2 and 3) respectively.

Each Function! provides access to the objects in its sub-domain. An application acts upon the objects in
the domain via the Functions over the CSTA Service Boundary.

This Standard specifies the messages (Services and Event Reports), and their associated behaviour,
over the CSTA Service Boundary. These messages originate and terminate at the Functions.

CSTA applications operate in the context of a relationship between two or more Functions over the CSTA
Service Boundary. In Figure 6-1, such relationships are shown as lines between Computing Functions
and Switching Functions. Association establishment specified in Clause 7, “Association Establishment”,
on page 91, explains the different ways to manage such relationships.

A Sub-Domain may include objects such as CSTA calls, devices, connections and messages. A Sub-
Domain may have one or more Functions.

The Function provides an abstract view of the part of a Sub-Domain that an application can control and/or
observe, called the Application Working Domain.

One Function may provide different Application Working Domains based on considerations such as the
application's design, licensing policy, security constraints, etc. These considerations and the associated
administration are outside the scope of this Standard.

1. Special Resource Functions (SRFs) are functions that are typically "added-on" to a Switching or
Computing Function. They can be modeled as part of either one of the two other Functions or as
something totally independent.

-7-

oecma

Figure 6-1 CSTA Operational Model

CSTA Domain
CSTA
Sernvica Boundary
Comguting domain Switching Domain
Computing Sub Domain 1 Switching Sub Domain 1
Computing™ Switching
Function 1 Function 1

\

Computing Sub Domain 2

[~
Comgputing
Function 2

Computing
Function 3

Switching Sub Domeain 2

Switching
Function 2

Switching
Function 3

6.1 Switching Sub-Domain Model
The Switching Sub-Domain includes objects such as CSTA calls, devices and connections. A Switching
Sub-Domain may have one or more Switching Functions.
The Switching Function provides an abstract view of the part of a switching sub-domain that an
application can control and/or observe, called the Application Working Domain.
One Switching Function may provide different Application Working Domains based on considerations
such as the application's design, licensing policy, security constraints, etc., and is under administration of
the Switching Sub-Domain.

6.1.1 Device
CSTA enables manipulation and observation of devices that allow users to access telecommunications
services.
NOTE

It is not claimed that this Standard alone supports ISDN (or any other) devices because, for example, of
the additional information required to support such devices in PISNs. CSTA only provides a facility for
passing ISDN (or other) specific information to allow, for example, a selection among ISDN devices
sharing the same directory number (bearer capability, subaddress, etc.). Another example, that applies
generally to telecommunications networks (including ISDN and OSI), is specifying the originator for a call

-8-

»ecma

that is established via CSTA. With the current signalling support, each party in a call can act only as a
called party because the “network” is acting to originate the call. This situation has implications for both
the network-to-terminal signalling and any application-level signalling that is significant to the calling party
(e.g., issuing A_Associate).

Devices that are visible or controllable via CSTA are known as CSTA Devices.

CSTA Devices can be either physical devices (such as buttons, lines, trunks, and stations) or logical
devices (such as groups of devices, pilot numbers, and automatic call distribution groups). CSTA Devices
have attributes that allow CSTA to monitor and manipulate them. The attributes of any CSTA Device shall

be:

1.

Device Type - differing types of CSTA Device can be used for various purposes and can be
manipulated and observed differently within CSTA. CSTA Device Types are listed and defined in
6.1.1.4, “Device Categories”.

Media Characteristics - CSTA devices have distinct capabilities and characteristics defined by their
media features. CSTA represents these characteristics by the following attributes.

Media Class: A CSTA Device shall belong to at least one and may belong to more than one
media class. The Media Class can be used in Call Control services to help select a device for a
call or it can be used in call control events to report the media class associated with the call. The
following media classes are defined in CSTA:

Audio - 3.1 KHz audio. Devices in this class are used to make audio calls excluding speech
calls. It includes G3 FAX and facsimile machines.

Data - Devices in this class are used to make digital data calls (both circuit switched and
packet switched). This class includes digital computer interfaces and G4 facsimile
machines.

Image - Devices in this class are used to make digital data calls involving imaging, or high-
speed, circuit-switched data in general. This class includes digital video telephones and
CODEGCs.

Voice - Devices in this class are used to make speech calls. This class includes standard
telephones.

Chat - Devices in this class support calls involving text-based messages that are
exchanged between other devices in the call.

Email - Devices in this class can support receiving calls associated with electronic mail
systems (i.e. a CSTA Call that represents an Email).

Message - Devices in this class support receiving and displaying messages such as Instant
Messages (IM), Short Message Service (SMS), and Multi-Media Service (MMS) messages.
The specific type is not provided.

IM (Instant Message) - Devices in this class support calls involving a text message. This is
a non-interactive call (i.e. only one device involved with the call at one time). This is a
specific type of Message media class associated with Instant Messaging systems.

SMS (Short Message Service) - Devices in this class support calls involving a text
message. This is a non-interactive call (i.e. only one device involved with the call at one
time). This is a specific type of Message media class associated with Short Message
Services systems.

MMS (Multi-Media Message Service) - Devices in this class support calls involving a multi
media text message. This is a non-interactive call (i.e. only one device involved with the call

acma

at one time). This is a specific type of Message media class associated with Multi-Media
Message Services systems.

¢ Other - A class comprising devices not in one of the above classes.

Media Stream Information: The media stream associated with a CSTA Device has attributes
such as Connection Rate, Bit Rate, and Delay Tolerance. This information can be used in
CSTA services to help select the media stream information for a call or to report the media
stream information associated with an existing call.

Protocol Specific Information: Many protocols provide additional information beyond what is
standardized in CSTA to help distinguish devices. CSTA provides a mechanism where protocol
specific information can be passed in CSTA messages to help select a specific device for a call
or to provide additional information about the protocol specific information associated with the
call. This information consists of:

e The type of call control information elements (e.g. ISDN, SIP).

¢ A character string that contains the protocol specific information elements. For example, in
ISDN, the information may include Bearer Capability, Subaddress (for both calling and
called devices), High Layer compatibility, and Low Layer compatibility as defined in ECMA-
143. In another example when SIP protocols are used, the information may include the SIP
header information as defined in IETF RFC 3261.

Refer to 12.2.20, “MediaCallCharacteristics”, for a description of the Media Characteristics that are
used in Call Control services to select devices for a call and in Call Control events to report the media
Characteristics associated with the devices involved with the call.

3. CSTA Device ldentifier - Each device that can be observed and/or manipulated shall be referenced
across the CSTA Service Boundary. To accomplish this, each device shall be identified using a
Device ldentifier.

L]

L]

Throughout this standard, the term Device Identifier shall always mean CSTA Device Identifier.

Device ldentifiers may be static or, only when used in the context of a connection identifier,
dynamically-assigned.

A static Device Identifier shall be stable over time. It shall remain constant and unique between
calls, associations and within both the switching and computing functions. An example of a static
Device Identifier is an ITU-T Rec. E.164 Directory Number.

It may be useful for the Switching Function to convert a Device Identifier to another static form
for use in service interactions. An example, it might be useful to transform a Public Directory
Number into a Private Directory Number. This transformation allows service interactions to be
independent of the identification mechanism and allows reduction in the amount of data
exchanged. This shortened form of Device ldentifier is known as a CSTA Short Form Device
Identifier.

A static Device ldentifier may be used in conjunction with “MediaCallCharacteristics”, as
specified in 12.2.20, “MediaCallCharacteristics”, on page 138, in order to distinguish among
CSTA Devices that share a Device Identifier.

A dynamically-assigned Device ldentifier is temporary (lasting for the duration of a call) and may
be created at any appropriate time. Once a CSTA Device has been included in a call, it may be
desirable to continue to refer to the particular instance of the CSTA Device associated with this
call for manipulation or tracking. A static Device Identifier may not always be sufficient because it
may not be available or because it is too long and cumbersome for efficient use. In these cases
the Switching Function can dynamically assign a Device Identifier as a device reference or

-10 -

»ecma

handle for the duration of the call. Management of the dynamically-assigned Device Identifier is
discussed in 6.1.6.

» The Device Identifier Status indicates if an actual Device Identifier is being provided in a
parameter or the reason why it is not being provided. The set of possible values for the Device
Identifier Status is:

« Provided - A Device Identifier is present.

« Not Known - Indicates that the switching function cannot provide the Device Identifier but
knows that the device exists.

« Not Required - Indicates that the device is not relevant in this case.
« Not Specified - Indicates that the device cannot be specified.

* Restricted - Indicates that the device cannot be specified due to regulatory and/or privacy
reasons.

« The parameter type associated with a particular Device Identifier determines how it is
interpreted, restrictions on its use, and the Device Identifier Statuses that are applicable. These
parameter types (AssociatedCalledDevicelD, AssociatedCallingDevicelD, CallingDevicelD,
CalledDevicelD, DevicelD, RedirectionDevicelD, and SubjectDevicelD) are specified in 12.3,
“Identifier Parameter Types”, on page 145.

« The format of a Device Identifier is specified in Clause 10, “CSTA Device Identifier Formats”.

4. Device State - A CSTA Device itself does not have a state or status directly associated with it. The
elements, components and calls associated with the CSTA Device do have states and statuses
associated with them. The following is the list of these states and statuses associated with a CSTA
Device:

» A connection state is the state of a CSTA Device’s logical element's connection into a call. This
state is associated with Call Control features/services. For more information on connection
states, refer to Clause 6.1.3, “Connection”, beginning on page 49.

e The status of the physical components associated with a physical element of a CSTA Device.
(e.g., the hookswitch status). For more information, refer to Clause 21, “Physical Device
Features”, beginning on page 472.

« The status of the logical device features/services associated with a logical element of a CSTA
Device. (e.g., the forwarding and do not disturb status). For more information, refer to Clause 22,
“Logical Device Features”, beginning on page 522.

5. Device Elements - A CSTA Device represents various types of telephony endpoints in a switching
sub-domain and allows access to telephony services. A CSTA Device can range from a single
endpoint (e.g., station) to a set of associated endpoints that form a group. Each CSTA Device is
represented by its attributes (e.g., identifier, state(s), type) as well as its features/services. These
attributes/features/services are grouped into two categories which are referred to as device
elements. A device element encompasses the control and observation of a specific set of CSTA
Device attributes/features/services. The device elements are: physical element and logical element.

The logical element of a CSTA Device encompasses the set of attributes/features/services (e.g.,
Make Call, Set Forward) that have any association with the control and observation of a call at a
CSTA Device (i.e., connection). The physical element of a CSTA Device encompasses the set of
attributes/feature/services that have any association with physical components of the CSTA Device
that would potentially make up the user interface of the device.

All addressable (i.e., has a single identifier) CSTA Devices consist of one of the following device
element combinations.

-11 -

»ecind

6.1.1.1

Buttons
Speaker B
v Microphone]
Auditory Apparatus

> r T O

Figure 6-2 Logical Element Only

] (A=]
(A)]

Figure 6-3 Physical Element Only

/Buttons /
P

Microphone| <# "~~~

%uditory Apparatus

N

U9)IMSHOOH

Figure 6-4 A Logical and Physical Element

v
ol
¢
] [

represents another device
represents the identifiers for the physical elements
represents the identifiers for the logical elements

represents an appearance of a logical element

<>

indicates that there is an interaction and/or association between the elements or components of an
element.

For example, a “plain old telephone set” (POTS) consists of a logical and physical element. A
computing function learns about the devices, their elements, and their associated
attributes\features\services in a switching sub-domain by using the capabilities exchange services
(refer to 13.1 beginning on page 157). The following sections describes the device elements and the
device attributes/features/services that are associated with the elements in detail.

Physical Element

The physical element represents the attributes of the physical components and their associated features/
services that make up the user interface of a device (e.g., the components of a telephone set). A physical
component at a CSTA Device can be a piece of hardware or a virtual (e.g., software) representation of a

-12 -

»ecma

61111

piece of hardware. For example, a set of buttons on a device (i.e., physical components of the device)
could be comprised of a piece of hardware with 12 buttons and a switching function software
representation of 12 more buttons. As a result, the device has a set of 24 buttons associated with its
physical element.

The combinations of physical components associated with the physical element are switching function
specific. The following features/services are controlled and observed through the physical element:

« The Physical Device features/services, such as Button Press, Get/Set Hookswitch Status, and Get/
Set Speaker Volume.

» The I/O Services such as Start Data Path and Send Data (when applied to the physical element of a
device).

Note that these features/services also include the associated events and monitoring of these events.

The physical element of a device is observed and/or controlled within the switching function through an
assigned Device Identifier.

Note that if the device is a combination of logical and physical elements, the assigned Device Identifier is
the same for both elements.

In order for the physical components to interact or be associated with calls at the device, the device shall
have a logical device element (for more details, see 6.1.1.2, “Logical Element”) and/or some
association(s) with a logical element(s) from another device(s) (for more details, see 6.1.1.3, “Device
Configurations”). The physical components interact with calls through these logical device element(s) but
it is device and switching function specific as to how these components actually interact and are
associated with the calls.

The following sections describe the physical components that can be associated with the physical
element of the device. All physical components shall be controlled and observed in conjunction with the
physical element (i.e., associated with the physical element’s Device Identifier).

Auditory Apparatus

An auditory apparatus is a component which is used to convert electronic signals into voice/speech (i.e.,
a speaker) and/or convert voice/speech into electronic signals (i.e., a microphone) but at a minimum shall
have either a speaker or a microphone. A physical element can have several auditory apparatuses
associated with it. Each auditory apparatus can be used independent of each other. An auditory
apparatus has several attributes which can be controlled and observed by a computing function. The
following are those attributes:

1. Auditory Apparatus type - There are several types of auditory apparatuses. Each type representing a
different physical configuration and/or function. The following is the list of auditory apparatus types:

a. Handset - An auditory apparatus that is held in a person’s hand and contains a microphone and
speaker.

b. Headset - An auditory apparatus that is worn on a person’s head and contains a microphone and
speaker.

c. Speakerphone - An auditory apparatus that does not require a person’s body to come into contact
with the apparatus and contains a microphone and speaker.

d. Speaker-only phone - A Speakerphone without a microphone.
e. Microphone-only- A type that provides only a microphone.
f. Other - An auditory apparatus that is unique to the given switching function.

2. Auditory Apparatus Identifier - Each auditory apparatus that can be observed and/or controlled within
the switching function is referenced using an assigned identifier. The auditory apparatus identifiers
associated with a given physical element’s Device Identifier are unique.This identifier is used to

-13 -

acma

6.1.1.1.2

6.1.1.1.3

control and observe all auditory apparatus attributes except the hookswitch which is associated with
the apparatus.

3. Microphone - The auditory apparatus may or may not have a microphone. If a microphone is present
at the auditory apparatus, then there are two features of the microphone that may or may not be
controlled (i.e., settable) and observed (i.e., readable).

a. Gain - This is the level at which the microphone is generating the electronic signal. For more
details, refer to the definition of the microphoneGainValue parameter in associated services and
events.

b. Mute - This is the capability to temporarily disable the microphone. For more details, refer to the
definition of the microphoneMute parameter in associated services and events.

Both of these features are controlled and observed using the auditory apparatus identifier.

4. Speaker - The auditory apparatus may or may not have a speaker. If a speaker is present at the
auditory apparatus, then there are two features of the speaker that may or may not be controlled
(i.e., settable) and observed (i.e., readable).

a. Volume - This is the level at which the speaker is boosting the electronic signal when generating
the associated voice sound waves. For more details, refer to the definition of the
speakerVolumeValue parameter in associated services and events.

b. Mute - This is the capability to temporarily disable the speaker. For more details, refer to the
definition of the speakerMute parameter in associated services and events.

Both of these features are control and observed using the auditory apparatus identifier.

5. Hookswitch association - This identifies the particular hookswitch that is used to activate (i.e., put
into use) and deactivate (i.e., remove from use) the auditory apparatus. It also indicates, if the
particular hookswitch can be controlled (i.e., settable) and observed. For more details on
hookswitches, refer to associated services and events.

Hookswitch

A hookswitch is a component which is used to activate (i.e., put into use or off-hook) or deactivate (i.e.,
remove from use or on-hook) an auditory apparatus(es). When a hookswitch is off-hook, it enables the
auditory apparatus(es) to transmit and receive the electronic signals associated with sound, and when it
is on-hook, this capability is disabled. A physical element can have several hookswitches associated with
it. Each hookswitch can be used independently of each other. A hookswitch has one attribute which can
be controlled and observed by a computing function. This attribute is the hookswitch identifier. This
identifier is assigned by the switching function. The hookswitch identifiers associated with a given
physical element’s Device Identifier are unique. This identifier is used to control and observe the status of
the particular hookswitch (i.e., on-hook, off-hook).

Button

A button is a component which executes a specific feature/service that is assigned to it. The most
common implementation of this component, is a piece of hardware that is pressed and released, thereby
executing the feature/service assigned to it (e.g., each of the number buttons on a station). However, an
implementation can use any component that can produce a similar behaviour. A button can also have the
capability of toggling between two settings of a feature/service (e.g., enabling and disabling Do Not
Disturb, that is you press the button once, it enables the Do Not Disturb feature/service, and press again,
it disables the feature/service). The button can also have the capability of looping through a series of
features/services. Almost any feature/service or set of features/services can be assigned to a button, but
generally a switching function makes visible buttons only with features/services that are not available
through the components/attributes/features/services defined in this Standard. A button can also be used
to represent another physical component (e.g., a hookswitch). A physical element can have many buttons

-14 -

»ecma

associated with it. Each button can be used independently of each other. A button has the following
attributes which can be controlled and observed by the computing function:

1.

5.

Button Identifier - Each button that can be observed and/or controlled within the switching function is
referenced using an assigned identifier. The button identifiers associated with a given physical
element’s Device Identifier are unique. This identifier is used to control and observe all other button
attributes.

Button Label - This is a label by which people interacting with the physical device refer to a given
button. This label is a character string which is retained by the switching function. This attribute can
also be changed (if supported) by the computing function. The meaning of a Button Label is specific
to the users of a particular device and changing it does not change the function of the button.

Button Function - This is a feature which can be assigned by the switching function to describe the
function associated with a given button. The switching function may reassign the functionality of a
button and change this attribute as required (in response to other button presses, for example) but it
may not be changed directly by the computing function.

Button Associated Number - This is a diallable digits format Device Identifier which is associated with
the feature/service assigned to the button. This Device ldentifier is used by the feature/service when
it is executed by the button being pressed. This attribute is optional and only applies to buttons that
have some form of associated number. This Device ldentifier is initially assigned by the switching
function and can be changed (if supported) at any time by either the switching or computing function.

Button Press Indicator - This indicates if the button can be pressed via the Button Press service.

6.1.1.1.4 Lamp

A lamp is a component that represents (i.e., indicates), for example, the status of, for example, a feature/
service, physical component, logical device element or other CSTA device. The most common
implementation of this component is a piece of hardware that emits light. However, an implementation
can use any component that can produce a similar behaviour (e.g,. an icon presented on a display). A
physical element can have many lamps associated with it. Each lamp can be used independently of each
other. A lamp has several attributes which can be controlled and observed by the computing function. The
following are those attributes:

1.

Lamp Identifier - Each lamp that can be observed and/or controlled within the switching function is
referenced using an assigned identifier. The lamp identifiers associated with a given physical
element’s Device Identifier are unique.This identifier is used to control and observe all other lamp
attributes.

Lamp Label - This is a character string which is assigned by the switching function to describe the
feature or service’s status associated with this lamp. This attribute cannot be changed by the
computing function.The meaning of the Lamp Label attribute is switching function specific.

Lamp Mode - This is the output of the lamp which is used to indicate the status of the (feature/
service) or physical component. The output values are represented by the various ways light can be
produced from a lamp. This output can be changed at any time by either the switching or computing
function. For more detalils, refer to definition of the lampMode parameter.

Lamp Brightness - This attribute indicates the visible brightness of the lamp when it is on. This
attribute can be changed by the switching function or by the computing function. For more details,
refer to the definition of the lampBrightness parameter.

Lamp Color - This attribute is an additional characteristic of the lamp which helps distinguish it from
other lamps. This attribute can only be changed by the switching function. For more details, refer to
the definition of the lampColor parameter.

-15 -

acma

6.

Button Association - This identifies a button that is associated with the lamp. The lamp can be used
to represent either the status of the feature/service associated with the button or to represent the
status of the toggle sequence.

6.1.1.1.5 Ringer
A ringer is a component associated with the physical element that provides indication that a device is
being rung. There may be one or more ringers associated with a device.

A ringer has attributes that can be controlled and observed by a computing function. The following is a list
of those attributes:

1.

Ringer Identifier - Each ringer that can be observed and/or controlled within the switching function is
referenced using an assigned identifier. The ringer identifiers associated with a given physical
element’s Device Identifier are unique. This identifier is used to control and observe all ringer
attributes associated with the device.

Ring Mode - This attribute describes if the ringer is engaged in a ringing cycle. It will remain ringing
for the entire ringing cycle (e.g. across consecutive instances of a ringing pattern). Typically only one
ringer on a physical element can be rung at one time.

Ring Count - This attribute describes the number of ring cycles (instances of ring pattern) that the
ringer has completed. This attribute is set to 0 immediately before the first ring cycle starts. Note that
this is used to query the most recent ring count even after ringing has ceased.

Ring Pattern - This attribute describes the type of Ring Pattern associated with a ringer. Each
individual Ring Pattern cycle may consist of zero or more periods of audible ringing followed by a
silent phase. The Ring pattern may be used to help audibly distinguish the types of calls at a device
or to uniquely identify a ringer. The meaning of the Ring Pattern is switching function specific.

Ring Volume - This is the level at which the ringer is set to ring. This information is associated with
the ringer until it is reset by the switching function or until it is changed via the Set Ringer Status
service.

6.1.1.1.6 Display
A display is a component which presents a two dimensional array of characters associated with the
physical element. A physical element can have several displays. A display may be real or virtual; that is it
may or may not actually be present on the physical device itself. Displays have eight attributes as
visualized in Figure 6-5, “Display Attributes”:

1.

2
3.
4

Display Identifier - To identify a specific display on a physical device.
Logical Rows - The number of rows on the logical display.
Logical Columns - The number of columns on the logical display.

Physical Rows - The number of rows on the physical display. This number is always smaller or equal
to Logical Rows.

Physical Columns - The number of columns on the physical display. This number is always smaller
or equal to Logical Columns.

Physical Base - The location of the first character of the physical display expressed as
(LogicalRowNbr,LogicalColumnNbr) and identified in Figure 6-5 as (pbr,pbc). Note that the top-left
most position in the logical display is defined as (0,0).

Character Set - Normally ASCII, but may be also be Unicode or a proprietary character set used by
the switching function. This attribute is fixed for a given display.

Contents - A character string which represents the contents of the logical display. Spaces are always
present so the size of this string is always the product of the number of logical rows and logical
columns. The contents can be observed and/or set (if supported) by the computing function. When

-16 -

~ecna

setting the value of the Contents, an offset (starting point in logical display) and a length field
(number of characters to be set) shall be given).

The following figure visualizes these attributes further:

Figure 6-5 Display Attributes

Logical

Columns Physical Display Logical Display
 —
0 pbe Physical
0 Columns ‘
Logical [
Rows pbt
Physical
Rows v
«
mmmmmnas LLLLELETT STP TR
<
e T T L L L LLL LR E E T
|
O T T T e e L L LI N L EE L T TR L IR LY
CELEEREREEEEREY = = Order in which characters from Contents

are located on the logical display

PB = Physical Base
Located on logical display at location (pbr,pbc)

6.1.1.2 Logical Element

A logical element is the part of a device that is used to manage and interact with calls at a device. This
element represents the isochronous media stream channels (e.g., ISDN bearer channels) and associated
call handling facilities that are used by the device when involved in a call (i.e.,via a connection). If a
device also has a physical element, the logical element may interact with the physical element’s
components in order to convey call information (e.g., via lamps) to the user of the device, to provide/
manage the media stream data of the call (e.g., via an auditory apparatus) for the user of the device, and
to allow the user of the device to manage the calls (e.g., via buttons). The implementation of this
interaction is device and switching function specific. The following are the call and call-related features/
services that are controlled and observed through the logical element itself:

» Logical Device features/services which are used to indirectly control calls at the device such as Get/
Set Forwarding, Get/Set Do Not Disturb and Get/Set Auto Answer.

Note that these features/services also include the associated events and monitoring of these events.

The logical element of a device is observed and/or controlled within the switching function through an
assigned Device Identifier.

-17 -

»ecind

6.1.1.2.1

6.1.1.3

Note that if the device is a combination of logical and physical elements, the assigned Device ldentifier is
the same for both elements.

The following sections describe the attributes and components of the logical element. These attributes/
component shall be controlled and observed in conjunction with the logical element (i.e., associated with
the logical element’s Device ldentifier).

Appearance

An appearance is a receptor which is used to connect with at most a single call at the device. A logical
element consists of one or more appearances. Appearances are also sometimes called call appearances.
The number of appearances that a logical element can have is switching function and device specific.
Changes in the number of addressable appearances for a logical element are reflected by the capabilities
exchange services (13.1 beginning on page 157). Each appearance can be used independently. The
following are the call and call-related features/services that are controlled and observed through an
appearance for a particular call:

« Call Control features/services such as Make Call, Deflect Call, Answer Call.

« Call Associated features/services such as Associate Data, Generate DTMF, Generate Telephony
Tones.

« Routeing Services such as Route Request, Route Select and Route End.

* Media Stream Access such as Attach Media Service, and Detach Media Service.

¢ 1/O Services such as Start Data Path and Send Data (when applied to logical elements of a device.)
Note that these features/services also include the associated events and monitoring of these events.
An appearance has several attributes. The following are those attributes:

1. Addressability - The addressability of an appearance refers to whether or not the switching function
is explicitly representing the appearance to the computing function.

a. Addressable - An appearance is addressable if it can be explicitly referenced by the computing
function at any time with or without the involvement in a call, through a CSTA static device
identifier. Refer to Clause 10, “CSTA Device ldentifier Formats” for a description of how
addressable appearances are referenced.

b. Non-addressable - An appearance is non-addressable if it can only be referenced, when it is
involved with a call, through a CSTA connection identifier. In this case, the logical element
dynamically creates and destroys appearances based on the call activity, call capabilities, and
features/services of the device. Once the appearance is created (i.e., associated with a call), the
corresponding Connection Identifier shall be used to control and observe the appearance. For
example, when a call is presented to the device, the logical element creates an appearance to
handle the call.

2. Appearance Type - The type of appearance is based on its relationship with other devices. The type
of appearance determines the functionality and behaviour associated with the logical element of the
device. There are two types of appearances: Standard and Bridged Appearances.

Refer to Annex A for a complete description of the types of appearances and their associated behaviour.
Device Configurations

A device configuration describes the arrangement of the various elements and appearances that can be
directly associated with a given device. Multiple device configurations may be formed from the possible
combinations of physical elements, logical elements, and different appearance types.

Device configurations are described in terms of a specific device configuration for a particular device:

1. Device’s element combination - This indicates whether the device has a physical element only, a
logical element only or both a logical and physical element.

-18 -

»ecma

6.1.1.3.1

2. Other devices using the physical element - This indicates the list of devices (i.e., their logical
elements) that are using the physical element of the base device.

3. Other devices using the logical element - This indicates the list of devices (i.e., their physical
elements) that are using the logical element of the base device.

4. The logical element’'s appearance addressability - This is an attribute of the appearances of the
logical element of the base device (if the logical element is present).

5. The logical element's appearance type - This is an attribute of the appearances of the logical
element of the base device (if the logical element is present).

6. The number of appearances associated with the logical element - This is an attribute of the logical
element of the base device (if the logical element is present).

As a set, these attributes describe the device configuration for a specific device. The following sections
illustrate typical examples of device configurations that can exist in a switching sub-domain.

Note that in the following examples, where physical and logical elements form part of the same device,
the application of a suffix number to the identifying letter identifies that they are parts of the same device
(e.g. L1, P1 are a single device; L1, P2 are elements from different devices).

Logical Element Only

This device configuration has only one logical element (e.g., some Park devices). The following identify
the attributes of this device configuration:

» Device’s element combination - logical element only (L1)

» Other devices using the physical element - None

» Other devices using the logical element - None

* The logical element’s appearance addressability - Non-addressable
* The logical element’s appearance type - Selected-standard

« The number of appearances associated with the logical element - unlimited (switching function based
limits)
Figure 6-6 is a diagram of a logical element only device configuration.

Figure 6-6 Logical Element Only Device Configuration

L1

@

6.1.1.3.2 Single Physical and Logical Element

A Single Physical and Logical Element device configuration consists of a single physical element of the
device associated with a single logical element of the device that contains non-addressable standard
appearances. This device configuration could be used to model a basic telephone station device (e.g., a
Plain Old Telephone Service (POTS) telephone or a featured telephone). The following identify the
attributes of this device configuration:

» Device’s element combination - both a logical and physical element (L1/P1)
» Other devices using the physical element - None

« Other devices using the logical element - None

-19 -

acma

The logical element’s appearance addressability - Non-addressable
The logical element’s appearance type - Selected-standard

The number of appearances associated with the logical element - unlimited (switching function based
limits)

Figure 6-7 is a diagram of this device configuration.

Figure 6-7 Single Physical and Logical Element Device Configuration (One Device)

P1

L1

©
—

In this figure, the labels “L” and “P” represent the logical and physical elements of the device respectively.

Another variation of the single logical and physical element device configuration involves two different
devices - one with a logical element only and one with a physical element only - that are associated with
each other. From the perspective of the physical device element P1, the device configuration in this
example can be represented as follows:

Device’s element combination - physical element only (P1)
Other devices using the physical element - one device (L2)
Other devices using the logical element - None

The logical element’s appearance addressability - N/A

The logical element’s appearance type - N/A

The number of appearances associated with the logical element - N/A

Figure 6-8 is a diagram of this device configuration.

Figure 6-8 Single Physical and Logical Device Configuration (two devices)

EhE

-20 -

»ecma

6.1.1.3.3 Multiple Logical Elements
A multiple logical elements device configuration consists of a single physical element associated with
multiple logical elements containing standard appearances. A multi-line telephone station could be
modeled using this device configuration. The following identify the attributes of this device configuration:

« Device’s element combination - physical and logical element combination (L1/P1)

« Other devices using the physical element - two devices (L2,L3)

« Other devices using the logical element - None

« The logical element’s appearance addressability - non-addressable

« The logical element’s appearance type - Selected-standard

« The number of appearances associated with the logical element - unlimited (switching function based
limits)

None of the logical elements in this device configuration need to be part of the same device as the

physical element.

Multiple logical elements device configuration represents a single physical element (a telephone set) in a
telephone system that supports only one appearance per logical element but has access to multiple calls
simultaneously.

Figure 6-9 is a diagram of a multiple logical elements device configuration.

Figure 6-9 Multiple Logical Elements Device Configuration

P1

\
L1 L2 L3
@@L@j
6.1.1.3.4 Multiple Appearance

A multiple appearance device configuration consists of single physical element and a single logical
element containing two or more addressable appearances. Multiple appearance device configurations are
another way to represent a single telephone set that has access to multiple calls simultaneously. This
approach could be used in a telephone system that supports addressable standard appearances. This
device configuration is sometimes called a call appearance station. The following identify the attributes of
this device configuration:

» Device’s element combination - physical and logical element combination (L1/P1)
» Other devices using the physical element - None

» Other devices using the logical element - None

* The logical element’s appearance addressability - addressable

* The logical element’s appearance type - Selected-standard

» The number of appearances associated with the logical element - 3 (A1, A2, A3)

-21 -

»ecind

Figure 6-10 is a diagram of a Multiple Appearance Device Configuration.

Figure 6-10 Multiple Appearance Device Configuration

P1

L1

6.1.1.3.5 Bridged
A bridged device configuration involves bridged appearances. The characteristics of a bridged device
configuration depends upon whether the device configuration is for a physical or logical element.

In the example presented in Figure 6-11, the device configuration shown is for logical element L3 which
has bridged appearances. The following identify the attributes of this device configuration:

Device’s element combination - logical element only (L3)

Other devices using the physical element - None

Other devices using the logical element - two devices (P1,P2)

The logical element’s appearance addressability - addressable

The logical element’s appearance type - Independent-shared-bridged

The number of appearances associated with the logical element - 2 (Al for P1 and A2 for P2)

Figure 6-11 is a diagram of a Bridged Device Configuration.

Figure 6-11 Bridged Device Configuration

PL | P2

L3

The device configuration for the physical element P1 in this example, is shown in Figure 6-12. In P1's
device configuration there are only two device elements rather than three; one is the physical element
(P1) and one is the logical element which has two addressable bridged appearances. The following
identify the attributes of this device configuration:

L]

Device’s element combination - physical element only (P1)

-22-

»ecma

» Other devices using the physical element - one device (L3 using appearance Al)
» Other devices using the logical element - None

* The logical element’s appearance addressability - N/A

» The logical element’s appearance type - N/A

* The number of appearances associated with the logical element - N/A

Figure 6-12 is a diagram of a Bridged Device Configuration.

Figure 6-12 Bridged Device Configuration

|

—
w

Bt 2
=

6.1.1.3.6 Hybrid
A physical element associated with multiple logical elements that each have different types of
appearances has a hybrid device configuration.

An arbitrary example of a hybrid device configuration is shown in Figure 6-13. This example consists of
one physical element and three logical elements.

» device 1 has both a physical element (P1) and a logical element (L1) containing two addressable
standard appearances

« device 2 has only a logical element (L2) with non-addressable standard appearances

« device 3 has only a logical element (L3) with three addressable bridged appearances
The following identify the attributes of this device configuration:

« Device’s element combination - logical and physical element (L1/P1)

« Other devices using the physical element - two devices (L2, L3 using appearances Al andA2)
e Other devices using the logical element - None

« The logical element’s appearance addressability - addressable

« The logical element’s appearance type - Selected-standard

« The number of appearances associated with the logical element - 3 (A1, A2, A3)

Figure 6-13 is a diagram of a Hybrid Device Configuration.

»ecind

6.1.1.4

6.1.1.4.1

6.1.1.4.2

Figure 6-13 Hybrid Device Configuration

” L2 QA
uaa@[ﬁﬁwaaé

_

Device Categories

The device category of a particular device provides a generic indication of the device’s behaviour and
configuration. The computing function should use the device category along with other information
provided by the capabilities exchange services to model a given device.

Station Device Category

This category of device can range from a basic “Plain Old Telephone Set” (POTS) device to a very
complex feature telephone device. Station devices can be represented by any single device configuration
type, or more commonly, as a hybrid of two or more different device configuration types. The physical
component, if present, may have any combination of components. The logical element(s) may have any
number of appearances appropriate for the type of device configuration.

Network Interface Device Category

A Network Interface Device is a category of device which is within the switching sub-domain and is
connected to another telephone network.

A given switching sub-domain is connected to another telephone network(s) (which may or may not be
thought of as other switching sub-domains) through one or more Network Interface Devices.

To indicate when a given call involves a Network Interface Device and an external device, the switching
function provides a Network Reached event to the computing function specifying what Network Interface
device is being used (if known), and what subsequent call-related information is subject to the capabilities
of the network being used.

The following are examples which illustrate the use of Network Interface Devices.

In Figure 6-14, the switching sub-domain is centered on a PBX. The Network Interface Devices are
distinct devices and are commonly referred to as “trunks.”

-24 -

~ecna

Figure 6-14 Trunks As Network Interface Devices

Co

.:':: FEX --_'=_
H T D4 E
. o)

SWITCHING £
SUB DOMAIN

other dewices —_— -

In Figure 6-15, the switching sub-domain is an individual telephone station connected directly to the
public telephone network. In this example, the two Network Interface Devices represent two Central

Office lines.
Figure 6-15 Central Office Lines As Network Interface Devices

Co

other devices Metwork Interface Devices

6.1.1.4.3 ACD Device Category
An ACD (Automatic Call Distributor) is a device that distributes calls. An ACD device only consists of the

distribution mechanism and may be associated with the devices to which the mechanism distributes calls.
A dynamic process, Agent Log On allows an association between an ACD device and a distributed-to
device to be created, removed and changed at anytime. Refer to 6.1.1.6, “Agent”, on page 38 for a
description of Agent and the Agent Log On Process.

An ACD device is represented as a logical element only device configuration. When a call is presented to
an ACD device, a connection in the entering distribution mode of the alerting state is created. Calls that
are presented to the ACD device may be queued before they are distributed. The conditions under which
the call is queued are switching function specific. Many calls can be simultaneously enqueued, pending

their distribution. The ACD device can, for example:

 distribute a call to an agent that had logged on to the ACD device

« distribute a call to an agent that had logged on to an ACD Group

 distribute a call to another ACD device (as well as any other type of internal or external device)

e queue a call to an ACD Group, or to resources that provide message playing, message

prompting, voice response interaction, etc.

There are two ACD device models - visible ACD-related devices and non-visible ACD-related devices
(note that an ACD device can support one or both models):

« Visible ACD-Related Devices - In this model, the ACD device, and the devices (e.g., voice
announcement units, devices the call may queue to, other ACD devices, ACD groups, etc.) that can
interact with the ACD device while the call is being handled by the ACD device, can be monitored/

-25-

»ecind

6.1.1.4.4

6.1.1.4.5

controlled and are represented uniquely by the switching function with their own connection when
associated with a call.

¢ Non-Visible ACD-Related Devices - In this model, the ACD device, and the devices (e.g., voice
announcement units, devices the call may queue to, other ACD devices, ACD groups) that can
interact with the ACD device while the call is being handled by the ACD device, are represented by
the switching function using a single connection at the ACD device. Neither these devices, which
interact with the ACD device, nor their connections to calls queued at the ACD device can be
monitored or controlled. Note that when a single connection is used in this manner, all relationships
between the call and the ACD device are terminated when the call is no longer part of the ACD
device (diverted from the device, for example).

Park Device Category

A park device category is a device that is exclusively used by the switching function to park calls on
behalf of other devices in the switching sub-domain. These calls, once parked, may be retrieved by a
device in the switching sub-domain. The number of calls that can be parked at one of these devices is
switching function specific. These devices can be represented by either a single physical and logical
elements device configuration or a logical element only device configuration. The visibility of these
devices within the switching sub-domain is switching function specific.

Note that calls may be parked at devices other than a Park device.

Group Device Category

A group device models a relationship between CSTA devices that is characterized by the fact that these
devices share a common device identifier. This relationship can be permanent or temporary. The group
model differs from the bridged appearances model in that the relationship is between devices’ logical
elements while for bridged appearances the relationship is between a logical element and a physical
element.

The group device has a logical element that has relationships with the logical elements of the devices that
are members of this group. The group device is referenced by the group device identifier.

A group device may have a distribution mechanism. The distribution mechanism may support queuing.
When a group device has a distribution mechanism, the group device identifier represents both the
distribution mechanism and the member devices.

Group Device Attributes

The attributes of a group device are (a group device may have more than one of these attributes (e.g., a
hunt and pick group device):

* Hunt - The hunt attribute characterizes a group device (also called hunt group) that has the capability
to distribute calls to the member devices according to different selection modes (e.g., cyclical,
sequential, longest idle time). The association between the group device and the member devices is
always fixed by the switching function. A hunt group may have the capability to queue these calls
before they are distributed.

« Pick - The pick attribute characterizes a group device (also called pick group) that represents a
collection of devices that can be used with the Group Pickup Call service. When a call is delivered to
a device in the pick group, other devices in the group can be used to answer the particular call (i.e.,
picking the call). When the call is picked, it is diverted from the originally delivered device and
connected to the device which picked the call. The details associated with the pick group feature are
documented in the Group Pickup Call service. Only devices associated with the pick group device
can pick a call from the given group unless the pick group device is addressable within the switching
sub-domain and the pick group device is configured to allow devices outside the group to pick calls.
The addressability of the pick device within the switching sub-domain is switching function specific. If
the pick group device is addressable, its Device Identifier can only be used in conjunction with the

-26 -

»ecma

Group Pickup Call service (i.e. the computing function has limited control and can not observe the
pick group device). The number of devices that are associated with the pick group device is switching
function and device specific. The association between the pick group device and the other devices is
not visible within the switching sub-domain (i.e., does not have an explicit representation). The
association between the pick group device and the other devices is fixed by the switching function.
Changes in the number of devices associated with the pick group device are reflected by the
capabilities exchange services.

« ACD - The ACD attribute characterizes a group device (also called an ACD group) that has a
distribution mechanism similar to a hunt group. In addition, this group device represents an explicit
association between the distribution mechanism (the ACD) and the distributed-to-devices. A dynamic
process, Agent Log On allows an association between an ACD group and the distributed-to devices
to be created, removed and changed at anytime. Refer to 6.1.1.6, “Agent”, on page 38 for a
description of Agent and the Agent Log On Process.

» User - The User attribute characterizes a group device whose member devices are associated with a
user. The association between the group device and the member devices can be fixed (e.g., through
provisioning) or can be dynamic (e.g. SIP registration procedures).

* Agent - The Agent attribute characterizes a group device whose member devices are associated with
a user via the log in procedures described in 6.1.1.6, “Agent”, on page 38.

« Other - The Other attribute characterizes a group device whose characteristics are switching function-
dependent.

Group Device and Monitoring

Monitoring of a group device in which the group device includes a distribution mechanism may follow
either the group inclusive or the group exclusive model. The switching function may support either model,
or both models simultaneously (with individual group devices supporting either the inclusive or exclusive
model). The model(s) supported by a switching function is indicated by the Get Switching Function
Capabilities service.

In the group inclusive model, the scope of a monitor on the group device includes the distribution
mechanism and all member devices. In the group exclusive model, the scope of the monitor on the group
device includes only the distribution mechanism.

The events reported to the monitor of a group device are the same as those reported to monitors of the
individual member devices, with the following exceptions:

« A single Monitor Start service request is set on the group device identifier.

« The events for the member devices, if they are in the scope of the monitor, are reported with the
cross reference identifier of the monitor set on the group device.

« When an incoming call is received, the called device represents the group device and the subject
device (e.g., alerting device) represents the member device.

In addition, if the group device supports a distribution mechanism, all events reported for the call when it
is present at the distribution mechanism (e.g., queued), are reported with a connection identifier
consisting of the call identifier and the group device identifier. When the call leaves the distribution
mechanism to be delivered to a member device, a Diverted event is generated.

Some services applied to the group device are applied to all member devices of the group device (e.g.,
Set Agent State). This capability is indicated by the capabilities exchange services.

-27-

acma

6.1.1.4.6

6.1.1.4.7

Monitoring a User

A user can be represented as a user group device. When a user group device is monitored all members
of the user group device are included in the scope of the monitor (group inclusive model).

A device can become a member of the user group device through provisioning or by dynamic association.

For example a URI may be used to represent a user (in SIP this is called a user’s Address of Record
(AORY)). CSTA can model this user as a user group device and represent the user’'s AOR using the CSTA
URI devicelD format.

When a device registers with a user (using SIP registration procedures, for example), it becomes
associated with the user through the user’'s AOR. In CSTA, this device becomes a member of monitored
user’s group device. When the user group device is monitored, call and/or device activity at the device
(depending upon the parameters in the Monitor Start service request) are reported through the user group
device monitor.

Since there can be multiple (SIP) devices registered for the same user, the user group device can contain
multiple members.

The CSTA capability exchange services can be used to obtain the members of the user group device.
Routeing Device Category
A Routeing Device is a device that assists in the routeing of calls.

Refer to 6.7.8, “Routeing Services” for a description of how a Routeing Device is used with CSTA
Routeing services.

Voice Unit Device Category

A Voice Unit device allows messages consisting of voice stream data to be created, manipulated, played
to a Connection, or recorded from a Connection. A Voice Unit device can be observed and controlled
using the CSTA Voice services (Clause 26, “Voice Services & Events”, on page 615) and a state model
as shown in Figure 6-16, “Voice Unit Operational Model". A Voice Unit device could be used to implement
a voice mail system.

A Voice Unit device may be implemented either as a device as part of the Switching Sub-Domain or as a
device as part of the Special Resource Sub-Domain.

A Connection Identifier is used to indicate the call that the Voice Unit device relates to a message.
Typically the Voice Unit device will record some portion of the call or play a message as some portion of a
call. There are some Voice services (e.g., Delete Message and Concatenate Message) that deal with the
control of messages and do not require an interaction with a call.

A globally uniqgue Message ldentifier is used to allow manipulation of messages, many of which survive
the life of multiple calls.

A Voice Unit state is a state that a Voice Unit device may take in relating a call with a message. It relates
a call to its message in terms of playing, recording, pausing, suspending, changing playback speed, etc.
Voice Units may have several states concurrently with respect to different calls and messages. Voice Unit
states shall be reported by Voice Event Reports. A typical transition model for Voice Unit states is shown
in the following figure.

-28 -

recina

next
message

-,

Set Speed

Set Speed

Speed "~
Level
Volume

Suspend

Figure 6-16 Voice Unit Operational Model
Speed

Volume, \\‘ Level

/

\Ifolurlne
eve
Speed Yo

Suspend

Play Record

Position

A depicts an

| event representing
! a characteristic
|

Set Speed Position

Speed
change Level
Volume

In Figure 6-16, “Voice Unit Operational Model”, the states (circles) presented comprise the CSTA Voice
Unit state set. Arrows represent transitions between states and show the typical states that may be
entered from a given state. These transitions form the basis for providing Voice Event Reports when they
occur. The circular transitions show the effects of the Reposition and Set Speed Services. The following

states are defined:
Stop

Play

Suspend Play

Record

Suspend Record

Review

the state where a call and a message are not currently interacting.
the state where a message delivers its voice stream data to a call.

the state where a message that was in the Play state is temporarily
suspended in its delivery. This state (rather than Stop) is entered when it the
message is intended to be continued from its current position.

the state where a message is created from the voice stream data in a call.

the state where a message that was in the record state is temporarily
suspended from recording. This state (rather than Stop) is entered when
recording is intended to be continued from its current position.

The state where a message that was in the Suspend Record state delivers
recorded voice stream data back to the call. This allows the party who is
creating the message to examine the voice stream data recorded so far.

-29-

acma

6.1.1.4.8

6.1.1.4.9

Generic Interactive Voice Device Category
Interactive Voice Devices (IVDs) model Speech/DTMF input and speech output processing in CSTA. A
Connection identifier is used to indicate the call the IVD is interacting with.

A Device Identifier is used to indicate an Interactive Voice device. Typically, an input IVD captures the
voice and converts it into a textual description. The conversion is based on a collection of rules herein
called the grammar. Similarly, an output IVD produces voice based on a textual description generated by
the Computing Function. An IVD can coordinate the playback of multiple voice outputs.

Interactive Voice Devices are call-wide in that the behaviour of an IVD can be affected by other IVDs
connected to the same call. For example, the Computing Function can delegate an input IVD to
automatically cut off speech output to facilitate the “barge-in” effect (Clause 6.1.1.4.11, “Prompt
Interactive Voice Device Category”, on page 33), and one input IVD can reset or prevent timeout for other
input IVDs (Clause 6.1.1.4.9, “Listener Interactive Voice Device Category”, on page 30 and Clause
6.1.1.4.10, “DTMF Interactive Voice Device Category”, on page 32). This Standard specifies the functional
requirements of the call-wide behaviour for Interactive Voice Devices.

Because of their interactive nature, interactive voice devices are typically monitored so that events can be
delivered to Computing Function in a timely fashion.

Interactive Voice Devices are controlled and observed using the services and events specified in Clause
26, “Voice Services & Events”, on page 615.

A single Interactive Voice Device can contain multiple interactive voice resources that share a single
connection. Each of these resources is individually addressable through a resource identifier.

A Generic Interactive Voice Device (or Generic IVD) has one or more resources that are involved with
Speech and/or DTMF processing. It may include functionality of a Listener, DTMF, Prompt, Prompt
Queue, or a Message Interactive Voice Device. For example Listener and DTMF resources may be
combined to form a type of “input” interactive voice device.

A Generic IVD and all other types of IVDs may be implemented either as a device as part of the Switching
Sub-Domain or as a device as part of the Special Resource Sub-Domain.

The following sections describe specific types of Interactive Voice Devices specified in this Standard.
Listener Interactive Voice Device Category

A Listener Interactive Voice Device (or Listener IVD) that has one or more resources that are involved
only with processing speech input.

Tasks that can be performed by a Listener IVD include:

¢ speech recognition: converts speech into a textual transcription. The result is often accompanied by a
confidence score that indicates how trustworthy the transcript is.

e utterance verification: validates speech against a given transcription. In the case where the
transcription is not provided a priori, a speech recognition stage usually precedes the verification
process.

e speaker recognition: identify the speech from a speaker database. As in the case of speech
recognition, the result is often accompanied by a confidence score. The word sequence of the
utterance spoken can be known or unknown to the Computing Function.

« speaker verification: validates whether a speech waveform is indeed produced by a given target. The
word sequence of the utterance spoken can be known or unknown.

« speaker enrollment: allows speech recognition to adapt to a speaker's voice, or enroll a speaker's
voice signature for verification.

A Listener IVD may perform one or more tasks listed above and may provide options to capture and
return the audio alongside with the textual outcome.

-30-

»ecma

Figure 6-17, “Listener Resource Operational Model” specifies the states and their transitions for a
particular Listener resource. The following states are defined:

Null the state in which the call and the Listener resource are not interacting.
Started the state in which the Listener resource is processing audio in the call.
Speech Detected the state in which speech-like sound is detected in the call and the Listener

resource has started the process of matching the audio to the grammar.

Figure 6-17 Listener Resource Operational Model

Stop/Clear/Recognized/ Not
Recognized/ Voice Error
Occurred/Emptied

Stop/Clear/Voice
Error Occurred/
Silence Timeout
Expired/ Emptied

Start/Started

Recognized (multiple
Speech . mode)

Detected

Speech
Detected

Typically, a Listener resource is brought to a Started state by the Start service (Clause 26.1.14, “Start”, on
page 644), after which state transitions may take place automatically. To report progress, each automatic
state transition raises a corresponding Voice Event (Clause 26.2, “Events”, on page 652).

A Listener resource can have one of the following three modes:

e automatic, in which a Listener resource will determine automatically whether the speech signal has

ended in the call. Typically, the end of speech is characterized by an extended period of silence
called End Silence.

» single, in which the Computing Function must utilize Stop or Clear services (Clause 26.1, “Services”,
on page 615) to end the audio collection process. This mode mandates the Listener resource to
ignore extended silence amidst the audio and produce a single interpretation on the captured audio.

e multiple, in which the Listener resource may loop around the Speech Detected state and therefore
may produce multiple outcomes. An explicit Voice service request (either Stop or Clear, Clause 26.1,
“Services”) must be used to stop or cancel further speech processing.

After leaving the Null state, a Listener resource can encounter one of the following timeout conditions and
reset itself back to the Null State:

» Silence timeout: the maximum time allowed before entering the Speech Detected state.
» Babble timeout: the maximum time allowed to stay in the Speech Detected state.

e Maximum timeout: the maximum time allowed before returning to the Null state.

-31-

acma

Multiple Listener IVDs can optionally be conferenced or joined to a single call where they process the
same audio stream. One and only one Start service request (Clause 26.1.14, “Start”) directed at any of
the Listener resources is needed to bring all of the Listener resources connected to the same call out of
the Null State. Subsequent Start service requests issued against a non Null Listener resource has no
effect. Once the Listener resource connected to the same call leaves the Null State, individual Listener
resources proceed with their own state transitions and, if monitored, raise their own events. Listener
resources performing the same task on the same call, however, do compete against one another: the first
Listener resource matching the grammar to the utterance will cause all others connected to the same call
to abandon their grammar matching processes and make corresponding state transitions based on their
modes: while Listener resources of automatic or single modes return to the Null state, the multiple mode
Listener resources returns to the Speech Detected state.

When a Listener and a DTMF IVD are conferenced or joined to a single call, they also compete on the
same audio. See Clause 6.1.1.4.10, “DTMF Interactive Voice Device Category” for the specification of the
operational model.
6.1.1.4.10 DTMF Interactive Voice Device Category

A DTMF Interactive Voice device (or DTMF IVD) has one or more resources that are involved only with
interpreting a sequence of DTMF characters based on the grammars. In contrast to the CSTA Data
Collection Services, a DTMF resource utilizes grammars to parse the DTMF string rather than just
reporting it. For example, a three consecutive DTMF strokes of key “8” may be interpreted as an area
code of a telephone number, a transaction amount, or even as a way to enter the letter “V". The
Computing Function may utilize different grammars and cause the DTMF resource to report appropriate
results.

As specified in Figure 6-18, “DTMF Resource Operational Model”, a DTMF resource will be in one of the
following states:

Null the state in which the call and the DTMF resource are not interacting.
Started the state in which the DTMF resource starts processing the audio in the call.
DTMF Detected the state in which a DTMF character is detected in the call.

Figure 6-18 DTMF Resource Operational Model

Stop/Clear/
Recognized/ Not
Recognized/ Voice

Error Occurred/
Fmntied

Stop/Voice Error
Occurred/ Silence
Timeout E Start/Started

DTMF
Detected

DTMF
Detected

Detected

-32-

~ecna

6.1.1.4.11

Typically, a DTMF resource is brought to a Started state by the Start service (Clause 26.1.14, “Start”, on
page 644), after which state transitions may take place automatically. To report progress, each automatic
state transition raises a corresponding Voice Event (Clause 26.2, “Events”, on page 652).

After leaving the Null state, a DTMF resource can encounter one of the following timeout conditions and
reset itself back to the Null state while raising a corresponding timeout event:

» Silence timeout: the maximum time allowed before entering the DTMF Detected state.

» Inter-digit timeout: the maximum time allowed before making a transition from the DTMF Detected
state unless the last key completes a DTMF sequence that traverse a grammar rule in its entirety. For
the latter case, the DTMF resource waits for a period of End Silence and transitions into the Null
State if no successive DTMF is detected.

Multiple DTMF 1VDs can optionally be conferenced or joined to a single call. At any given time, though, at
most one of the resources can be in a non Null state. Any attempt to enter the Started state while another
DTMF resource is not at the Null state will result in a Voice Error Occurred event (Clause 26.2.18, “Voice
Error Occurred”, on page 671).

Multiple DTMF and Listener IVDs can be conferenced or joined to the same call and enter their
respective Started states. In such case, the two types of resources receive the same media stream from
the call, and the first resource to leave the Started state will prevent the other from incurring a silence
timeout and resetting back to the Null state. However, either type of resource that returns to the Null state
will, after raising proper Voice events, cause the other to follow immediately back to its Null state as well.
This, for instance, enables the use of DTMF to stop a Listener without Maximum or Babble Timeout.
Prompt Interactive Voice Device Category

An Prompt Interactive Voice device (or Prompt IVD) has one or more resources that are involved only
with producing audio output from a text that describes the output generation process. The audio can be a
combination of pre-recorded audio and text to speech synthesis. Prompt playback is facilitated through
the Prompt Queue (Clause 6.1.1.4.12, “Prompt Queue Interactive Voice Device Category”, on page 33)
IVD that manages the playback by storing copies of the voice generated by the Prompt and sends them
to the media conduit at a proper time.

The text input to the Prompt resource may contain bookmarks. When the playback reaches the position
of a bookmark, the Bookmark Reached event is generated (Clause 26.2.1, “Bookmark Reached”, on
page 653). The event can be used as a synchronisation cue to update other user interface related
properties such as the cursor on a display, for instance.

Each prompt can be set as auto-interruptible. A DTMF resource or a Listener resource can cause a
prompt to be interrupted. When set as auto-interruptible, a caller's “barge-in” on the playback, either
through DTMF or speech commands, will automatically cut off the speech output without the intervention
of the Computing Function. Whether a prompt is set auto-interruptible or not, the Interruption Detected
Event (Clause 26.2.5, “Interruption Detected”, on page 657) will always be reported should there be any
input activity during playback and a monitor is placed on the call or the Prompt IVD.

The attributes of a Prompt resource can be controlled by the Set Voice Attributes service (Clause 26.1.13,
“Set Voice Attribute”, on page 640). A Prompt resource is not involved with a call and therefore does not
have a state model. The CSTA Queue service is used to copy a prompt to a Prompt resource which is
attached to a call.

6.1.1.4.12 Prompt Queue Interactive Voice Device Category

Prompt Queue Interactive Voice Device (or Prompt IVD) has one or more resources that are involved only
with serializing audio being played back to the call.

A Prompt Queue resource stores the concatenated voices generated by Prompt resources in the order of
the Queue services made at individual Prompt resources. A Prompt Queue resource allows the

-33-

acma

Computing Function to construct phrases by concatenating voices from a collection of prompts. For
example, a Computing Function may decide to confirm with the caller on a choice of a city with a
sentence “l heard you said Seattle. Is this correct?” While “I heard you said...” and “Is this correct?” can
be pre-recorded waveforms, the city name must be dynamically synthesized based on interaction context.
Such an explicit confirmation can be achieved by three consecutive Queue Services directed at three
Prompt resources: first on the pre-recorded “I heard you said...”, followed by the synthesized city name
and the pre-recorded “Is this correct?”.

A Prompt Queue resource conceptually holds one or more subqueues that are delimited by the Start
service (Clause 26.1.14, “Start”, on page 644). Figure 6-19, “Operational Model of a subqueue in a
Prompt Queue Resource” specifies the life cycle of a subqueue. The following states are specified:

Formed the state in which a subqueue is initiated by an incoming prompt either when the Prompt
Queue resource is empty, or the last subqueue in the Prompt Queue resource has entered
the Ready state. All subsequent incoming prompts are appended to this subqueue in the
order of arrival.

Ready the state in which a subqueue is scheduled to be played as soon as its preceding
subqueue, if any, is depleted. Any subgqueue must enter this state before its contents can
be played out to the call.

Playing the state in which a subqueue has reached to the front of the Prompt Queue resource and
its constituent prompts are being played in sequence.

Null an empty subqueue.

Figure 6-19 Operational Model of a subqueue in a Prompt Queue Resource

Stop/Clear/Voice Error
Occurred/ Emptied/ Barge-
in Detected

Completed

Queue

Clear/ Voice Error
Occurred/ Emptied

Clear/Voice Error
Occurred/ Emptied

Suspend/
Reposition/
“Play Event”

Resume/

(automatic)/
“Play Event”
Start/Started

Note: Services/events for
Prompt are in italic.

Figure 6-20, “A Relationship of prompts and Prompt Queue Resource” specifies the relationship between
subqueues and the Prompt Queue resource in general. Many Voice services and events have the scope
at the level of subqueues. Specifically, the Emptied event is generated when all the prompts in a
subqueue has been played, even though there are still one or more subqueues stored in the Prompt
Queue resource. When an individual prompt encounters errors or is interrupted during playback, the
Prompt Queue resource flushes the remaining prompts to the subqueue boundary, not the entire queue.

-34 -

oecha

Since the rest of the subqueues are not affected, the audio playback may not be halted if the following
subqueue is in the Ready state. The Clear, Query Voice Attribute, Set Voice Attribute, Suspend, and the
Resume services, however, have the scope of the entire Prompt Queue resource.

Figure 6-20 A Relationship of prompts and Prompt Queue Resource

(a) Queue: Prompt 1

Prompt 1
Back Front
(b) Queue: Prompt 2 and 3
Prompt 3 Prompt 2 Prompt 1
Back Front
(c) Start: Prompt Queue
Playing ;
Prompt 3 Prompt 2 Prompt 1 Ej‘>

4 Front
subqueue boundary

Back

(d) Queue: Prompt 4 and 5

/i 1 |
<‘ Playing
Prompt 5 Prompt 4 >
P P Prompt 3 Prompt 2
Back i Front
subqueue boundary
(e) Start: Prompt 6
1 . V/‘]
Ready N Playing
Prompt 6 Prompt 5 Prompt 4
Prompt 3
Back 1‘ 4 Front

subqueue boundary

Typically, a subqueue is the most natural unit to administer voice responses. The main purpose of a
Prompt Queue resource, which hosts a queue of subqueues, is to insure a high quality of service in the
prompt playback, especially for the cases where a real time concatenation and prompt synthesis is not
achievable. For example, after obtaining a command from the caller, the Computing Function can queue
up several “waiting” prompts into a Prompt Queue resource while the command is being processed.
Commonly used waiting prompts include a musical segment intermixed with reassuring phrases such as
“lease remain on the line as your call is important to us”. To insure the caller's audio channel is engaged,
the Computing Function may need to insure that all the results are properly synthesized and entered into
a subqueue to the Prompt Queue resource before stopping the waiting prompts.

-35-

»ecind

6.1.1.4.13 Message Interactive Voice Device Category

A Message Interactive Voice Device has one or more resources that are involved only with processing
messages.

Each resource follows the operational model of a Voice Unit as shown in 6.1.1.4.7, “Voice Unit Device
Category”, on page 28.

6.1.1.4.14 Conference Device Category
A Conference Device facilitates the exchange of media (typically voice media) between devices (also
known as conference participants) in a conference call. The participants may be both inside and outside
of the switching function.

A conference call (or conference) can be modeled as connections between a Conference Device and a
CSTA call. Figure 6-21, “Conference Operational Model” shows the connection states at a Conferencing
Device and CSTA events corresponding to the life cycle of a conference.

Figure 6-21 Conference Operational Model

created, not enabled m
(i.e reserved) null created and enabled

Service Initiated Originated

released
Connection
Cleared

suspended
Queued

initiated

queued connected

resumed
Established

enabled
Originated

A conference involving a Conferencing Device may be created via the Make Connection service
(17.1.19). The Make Connection service creates a conference call with one connection at the
Conferencing Device. The autoOriginate parameter in the Make Connection service is used to create a
conference that is either reserved (autoOriginate=Prompt) or enabled (autoOriginate=DoNotPrompt):

« A reserved conference refers to a call involving a Conferencing Device that allocates resources at a
Conferencing Device for future use. A reserved conference may be modeled with a Conference
Device connection in an initiated connection state.

¢ An enabled conference refers to a call involving a Conferencing Device that is ready to process
media between participants that will be added to the call or are already part of the call.

The Answer Call service may be used to enable a reserved conference by transiting the Conference
Device connection state from initiated to connected (e.g. when a reserved conference is ready to start).

Once the conference is enabled, participants may be added to the call via services like Conference Call
(17.1.9) and Single Step Conference Call (17.1.25) services. The participants may be authenticated (via
speech, DTMF, etc.) prior to being added to the conference.

Participants may be removed from the call via the Clear Connection service (17.1.8).

A conference may be suspended (e.g. no media exchanged between participants in the call) via the Park
Call service (17.1.21) to place the connection at the Conferencing Device in the queued connection state.

-36 -

»ecma

When a conference is suspended, resources at the Conferencing Device may be reused for other
purposes. The Answer Call service may be used to resume the conference by transiting the connection
state from queued to connected.

A conference is released when all resources involving the conference are stopped. This is modeled with a
Conference Device connection state of null. This may happen as a result of the Clear Connection service
(17.1.8) applied to the Conference Device connection.

Changes in the conference may also occur implicitly based upon switching function criteria. For example:

« a conference may be implicitly created and enabled whenever a conference participant becomes part
of a call involving a Conferencing Device. For example:

» the first participant calls into a Conferencing Device

* an outgoing call is created on behalf of the Conferencing Device (e.g. Make Call service with
originatingDevice= Conferencing Device, calledDevice= conference participant)

* a participant may be implicitly added to the conference when:

* a participant calls a Conferencing Device and the Conferencing Device adds the participant to
the conference (no participant authentication is required).

» the participant answers a call that was initiated on behalf of the Conferencing Device. Once the
participant answers the participant is added to the conference.

« a conference may be implicitly suspended when the last participant leaves the conference and the
conference is maintained for future use.

« a conference may be implicitly released when the last participant leaves the conference (and there is
no need to maintain the conference) or after an amount of time when no participants are involved with
the conference.

6.1.1.4.15 Other Device Category

6.1.1.5

A device in this category has characteristics (i.e., device configuration, capabilities, type of elements,
element components) which are switching function specific.
Named Device Types

Switching Function implementations may indicate that a device is of a particular device type. The
following device types may be used for this purpose but the interpretation of a given device type is
implementation specific.

e ACD

 ACD Group

* Button

e Button Group

» Conference Bridge
* Line

e Line Group

e Operator

¢ Operator Group
» Parking Device
+ Station

» Station Group

o Trunk

-37-

acma

6.1.1.6

6.1.1.6.1

e Trunk Group
e Other
e Other Group

Agent
An agent represents a device’s association and activities with one or more ACD devices or ACD groups.

An agent becomes associated with a specific ACD device or ACD group by the process of logging on.
There are two Agent Log On Models that may be supported by a switching function (as indicated by the
capability exchange services). Note that multiple models may be supported by a switching function and
by a single agent.

¢ Log On to an ACD device - In this model an agent logs on to ACD device and becomes associated
with the activities of the ACD device. There is no association with any ACD group. This may be
achieved by using the Set Agent State service (loggedOn) without providing the ACD group
parameter. Note that this capability cannot be simultaneously supported with the Log On to an ACD
Group (implicit/one step) described below.

*« Log On to an ACD Group - In this model an agent becomes associated with the activities of an ACD
group. This may be accomplished by the following:

« explicit/one step - by using the Set Agent State (loggedOn) service and supplying the ACD group
parameter

« explicit/two step - by first logging on to an ACD device using the Set Agent State (loggedOn)
service and omitting the ACD group parameter (described above). Once logged on to an ACD
device, a log on to a specific group is achieved by using another Set Agent State (loggedOn)
service with the ACD group parameter provided.

« implicit/one step - by logging on to an ACD Group using the Set Agent State (loggedOn) service
and omitting the ACD group parameter. If supported by the switching function, the agent is
automatically logged on to an ACD group. Note that this capability cannot be simultaneously
supported with the Log On to an ACD device.

An agent has several attributes that can be controlled and observed by the computing function, as
described below.

Agent Identifier

Each agent that can be observed and/or controlled within the switching function is referenced using an
assigned identifier. This identifier is associated with the logical element’s Device Identifier of the device.
Certain switching functions may not assign an agent identifier to the agent. In these cases, the logical
element’s Device Identifier is used to represent the agent associated with the device. The format of the
agent identifier is switching function specific.

There are two ways that an agent identifier may be provided:
e as a parameter in an event (via the agentID parameter in the Agent Logged Off event, for example) or

e as a sub-string in the Switching Function Representation format of a logical element’s Device
Identifier, thereby making a unique identifier for the logical element and the associated agent.

When an agent is associated with more than one ACD group and the switching function assigns a
different agent identifier for each ACD group that the agent is associated with, then the following applies:

« The agent identifier shall be supplied (via the agentlD parameter) on the agent state events
associated with this agent (e.g., Agent Ready, Agent Not Ready).

« This agent identifier may or may not be part of the Device Identifier parameters (i.e., the agent
identifier sub-string in the Switching Function Representation format) in the call control events that
are associated with the agent in an ACD call. Non-ACD calls are unaffected.

-38 -

~ecna

6.1.1.6.2

6.1.1.6.3

6.1.1.6.4

» This agent identifier shall be part of the Device Identifier parameter (i.e., the agent identifier sub-string
in the Switching Function Representation format) on services when the computing function want to
focus the service at a particular ACD call or group, otherwise if not supplied, the switching function
will choose which ACD call or group the service is focused.

When an agent is associated with one ACD group, the switching function may or may not assign an agent
identifier to the agent. If the agent identifier is not assigned, the logical element’s Device Identifier of the
agent device is used to represent the agent in the ACD group. If the agent identifier is assigned, then
either the logical element’s Device ldentifier of the agent device or the agent identifier may be used to
represent the agent in the ACD group. This also applies to the case where the switching function has only
one agent identifier (either assigned or not) for an agent that is associated with multiple ACD groups.
When only one agent identifier is assigned to an agent the following applies:

« The agent identifier may be supplied (via the agentlD parameter) on the agent state events
associated with this agent (e.g., Agent Ready, Agent Not Ready).

« This agent identifier may be part of the Device Identifier parameters (i.e., the agent identifier sub-
string in the Switching Function Representation format) in call control events that are associated with
the agent in an ACD call. Non-ACD calls are unaffected.

» This agent identifier may be supplied as part of the Device Identifier parameter (i.e., the agent
identifier sub-string in the Switching Function Representation format) on services.

Note that when the agent identifier is supplied as part of the Device Identifier and the agent identifier is
not associated with the device, the service request shall be rejected with a negative acknowledgement.
Agent Password

The agent password authenticates the agent’s association with a given device and ACD device or ACD
group in the switching sub-domain. The agent password is used when the agent is associated with the
device and made available to the ACD device or ACD group (i.e., log on) and when the agent is made
unavailable to the ACD device or ACD group (i.e., log off). An agent password may be assigned to each
agent. For more detalils, refer to the definition of the agentPassword parameter in associated services.
Agent Group Association

This identifies the ACD group that is associated with the agent. There can be zero or more ACD groups
associated with the same agent. This is represented via the ACD group’s logical element’s Device
Identifier.

Agent State

A state that an agent may take in relation to an ACD device or ACD group and the calls associated with
the ACD device or ACD group.

The computing function is informed of agent state changes through agent state event reporting. These
event reports are sent to the computing function when a monitor is started on either the ACD device or
ACD group (if supported by the switching function) or the device associated with the agent or agents. The
following are the agent states with respect to an agent and a particular ACD device or ACD group:

« Agent Null - The state where an agent is not logged-on to (i.e., logged off from) the ACD device or
ACD group at a particular device. Logging-on and logging-off from an ACD device or ACD group shall
cause the transitions from and to this state. The event report that represents the entry to this state is
the Agent Logged Off event. Note that the presence/absence of the ACD Group parameter in this
event determines if the agent has logged off of an ACD device or an ACD group

« Agent Logged On - The state where an agent is logged-on at a particular device to an ACD device or
ACD group and is ready to contribute to the activities of the ACD device or ACD group. This state
does not indicate that the agent is ready to accept ACD calls (refer to the Agent Ready event
section). The event report that represents the entry to this state is the Agent Logged On event. Note
that the presence/absence of the ACD Group parameter in this event determines if the agent has
logged on to an ACD device or an ACD group.

-39 -

acma

6.1.1.6.5

« Agent Not Ready - The state where an agent is logged-on at a particular device to an ACD device or
ACD group but is not prepared to handle calls that the ACD distributes. While in this state an agent
may receive calls that are not ACD calls. The event report that represents the entry to this state is the
Agent Not Ready event.

¢ Agent Ready - The state where an agent is logged-on at a particular device to an ACD device or ACD
group and is prepared to handle ACD calls even though it may be involved with non-ACD calls. The
event report that represents the entry to this state is the Agent Ready event.

« Agent Busy - The state where an agent is involved with an existing ACD call at the device, even if
that call is on hold at that device. Calls between agents, calls between supervisors and agents and
private calls may or may not cause this transition. The event report that represents the entry to this
state is the Agent Busy event.

« Agent Working After Call - The state where an agent is no longer connected to an ACD call but is still
occupied with work related to a previous ACD call. In this state, an agent cannot receive ACD calls
but may be able to receive non-ACD calls. The agent may be performing administrative duties (e.qg.,
updating a business order form) for a previous call, or may be involved with a non-ACD call. The
event report that represents the entry to this state is the Agent Working After Call event.

Note that this Standard does not impose or restrict the transition of an agent state to another agent state.
Any implementation restrictions shall be reflected by a negative acknowledgement to the Set Agent State
service request.

Agent State Models

It is possible that an agent may have several agent states with respect to the different associated ACD
devices or ACD groups. Alternatively, an agent may have a single state to describe its relationship to all
associated ACD devices or ACD groups (if the state is, in fact, the same for all of them).

The following Multi-State Agent models that indicate how the switching function maintains the agent
states for each ACD or ACD group that is associated with an agent. (The capability exchange services
indicate which models are supported by a switching function.) The models are:

Agent Multi-State Model (Independent Group Working)

In this model, as illustrated in Table 6-1, the switching function maintains an independent agent state
model for each ACD device or ACD group associated with an agent. All agent state transitions are totally
independent. The cause code of Forced Transition does not appear since no state is forced. (Note that
the numbers between parenthesis in the following figures represent the ACD group number).

Table 6-1 Agent Multi-State Model (Independent Group Working) lllustration

Step 1 Step 2 Step 3 Step 4 Step 5
ACD Group 1 Not Ready (1) Not Ready (1) Not Ready (1) Not Ready (1) Ready (1)
State
ACD Group 2 Not Ready (2) Ready (2) Busy (2) Working After Ready (2)
State Call (2)
ACD Group 3 Not Ready (3) Ready (3) Ready (3) Ready (3) Busy (3)
State
ACD Device State Ready Busy Busy Busy Ready

Agent Multi-State Model (Semi-Independent Linked)

In this model, as illustrated in Table 6-2, the switching function maintains an agent state model for each
ACD device or ACD group associated with an agent. However the agent state models for each ACD

-40 -

»ecma

6.1.2

device or ACD group are linked together. For example, if an agent is associated with two ACD groups
(both states are Ready), and the agent connects to an ACD call for the first ACD group, the agent state
for the first group transitions to Busy while the agent state for the second group goes to Not Ready (with a
cause code of Forced Transition to indicate that the state transition was the result of another ACD device
or ACD group activity).

Table 6-2 Agent Multi-State Model (Semi-Independent Linked) lllustration

Step 1 Step 2 Step 3 Step 4 Step 5

ACD Group 1 Not Ready (1) Not Ready (1) Not Ready (1) - Not Ready (1) - Not Ready (1)

State Forced T. cause Forced T. cause

ACD Group 2 Not Ready (2) Ready (2) Busy (2) Working After Ready (2)

State Call (2)

ACD Group 3 Not Ready (3) Ready (3) Not Ready (3) - Not Ready (3) - Ready (3)

State Forced T. cause Forced T. cause

ACD Device State Ready Ready Not Ready - Not Ready - Ready
Forced T. cause Forced T. cause

Agent Orientated Model

In this model, as illustrated in Table 6-3, the switching function maintains one state for the agent, no
matter how many ACD devices or ACD groups the agent is associated with. When the ACD Group
parameter is included in an agent event, it indicates the ACD group that has caused the agent state
transition. When the ACD Group parameter is not included in an agent event, it indicates that non-ACD
group activity has occurred.

Table 6-3 Agent Orientated Model lllustration

Step 1 Step 2 Step 3 Step 4 Step 5

ACD Group 1 Not Ready Ready Busy Working After Ready

State Call

ACD Group?2 State Not Ready Ready Busy Working After Ready
Call

ACD Group 3 Not Ready Ready Busy Working After Ready

State Call

ACD Device State Not Ready Ready Busy Working After Ready
Call

Single Event Not Ready (2) Ready (2) Busy(2) Working After Ready (2)
Call (2)

Call

Calls are communication relationships between one or more CSTA Devices. A call's behaviour can be
observed and manipulated across the CSTA service boundary (also called service boundary in this
Standard). During some call phases (e.g., establishment and release) the call is not completely formed
and there may be only a single CSTA Device involved (for example, the CSTA Device on whose behalf
the call was initiated). In some call control operations, such as a conference and transfer, one CSTA
Device in a call is replaced with another CSTA Device, or two calls are merged into a single call.

The CSTA Call attributes, which are described in detail in the following sub-clauses, shall be:
» Call Identifier

* Correlator Data

-41 -

»ecind

6.1.2.1

6.1.2.2

6.1.2.3

e User Data

¢ Media Call Characteristics
e Account Information

« Authorisation Code

¢ Charging Information

Call Identifier

A CSTA Call Identifier (also called Call Identifier) is a reference associated with a call whereby the call is
known to the switching, computing and special resource functions through the call’s life. A Call Identifier
shall be allocated to each call by the Switching Function, at the latest, when the call first becomes visible
across a CSTA Service Boundary. It shall be unique within a switching sub-domain and shall be the same
for all CSTA Devices in the call. A Call Identifier can be assigned to a call before the call is fully
established. For example, an incoming call may be assigned a Call Identifier when the called CSTA
Device is alerting and before the call has been answered. A Call Identifier shall not only reference the
entire call within the sub-domain but shall also infer a reference to that part of the call that is outside the
sub-domain.

A call can pass through various stages involving many different CSTA Devices before it finally terminates.
Some of these stages cause a call to change identifiers. Examples of services that cause this are
Transfer and Conference. During the operation of these services, or as a result of manual intervention,
the Call Identifier may change as a result of two calls being merged by the switching function but the call
shall continue as a CSTA object. This merger results in the Call Identifiers for both old calls changing to a
new identifier for the resulting calls in which the CSTA Devices are involved. The respective Conferenced
or Transferred event specifies the transition from the old Call Identifiers to the new Call Identifiers
indicating the old invalid Call Identifiers. Management of Call Identifiers is covered in section 6.1.6,
“Management of Dynamically-Assigned Identifiers”.

Call State

The term Call State means the collective set of Connection states for all the Connections comprising a
call. Call state is returned only by the Snapshot Device Service for CSTA Devices that have calls.
Connection states are further described in 6.1.3, “Connection”, on page 49. Call states are described in
more detail in 6.1.4, “Call State Definitions”, on page 53.

Correlator Data

Correlator Data is computing function specific data which has been attached to a call that a computing
function is controlling or observing. This information, for example, might be a key to a database entry, an
application command sequence, file name, etc. Once Correlator Data is associated with a call, it remains
with the call for its entire duration (at least one CSTA Device is actively involved in the call), or until the
computing function overwrites the data with new data. In order to remove data, the computing function
shall overwrite the existing data with null data. Correlator Data enters the switching sub-domain in two
ways:

1. A computing function provides Correlator Data on a service request (e.g. Call Control and Call
Associated services).

2. Correlator Data arrives from an external network connection with a call (for example, Correlator Data
may be used as a key to pop a screen for the call). This Standard defines one possible mechanism
for delivering Correlator Data through an external network. This mechanism is described in Annex B.

Permitting a computing function to associate its own information with a call allows multiple computing
functions to share data on calls which they are all controlling or observing. This feature is useful when
calls are moving from one computing function to another in a distributed computer network or from one
switching sub-domain to another. For more information on Correlator Data, refer to 12.2.10,

-42 -

»ecma

6.1.2.4

“CorrelatorData”, on page 119.

Correlator Data is provided by the Computing Function and associated with the call for its entire duration
or until overwritten with new data. This data survives Conference and Transfer and can be provided on
various events. An application may remove the Correlator Data by overwriting existing data with null data.

When Correlator Data is associated with a call, call events that indicate that a CSTA Device has become
part of a call (such as Delivered, Established and Queued events, for example) shall include the
Correlator Data (if this parameter is supported in the event being reported). Subsequent call events also
may contain the Correlator Data.

Note that “null Correlator Data” means Correlator Data information with zero length.

When a consultation call is transferred or conferenced and null or non-null Correlator Data is associated
with the secondary call, the Correlator Data in the resulting call shall always be the same Correlator Data
that was associated with the secondary call (even if only the primary call had non-null Correlator Data). In
that case the Correlator Data (if any) associated with the primary call is discarded. If the secondary call
contains no Correlator Data, the Correlator Data associated with the resulting call is that which was
associated with the primary call.

Table 6-4 Inheritance rules for Correlator Data in Conference and Transfer

Secondary Call Primary Call

No Correlator Data

Null Correlator Data

Correlator Data 1

No Correlator Data

No Correlator Data

Null Correlator Data

Correlator Data 1

Null Correlator Data

Null Correlator Data

Null Correlator Data

Null Correlator Data

Correlator Data 2

Correlator Data 2

Correlator Data 2

Correlator Data 2

When Correlator Data is associated with a call via the Associate Data service, the Call Information event
is provided by the switching function. If the data is changed by any other service, the switching function
does not provide the Call Information event.

User Data

User Data is call-related computing function-to-computing function information that, unlike Correlator
Data, is not associated with a call for the life of the call. The switching function receives User Data in two
ways:

* A computing function sends User Data in a service request.

» User Data arrives from an external network connection with a call (for example, User Data may be
used as a key to pop a screen for the call).

Both a computing function and the network may send User Data in two ways:

1. With Call Control Activity - Call control service requests (and network signalling for call control)
permit User Data as an optional parameter. The switching function reflects the delivery of User Data
in the first call control event that results from the switching function or network carrying out the call
control activity. When the computing function provides User Data in a Call Control service request,
the User Data is delivered to other parties if and only if the call control service successfully
completes. If the switching function does not generate the call control event that corresponds to the
call control activity because the computing function has set an event filter that filters out the relevant
event, then the User Data is not propagated to subsequent events and the User Data information will
be lost. Refer to the description of the individual Call Control services for more details on the events
that will contain User Data for those services.

2. Independent of Call Control Activity - The computing function may use the Send User Information
service to pass User Data at any time. Some networks provide an independent signalling
mechanism for sending User Data. The switching function generates a Call Information event with

-43 -

acma

6.1.2.5

6.1.2.6

the userData parameter containing the received User Data to reflect the delivery of the User Data.
Independent of call control activity, this event is generated for all computing functions monitoring the
call and all computing functions monitoring any CSTA Devices that have a connection to that call.

This Standard defines one possible mechanism for delivering User Data through an external network.
This mechanism is described in Annex B.

When a computing function uses a service to send User Data, the switching function sends that User
Data only after the switching function sends a positive acknowledgement to the service request.

User Data is described further in 12.2.29, “UserData”, on page 144.
Other Call Related Information

There is additional information associated with calls such as:

Account Information - A computing function or business-specific piece of information that is assigned
to a call for accounting purposes. For more information, see 12.2.1, “Accountinfo”, on page 113.

Authorisation Code - A code provided to the switching function that is used to check if a computing
function user is authorised to perform a given service. For more information see 12.2.3, “AuthCode”,
on page 113.

Charging Information - An amount charged to a device for a call in which the device was involved. For
more information, see 12.2.7, “Charginginfo”, on page 116.

Media Call Characteristics

This Standard covers the control and observation of calls within either a voice or digital data switching
sub-domain (e.g., network) or a switching sub-domain that is a combination of both (voice and digital
data). Within the set of possible digital data switching sub-domains, this Standard is limited to a sub-set of
these switching sub-domains with the following characteristics:

connection-oriented
circuit or cell-based packet switching
point-to-point, and multi-point topology

A connection in a call may represent either zero, one, or many data channels within the switching
sub-domain.

A CSTA Device can have multiple calls.

Examples of these digital data switching sub-domains that support these characteristics are;

T1

ISO-Ethernet (TDM part of the protocol)
ISDN

Switched 56

RSVP

ATM (B-ISDN)

SIP

As a result, another attribute of a call is the Media Class (i.e., Voice or Data). Voice calls and the sub-set
of digital data calls as described above use the same model for control and observation but with some
additional unique characteristics for digital data. The following is the list of characteristics:

1. Media Class - Describes the type of call. It may consist of one or more of the following classes.

-44 -

»ecma

» Data - These types of calls involve digital data calls (both circuit switched and packet switched).
Devices that may be involved with these types of calls are digital computer interfaces and G4
facsimile machines.

« Image - Digital data calls involving imaging, or high-speed, circuit-switched data in general.
Devices that may be involved with these types of calls include digital video telephones and
CODECs.

« Voice - Devices in this class are used to make speech calls. This class includes standard
telephones.

e Audio - 3.1 KHz audio. Devices in this class are used to make audio calls excluding speech
calls. It includes G3 fax and facsimile machines.

« Chat - A type of Data class call that involves text-based messages that are exchanged between
devices in the call using electronic media. A chat call is interactive since devices in the call can
participate at the same time (i.e. originate and receive messages during the call.). The Data
class must also be set for a Chat call.

« Email - This class of calls involve a text-based message that is sent using electronic media. This
is a non-interactive call (i.e. only one device involved with the call at one time). This is a specific
type of mediaClass associated with electronic mail systems.

» Message - This class of calls involve a text-based message that is sent using electronic media.
This is a non-interactive call (i.e. only one device is involved with the call at one time). The
message contents associated with these calls can usually be displayed on the called devices.
Instant Messages (IM), Short Message Service (SMS) are examples of this mediaClass.

« IM (Instant Message) - This class of calls involve a text-based message that is sent using
electronic media. This is a non-interactive call (i.e. only one device involved with the call at one
time). This is a specific type of Message media class associated with Instant Messaging
systems.

* SMS (Short Message Service) - This class of calls involve a text-based message that is sent
using electronic media. This is a non-interactive call (i.e. only one device involved with the call at
one time). This is a specific type of Message media class associated with Short Message
Services systems.

- MMS (Multi-Media Message Service) - This class of calls involve a text-based message that is
sent using electronic media. This is a non-interactive call (i.e. only one device involved with the
call at one time). This is a specific type of Message media class associated with Multi-Media
Message Services systems.

« Other - A class of call not involving one of the above classes.

2. Connection Rate - This characteristic reflects the amount of bandwidth which is needed or allocated
for a digital data call. This characteristic is specified in kilobits per second. This characteristic also
represents the amount of bandwidth for both directions of data flow. The computing function can
learn about a switching function’s supported rates through the capability exchange services.

3. Bit Rate - This characteristic specifies if the bit rate is or needs to be a constant rate (i.e., dedicated
bandwidth and constant rate of media stream delivery) or variable rate. A constant rate is used for
media streams like audio or video. A variable rate is used for media stream like computer-generated
data transfer.

4. Delay Tolerance - This characteristic specifies the maximum amount of media stream delivery delay
that will be toleranced for the call. If the bit rate is constant, then this value will indicate the actual
amount of media stream delivery delay for the life of the call. Where as if the bit rate is variable, it will
be the maximum delay allowed during the life of the call.

=45 -

acma

6.1.2.7

6.1.2.7.1

5. Switching Function Call Control Information Elements - This characteristic provides a mechanism
which enables the use of the switching function private call control information elements to be used
during the life of a digital data call (e.g., elements used during call setup). The format, meaning and
behaviour of these information elements are specific to the given switching function. This Standard
allows the following types of switching function private call control information elements:

« ISDN - All information elements associated with call control from the ITU Q.931 standard.

« ATM - All information elements associated with call control from the ITU B-ISDN Q.2931
standard.

« RSVP - All information elements associated with the call control from the IETF RSVP functional
specification.

¢ ISO-Ethernet (TDM part of the protocol) - All information elements associated with call control
from the 802.9 standard (a modified version of Q.933).

e Private ISDN - All information elements associated with call control and supplementary service
control from ECMA-143 and ECMA-165.

e SIP - All information elements (SIP Headers) associated with call control and supplementary
service control from IETF 3261 (and later versions).

e Other - All information elements associated with call control from the particular switching function
specification.

For details on the specific information elements of these types, see the appropriate standards or
switching function specific documentation. If a given information element overlaps with an attributes
or characteristic that is defined by this Standard, the information element should not be used and
the attribute or characteristic in this Standard should be used. If both are supplied, then they shall
contain the same value. In addition, any information element that deals with device addressing shall
not be used (e.g., calling party number, calling party subaddress). The CSTA Device addressing in
this Standard shall be used.

Once these characteristics are established for a digital data call, they may, depending upon the protocol
(e.g. SIP), be changed. These characteristics apply to all connections of the call.

The combination of these characteristics represents the quality of service associated with a given digital
data call. The meaning of the quality of service which respect to characteristic combination is switching
function specific.

Call Linkage

Although each CSTA call is independent of any other call (e.g., uniquely identified via its own call
identifier), some CSTA calls can be related to other calls that exist in the same switching sub-domain or in
different switching sub-domains.

Global Calls

Figure 6-22 shows how a call in one switching sub-domain is related to a call in another switching sub-
domain because both calls are part of the same “end-to-end” or “global” call. Even though there is a
CSTA call in each switching sub-domain (C1 and C2), both calls are part of the same “end-to-end” or
“global” call identified as G1 in the figure.

The call linkage feature provides a reference (globalCallData) that can be used to represent the global
call.

- 46 -

~ecna

Figure 6-22 lllustration of a “global” or “end-to-end” call

Switching Sub-Domain A Switching Sub-Domain B

_7\
D1 (C1N D2 D3 G2 D4
legend:

- Device D1 in sub-domain A called Device D4 in sub-domain B.
- CSTA Call C1 represents a call in switching sub-domain A between calling device (D1) and an outgoing tr
- CSTA Call C2 represents a call in switching sub-domain B between incoming trunk (D3) and a called devi

- Global Call G1 represents the end-to-end view of the call.

6.1.2.7.2 Call Threads

Different calls (CSTA calls or global calls) can be associated because they are part of the same or part of
a related telephony process or call thread.

For example, as part of a CSTA Consultation Call service, a call that is placed on hold is associated or
linked to the newly created consulted call.

Figure 6-23 illustrates the relationship between three CSTA calls (C1, C2, C3), two global calls (G1 and
G2), and one call thread (T1) as the result of when device D1 in switching sub-domain A consults with
device D5 in switching sub-domain B.

Figure 6-23 lllustration of a Call Thread
Switching Sub-Domain A

o L™)
— - // \
- 7 \
_F \
~
D1 \ Switching Sub-Domain B
\
\
- A\
C3
D3 D4 D5
legend:

- Device D1 has a call with device D2 and has consulted with device D5 in switching sub-domain B.

- (D3 is an outgoing trunk and D4 is an incoming trunk).

- There are two “end-to-end” or “global calls”: G1 involves devices D1 and D2. G2 involves devices D1, D3, D4,
- There is one thread identified as T1. This thread involves calls C1, C2, and C3.

6.1.2.7.3

The call linkage feature provides a reference (threadData) that can be used to associate different CSTA
calls in a call thread. This information may be used by applications for correlating calls in multiple
switching sub-domains, for correlating calls for charging/accounting purposes, or for call reporting
purposes, etc.

Call Linkage Data

If the switching function supports the call linkage feature, it maintains call linkage data for every call and
provides it on call control events (where specified) via the callLinkageData parameter (see 12.2.5,
“CallLinkageData”, on page 114). Call linkage data can also be obtained via the Snapshot Call service.

-47 -

acma

6.1.2.7.4

The call linkage data consists of two components each representing a different relationship of the call to
other calls. The globalCallData component is always provided if the switch supports the call linkage
feature. The threadData component is only provided if the switching function also supports the thread
linkage feature (as indicated by the capability exchange services). The two components are:

1. globalCallData - This component represents a “global” or “end-to-end” view of the call. The global
call may involve one or more endpoints. The endpoints may reside in the same switching sub-
domain or in multiple sub-domains. If the call resides in multiple switching sub-domains, there may
be multiple switching sub-domain (CSTA) calls involved in the global call, all referenced by the same
globalCallData. When a new call is created, a switching function shall either:

« create new globalCallData for that call if the new call is not part of an existing global call

« use the existing call's globalCallData for the new call if the new call is part of an existing global
call. This occurs when call arrives from another switching sub-domain and globalCallData is
provided with the call.

2. threadData - This component represents a call thread - the set of calls that are associated because
they are part of the same or a related telephony process. The call thread may involve multiple
(CSTA and global) calls. When a new call is created, a switching function shall either:

« create new threadData for that call if there is no linkage to another call.

e use existing threadData from a linked call for the new call (i.e., the call inherits the threadData
from another call). The threadData can be inherited from a call from the same switching sub-
domain (as part of a CSTA Consultation Call service, for example) or can be inherited from a call
from another switching sub-domain (if provided with the call).

« When two calls are conferenced or transferred, the following inheritance rules apply:

« if only one of the calls was an incoming call (where an incoming call is defined as a call that
was not originated at this device) at the conferencing/transferring device, the threadData for
the resulting call shall be inherited from the incoming call. The threadData associated with
the other call shall be discarded.

« if both of the calls were incoming calls at the conferencing/transferring device, the
threadData for the resulting call shall be inherited from the call that arrived first at the
conferencing/transferring device. The threadData associated with the other call shall be
discarded.

« if both calls originated at the conferencing/transferring device, the threadData for the
resulting call shall be inherited from the first call that originated at the conferencing/
transferring device. The threadData associated with the other call shall be discarded.

Refer to 12.2.5, “CallLinkageData”, on page 114 for more information on the CallLinkageData parameter
type.

Synchronization of Call Linkage Data

When callLinkageData associated with a call is updated due to a telephony feature, callLinkageData shall
be synchronized between calls in a switching sub-domain or between calls in different switching sub-
domains. For example, if a call is sent from an originating switching sub-domain to a terminating
switching sub-domain, and then the callLinkageData is changed in the terminating switching sub-domain
because of a conference, then the terminating switching sub-domain shall notify the originating switching
sub-domain that its callLinkageData has changed so that the originating switching sub-domain can
associate the updated callLinkageData with its call. (Annex B defines one possible mechanism that could
be used for transporting the call linkage data through an external network.)

The following CSTA events indicate when the callLinkageData associated with a call has been updated:

-48 -

»ecma

6.1.3

The CSTA Conferenced and Transferred events are used to indicate that the callLinkageData has
changed as a result of a conference or transfer feature.

Otherwise, the CSTA Call Information event is used when the callLinkageData has been updated, in
the same switching sub-domain that is reporting the Call Information event or in a different switching
sub-domain. For example, for a call between two switching sub-domains, the Call Information event
can be used to indicate that the callLinkageData has changed as a result of a feature in a different
switching sub-domain (the mechanism described in Annex B is one way to transport the
callLinkageData over the external network).

Connection

A connection is a relationship in a switching sub-domain between a CSTA Device, and a call in which that
CSTA Device is involved. This connection relationship can be both observed and manipulated. Figure 6-
24 illustrates the relationship between calls, devices, and connections.

Figure 6-24 Relationship between Calls, Devices, and Connections

Connection Connection

Device @ Device

Observation and manipulation of these connections are the basis for call control services (such as Clear
Connection, Answer Call, etc.). Connections are CSTA Objects that have the following attributes:

1.

Connection Identifier - Each connection that can be observed and/or controlled shall be referenced
across the service boundary. To accomplish this, each connection is assigned a unique identifier by
the switching function. This identifier is comprised of a Device Identifier and a Call Identifier. For a
call, there are as many Connection Identifiers as there are associated devices, and for a device
there are as many Connection Identifiers as there are associated calls. The Connection Identifier is
unigue within a sub-domain and over a single service boundary. It is provided by the switching
function when either a new call is created or a new device becomes involved in a a call. A
Connection Identifier can change as a result of some operations (e.g., a transfer or conference) and
in these cases the switching function presents the computing function with the appropriate
information to transit from the old identifiers to the new. The Device Identifier used in the Connection
Identifier may be either static or dynamically-assigned by the switching function.

As provided by the switching function to the computing function, a Connection Identifier will always
include both a Device Identifier and a Call Identifier (unless otherwise noted in the specification of a
particular CSTA event's parameters). Computing functions wanting to correlate event reports which
associate devices connected together in a call can use the Call Identifier to do this correlation. The
definitions of a Connection Identifier and those identifiers that it comprises (Call and Device
Identifiers) restrict computing functions from fabricating Connection Identifiers.

As provided by the computing function to the switching function, a Connection Identifier shall be one
which was originally provided by the switching function. An exception to this rule is where either a
devicelD only or a calllD only Connection Identifier is used in a specific service (as indicated by the
capability exchange services). If a Connection Identifier, provided by the computing function, includes
only a Device Identifier, then that Device Identifier shall be a static Device Identifier. These conditions
ensure that it is possible to use only a Device Identifier (without a Call Identifier) or a Call Identifier
(without a Device Identifier) to provide a Connection Identifier in certain specified circumstances.

For additional details regarding Connection Identifiers, including Connection Identifier formats and
specific functional requirements, see 12.3.9, “ConnectionID”, on page 148.

-49 -

acma

2. Media Stream Flow Direction - This attribute is the direction or directions in which the media stream
can be transmitted on the given connection. The following are the types of directions that can be
associated with a connection:

e Transmit - Media stream data can only be transmitted on the connection by the associated
device.

« Receive - Media stream data can only be received on the connection by the associated device.

e Transmit and Receive -Media stream data can be transmitted and received on the connection by
the associated device.

¢ None - Media stream data cannot be transmitted or received on the connection by the
associated device.

The media stream flow direction can be specified (via the participationType parameter or the
connectioninformation parameters) on certain CSTA services and modified via the Change
Connection Information service (see 18.1.3 on page 416). The media stream flow direction is
indicated in events via the connectioninformation parameter and in the response to the Snapshot
services.

3. Media Stream Channels - A channel is a path of communications between devices within a network.
Channels are created to transmit/receive the media stream when the associated connection is
created for the device in the call. The correlation of a channel to an actual media stream
communications path/channel within the switching function is switching function specific. The
switching function may represent a channel as a group of actual media stream communication paths.
A device's connection represents a channel or set of channels on which the media stream
associated with the call is to be transmitted and received. The number of channels per connection is
switching function and device specific (the capability exchange services may be used to determine
the value). A digital data connection can use one or more channels. In addition, there can be multiple
media stream types associated with a given connection as well as the associated channels. The
attachment of media services is to a connection and its associated channels as a whole. The
switching function is then responsible for attaching the Media services to the appropriate channels.

4. Media Session Information - Protocol specific information may be associated with the connection
related to the media stream. This could be information derived from the Session Description Protocol
(SDP), for example. The switching function may provide this information as media session
information. The format, meaning and behaviour of the media session information is specific to the
given switching function.

5. Connection State - A connection state involves a single call/device relationship. When a call is
present at a device, the connection representing that call at that device will transit through various
stages. State transitions are observed by the computing function through event reports. The
transition from one state to the next is caused by either a manual user stimulus or a CSTA service
initiated across the service boundary. Connection states may also be reported by Snapshots on
either calls or devices.

-850 -

~ecna

Figure 6-25 Connection State Model

Initiated

Connected

The following are the connection state definitions:

e Alerting - A state in which an attempt is being made to connect a call to a device. There are three
distinct modes where a connection may be in the alerting state:

Offered - In this mode, the call is in a pre-delivery state at the target device. The opportunity
exists for a computing function to issue one of a set of supported services (e.g., Accept Call,
Clear Connection (“reject”), Deflect Call) or an ISDN device to accept or reject the call. From the
calling side perspective, the call is not delivered at the called device. As a consequence, delivery
information such as Ringback indication and/or Network signalling is not provided. For example,
the device makes no ringing sounds while in the Offered mode of the Alerting state. The Offered
mode is indicated by an Offered event.

Ringing - In this mode, the call is being presented for the purpose of having the device connect
to the call and the user is made aware that the call is being delivered at the device. The Ringing
mode is indicated by a Delivered event with a cause code other than “Entering Distribution”. The
actual device activity to notify the user (e.g., ringing) is reported through the physical device
feature events.

Entering Distribution - In this mode, a call is being delivered to a distribution device. The
Entering Distribution mode is indicated by a Delivered event with a cause code of “Entering
Distribution”.

« Connected - A state in which a device is actively participating in a call. This state includes logical
participation in a call as well as physical participation.

» Failed - A state in which call progression has been aborted. This state generally results when a
device tries to become Connected to a call or a call tries to become Connected to a device and the
attempt fails. The Failed state can result from failure to connect the calling device and call, failure to

-51 -

acma

6.1.3.1

connect the called device and call, failure to create the call, failure when the call ends and other
reasons. Refer to 6.7.2, “Connection Failure”, on page 71 for more information.

« Hold - A state in which a device is inactively participating in a call. This state includes logical
participation in a call while physical participation is suspended.

< Initiated - A state in which a device is requesting a service or in the process of dialling the necessary
digit sequence to initiate a call to another device. The connection enters this state when the device
goes off-hook (e.g., receiving dialtone) or the device is being prompted to go off-hook as a result of
some service being initiated for the device.

* Null - A state in which there is no relationship between a call and device.

¢ Queued - A state in which call progression is suspended or made inactive while awaiting some form
of action. Examples of situations in which a connection might transit to the Queued state include
(among others) the following:

e Acallis parked at a device.

e Acallis queued at a distribution mechanism, waiting for an agent to become available.

e Acallis camped on to a device.

« An appearance of a shared bridged device configuration is inactive with respect to the call.

Table D-1 on page 796 provides an example to illustrate each transition which is illustrated in Figure 6-25,
“Connection State Model".” 2.
Call Event Reports

The Connection state model provides an abstract view of actual states and events that are communicated
via underlying signalling systems. This abstract view is introduced to provide a language for describing
CSTA Event Reports, states and Functional descriptions. Because of the topology of the Switching
Function, the signals that report events and state changes have definite sources. Providing a
telecommunications object (the Connection) that can be associated with the source of these signals helps
when explaining the meaning of events and the operation of CSTA (and other) telecommunications
services.

Note that on a typical ISDN access to a network there exists a distributed state machine. One part of this
distributed state machine resides in the ISDN device. Another part resides on the other side of the ISDN
access. There is another similar distributed-state access machine that resides across the ISDN network
at a similar device. Using this concept, a call can be modeled as a collection of Connection state
machines communicating with one another using signalling. When this communication occurs, a CSTA
Event Report can be generated. In the following figure, this concept of communication between two state
machines is illustrated for the case of establishing a simple call. Additionally, on each side of the figure
the ISDN call states are indicated.

2. For an explanation of the Initial and Final State diagrams’ nomenclature used the Table D-1, refer to Clause 11, “Template
Descriptions”, beginning on page 107.

-52 -

»ecma

6.1.4

Figure 6-26 Relationship of CSTA Call Event Reports
Time Device D1 Call C1 Device D2

T1 Null | No Event Report | Null Null
T2 Setup Initiated)I Service Initiated | Null Null
T3 Proceeding [Connected H Originated | Null Null

T4 Delivered | Connected | Delivered | Alerting | Receive

0
T

T5 Connected | Connected | Established | Connected | Connected
ISDN Call CSTA CSTA Event CSTA ISDN Call
State connection Reports Connection State
States States

Notice in Figure 6-26 that the CSTA Event Reports are based on signalling interactions of the
Switching Function. Many Connection events are of interest to CSTA applications. Typically,
however, a CSTA application is interested in atomic telecommunications activities and these often
involve many simultaneous Connection events. Generally, telecommunications operations embody
changes to many Connections. These events can be summarized in a single Event Report. For
instance, the Transfer, Conference and Clear Call Services all make changes to multiple
Connections but are each represented by single Event Reports. The Connection state changes
associated with each CSTA Event Report are defined in this Standard.

Call State Definitions

The state of a CSTA Call can be precisely expressed as the list of Connection states of all the devices
involved in the call. This list is called the Compound Call State. The technique of listing the Connection
states to describe the Call state can describe any call state that is possible in CSTA. However, most calls
involve a small number of widely recognized states. CSTA defines those states in terms of their set of
Connection states, but communicates them as atomic Call states - not as a list. These widely recognized
states are called the Simple Call States.

For calls with one known Connection state, the single Connection state shall be provided as a Call state.

Note that since Null can be a known Connection state, for a nascent call it is possible to have a CSTA
Call state with only one non-Null Connection (see Table 6-5).

For calls with more than two non-Null Connection states, the list of Connection states is provided as the
call's state.

CSTA simplifies Call states by relating them (at times) to particular devices. These relationships are
described by differentiating the call's Connection states. The Connection state associated with a particular
device is called the local Connection state (for that device). Other Connection states are not differentiated
from one another. Thus, CSTA Call state is defined for a device by the combination of Connection states
as well as the order in which the Connection states are combined. For example, the Alerting-Connected
Call state is not the same as Connected-Alerting. The first is defined as Received and the second is
defined as Delivered. For calls with exactly two Connections, the CSTA Call state assigned to the
combinations of Connection states are summarized in the following table. If there is no Simple Call state

-53-

o

6.1.5

y

ecind

for a particular combination of Connection states, then a Compound state shall be provided as the Call
state. For Compound Call states, the first Connection state in the list shall be the local Connection state.

Table 6-5 Definition of CSTA Simple Call States

Local Connection State Other Connection State CSTA Simple Call State

Alerting Connected Received
Alerting Hold Received-On Hold
Connected Alerting Delivered
Connected Connected Established
Connected Failed Failed
Connected Hold Established-On Hold
Connected Null Originated/Terminated
Connected Queued Queued
Failed Null Blocked
Hold Alerting Delivered-Held
Hold Connected Established-Held
Hold Failed Failed-Held
Hold Queued Queued-Held
Initiated Null Pending
Null Null Null

NOTE

The Originated / Terminated state may occur both during call set-up and when the call ends. When a far-
end party drops from a two-party call and the near-end end-point is not returned immediately to idle, then
the Originated / Terminated state is entered for call tear-down. It is also possible to enter a blocked state
when a call ends.

Referencing Devices, Elements, Appearances and Device Configurations

In services and events, devices, elements, appearances and device configurations are referenced using
Device Identifiers or Connection Identifiers when a call is present at the device, element, or appearance.
Table 6-6 indicates how these Device Identifier references are interpreted. The Connection Identifier
references are described in 6.1.3, “Connection”, and when a Connection ldentifier is used it refers to the
specific device, element or appearance associated with the given call. The following symbols are used in
the table:

Logical This indicates that the Device Identifier passed will be interpreted as reference to a specific
logical element.

Physical This indicates that the Device Identifier passed will be interpreted as reference to a specific
physical element.

Device This indicates that the Device Identifier passed will be interpreted as reference to the entire
device configuration.

Appearance This indicates that the Device Identifier passed will be interpreted as reference to a specific
addressable appearance of a logical element. In order for computing function to determine
what type of referencing is supported for a given logical element, it shall use the capability
exchange services (13.1 beginning on page 157).

-54 -

»ecma

Refer to 10.1, “Device ldentifier Formats”, for the format of Device Identifiers.

Table 6-6 Device Identifier Interpretation

Service/ Event Identifier Additional Information
Categories Represents

Call Control, Device The device (configuration) itself selects which appearance is to be used.

Call) Appearance The Device Identifier selects the specific appearance which is to be targeted by the

Associated, :

. ; service.

Media Service

and Routeing

Services

Call Control, Device The Device Identifiers that are associated with an appearance identify only the associated

Call Associated device configuration rather than a specific appearance.

and Medla Note that this information relates to the content of the event parameters, not what is

Service Events, : ; :
supplied on the Monitor Start service.

as well as

switching Appearance The Device Identifier selects the specific appearances which are being reported in the

function to event.

computing Note that this information relates to the content of the event parameters, not what is

function supplied on the Monitor Start service

Logical Device Logical The Device Identifier refers to the particular logical element.

Services

Logical Device Logical The content of the event parameters indicates the given logical element being used.

Events Not that this information relates to the content of the event parameters, not what is
supplied on the Monitor Start service.

Physical Physical The Device Identifier shall refer to the particular physical element.

Device

Services

Physical Physical The content of the event parameters indicates the given physical element being used.

Device Events Note that this information relates to the content of the event parameters, not what is
supplied on the Monitor Start service.

Device Device The event parameter contains the Device Identifier of the device configuration.

Maintenance

Events

Monitor Start Device or The Device Identifier of the device configuration (Device) results in the observation of the

Service (Call Logical entire configuration. The Device Identifier of the particular logical element (Logical) results

Control/ in the observation of the entire logical element.

Associated, . : . : :

- Note that the event filter determines the types (logical or device) of the events required.
and Media The Switching Function interprets the Device Identifier to meet the requirements of the
Service events) filter. This may result in the same Device Identifier being interpreted as both Device and

Logical for different event categories.
Appearance The use of the Device Identifier results in the observation of the specific appearance.
Monitor Start Logical The use of the Device Identifier results in the observation of the particular logical element.

Service
(Logical Device
events)

Logical = logical element’s Device Identifier

Physical = physical element’s Device Identifier
Appearance = addressable appearance (can be recognised from other forms of Device Identifiers by the suffix)

Device=a Device Configuration formed by multiple devices, which is referenced by the Device Identifier

-B5 -

»ecind

6.1.6

6.2

Table 6-6 Device Identifier Interpretation (continued)

Service/ Event Identifier Additional Information
Categories Represents

Monitor Start Physical The use of the Device Identifier results in the observation of the particular physical
Service element.

(Physical
Device events)

Monitor Start Device The use of the Device Identifier results in the observation of the device configuration.
Service (Device
Maintenance
events)

Snapshot Logical The Device Identifier refers to the particular logical element.
Services

Logical = logical element’s Device Identifier

Physical = physical element’s Device Identifier
Appearance = addressable appearance (can be recognised from other forms of Device Identifiers by the suffix)

Device=a Device Configuration formed by multiple devices, which is referenced by the Device Identifier

Management of Dynamically-Assigned Identifiers

Management of dynamically-assigned Device Identifiers and Call Identifiers is provided through
management of Connection Identifiers. This ensures that an identifier whose meaning is dependent on
another identifier is always provided in the proper context (i.e., with the other identifier needed to resolve
its meaning). For example if a Call Identifier is given relative to a device, then giving the Connection
Identifier ensures that the Call Identifier is provided with its reference - the Device Identifier. Management
of Connection Identifiers shall be provided as follows.

Connection Identifiers shall be provided when either a new call is created or a new device becomes
involved in a call. When a call is made a Connection Identifier shall be provided. A Connection Identifier
shall be provided in Event Reports that pertain to a call. When a device becomes involved in a call, the
Connection Identifier shall be provided in the Event Reports that occur at that device.

If a call changes its Call Identifier when a Conference or Transfer occurs, Connection Identifiers shall be
provided to link the old Call Identifier to the new Call Identifier. Similarly, if a Device ldentifier is changed,
new Connection Identifiers shall be provided for the devices in the call.

Management of identifiers shall be provided via parameters included in Service acknowledgements and
Event Reports.

Identifiers shall cease to be valid when their context vanishes. If a call ends, its Call Identifier is no longer
valid to refer to that call. Similarly, if a device is removed from service or from a call, its dynamically-
assigned Device Ildentifier shall become invalid.

Identifiers can be reused. Once an identifier has lost its context it may be re-used to identify another
object. It is recommended that implementations not re-use identifiers immediately.

Individual Call and Device Identifiers are not guaranteed to be globally unique. CSTA requires that the
combination of Call and Device Identifier be unique within a CSTA switching sub-domain. To accomplish
this, either the Call Identifier, or the Device Identifier (or both) shall be unique. In many cases the
Connection Identifier requires both the Call and Device Identifiers to uniquely refer to Connections in a
call.

I/O Services

I/O-Services support the exchange of data between a computer application (a computing function
component) and a telephony device (to send Data from the computer application to the display of a
telephony device, or to send Data from the keypad of a telephony device to the computer application,
etc.).

-56 -

~ecna

NOTE

6.2.1

Both the 1/0O Services and the Physical Device Features provide the capability to write to the display of a
device and to detect keypad activity at a device. The primary difference between these two approaches is
that the 1/O services operate within the context of a data path, which is described below.

The 1/O-Services are defined as a distributed application between the switching function and the
computing function. The special resource function is not involved.

Figure 6-27 I/O Services Functional Architecture

Telephony Device Switch Computer
Switching Computing
Function Function
Component Component

+S&xﬁtc11-Specﬁic Pl'OtOCOl—-"';“— CSTA-Protocol —Il'-
< DATAPATH |

- JO-DataFExchange — g

Figure 6-27 shows that the exchange of data between a telephony device and a computer application
consists of two parts:

1.

the exchange between the switching function component and the computing function component,
provided by the CSTA-Protocol.

the exchange between the telephony device and the switching function component, provided by a
switch- specific protocol.

Data Path Definition

To allow computer applications to cooperate with a switch-specific protocol (see Figure 6-27), a common
view (the data path) is defined:

The data path is an abstract model of a switch-specific protocol/mechanism.

The data path is a logical object in the switching function that allows the exchange of data between a
telephony device and a switching function component for a given application association.

The computing function component is able to control the data path via the I/O-Services.

The computing function component is also informed via the I/O-Services when an entity in the
switching function controls the data path.

The data path ends in the switching function component, it is not part of the CSTA-link between the
switching function component and the computing function component.

The switching function component is a gateway between the data path and the CSTA link:

» It receives CSTA service requests from the computing function component to control the data
path (via the Start Data Path, Suspend Data Path, Resume Data Path, and the Stop Data Path
services) and activates the equivalent switch-specific protocol-mechanisms (and vice versa,
including the Data Path Suspended/Resumed services).

» It receives data (via the Send Data, Send Multicast-Data, Send Broadcast-Data, and the Fast
Data services) from the computing function component and sends this data through the data

-57-

acma

6.2.2

6.2.3

6.2.4

path (via a switch-specific protocol) to the target device (and vice versa, but only via the Send
Data and Fast Data services).

I/O Registration Services
The I/O registration services registers the computing function as an I/O server for a specific device or for
all devices within the switching sub-domain.

If the switching function supports the 1/0O Registration services, then the computing function shall use the
I/O Register service to register for 1/0O services before it can receive any /O service requests over
switching function requested data paths.

Note that an 1/O registration is not applicable when a data path is initiated by the computing function (i.e.,
a computing function can initiate a I1/O data path after an 1/O registration but the ioRegisterReqID parameter
is not provided in the I/O services related to a data path that has been initiated by the computing function).

Data Path States and Operational Model

The following data path states are defined in the 1/0O Services Operational Model:

Null No relation between a data path and a telephony device. No I/O Cross Reference Identifier
is defined.
Open The data path is able to transfer data (direction is defined in the Start Data Path service).

An 1/O Cross Reference ldentifier is defined.

Suspended The data path is not able to transfer Data. The relation to a telephony device still exists, the
I/O Cross Reference ldentifier is still valid.

Figure 6-28 Data Path State Model

Start Data Path
Stop Data Path

top Data Path

Suspend Data Path
Open J Data Path Suspended ™|

Resume Data Path
Data Path Resumed

Suspended

I/O Services Example
The following figure illustrates a possible CSTA configuration involving a data path from/to a CSTA object
through the switching function.

The data path is established via the Start Data Path service issued, in this example, by the computing
function.

If the switching function temporarily stops (suspends) the data flow (without destroying the data path), it
informs the computing function via the Data Path Suspended service.

The switching function might have suspended the data path because it had received a Suspend Data
Path service from the computing function or it may have suspended the data path without such a request
from the computing function (because of an incoming call at the device, for example).

-58 -

»ecma

6.3

6.3.1

Figure 6-29 I/O Services Example

data path text data

Switch
‘ | Send data
data path voice data
Suspend Drata path
susp ended

Resume

data path resumed
Commputer

Call Detail Record (CDR) Services

Call Detail Record (CDR) Services allow access to information regarding call details that has been
collected, processed and/or stored by the switching function. This information may include detailed call
charges, destination, bill-to-account, authorization codes, etc. This information may be provided in real-
time (i.e., immediately after the conclusion of a call) or in batch mode.

CDR Services Examples

Figure 6-30 illustrates the flow of CDR services when they are used to collect call detail information after
every call. In this example, the computing function issues a Start Call Detail Report Transmission service
and specifies that the switching function should send call detail information after every call by specifying
the transferMode parameter as transferAtEndOfCall (line 1). The switching function responds with a
positive acknowledgement (line 2) that includes a CDR cross reference identifier (with a value of 5) which
will be present in subsequent CDR services.

Line 3 shows a call, called c1, that was cleared. Since the switching function is sending call detail
information after every call, the switching function sends the call detail information for call c1 using the
Call Detail Record Report service (line 4), which is acknowledged by the computing function (line 5).
Lines 6 through 8 show the same sequence for another call, called c2.

When the computing function is no longer interested in CDR information, it stops the reporting by using
the Stop Call Detail Report Transmission service, specifying the CDR cross reference identifier with a
value of 5 (line 9).

-59 -

reCima

Figure 6-30 CDR Services Example: Call Details “After Every Call”

Switching Function Computing Function

1. =

2. =

3. (call clis cleared)

4, =

5. - (positive acknowledgement)

6. (call c2is cleared)

7. _____Call Detail Record Report (call detail parameters for call ¢2drCrossRefID=5) service g,
8. - (positive acknowledgement)

0. : - _ :

10. (positive acknowledgement) >

Another example as shown in Figure 6-31 illustrates the flow of CDR services when they are used to
collect call detail information and retrieved at the request of the computing function.

In this example, the computing function issues a Start Call Detail Report Transmission service and
specifies that the switching function should store call detail information (until explicitly requested by the
computing function) by specifying the transferMode parameter as transferOnRequest (line 1).

Lines 3 and 4 show two calls in the switching function that were cleared. Since the switching function is
not sending call detail information after every call, the switching function stores the CDR information
instead of sending it at this time. When the computing function wants the CDR information, it sends the
Send Stored Call Detail Records service (line 5) that requests the switching function to start sending its
stored CDR records. The switching function sends its two stored reports for calls c1 and c2 via a Call
Detail Record Report service (line 7).

Line 9 shows that the switching function has stored CDR information for a number of calls. Since the
computing function has not requested CDR information to be sent during this period, the switching
function has used the Call Detail Records Notification service to indicate that a threshold reached
condition has occurred in the switching function (line 10). The computing function uses the Send Stored
Call Detail Records service to start the transmission of CDR information from the switching function (line
12). The switching function sends a series of Call Detail Record Report services that provides the stored
CDR information (lines 14 & 16).

-60 -

»ecma

6.4

6.4.1

Figure 6-31 CDR Services Example: Call Details “On Request”

Switching Function Computing Function
1. =
2. =
3. (call clis cleared)
4. (call c2is cleared)
5. - Send Stared Call Detail Records (cdrCrossRefID=6)
6. (positive acknowledgement) -

7. _______ Call Detail Record Report (cdrCrossReflD=6.callsel,¢2) 5

8. - (positive acknowledgement)

9. (calls c3.....c9999 are cleared, CDR records stored)
10. i ificati - _

11. - (positive acknowledgement)

12. g Send Stored Call Detail Records (cdrCrossReflD=6)

13. (positive acknowledgement) -

14. ______ Call Detail Record Report (cdrCrossRefID=6, calls c3through¢1Q) g,
15. <& — Hpositiveackmowtedgement) — — — — — — — — — — — — — — — — -

16. __ Call Detail Record Report (cdrCrossReflD=6. calls cxx through ¢999) g

17. <& — (positiveacknowtedgement) — — — — — — — — — — — — — — — — -

Capabilities Exchange

The concept of capability exchange is one in which the switching function informs the computing function,
through the service boundary, about the characteristics of its sub-domain in relationship to the operational
model and feature definitions. This enables the computing function to use the services of the switching
function based on its characteristics.

This exchange shall be performed before the computing function can control and/or observe any device
in the switching sub-domain but not before the switching function has reported its system status (i.e., the
System Status service).

There are two levels of capability exchange available to the computing function: switching function and
device specific capabilities.

Switching Function Capabilities

The first level is the capabilities for the switching function. These capabilities represent the set of all
capabilities within the switching function. The Get Switching Function Capabilities can be used to obtain

-61 -

acma

6.4.2

6.4.2.1

6.4.2.2

6.4.3

the entire set of all capabilities within the switching function. The Get CSTA Features service can be used
if only the list of supported services and events are needed.

The list of devices that can be controlled and/or observed within the switching sub-domain can be
obtained by using the Get Switching Function Devices service. This service causes the switching function
to send one or more Switching Function Devices service(s) that contain the list of devices and optionally
the device type, device name, and other information associated with each device.

Device Capabilities

Even though the Get Switching Function service gives the computing sub-domain most of the information
to properly use the capabilities of the switching function, this information is sometimes not enough to
totally understand the unique capabilities of a given device in relationship to the operational model or
feature. Thus, another level of capability exchange exists which allows the computing function to obtain
the specific capabilities associated with a given device or device configuration. This level of information is
needed to better understand capabilities for an individual device. These specific device capabilities are
obtained by using the following services (in any order):

¢ Get Physical Device Information service
e Get Logical Device Information service

The ability to use these services depends on whether or not the switching function actually supports
these services. The computing function obtains this information from the Get Switching Function
Capabilities service.

Physical Device Capabilities

This Get Physical Device Information service is used to obtain most of the capabilities and configuration
information associated with the physical element of a device. To obtain the rest of the physical element
characteristics, the computing function shall use the Get Button Information, Get Lamp Information, Get
HookSwitch Status, Get Ringer Status, and Get Auditory Apparatus Information services to obtain all of
the information associated with the device’s lamps and buttons. This information is used when controlling
or observing the physical element of the device.

If the service indicates that the device has logical characteristics, the Get Logical Device Information
service may be used for all associated logical elements.

If the service is used on a device that does not have any physical characteristics the service shall be
rejected.
Logical Device Capabilities

The Get Logical Device Information service is used to obtain the capabilities and configuration information
associated with the logical element of a device. This information is used when controlling or observing the
logical element of the device.

If the service indicates that the device has physical characteristics, the Get Physical Device Information
service may be used for all associated physical elements.

If the service is used on a device that does not have any logical characteristics the service shall be
rejected.
Dynamic Feature Availability

A computing function can determine all possible CSTA services that can be applied to a connection given
its state by using static information obtained through the Capability Exchange services. However, in
certain implementations, there are situations where the set of services that can be applied to a connection
varies depending upon how the connection got to a certain connection state and/or certain features active
at a given device. In these cases, the static information provided in the Capability Exchange services may
not reflect the actual set of services that are allowed.

-62 -

»ecma

6.5

6.5.1

6.5.2

6.5.3

If the Dynamic Feature Availability option is supported (as indicated through the Capability Exchange
services), the actual set of CSTA services that can be applied to a connection at a given point is provided
through the servicesPermitted parameter in every appropriate event.

Refer to 12.2.24, “ServicesPermitted”, on page 142 for a description on the use and restrictions of this
parameter.
Switching Function Information Synchronization

Since the information obtained through the capability exchange services and call events may change
after the information has been obtained, this Standard defines mechanisms that may be used to notify
and provide the computing function with the updated information. This allows synchronization to be
maintained with switching function information.

Switching Function Level Information

The following list describes how the computing function is notified when switching function level
information has been changed.

» switching function capabilities - The Switching Function Capabilities Changed service is used to notify
the computing function when information contained within the positive acknowledgement of the Get
Switching Function Capabilities service has changed. The computing function shall issue the Get
Switching Function Capabilities service to get the current information.

« switching function devices - The Switching Function Devices Changed service is used to notify the
computing function when information contained within the Switching Function Devices service has
changed. The computing function shall issue the Get Switching Function Devices service to get the
current information.

Device Level Information

The following list describes how the computing function is notified when device level information has been
changed.

« device capabilities - The Device Capabilities Changed event is used to notify the computing function
when information contained within the positive acknowledgement of the Get Physical Device
Information and/or Get Logical Device Information services has changed. The computing function
shall then issue the appropriate Get Physical Device Information and/or Get Logical Device
information services to get the current information.

Call Level Information

The following list describes how the computing function is notified when call level information has been
changed.

« account information and authorisation code - The accountinfo and the authorisationCode parameters
in the Call Control events represents the current account information and authorization code. In the
situation where this information has changed independently of call activity (manual entry or via the
Associate Data service, for example), the Call Information event is used to notify the computing
function of the updated value.

« calling device - The callingDevice parameter in the Call Control events represents the calling device
associated with the call. In the situation where this information was originally unknown and has now
become available, the Call Information event is used to notify the computing function of the updated
value.

» dynamic feature availability - The servicesPermitted parameter in the Call Control events represents
the set of services that can be applied to a connection. In the situation where the servicesPermitted
parameter changes due to another call’'s connection changing state, the Call Information event is
used to notify the computing function of the updated capabilities for the connection that did not
change state.

-63 -

»ecind

6.6

6.6.1

6.6.1.1

6.6.1.2

e User Data and Correlator Data - The userData and the correlatorData parameters in the Call Control
events represents the current values of User Data and Correlator Data. In the situation where this
information has changed independently of call activity (Send User Information or Associate Data
services, for example), the Call Information event is used to notify the computing function of the
updated values.

Status Reporting Services

Note that this section describes the Status Reporting services between the Switching Function and the
Computing Function.
System Status

System Status services provide a way for the computing function and switching function to exchange
information about the overall status of the system within each function. For each service boundary in a
CSTA environment, the computing function and switching function on each side maintain a status
attribute. System status services are bi-directional, enabling the computing function to report its status to
the switching function, or to request the status of the switching function, and vice-versa.

System Status Registration

Before the computing function can receive any system status service requests, it may be required to
register with the switching function for system status services using the System Status Register service.
The positive acknowledgement to this service contains the system status register identifier
(sysStatRegisterID) that the computing function uses to identify service requests that arrive for this
registration.

If the switching function supports the System Status Registration services, then the computing function
shall use the System Status Register service to register for system status services before it can receive
any system status service requests. The first (mandatory) System Status service request from the
switching function issued during an initialization sequence is an exception to this rule, however. If the
switching function does not support the System Status Registration services, then the computing function
may receive system status service requests at any time. The capabilities exchange services can be used
to determine if the switching function supports the System Status Registration services.

The type of system status service requests that apply to the registration can be chosen by the computing
function when it issues the System Status Register service request. A status filter can also be specified
such that only the status’s of interest to the computing function will be reported by the switching function
(i.e., if the bit for a status is set in the status filter, then that status is not reported). This filter can be
changed using the Change System Status Filter at any time while the registration is active.

A system status registration can be cancelled using the System Status Register Cancel service. Once the
switching function sends a positive acknowledgement to this service, it will no longer send system status
service requests to the computing function. Additionally, the switching function can cancel a system status
registration at any time by sending the computing function a System Status Register Abort service
request.

While the system status services themselves are bi-directional, the System Status Registration services
are not. These services are only issued by the computing function. The switching function does not
register with the computing function for system status services. The switching function is considered to be
(implicitly) registered to receive system status service requests from the computing function at any time.
System Status Services

There are four System Status Services: System Status, Request System Status, Switching Function
Capabilities Changed, and Switching Function Devices Changed. The first service is used by the
requesting function to report its status to the function receiving the service request. The second service is
used by the requesting function to request (i.e., query) the status of the responding function. The last two
services are used to notify the computing function that switching function level information has changed
(6.5.1, “Switching Function Level Information”, on page 63).

-64 -

»ecma

6.6.2

The computing function can determine if the switching function uses the System Status service for
periodic status reporting (i.e., heartbeats) using the capabilities exchange services. The Get Switching
Function Capabilities service positive acknowledgement defines a parameter (systemStatusTimer) that is
used to indicate whether periodic status reporting is used and if so, how often the computing function
should expect the reports. The recovery action to be taken by the computing function in the event of a
loss of heartbeats is implementation specific.

All System Status services use the following values to indicate system status:

» Initializing - The system is re-initializing or restarting. This status indicates that the system is
temporarily unable to respond to any service requests. If provided, this status message shall be
followed by an Enable status message that indicates that the initialization process is completed.

 Enabled - Request and responses are enabled, usually after a disruption or restart. This status
indication shall be sent after an Initializing status indicator has been sent and may be sent under
other conditions. This status indicates that there are no outstanding monitor requests.

« Normal - This value can be sent at any time to indicate that the status is normal. This status has no
effect on other services.

 Messages Lost - This status indicates that a service request, response, or event report may have
been lost.

» Disabled - This cause value indicates that active Monitor Start monitor requests have been disabled.
Other requests and responses may also be disabled, but, unlike monitors, reject responses are
provided for those.

» Partially Disabled - Some of the objects in the system can not be reached. Existing monitors on these
objects will not provide events and computer requests targeting these objects will be rejected. This
cause indicates to the receiving function that a degradation of service level may occur but not
complete system disability. Automatic or manual actions may be taken to remedy the parts disabled.

¢ Overload Imminent - The system is about to reach an overload condition. The client should shed load
to remedy the situation.

» Overload Reached - The system has reached an overload condition and may take action to shed
load. The server may then take action to decrease message traffic. This may include stopping
existing monitors or rejecting any new requests sent by the client.

» Overload Relieved - The system has determined that the overload condition has passed and normal
application operation may resume.

Each system status service request may contain a system status registration identifier
(sysStatRegisterID) to identify the associated system status registration (when system status registration
is supported by the switching function). A system status service request from the computing function
should never contain a system status registration identifier.

Monitoring

To track call control and other activity, and to receive notification of all changes in the switching Function,
the computing function uses a feature called monitoring. By starting a monitor, the computing function
indicates that it wants to be notified of specific changes that occur in the objects (call and device) and
device attributes of a switching function. Examples include:

* Noaotification that a call has arrived at a device.
» Noaotification that a call has been answered.
* Notification that a feature such as “Forwarding” or “Do Not Disturb” has changed at a device.

Once a monitor is established, the switching function notifies the computing function of relevant activity by
sending messages called event reports, or simply events.

-65 -

acma

6.6.2.1

6.6.2.2

For example, in the area of Call Control, events report the state transitions through which connections
pass. In this way a computing function is able to determine what services are applicable to a given
connection. For example, the Delivered event indicates when a connection state transits to the Alerting
state.

The event categories are as follows:

« Call Control - These events report changes to information related to calls.

e Call Associated - These events report changes to information related to calls.

« Media Stream - These events report changes associated with attachment of a call to a media device.
« Physical Device - These events report changes to the components of a device's physical element.

« Logical Device - These events report changes to feature settings associated with a device's logical
element(s).

¢ Voice - These events report changes to Voice Unit messages and Interactive Voice devices.
¢ Maintenance - These events report changes regarding maintenance.
« Private - These events are switching function specific.

Starting and Stopping a Monitor

The Monitor Start service is used to establish a monitor. The computing function indicates the monitor
object that it is interested in observing, the type of monitoring, the type of calls to monitor, and the list of
events that it is interested in.

Once the Monitor Start service request has been validated by the switching function, the switching
function provides a positive acknowledgement that includes a Monitor Cross Reference Identifier that
uniquely identifies the monitor. The switching function also provides this identifier as a parameter in all
events associated with this monitor. The computing function can use this identifier to correlate events to
the particular Monitor Start service that established the monitor. (This identifier is also used in the Monitor
Stop and Change Monitor Filter services.)

The Monitor Stop service is used to stop an established monitor. When a Monitor Stop service has been
sent by the computing function, the switching function stops the monitor, releases the Monitor Cross
Reference Identifier, and no longer provides events to the computing function.

The Monitor Stop service may also be sent from the switching function to the computing function when
the switching function stops an existing monitor. This occurs when the monitor object is a call-object
(Table 6-7), or when the switching function shall terminate a monitor due to load conditions, for example.

Refer to 15.1 beginning on page 215 for a complete description of the Monitor Start and Monitor Stop
services.
Monitor Objects

The computing function indicates what it wants to monitor by specifying a monitor object parameter in the
Monitor Start service request. There are two possible monitor objects: call-object and device-object.

The following table describes the monitor objects.

Table 6-7 Monitor Objects

Monitor Object Description

call-object Place a monitor on an existing call/connection. Only the specific call is monitored.

A Monitor Stop service is sent by the switching function to indicate when the existing call is no
longer monitored.

device-object Place a monitor at the specified device. The device may represent a single device (e.g. station)
or may represent a group device (e.g. hunt group).

- 66 -

»ecma

6.6.2.3 Monitor Types

The computing function also indicates a monitor type when starting a monitor. There are two types of

monitoring: call-type and device-type.

The following table describes the possible monitor types and their meanings.

Table 6-8 Monitor Types

Monitor Type Description

call-type The call continues to be monitored as long as it remains in the switching sub-domain.
For example, if a call that is being call-type monitored is transferred to another device in the
switching sub-domain, the call will continue to be monitored. The computing function receives
events for all devices in the call until the call ceases to exist or until it leaves the switching sub-
domain. The Diverted event is an exception. The switching function (as indicated through the
capabilities exchange services) may or may not be providing Diverted events to all devices in a
call.
For call-type monitors:

* When a device ceases to participate in a call, and the call is transferred or forwarded to
another device, subsequent events at the new device are reported. The Monitor Cross
Reference Identifier used in events at the new device will be the same one used before
the call was forwarded or transferred.

» If a call is being monitored using a call-type monitor and one of the devices consults to
another device (i.e. a new call is created), then the computing function will not see events
for the secondary call (new consultation call) until either the primary call is transferred to
the consulted device, or until the two calls are conferenced together.

» A call that is being monitored may have a new Call Identifier assigned to it after a
conference or transfer. The switching function reports the new Call Identifier in a
Conferenced or Transferred event.

device-type The call does not continue to be monitored after the call leaves the device.

6.6.2.4 Relationship of Monitor Objects and Monitor Types

Monitor objects and monitor types are independent. A monitor object describes what the monitor is being
placed on, while the monitor type describes if a call continues to be monitored after it leaves a device.

The following table describes the possible combinations of monitor objects and monitor types and what
the resulting combinations represent.

Table 6-9 Monitor Object/Monitor Type Combination

Monitor Object

Monitor Type

Usage

call-object

call-type

This combination is used to track an existing call, for as long as that call remains in
the switching sub-domain.

Monitor Stop service is sent by the switching function when the call ceases to exist in
the switching sub-domain to indicate that the monitor is stopped and the associated
Monitor Cross Reference Identifier is no longer valid.

call-object

device-type

This combination is used to track an existing call, while that call remains at the
specified device.

Monitor Stop service is sent by the switching function when the call leaves the device
to indicate that the monitor is stopped and the associated Monitor Cross Reference
Identifier is no longer valid.

-67 -

»ecind

6.6.2.5

6.6.2.6

6.6.2.7

Table 6-9 Monitor Object/Monitor Type Combination (continued)

Monitor Object Monitor Type Usage

device-object call-type This combination is used to track all calls that arrive (or are present) at the device, for
as long as the calls remain in the switching sub-domain.

The specified device object can be thought of as a trigger device where all calls that
become involved with this device become monitored as long as the call remains in
the switching sub-domain.

Monitor Stop service is not sent by the switching function when a call ceases to exist
or moves away from the monitored device, since the monitor is still in place at the
device.

device-object device-type This combination is used to track all calls that arrive (or are present) at the device, for
as long as the calls remains at the device.

Monitor Stop service is not sent by the switching function when a call ceases to exist
or moves away from the monitored device, since the monitor is still in place at the

device.

Monitoring in Relationship with Media Class

The computing function can also indicate the media class (voice, digital data, etc.) of calls to be
monitored when starting a monitor.

Refer to the media class component of 12.2.20, “MediaCallCharacteristics”, on page 138 for the complete
set of possible values. The media class is independent of the monitor object and monitor type.
Reporting Connection State Changes

Once a call is monitored (irrespective of monitor type or monitor object), all connection state changes that
are known by the switching function for that call are reported to the computing function (subject to the
Monitor Filter—refer to 6.6.2.7).

For example, if device A is being monitored (with a device-type monitor) and a call is placed to device B
(no monitor on B), then any connection state changes for either device A or B (such as when B answers
the call) will be reported through device A's monitor.

Monitoring is only guaranteed for devices in the switching sub-domain. Activity related to devices outside
the switching sub-domain may be only partially available or completely unreported.
Monitor Filtering

The computing function can request that a set of events be filtered out (not sent) by the switching
function. This information is specified in the monitorFilter parameter in the Monitor Start service request.

The monitorFilter parameter contains a list of filters that are grouped together into the following
categories:

e Call Control events

e Call Associated events

¢ Media Stream events

¢ Physical Device Feature events
¢ Logical Device Feature events
¢ Maintenance events

* Voice events

¢ Private events

The switching function indicates the actual list of events that will be sent by returning the monitorFilter
parameter in the positive acknowledgement to the Monitor Start and Change Monitor Filter services.

-68 -

»ecma

6.6.3

6.7

6.7.1

The computing function can request that the filtered list of events for an existing monitor be changed by
issuing the Change Monitor Filter service.

Some categories of events are not provided for call-type monitors. The capability exchange services
indicate the categories of events that are supported by the switching function for call-type monitors.
Snapshot Services

Snapshot services are used by the computing function to determine information about a call or a device.
These services may be used at any time, independently of, or in combination with existing monitors. For
example, a computing function may snapshot a device prior to starting a monitor on the device, in order to
obtain information on existing calls at the device.

Additional Services, Features & Behaviour

This section specifies standardized switching function features affecting calls at a given device that do not
have an explicit service request associated with the invocation of the feature. These features are usually
configured within the switching function or have a service request which sets up certain conditions at a
device that causes a particular behaviour with respect to calls at the device. As a result, these features
are only reflected through an event sequence from the switching function. The following sections explain
these features and the event sequences associated with them.

Forwarding

The forwarding feature is a trigger at a device that will redirect incoming calls to another device based on
a specific condition. The following are the types of conditions that would trigger the redirection, or
forwarding of the incoming call:

1. Immediate - This condition indicates that if a call arrives at a device, it is immediately redirected to
another device.

2. Busy - This condition indicates that if a call arrives at a device, and the device is busy with another
call, then the incoming call will be redirected to another device.

3. No Answer - This condition indicates that if a call arrives at a device, and the call is not answered
within a certain number of rings or within a specific amount of time, then the incoming call will be
redirected to another device.

4. Do Not Disturb (DND) - This condition indicates that if a call arrives at a device, and the device has
the Do Not Disturb feature active at the device, then the incoming call will be redirected to another
device. Note that the Do Not Disturb feature does not necessarily imply that incoming calls are
forwarded.

5. Type of Call Origination - This condition indicates that if a call arrives at a device, and the originating
device is a specific class (i.e., external, such as a device that is outside the switching sub-domain, or
internal, such as a device that is within the switching sub-domain), then the incoming call will be
redirected to another device. This condition can be used in combination with the others to create a
compound condition. For example, if busy with another call and the calling device is outside the
switching sub-domain, then redirect the call to another device.

Switching functions may support one or both of the following levels of forwarding settings:
e switching function default settings
« User specified settings

Switching function default settings are a single set of forwarding-type/forward-destination combinations
that can be activated and deactivated as a set. The set includes all of the CSTA forwarding-types defined
and the forward-destinations for each type. Activation, deactivation, or changes to the forward-
destinations are not normally possible by users.

-69 -

acma

User specified settings are individual forwarding-type/forward-destination combinations that can be
activated or deactivated one at a time. User specified settings supersede switching function default
settings during activation, deactivation, and when forwarding occurs.

A switching function that supports switching function default settings may also support user specified
settings. Switching function default settings are used for forwarding to a standard destination such as
voice mail or an attendant. User specified settings may be used to override the default settings to forward
calls temporarily to another office, for example.

A user specified forwarding type supersedes the same switching function default forwarding type when
forwarding occurs. For example, a user specified type of “No Answer” and its corresponding forward
destination supersede a switching function default type of “No Answer”. Note that this rule may not apply
to types that are not alike. For example, a user specified type of “No Answer” (a delayed type of
forwarding) does not supersede a switching function default type of “Immediate”, although a user
specified type of “Immediate” does supersede a switching function default type of “No Answer” (since “No
Answer” is a delayed type of forwarding).

The forwarding feature has service requests and events to control and observe the activation and
deactivation of the forwarding triggers at the device (i.e., Get Forward, Set Forward, Forwarding). These
service requests and events are documented in Clause 22, “Logical Device Features”, beginning on page
522, and do not actually forward the incoming call when it arrives at the device, but instead sets up the
trigger to cause the switching function to perform the redirecting of the call. The computing function
should use the capabilities exchange services to determine which of these services and events the
switching function supports.

The computing function should use the capabilities exchange services to determine which of the following
levels of forwarding settings are supported by the switching function:

¢ Switching function default settings (set of forwarding types and forward destinations).
» User specified settings.

« Default forwarding type.

» Default forward destination.

Switching function default settings may be activated or deactivated manually at the device, or by
providing neither the forwarding type nor forward destination (forward DN) in Set Forward service
requests.

User specified settings may be activated or deactivated manually at the device or by providing the
forwarding type and/or the forward destination (forward DN) in the Set Forward service request. If the
forwarding type is not specified and the forward destination is specified, the switching function uses a
default forwarding type. Likewise, if the forwarding type is specified and the forward destination is not
specified, the switching function uses a default forward destination.

The computing function is informed that default settings are being activated in the Get Forward positive
acknowledgement and the Forwarding event.

When the call is immediately redirected as a result of the forwarding feature, there are two basic event
sequence models to indicate that the call has been forwarded. The following are the event sequence
model definitions (Note that the computing function should use the capabilities exchange services to
determine which of model or models that the switching function supports.):

1. Forwarding Is Triggered before the Call Is Delivered to the Device - There is basically no event
sequence associated with this condition. The only characteristic associated with this event sequence
is:

« The first event associated with the delivery of the call to the new device will have an appropriate
forwarding event cause. If the RedirectionDevicelD parameter is available in this event, it will be

-70 -

»ecma

6.7.2

provided based upon the definition of the Call Control event and 12.3.24, “RedirectionDevicelD",
on page 154. Refer to 6.7.6, “Tracking a Diverted Call”, on page 75 for additional information on
event sequences for forwarded calls.

If the call is forwarded multiple times under the same condition (e.g., forwarded from device 1 to
device 2 which is forwarded to device 3), then the information indicating that the call was forwarded
will only be the information from the last device the call was forwarded from (e.g., device 2). As a
result, the computing function will only see that the call has been forwarded one time.

Forwarding Is Triggered after the Call Is Delivered to the Device - The event sequence is a Diverted
event followed by the first event associated with the delivery of the call to the new device. The
characteristics associated with this event sequence are:

» Depending on the capabilities of the switching function, an Offered and/or Delivered event may
or may not flow as a result of presenting the to-be-forwarded call to the device from which it will
be diverted.

« The Diverted event will have an appropriate forwarding event cause. (Note that he reporting of
this event is dependent on the capabilities of the switching function.)

« The first event associated with the delivery of the call to the new device will have an appropriate
forwarding event cause. If the RedirectionDevicelD parameter is available in this event, it will be
provided based upon the definition of the Call Control event and 12.3.24, “RedirectionDevicelD”,
on page 154. Refer to 6.7.6, “Tracking a Diverted Call”, on page 75 for additional information on
event sequences for forwarded calls.

If the call is forwarded multiple times under the same condition (e.g., forwarded from device 1 to
device 2 which is forwarded to device 3), then the information indicating that the call was forwarded
will be available each time the call is forwarded (e.g., device 1, device 2). This is possible because
the call is actually delivered to the device before it is forward to another.

If the call is forwarded multiple times with a mixture of forwarding conditions (i.e., event sequence types),
then the information indicating that the call was forwarded will be a mixture of the event sequences
depending on the order of the forwarding conditions.

Connection Failure

The information indicating connection failure can be reported through several different event sequences.
The computing function should use the capabilities exchange services to determine which of these
services and events the switching function supports. The following are the possible event sequences
associated with connection failure:

1.

Negative Acknowledgement - When the switching function supports service requests that perform
connection creation process and the switching function detects a failure, the negative
acknowledgement can be used to indicate the failure to complete the connection. The following are
the service requests associated with connection creation process:

* Consultation Call

» Deflect Call
« Dial Digits
* Join Call

* Make Call

* Make Predictive Call
» Pickup Call
» Single Step Conference Call

-71 -

acma

Single Step Transfer Call

If the switching function uses the negative acknowledgement to indicate the connection failure, then
the appropriate error code will be used to indicate the particular failure.

2. Support of the Failed Event with an Associated Failed Connection - When the switching function
detects a connection failure, it places that connection into the failed state. This indicates that the call
control services which can be performed with respect to the connection are limited. The following is
the list of call control services that are applicable:

L]

L]

L]

L]

L]

L]

L]

Clear Call

Clear Connection

Call Back Call-Related

Call Back Message Call-Related
Camp On Call

Deflect Call

Intrude Call

When a connection enters the Failed state, the event sequence provided is a Failed event. The
characteristics associated with this event sequence are:

The Failed event will have an appropriate failure event cause.

The failedConnection parameter in the Failed event will contain a “complete” Connection
Identifier (i.e., a Connection Identifier that has both a Device Identifier and Call Identifier)

The Failed event will be reported to all active device-type monitors associated with the call, as
well as all call monitors associated with the call.

3. Support of the Failed Event without an Associated Failed Connection - This case is similar to the
“Support of the Failed Event with an Associated Failed Connection” state (case 2). The difference is
that when the switching function detects a connection failure, it does not create a connection for the
failed device but instead indicates to the computing function that call control services, with respect to
the connection, are limited. The following is the list of call control services that are applicable to the
connection in the call under these conditions:

Clear Call

Clear Connection

Call Back Call-Related

Call Back Message Call-Related
Camp On Call

Deflect Call

Intrude Call

When the failure is detected, the event sequence provided is a Failed event. The characteristics
associated with this event sequence are:

The Failed event will have an appropriate failure event cause.

The failedConnection parameter in the Failed event will contain a “Call ID only” Connection
Identifier. This indicates that there is not a valid connection for the failed device in the call but
that the appropriate call control service can be performed (i.e., Call Back Call-Related, Intrude
Call, etc.). In the figures for the services and events, this “Call ID only” connection identifier is
indicated via a dotted line (see Clause 11 for the template descriptions).

-72-

»ecma

6.7.3

6.7.4

» The Failed event will only be reported to the active device and call monitors associated with the
devices that where in the call prior to the failure (i.e., if a device-type monitor was on the failed
device, then the event sequence is not reported).

If the Camp On Call or Intrude Call service request is performed, then the connection associated with
the failed device will be created (i.e., a valid connection).

4. Support of the Failed Event with an Associated Failed Connection, not reported via monitors on the
failing device - This case is similar to the “Support of the Failed Event with an Associated Failed
Connection” state (case 2). The difference is for which monitors the Failed event is being sent: The
Failed event will only be reported to the active device and call monitors associated with the devices
that were in the call prior to the failure (i.e. if a device-type monitor was on the failed device, then the
event sequence is not reported). Apart from this, all aspects from case 2 apply also to this case.

Recall

The Recall feature is a trigger that is associated with a call after a specific call control feature has been
executed. When this feature is executed, it redirects or presents the call either back to the device on
who'’s behalf the call control feature was executed or to a switching function administrated destination
associated with the specific call control feature. There are several types of call control services which can
have this feature associated with them. For example:

» Hold Call

» Transfer Call

* Single Step Transfer Call
» Deflect Call

» Park Call

The event sequence associated with this feature is the Diverted event (only if the device to whom the call
is being redirected is not already in the call) and the first event associated with the delivery of the call to
the new device or the device that performed the call control feature. The characteristics for this event
sequence are:

» The Diverted event will have an appropriate recall event cause. This event is only reported when the
device to whom the call is being redirected is not already in the call (i.e., a recall to a connection that
is already in the call). (Note that the reporting of this event is dependent on the capabilities of the
switching function.)

« The first event associated with the delivery of the call to the new device (i.e. Delivered), or the device
that performed the call control feature will have an appropriate recall event cause (in either the
Delivered, Held, Queued, etc.). If the lastRedirectionDevice parameter is available in this event, and
the call was actually redirected to another device outside the current call, then it will be provided
based upon the definition for this parameter. (Refer to the definition of the Call Control events and
lastRedirectionDevice parameter for more details.) If the callingDevice parameter is available in this
event, it may contain the same callingDevice information prior to the recall. This means that if the
calling device is the Subject Device of the event, then the information in the callingDevice and
corresponding SubjectDevicelD (e.g., Delivered event SubjectDevicelD = alertingDevice) parameters
may be the same. If the switching function does not retain this information with the call, then the
callingDevice parameter will contain a value of “Not Known”.

Call Back

The Call Back feature is a trigger which is set up within the switching function. The trigger is used to
initiate a call between a particular pair of devices. The pair of devices is comprised of a calling device
(i.e., the device on who's behalf the trigger is setup) and the called device (i.e., the device whom the
calling device wants to initiate a call to when certain conditions associated with the called device are met).

-73-

acma

6.7.5

The type of conditions associated with the trigger is switching function specific. A common type of
condition is the called device is no longer actively involved in a call(s). The trigger is activated for the
calling device by either the Call Back Call-Related or Call Back Non-Call-Related services. The trigger is
deactivated by one of the following: successful execution of the trigger, the Cancel Call Back service, or a
switching function specific timeout period. Once the trigger is activated, the switching function waits for
the particular condition associated with the Call Back feature to be met. Once met, the switching function
initiates a call on behalf of the calling device to the called device. This is done by first prompting the
calling device (if supported by the device) and then initiating the call to the called device.

The event sequence associated with execution of the Call Back trigger is the Service Initiated event (only
if the calling device is prompted), Originated event and the events associated with the called device’s
involvement in the call. The characteristic for this event sequence is that both the Service Initiated (if
supported) and Originated events will have an event cause of Call Back.

External Calls

A call is considered to be external when there is at least one device in the call that is outside the
switching sub-domain. For more details on how the switching function represents these devices within the
switching sub-domain, refer to 6.1.1.4.2, “Network Interface Device Category”, on page 24. The activities
associated with external calls are broken down into two categories:

« Incoming Calls - A call is being initiated from a device outside the switching sub-domain.

¢ Outgoing Calls - A device inside the switching sub-domain is adding or initiating a call to a device
outside the switching sub-domain.

These categories are represented by different event sequences. The characteristics associated with
these event sequences are:

¢ Incoming Calls

e A Service Initiated event is generated for the network interface device when the network
interface device is allocated (e.g., seized) for the external incoming call. The initiatingDevice
parameter will contain the information on which network interface device is being used for the
call. Note that this event is only generated if the network interface device is monitored.

« The Digits Dialled event is generated for the network interface device when a portion of the
dialling sequence has been received over the network interface device. Note that this event is
only generated if the network interface device is monitored.

e The Originated event is generated for the network interface device when the external incoming
call has originated from the network interface device. The NIDDevice parameter will contain the
information on which network interface device is being used for the call. Note that this event is
only generated if the network interface device is monitored.

¢ In all subsequent events (independent of whether or not the network interface device is
observable), this incoming call is distinguished from an internal incoming call by the presences
of the associatedCallingDevice (i.e., containing either a Device ldentifier or a value of “Not
Known”). The information in the associatedCallingDevice parameter is first associated with the
call when it enters the switching sub-domain (i.e., Service Initiated or Originated events) and will
be present until the calling device leaves the call.

¢ Outgoing Calls

« When initiating a connection to a device outside the switching sub-domain and the switching
function is associating the Network Interface Device with the outside device, a Network Reached
event is reported. In addition, the Network Reached event is the first event that indicates the call
is an external outgoing call. Subsequent events (if available) will contain the
associatedCalledDevice parameter (i.e., the value from the networkinterfaceUsed parameter of

-74 -

»ecma

6.7.6

6.7.7

6.7.7.1

6.7.7.2

the Network Reached event) and will be present until the call is cleared. In addition, until the
Network Reached event is generated, the call is consider to be an internal call.

* The event sequence after the Network Reached event that is associated with the device outside
the switching sub-domain may be limited but the events that are reported will contain one of the
event causes documented in the event definition. If the Network Reached event contained the
networkCapability parameter, future Network Capabilities Changed events may be provided
indicating a change in the signalling capability of the network and ultimately the types of events
that can be provided.

Tracking a Diverted Call

When observing a call or a device in a call, and the call diverts from a device in the call, the computing
function shall use the Diverted event to track the progress of the call as a result of the redirection.

If the switching function does not provide the Diverted event for all devices in a call or for call-type
monitors (as indicated through the capabilities exchange services), the computing function shall use
parameters in the first event after the call has been diverted to properly track the progress of the call as a
result of the redirection. The device identifiers are used to observe the movement of the call and the
event cause is provided to indicate what caused the movement of the call. (Note that the call may have
been diverted several times between the previous event (if one was generated) and the first event after
the diversion. As a result, the computing function can only ascertain that either one or two redirections
have occurred.)

Media Stream Access

The capability to control the information content within a call is called media stream access, or simply,
media access. Media access is provided to a computing function through a media service. Common
media service capabilities are play/record of voice and audio, automatic speech recognition, text to
speech, fax, and data services.

Some of these capabilities can alternatively be provided as voice features defined in 6.1.1.4.7 through
6.1.1.4.13.
Media Attachment Services

A computing function making use of both call control services and media services needs to establish
sessions with both services, attach calls to the media service, and needs a way of associating the
identifiers (e.g., Connection ldentifiers, Media Stream Identifiers) used by the two services. This Standard
defines a set of services, called media attachment services, that make these tasks significantly easier for
the computing function.

Media Service Type

A particular media service, which is defined by its set of services and possibly its access methods (APIs,
protocols, etc.) is identified for the purpose of the media attachment services by a unique media service
type identifier. The mediaServiceType parameter is used to indicate which media service is to be (or has
been) attached to or detached from a particular call or connection that the computing function is
controlling and/or monitoring. In some instances, the media service version may also be provided, such
that different versions of the media service can be identified by unique media service types.

Table 6-10 identifies and describes the set of media service types defined by this Standard:

Table 6-10 Media Service Types

Media Service Type Media Stream ID Representation
CSTA Voice Unit Refers to the connection identifier in the sub-domain.
Data Modem Refers to the address that is to be used to access the modem control and data stream.
Digital Data— Isochronous/IEEE Refers to the IEEE 1394 channel that is being used.
1394

-75 -

oecind

6.7.7.3

6.7.7.4

Table 6-10 Media Service Types (continued)

Media Service Type Media Stream ID Representation
Digital Data—Isochronous/ Refers to the GeoPort stream that is being used.
GeoPort
Digital Data— Isochronous/ATM Refers to the ATM virtual channel/path identifier that is being used.
Digital Data— Isochronous/ISDN Refers to the ISDN bearer channel that is being used.
Digital Data—API Refers to the particular API's digital data stream reference ID (e.g., Microsoft's Winsock
is socket identifier) to indicate which digital data stream is to be used.
ECTF S.100 Media Services Refers to the ECTF S.100 Media Services CCR Resource ID (CCR ECTF ResourcelD)
Default to indicate which media stream channel to be used.
ECTF S.100 Media Services Refers to the ECTF S.100 Media Services Application Service.

Application Service

IVRScriptl through IVRScript10 Not defined; the attachment of the media stream channel to the vendor media server
instance is vendor-specific.

Live Sound Capture—Analog Refers to the analog jack that is being used.

Live Sound Transmit—Analog Refers to the analog jack that is being used.

Live Sound Capture—IEEE 1394 Refers to the IEEE 1394 channel that is being used.

Live Sound Transmit—IEEE 1394 Refers to the IEEE 1394 channel that is being used.

Live Sound Capture and Refers to the GeoPort stream that is being used.
Transmit—GeoPort:

Live Sound Capture and Refers to the ATM virtual channel that is being used.
Transmit—ATM

Live Sound Capture and Refers to the ISDN bearer channel that is being used.

Transmit—ISDN

Sound Capture and Transmit— Refers to the particular API's sound stream reference ID (e.g., Microsoft's MCI's is MCI
API Device handle) to indicate which sound stream is to be used.

Sound Capture and Transmit— Refers to the address that is to be used to access the asynchronous stream.

Rockwell ADPCM Packet

Universal Serial Bus (USB) Refers to the USB endpoint.

sfSpecificl through sfSpecific10 Not defined; the attachment of the media stream channel to the vendor media server

instance is vendor-specific.

Media Service Instance

A specific set of resources and/or functions that provide a particular media service (as identified by the
media service type) are referred to as a media service instance. For example, a media service instance
may be a specific media server, subsystem, or software that provides the given service. When the
computing function attaches a call to a media service, it may request a particular instance of the service
through the media service instance identifier. A media service instance may have associated with it zero
or more media access devices that provide a means of physical connection between switching sub-
domain resources and media service resources.

Media Access Device

A media access device is a device within the switching sub-domain used in establishing and modeling the
physical connection of the media stream between switching sub-domain resources (i.e., devices in a call)
and media service resources (i.e., media processing resources such as tone generators/detectors,
speech recognition devices, text-to-speech converters, modems, etc.). During media service instance
attachment, a media access device may be conferenced into a call, or the call may be transferred to the
media access device from another device. During media detachment, the media access device is cleared
from the call.

-76 -

~ecna

6.7.7.5

6.7.7.6

Media Stream ID

The media services that can be the target of the media attachment services are unlimited. That is, very
little is assumed about the operational model of the media services themselves. The only requirement is
that the media service defines some identifier, referred to here as the media stream identifier (i.e.,
mediaStreamID), that can be used by the computing function to reference the media stream associated
with a connection.

The mediaStreamID is returned, if supported, as a parameter in the Media Attached event. The capability
exchange services are used to determine if the switching function supports returning the mediaStreamiID.

The format and meaning of the mediaStreamID is media service and implementation dependent, and is
not defined here. The switching function only guarantees the mediaStreamID to be valid while the media
service instance remains bound to the call. Once the media service instance is detached from the call, the
validity of the mediaStreamID is media service dependent.

Service Operation

The media attachment services defined in this Standard consist of two services: Attach Media Service
and Detach Media Service, and two events: Media Service Attached and Media Service Detached. A
description of these services and events and their usage follows. For more information see Clause 19,
“Media Attachment Services & Events”, beginning on page 440.

A typical media enabled computing function will establish or accept a call, perform some media access
functions associated with the call, and then clear the call. The first and third steps clearly require the call
control services only, while the second involves coordination of both call control and media services. This
second step can be further sub-divided into the following tasks:

1. A particular instance of the media service (e.g., specific media server or media subsystem providing
the desired services) shall be chosen, either by the computing function or by the switching function
on behalf of the computing function.

2. The computing function shall establish a session with the selected media service instance. The
method of the session establishment is media service dependent (e.g., initialize with the media
service API, send a message to the media service, establish a CSTA association with a SRF).

3. If the switching function supports returning a mediaStreamID to the computing function, an
association between the switching function and the media service instance must be established. The
way this association is realized is implementation dependent. The switching function and the media
service instance require a means to attach the media stream channel of a connection to a media
stream channel of the media service instance. This is referred to as a connection mode. Connection
modes are enumerated in the specification of Media Attachment services. They fall into two
categories:

a. Explicit representation by adding a media access device into the call via a call control service (e.g.
Conference Call, Transfer Call, Deflect Call, Directed Pickup Call). The media service instance is
bound to the new connection. In general, the media access device behaves the same as any
other call control device, although the services that can be applied to the device or a connection
associated with the device may be restricted by some implementations. Connection modes in this
category best suit, but are not limited to, configurations where call control resources and media
resources consist of distinct, non-integrated hardware components. An example of such a
configuration is one in which the switching resources reside in a PBX and the media service
resources reside in a VRU.

b. Implicit representation by an existing connection in the call (referred to as the direct
connectionMode). A media access device is not added to the call. Instead, the media access
device is already attached to an existing connection in the call. Connection modes in this category
best suit, but are not limited to, configurations where call control resources and media resources
consist of common or tightly integrated hardware components. An example of such a

-77 -

acma

configuration is one in which the switching and media service resources are provided by an
integrated telephony and media processing board in a PC. Another example of such a
configuration is one in which an external voice response unit makes an outbound call to a media
access device in a switching sub-domain, thus attaching its media services to the device's
connection.

4. The associated mediaStreamID assigned by the media service instance may be returned by the
switching function to the computing function.

5. The computing function can access the media service instance using the supplied mediaStreamiID.
At this point, the computing function may mix the use of call control services and services provided
by the media service instance as needed.

6. When the computing function has finished its use of the media services, it shall unbind the media
service instance from the call. The unbinding of the media service instance consists of releasing the
attachment established in step 3, and, if applicable, removing the associated media access device
from the call. As far as the switching function is concerned, the returned mediaStreamID is also
invalidated once the media service instance is detached from the call.

7. The computing function may or may not close its session with the media service instance. The
switching function may or may not release its association with the media service instance.

Several of these tasks are handled on behalf of the computing function through the use of the Media
Attachment Services. Steps 1, 3, and 4 are provided by the Attach Media Service, and step 6 is provided
by the Detach Media service.

The Attach Media Service attaches an existing call to a media service instance. The Attach Media Service
service request provides a mediaServicelnstancelD parameter that selects a particular media service
instance associated with the switching function when multiple choices exist. If the switching function has
multiple choices and the parameter is not supplied, then the switching function shall select which media
service instance is to be used.

The Attach Media Service, depending upon the connectionMode parameter supplied in the service
request, initiates a connection to an available media access device associated with the service instance
(for the explicit connection category). At the completion of a successful service invocation a Media
Attached event is reported on monitors associated with the specified call or device in addition to any other
events that flow as a result of making the media access device connection. The Media Attached event
may contain the associated mediaStreamID for accessing the media service instance. The Attach Media
Service service positive acknowledgement and Media Attached event may be correlated using the CSTA
Connection and Device Identifiers associated with the chosen media access device or existing
connection that was bound in the call.

A Media Attached event may flow any time a connection is bound to a media service instance, even if the
binding was not the result of an Attach Media Service service request. This provides for automatic
attachment and media service type determination by the switching function (e.g., situation where calls are
automatically directed to a media access device by the switching function or automatically bound to an
existing connection when a call arrives). When the computing function receives this event, it may open a
session with the associated media service instance and immediately begin accessing the media service
instance using the mediaStreamID provided in the event. The session establishment with the media
service and mediaStreamID usage are media service dependent and outside the scope of this Standard.

The Detach Media Service service request undoes the actions of Attach Media Service service. It unbinds
the media service instance from the specified call or connection and breaks the physical connection of
the media stream between the switching sub-domain and media service instance. Any associated media
access device involvement in the call is also cleared. The connection to the device is cleared and
reported through normal call control events (i.e., Connection Cleared events). A Media Detached event
report is used to indicate that media service instances have been detached from a call or connection. The

-78 -

»ecma

6.7.7.7

6.7.8

switching function itself may initiate a media detachment. In this case, the detachment is reported using
the same events as if the computing function had initiated the Detach Media Service service request
(e.g., Media Detached and possibly Connection Cleared events).

Related Services

A number of other call control services return information related to the media access capability. The
Snapshot Call service returns a list of media service types, media service versions, media service
instance IDs, and media stream IDs associated with each connection in a call.

The Get Switching Function Capabilities service returns, for the entire switching function, a list of
supported media service types, media service versions, media service instance IDs, and whether or not
the media stream ID is supported for this combination of media attributes, as well as the supported
connection modes for each combination.

Finally, the Get Logical Device Information service returns, for a selected device, a list of supported media
service types, media service versions, media service instance IDs, and whether or not the media stream
ID is supported for this combination of media attributes, as well as the supported connection modes for
each combination.

Routeing Services

A switching function uses Routeing services when it needs the computing function to supply call
destinations. This may be on a call-by-call basis or it may be non-call related. The computing function can
use internal databases together with call information to determine a destination, or route, for each call.
For example, the computing function might use the caller's number and information in a database to route
incoming calls.

A switching function may support Routeing services for any type of call (e.g., external outgoing, external
incoming, intra-switching sub-domain). Routeing services may require that the switching function be
configured to direct calls to a device known as a routeing device. This device shall be addressable (i.e.,
visible within the switching sub-domain) with respect to Routeing services but may or may not be
addressable with respect to other services (e.g., Call Control, Monitoring).

The routeing device may be a virtual device used only for routeing and thus may not be monitorable. The
way a particular virtual routeing type device is used by a switching sub-domain is specific to each
implementation. Examples include:

e a routeing device could be used to route all outgoing external calls from all devices within a given
switching sub-domain

* a routeing device could be used to route all incoming external calls independent of the network
interface device being used

» arouteing device could be used to route all calls that are considered to be priority calls independent
of their origin.

A switching function implementation will implement as many routeing devices as it requires in order to
reflect the different routeing processes it supports.

-79 -

reCima

6.7.8.1

Figure 6-32 Overview of a Routeing Dialogue

Route control Switch Computer
requested for :
specific device " Route Registration/Set Route Enable - Optional
Computer Let network
ilionies Route Reﬂueqt Service I / access route
more routes the call
available |“-x__ Optional
F 9
Linked pair
. : Re-Route Service -{ May be
Hou[e]ng I []]]] "]'cpcgj[cgl
Dialogue I Route Select Service !
!. _ ' _______________________ "l Optional
T T)
Route Used Service |
g poees S S ﬁ
Computer e === Requested

requests info - Route Iind Service by the
computer

on route used

Routeing services are used within a sequential “routeing dialogue” such as that represented in Figure 6-
32. (Note that none of the routeing services return positive acknowledgements. Negative
acknowledgements, though provided by routeing services when applicable, are not shown in the figure.)

A routeing dialogue is typically initiated by the switching function when a call is directed to a device and
particular conditions are met for that call at that device. The conditions at a device under which the
switching function may initiate a routeing dialogue are determined by its Route Mode and the Route
Registration Service. Through these mechanisms the computing function may specify to the switching
function that when calls encounter a particular device, the computing function should be consulted for a
proposed route.

Routeing services are linked within a routeing dialogue by the routeing cross reference identifier
(routeingCrossRefID). A routeing cross reference identifier is provided by the Switching function as part of
the Route Request Service used to initiate a routeing dialogue. This routeing cross reference identifier is
quoted by each subsequent invocation of a routeing service in the routeing dialogue.

Route Requests generated by the switching function may be call-related or non-call related.
Route Registration and Route Mode

Table 6-11 below specifies the conditions that must be satisfied before a given switching function initiates
a routeing dialogue for a given routeing device by generating a Route Request. The switching function’s
behaviour is governed by its support for the routeing registration services and support for the Route Mode
attribute. Registration has no affect on routeMode, and enabling/disabling routeMode has no affect on
registration. In order to use routeing services for a given routeing device, a computing function must
satisfy the conditions specified in Table 6-11 by invoking the appropriate services.

Table 6-11 Routeing Behaviour

Registration Not Supported Registration Supported
Route Mode * Registration not required » Registration required
Supported + RouteMode must be enabled RouteMode must be enabled
» Switching Function must initiate routeing » Switching Function must initiate routeing
dialogue if a call of any media class arrives dialogue if a call of any media class arrives
that matches the media class requested

-80 -

»ecma

6.7.8.2

Table 6-11 Routeing Behaviour (continued)

Registration Not Supported Registration Supported
Route Mode Not * RouteMode implicitly enabled * RouteMode implicitly enabled
Supported « Registration not required « Registration required (specific or all)
¢ Switching Function may initiate routeing ¢ Switching Function must initiate routeing
dialogue at its discretion dialogue if a call arrives that matches the
media class requested

The positive acknowledgement to the Route Register service contains the route register request identifier
(routeRegisterReqID) that the computing function uses to identify service requests that arrive for this
registration.

If the switching function supports the Route Registration services, then the computing function shall use
these services to register as a routeing server before it can route calls. If the switching function does not
support the Route Registration services, then the computing function may receive route service requests
for any routeing device at any time.

The computing function may either register as the routeing server for a specific routeing device or, if
supported by the switching function, as a routeing server for all routeing devices within the switching sub-
domain.

A route registration can be cancelled using the Route Register Cancel service. Once this service is
positively acknowledged, the switching function will no longer send route service requests to the
computing function. Additionally, the switching function can cancel a route registration at any time by
sending the computing function a Route Register Abort service request.

Routeing services for a particular device may be suspended without cancelling route registration by
disabling its Route Mode. This does not effect route registration and route requests for the given device
will resume when its Route Mode is enabled.

The capabilities exchange services can be used to determine if the switching function supports the Route
Registration services and if so, if the capability to register for all routeing devices is supported. The
capabilities exchange services can also be used to determine if the switching function supports the Route
Mode attribute.
Call Routeing

An example of a routeing process may involve the following sequence of steps:

1. The switching function receives a call at the routeing device. The routeing device may be any device
within the switching sub-domain.

2. When the call arrives at the routeing device, the switching function creates a routeing dialogue for
the call. The switching function allocates a routeing cross reference identifier (routeingCrossRefID)
that references this routeing dialogue.

3. The switching function sends the Route Request service to the computing function (that registered
as the routeing server) for the routeing device or as the routeing server for all routeing devices within
the switching sub-domain. This service request contains the routeing cross reference identifier, the
route registration request identifier (if supported), and call information such as the Connection
Identifier for the call, and calling and called numbers.

4. The computing function decides whether to reject the Routeing service request for this call, provide a
route for the call, or end the routeing dialogue. If the computing function decides to reject the call, it
sends the switching function a Route Reject service request. If the computing function decides to
provide a route for the call, it sends the switching function a Route Select service request containing
the destination for the call. The computing function may include an optional flag in the Route Select
service request (i.e., routeUsed) instructing the switching function to inform it of the call's final
destination. The final destination may be different than the computing function-provided destination

-81-

acma

when switching function features such as call forwarding redirect the call. If the computing function
decides to end the routeing dialogue, it sends the switching function a Route End service request. In
this case, the computing function does not provide a destination for the call and the switching
function uses an alternate mechanism (not defined) to route the call.

5. If the switching function receives a Route Reject service request, then it returns the call to the
network for alternate routeing, and sends the computing function a Route End service request to
indicate that the routeing dialogue is ended. If the switching function receives a Route Select service
request, it attempts to route the call to the computing function-provided destination. If the destination
is valid, the switching function routes the call to that destination and sends the computing function a
Route End service request to terminate the routeing dialogue. If the computing function-provided
destination is not valid (e.g., invalid directory number, destination busy), then the switching function
may send a Re-Route service request to the computing function to request a route to an alternate
destination. If the switching function receives a Route End service request, it terminates the routeing
dialogue.

6. If the computing function receives a Re-Route service request it can select a different destination for
the call and send the switching function another Route Select service request. Depending on the
switching function implementation, the re-routeing service request exchange can repeat until the
computing function provides an acceptable route. The computing function will find out about a
successful route when the switching function sends a Route End service request or if the computing
function included the routeUsed flag in its last Route Select service request.

Either the switching function or the computing function may send a Route End service request at any time
to end the routeing process and terminate the routeing dialogue. This releases the routeing cross
reference identifier for use in the future. This service request indicates, for example, that the computing
function does not want to route the call, or the switching function (usually in the absence of a Route
Select service request) routed the call using some default mechanism within the switching function.

Note that a conflict may arise in this dialogue if the computing function invokes the Route End Service, for
example to indicate that no more alternative routes are available, but still wants to receive a route used
report via the Route Used Service invoked by the switching function. Avoidance or resolution of this
conflict is the responsibility of the computing and/or switching function implementation(s).

A call that is not successfully routed does not necessarily mean that the call is cleared or not answered.
Most switching function implementations will have a default mechanism for handling a call at a routeing
device when the computing function has failed to provide an acceptable destination for the call. The
switching function shall send a Route End service request to the computing function when it terminates
the routeing dialogue, unless the routeing dialogue was terminated by a Route End service request from
the computing function first.

The minimum set of services a switching function shall provide if it supports routeing are: Route Request,
Route Select, and Route End (from the switching function). Other routeing services may be provided in
any combination in addition to this minimum set.

Figure 6-33 illustrates the typical Routeing procedure.

-82-

~ecna

6.7.8.3

Figure 6-33 Routeing Procedure
Switching Domain Computing Domain

(Routing Server)

(1) A call arrives at the routing devige Call related information is passed
(routingCrossRefID is created) and g
Route Requestservice request is
issued.

(2) The computing domain chooses to
reject the call, route the call, or end the
routing dialogue:

(2a) If the computing domain decides to
reject the call, it issuesReject Call

|

(3a) If (2a) then the switching domain (2a) service request.
ends the routing dialogue and issuesia or (2b) If the computing domain decides to
Route Endrequest. (2b) route the call, it selects a destination for
(3b) If (2b) and the destination is valid, the call (based on the call and other
then aRoute Endservice request is or 20) information), and issues Route Select
issued. service request.
(3c) If (2b) the destination is invalid, / (2¢) If the computing domain decides to
then aRe-Route request is issued. end the routing dialogue, it issueRaute
(3d) If (2¢), the routing dialogue is (3a) End service request.
ended and no more requests are sent for
this routing dialogue. or

@3b) (42) If (3a) or (3b) then the

or routingCrossRefID is released and call i
3c) rejected or route is completed using the

destination provided in (2b).

(4b) If (3c) then a secondRoute Select
(5) The switching domain again (4b) request with a different destination is
attempts to route the call to the (newly) issued (routeUsed = TRUE).
specified destination.
(5a) If the destination is valid, then a
Route Usedservice request and a (5a)
Route Endservice request are issued.
(5b) If the destination is invalid, then a
Re-Route service request is issued.

|

or (6a) If (5a) then routingCrossRefID is
5b) released and route is completed as
specified in (4b).
(6b) If (5b) then a thirldoute Selectwith
a different destination is issued.

Route Register Request ID and the Routeing Cross Reference ID

The routeing services use two identifiers to refer to different software objects in the switching sub-domain.
The route register request identifier (routeRegisterReqID) identifies a routeing registration for which the
computing function (acting as a routeing server) will receive Routeing service requests. This identifier
may be associated with a particular routeing device within the switching sub-domain or it may indicate
that the computing function is the routeing server for all routeing devices within the switching sub-domain.
When the computing function uses the Route Register service to register for routeing services, it receives
a routeRegisterReqID in the positive acknowledgement from the switching function. The
routeRegisterReqID is only valid until the routeing registration is ended by the computing function or
switching function.

Within a routeing registration (routeRegisterReqlD) the switching function may initiate many routeing
dialogues (shown in Figure 6-33) to route multiple calls. A switching function uses a routeing cross
reference identifier (routeingCrossRefID) to refer to each routeing dialogue. The computing function
receives a routeingCrossReflD in each Route Request service request. The Route Request service
initiates a routeing dialogue. The routeingCrossRefID is only valid for the duration of the routeing dialogue
pertaining to a specific call.

The routeing cross reference identifier (routeingCrossRefID) is unique within the routeing registration
(routeRegisterReqID). Some switching functions may provide the additional benefit of a unique routeing
cross reference identifier across the entire switching sub-domain. This is also the case if routeing
registration is not supported by the switching function. Routeing registration identifiers
(routeRegisterReqIDs) are unique across a given CSTA service boundary.

-83-

acma

6.7.8.4

6.7.8.5

6.7.9

6.7.10

6.7.11

6.7.12

Monitoring of Routeing Device

Some switching function implementations may support monitoring of routeing devices. For those
computing functions that have an active monitor on the routeing device, any activity at the device (for
instance call control activity) shall generate the relevant event sequence as specified throughout this
specification.

Routeing Services with respect to Media Class

A routeing device can support the routeing of calls of any combination of media class (i.e., voice or digital
data or both). Refer to the media class component of 12.2.20, “MediaCallCharacteristics”, on page 138
for the complete set of possible values.

Once the routeing dialogue is visible to the computing function through the Route Request service, the
media characteristics of the call will be identified and associated with the routeing cross reference
identifier.

Device Maintenance

Device Maintenance events indicate changes in the maintenance state of a device. These events indicate
if a device has been taken out of service (can no longer accept calls or be manipulated by the computing
function), is partially in service, or if a device has been placed back in service.

Prompting

Some CSTA services (Make Call, Call Back, Pickup, Join Call, for example) may require to prompt the
user of the targeted device in order to take that device off-hook. The implementation of a prompting
mechanism is switching function specific (display flashing, ring pattern, lamp blinking, etc.).

For CSTA services that specify prompting (except the Make Call service), the switching function shall
support (as indicated by the capability exchange services) one of the two possible prompting modes:

e prompting is a pre-condition to a service - in this mode prompting occurs before the execution of the
CSTA service. The Service Initiated event that indicates prompting shall flow before any other service
specific events and shall contain connection identifier that is not associated with the CSTA service.
After the device goes offhook, a Connection Cleared event associated with the prompt is generated
and the CSTA service that initiated the prompt is executed.

e prompting is part of a service - in this mode, prompting is part of the execution of the service. The
Service Initiated event that indicates prompting is part of the completion criteria for the service and
the connection identifier used in the Service Initiated event is associated with the CSTA service.

For information on event sequences with respect to prompting in the context of specific services, refer to
the Monitoring Event Sequences associated with a CSTA service.
Telephony Tones Features

There are several features that support the generation and detection of telephony tones.

The Generate Telephony Tones service (18.1.5, “Generate Telephony Tones”, on page 422) generates a
specified tone for a connection in a call. While a telephony tone is being generated, it may be canceled
via the Cancel Telephony Tones service (18.1.2, “Cancel Telephony Tones”, on page 414).

The Telephony Tones Generated event (18.2.4, “Telephony Tones Generated”, on page 434) is used to
monitor for telephony tones that are generated by a device (e.g., via the Generate Telephony Tones
service).

The Data Collection services (Clause 25, “Data Collection Services”) are used to report telephony tones
that are received over a connection at a device.

DTMF and Rotary Pulse Digits Features

Several services such as Make Call and Consultation Call provide a parameter for addressing a device
while a call is being created. Also, for calls that are already created, the Dial Digits service provides
address information to select a destination device or to complete a multi-stage dialling sequence.
Depending upon the switching function implementation and the type of network, these parameters may

-84 -

»ecma

6.7.13

6.8

6.8.1

be translated into DTMF or rotary pulse digit information used by the network to select a destination
device. This addressing information shall not be used for end-to-end purposes.

Other services, as defined below, are used for generating and detecting end-to-end information that is to
be sent to a device (i.e., not to address/select a device).

The Generate Digits service (18.1.4, “Generate Digits”, on page 419) is used to generate DTMF or rotary
pulse digit information for a connection in a call.

The Digits Generated event (18.2.3, “Digits Generated”, on page 432) is used to monitor for DTMF or
rotary pulse digits that are generated by a device, either manually or via the Generate Digits service.

The Data Collection services (Clause 25, “Data Collection Services”) are be used to report DTMF or
rotary pulse digits that are received over a connection at a device.

Data Collection Services

The Data Collection services are used to collect information such as DTMF/rotary pulse digits and
Telephony Tones that is received by a device over a connection.

The Start Data Collection service is used by the computing function to initiate the data collection. The
service specifies if data should be collected for a specific connection or for the next connection at a
device.

The Stop Data Collection service is used to stop the data collection. Data collection is also stopped if the
connection over which data is being collected is cleared.

Information that is collected as part of the data collection is reported to the computing function via the
Data Collected service.

The data collection may be suspended and resumed via the Suspend Data Collection and the Resume
Data Collection services. The Data Collection Suspended and the Data Collection Resumed services
notify the computing function if the data collection has been suspended or resumed.

The Data Collection services are specified in Clause 25, “Data Collection Services”.
Location Features

The CSTA Location features enable a computing function to determine the location and track the
movement of location-enabled CSTA devices such as fixed/mobile phones, group devices, or users.

A CSTA computing function utilizes the CSTA Location features and a CSTA switching function
implements them.

A computing function can set location information using CSTA services (see 6.8.5). The switching
function can also use other mechanisms to derive location information via network/device signalling,
embedded devices with location-enabled features, by inference based upon IP address, or by interfacing
to dedicated Location Servers, etc.

A computing function can also obtain location information using CSTA services by:
1. Polling the device for location information (see 6.8.2).

2. Monitoring a device and observe location information associated with calls at the monitored device
(see 6.8.3).

3. Creating a location tracking session to observe the location information associated with the device
(see 6.8.4)

Location Information

Geographical location information describes a physical position in the world that corresponds to the
location of an object such as a CSTA device.

-85 -

reCima

6.8.1.1

6.8.1.2

A CSTA device (see 6.1.1.4 on page 24) can be used to represent devices that are associated with
location information like a fixed-position device such as a wired phone, a mobile device such as a cell
phone, a group device consisting of member devices, a user, etc.

A CSTA devicelD (see 10.1 on page 94) is used to represent a CSTA device in location services.
Examples of a devicelD is a Directory Number or a URI.
Formats of Location Information

There are two formats of location information used in CSTA:

1. Civic Address - specifies location information in a format suitable for human use. This includes
information such as country, street, building, floor, etc.

2. Geospatial Coordinates - specifies location information based upon a coordinate system. This
includes information such as longitude, latitude, altitude, etc.

The Civic Address format uses the Civic Address types defined in the Civic Address Types Registry
defined in IETF RFC-4776 (http://www.iana.org/assignments/civic-address-types-registry).

The Geospatial Coordinate format uses the feature.xsd schema profile specified in Annex C of ISO-
19136:2007 Geographic Information - Geography Markup Language (GML) (http://www.iso.org/ittf/
ISO_19136_Schemas/feature.xsd).

Structure of Location Information

The CSTA Locationinfo parameter type contains a PIDF-LO (Presence Information Data Format -
Location Object) for carrying location information as defined in IETF RFC-4119 as updated by IETF RFC-
5139.

Location information in a PIDF-LO is contained in a GEOPRIV element. The GEOPRIV element consists
of the following elements:

¢ location-info - consisting of one or more chunks - each chunk can be either in GML format or civic
address format as discussed in 6.8.1.1. Note that when two chunks are provided in a location-info
element that corresponds to the same place, this is referred to as a compound location.

e usage-rules - associated with the location info (retransmissions-allowed, retention-expires, ruleset-
reference)

* method - how location info was derived or discovered (e.g. GPS)

¢ provided-by - source of the location info to provide additional information to locate service providers in
case of problems with the location info.

A GEOPRIV element can be associated with a person or a device (or a generic tuple) using the data
model in RFC-4479.

There can be multiple GEOPRIV elements in a single PIDF-LO. For example:

e For a CSTA user with 2 devices, location information in a single PIFDF-LO may be in three GEOPRIV
elements: one contained in a person element, one contained in a device element (for a cell phone),
and one contained in another device element (for an office phone).

e For a CSTA device such as an office phone, location information may be in a single GEOPRIV
element contained in device element. The GEOPRIV location-info element contains two chunks of
location information - one that specifies a location using Geospatial format and one that contains an
office number as a civic address type that augments the Geospatial information.

¢ For a CSTA group-device consisting of 3 member devices, location information may be in three
GEOPRIV elements each contained in separate device elements.

See 12.2.18, “Locationinfo”, on page 137 for a complete description of the CSTA LocationInfo parameter
type.

-86 -

»ecma

6.8.2

6.8.3

6.8.4

6.8.4.1

Polling for Location Information

The computing function can obtain location information associated with a device via the “Get Location
Information” service. This service can be used to obtain location information whether or not the device is
involved with a call.

The “Snapshot Call” service can also be used to obtain location information associated with devices in a
call.

In order to reduce the need to continually poll for location information a location tracking session (see
6.8.4) can be used.

Location Information in Call Control Events

A switching function can provide location information associated with devices in a call. For example a
CSTA Delivered event provides location information associated with a callingDevice.

Refer to the locationinfo parameter in Call Control events in Clause 17.2.
Location Tracking Session

A location tracking session can be used to facilitate the continuous reporting of location information.

Location tracking session services operate within the context of a location tracking session. A location
tracking session provides a context in which to control and report location information. The following is a
list of the location tracking session services that are used to create and manage a location tracking
session:

« “Start Location Tracking Session” service creates a location tracking session

« “Stop Location Tracking Session” service ends a location tracking session

e “Suspend Location Tracking Session” service suspends a location tracking session

« “Resume Location Tracking Session” service resumes a suspended location tracking session

« “Location Tracking Session Suspended” service indicates when a location tracking session has been
suspended

» ‘“Location Tracking Session Resumed” service indicates when a location tracking session has been
resumed

The following sections provide an overview of the location tracking session services. The services are
specified in Clause 28, “Location Services”.

Starting a Location Tracking Session

The Start Location Tracking Session service is used by the computing function to create a location
tracking session. A parameter is returned by the switching function in the positive acknowledgement that
is used to identify the location tracking session in subsequent services.

The Start Location Tracking Session service specifies the following:

1. The criteria for collecting location information. In order to control the rate in which location
information is collected, this service specifies a set of collection criteria that specifies how the
switching function should collect location information. For example the Start Location Tracking
Session service may specify that location information should be collected every minute.

2. The criteria for the reporting location information. In order to reduce the frequency of CSTA Location
Information Report(s) services, this service specifies a set of reporting criteria that specifies how the
switching function should buffer collected location information before sending it to the computing
function. For example the Start Location Tracking Session service may specify that collected location
information should be sent every 5 minutes.

The following figure illustrates the services used to start and stop a location tracking session and how
location information is provided in a location tracking session.

-87-

reCima

6.8.4.2

6.8.4.3

6.8.4.4

e

o

© N

Figure 6-34 Starting and Stopping a Location Tracking Session

Computing Function Switching Function

Start Location Tracking Session (locdevice=D1, collectionType=updatesOnly, renortianVDe=immediate¥

(positive acknowledgement with locCrossRefID=5)

<

Location Information Report (locCrossRefID=5, LocationInfo)

<

(positive acknowledgement) >

Location Information Report (locCrossRefID=5, LocationInfo)

<

(positive acknowledgement) >

Stop Location Tracking Session (locCrossRefID=5) >
< (positive acknowledgement)

Line 1 shows how a location tracking session is created by a Start Location Tracking Session service. In
this example, the computing function specifies that it wants the switching function to collect location
information associated with locDevice D1 whenever it is changed (collectionType=updatesOnly). In this
example, the collectionFilter parameter is not provided so the switching function uses its default. The
computing function also specifies that it wants to receive location information whenever it is collected by
the switching function (reportingType=immediate).

The switching function responds with a positive acknowledgement that includes the locCrossRefID. This
locCrossRefID is provided as a parameter on all subsequent services that pertain to a specific location
tracking session.

Reporting Location Information in a Location Tracking Session

Once a location tracking session has been created, the Location Information Report service provides the
location information associated with the device. Location Information Report(s) services continue to be
generated (subject to collection and reporting criteria) as long as the location tracking session exists.

Line 3 in Figure 6-34 shows the Location Information Report service sent by the switching function. The
Location Information Report service includes the locCrossReflD parameter so that the computing function
can correlate the location information to a specific location tracking session.

The computing function responds with a positive acknowledgement as shown in line 4.

Some time later when the location information is updated, the switching function sends another Location
Information Report service and the computing function responds as shown in lines 5 and 6 in Figure 6-34.
Stopping a Location Tracking Session

The Stop Location Tracking service is used to stop the location tracking.

The Stop Location Tracking service is a bi-directional service; it can be issued by either the computing
function or by the switching function.

Line 7 in Figure 6-34 shows the computing function sending a Stop Location Tracking service that
includes the locCrossReflID. The computing function responds with a positive acknowledgement as
shown in Line 8.

Suspending and Resuming a Location Tracking Session

There may be situations where a location tracking session needs to be temporarily interrupted. This could
be due to a performance situation in the switching function where the switching function no longer has the
ability or resources to track location information. Another reason that a switching function might need to

-88 -

~ecna

interrupt the tracking of a device is when the device can no longer be contacted due to a loss of network
connectivity.

Location tracking may be suspended and resumed via the “Suspend Location Tracking Session” and the
“Resume Location Tracking Session” services. These services are invoked by the CSTA computing
function.

Location information is not collected or reported when a location tracking session is suspended.

The Location Tracking Session Suspended and the Location Tracking Session Resumed services notify
the computing function when the tracking session has been suspended or resumed. This could occur due
to an unsolicited situation in the switching function or due to a computing function service as described
above.

Figure 6-35 illustrates how the switching function suspends and later resumes a location tracking session.

Figure 6-35 Switching Function Initiated Suspension of a Location Tracking Session

Computing Function Switching Function
1. Start Location Tracking Session (locDevice=D1, collectionType=updatesOnly, reportianype:immediate‘
5 < (positive acknowledgement with locCrossRefID=6)
3. < Location Tracking Session Suspended (locCrossRefID=6, locReason=networkInterruption)
4. (positive acknowledgement) >
5. < Location Tracking Session Resumed (locCrossRefID=6, locReason=networkRestored)
6. (positive acknowledgement) >
7 < Location Information Report (locCrossRefID=6, LocationInfo)
8. (positive acknowledgement) >

In the above example the switching function suspends a location tracking session because a connection
to the device which is being used to collect location information has been lost. This may be due to the
device powering off or a temporary loss of network connectivity. As shown in Line 3 the switching function
sends a Location Tracking Session Suspended service with a locReason of networkinterruption to notify
the computing function that the location tracking session has been suspended so that the computing
function knows why it does not receive further location information. The service includes the
locCrossReflD parameter so that the service can be associated with the correct location tracking session.
The computing function responds with a Positive Acknowledgement as shown in line 4.

Some time later when the switching function is able to communicate with the device, the switching
function sends a Location Tracking Session Resumed service with the locReason of networkRestored as
shown in Line 5. The computing function responds with a positive acknowledgement.

Line 7 shows the switching function sending location information after the location tracking session is
resumed.

-89 -

reCima

6.8.5

Figure 6-36 illustrates how the computing function suspends and later resumes a location tracking
session using the Suspend and Resume Location Tracking services.

Figure 6-36 Computing Function Initiated Suspension of Location Tracking Session

Computing Function Switching Function

1. Start Location Tracking Session (locDevice=D1, collectionType=updatesOnly, reportianypezimmediate‘

2 < (positive acknowledgement with locCrossRefID=7)

3 Suspend Location Tracking Session (locCrossReflD=7)

4. < (positive acknowledgement)
Location Tracking Session Suspended (locCrossRefID=7)

5. <

6. (positive acknowledgement) >

7 Resume Location Tracking Session (locCrossRefID=7)

: >
8. < (positive acknowledgement)
9 < Location Tracking Session Resumed (locCrossRefID=7)
10. (positive acknowledgement) >

As shown in line 3 of the above figure the computing function sends a Suspend Location Tracking
Session service to the switching function to request that the location tracking session be suspended. The
switching function responds with a positive acknowledgement. When the location tracking session is
suspended the switching function sends a Location Tracking Session Suspended service to notify the
computing function that the location tracking session is suspended.

Some time later the computer function requests that the location tracking session be resumed as shown
in line 7. As as result the switching function sends a Location Tracking Session Resumed service to notify
the computing function that the location tracking session is suspended.

During the time that a location tracking session is suspended, the switching function shall not collect or
report location information.
Setting Location Information

The computing function sets location information associated with a device via the “Set Location
Information” service.

This service can be used when the computing function has determined the location of the CSTA device
and wants to provide the switching function with the location of the device. The mechanism that the
computing function uses to determine the location information (manual entry by a user via an application
interface, by interfacing directly with embedded location APIs, etc.) is not specified.

The computing function specifies if the location-information shall replace or augment existing location
information in the switching function.

Once the switching function is informed of the location information, it shall report the location information
to any computing functions (subject to collection and reporting criteria) that have active location tracking
sessions for the associated device (see 6.8.4 on page 87). The switching function shall also provide this
information via polling services (see 6.8.2 on page 87) or via call control events (see 6.8.3 on page 87).

-90 -

»ecma

Figure 6-37 illustrates how the computing function specifies location information.

Figure 6-37 Setting of Location Information

Computing Function Switching Function
1. Set Location Information (device=D1, locationInfo=xxx) >
2 < (positive acknowledgement)
3. Start Location Tracking Session (locDevice=D1)
4. < (positive acknowledgement with locCrossRefID=8)
5 Set Location Information (device=D1, locationinfo=yyy) -
6. - (positive acknowledgement)
7. - Location Information Report (locCrossRefID=8, locationIinfo=yyy)
8. (positive acknowledgemew

As shown in line 1 of the above figure the computing function sends a Set Location Information service to
the switching function with location information to be associated with the device D1. In this example
device D1 is coexists with an application that allows a user to enter the location of the device manually

through an application interface (i.e. soft phone application).

Since in this example there are no location tracking sessions for the device at this time no Location
Information Report service is generated by the switching function as a result of Set Location Information

service.

After some time a location tracking session is established with the locDevice D1 as shown in line 3. (This
may be started by the same application or by another application in the computing function.) Then line 5
in the figure shows the computing function issuing another Set Location Information service for device
D1. This time since there is a location tracking session established with device D1, the switching function

reports the location information via the Location Information Report service as shown in line 7.

Association Establishment

This Standard is based upon the assumption that the services defined here, and a protocol that supports
these services, operate within an application association (otherwise known as a CSTA association or

association) as provided by IS 8649 (ACSE). This association can be either:

e an implicit association realized through the use of a switching function initiated CSTA System Status

service

< an implicit association realized through the use of a computing function initiated CSTA Request

System Status service
* an explicit association realized through the use of ACSE

* an explicit association realized through the use of Ecma Application Session Services

The initialization sequence of CSTA messages for creating associations is described in the following

sections.

Once an association has been established, the switching function shall be prepared to receive CSTA

services.

-91 -

acma

7.1

7.2

Implicit Association created using CSTA System Status service (initiated by Switching
Function)

In the initialization sequence for an implicit association created using System Status, as shown in
Figure 7-1, the switching function begins the sequence by sending a System Status service with a system
status value of either Enabled or Normal. The computing function shall respond with a positive
acknowledgement. An implicit association is established once the positive acknowledgement is received
by the switching function.

In Figure 7-1, the computing function uses the Get Switching Function Capabilities service to obtain the
capabilities of the switching function after the association has been created.

Figure 7-1 Implicit Association created via System Status - Initialization Sequence

Switching Function Computing Function

4{ System Status service (value=Enabled or Normal) ’——»

System Status pos. ack. i

Association Created

Mandatory messages
Optional messages - - - - ----------.

Implicit Association created using CSTA Request System Status service

In an implicit association created using CSTA Request System Status, the computing function sends a
CSTA Request System Status service request to establish an application association.

The switching function shall respond with a positive acknowledgement that includes a System Status
value.

The mandatory part of the initialization sequence is completed once the positive acknowledgement is
received by the computing function.

The initialization sequence for an implicit association created using CSTA Request System Status is
shown in Figure 7-2.

In this figure, after the application association is created, the computing function uses the Get CSTA
Features service to obtain the services and events supported by the switching function.

Next the application uses the System Register service to register with the switching function to receive
System Status services.

Some time later the switching function sends a System Status request to the application to notify it of a
change in system status.

-92 -

»ecma

Figure 7-2 Implicit Association created using CSTA Request System Status - Initialization Sequence

Switching Function

4——{ Request System Status request

Computing Function

4(Request System Status response

Association Created

Mandatory messages

Optional messages - --------------

7.3 Explicit Association created using ACSE

In an explicit association created using ACSE, CSTA shall make use of a single application context name
for all versions and variations of implementation of CSTA Services and Protocol. To facilitate the
exchange of version and implementation information, CSTA specifies that the following information shall

be exchanged in the ACSE Association Information field.

1. CSTA Association Information shall provide the following parameter:

e CSTA Version - shall indicate the versions of the CSTA protocol that the implementation can
support. If two interacting systems support more than one version, then the highest CSTA
Version they both support shall be used for the association. A CSTA protocol version refers to
the implementation of a specific version of the CSTA Standard described in the corresponding

CSTA Protocol Standard.

2. CSTA Association Information also may provide the following parameters:

» Functionality Required - shall indicate the CSTA Services and Event Reports that are required by

the function providing this information.

« Functionality Offered - shall indicate the CSTA Services and Event Reports that are offered by

the function providing this information for its highest-supported CSTA Version.

» Private Data Version - shall indicate the Private Data versions that are offered by the function

providing this information.

The initialization sequence for an explicit association is shown in Figure 7-3. The computing function
begins the sequence by sending an ACSE request with the appropriate CSTA Association Information as

-03-

»ecind

7.4

described above. The switching function responds with an ACSE response that also includes the
appropriate CSTA Association Information.

After the ACSE exchange, the switching function sends a System Status service with a system status
value of either Enabled or Normal. The computing function shall respond with a positive
acknowledgement. The mandatory part of the initialization sequence is completed once the positive
acknowledgement is received by the switching function.

In this figure, the computing function uses the Get Switching Function Capabilities service to obtain the
capabilities of the switching function after the association has been established.

Figure 7-3 Explicit Association Created using ACSE - Initialization Sequence

Switching Function Computing Function

ACSE Request (CSTA Association Info.) i

ACSE Response (CSTA Association Info.) ’—»
System Status service (value=Enabled or Normal)’—»

System Status pos. ack. i

Association Created

......................................

Mandatory messages
Optional messages - -------------.

Explicit Association created using Ecma Application Session (ECMA-354) Services

In an explicit association created using Ecma Application Session Services, the computing function sends
a CSTA Start Application Session service request to establish an application association.

The switching function shall respond with a positive acknowledgement.

The initialization sequence for an explicit association created using Ecma Application Session services is
shown in Figure 7-4.

In this figure, after the application association is created, the computing function uses the Get CSTA
Features service to obtain the supported services and events.

Next the application uses the System Register service to register with the switching function to receive
System Status services.

Some time later the switching function sends a System Status request to the application to notify it of a
change in system status.

-94 -

»ecma

8

Figure 7-4 Explicit Association Created Using Ecma Session Control Services

Switching Function Computing Function

4——{ Start Application Session service request i

4(Start Application Session service response '——>

Association Created

- - Get CSTA Features service request G
.......... . Get CSTA Features serviceresponse ~ «........_ p»
€------- System Registerrequest . L.
___________ - sysfeim Register 1esponse L g
.......... rUS8ystem Status T T T T T T T T T T T T T L
- SystemReégistertesponse Lo

Mandatory messages

Optional messages - --------------

Security Service
All CSTA messages provide:

» Timestamp information. This can be used to determine the “freshness” of a message.

» A Message Sequence Number. This provides a capability to number messages in a sequence so that
the message receiver can detect that a message has been received out of sequence.

» Security Information. Support the implementation of a security process. This can be used to provide
security such as access control and authentication. The format of this information is implementation
specific.

For more information, refer to 12.2.12, “CSTASecurityData”, on page 120.

Generic Service Requirements
Service Request

This Standard defines a set of CSTA operations that can be used to control and observe objects within a
switching and/or special resource function. The CSTA operations are defined as “Services” in which one
function requests, across the service boundary, that the other function perform a given CSTA operation.
Services are defined for the CSTA service boundaries between the computing function, switching
function, and special resource function. Services are defined in terms of what they accomplish (i.e.
functionality), not how they should be implemented.

When one function sends a service request to the other function to perform a service with a given set of
parameter values, it is called a service request. Each service defined in this Standard falls into one of
following categories based upon the direction of the service request:

-905-

acma

9.2

9.21

9.21.1

¢ Switching Function Service - Switching function services are services where the computing function is
the client (i.e., service requestor) and the switching function is the server. An example of a switching
function service is the Make Call service.

e Computing Function Service - Computing function services are services where the switching function
is the client (i.e., service requestor) and the computing function is the server. An example of a
computing function service is the Route Request service.

« Special Resource Function Service - Special Resource function services are services where the
computing function is the client (i.e., service requestor) and the special resource function is the
server. An example of a special resource function service is the Play Message service for a Voice
Unit device when it is part of the Special Resource Sub-Domain.

e Bi-directional Service - Bi-directional services are services where either the switching/special
resource function or the computing function can be the client (i.e., service requestor). An example of
a bi-directional service is the System Status service.

Some switching/special resource functions implementations support registration mechanisms that allow
the computing function to indicate that it would like to receive service requests in a certain category (e.g.,
routeing, system status, escape) from the switching/special resource functions. (If the switching/special
resource function indicates that it supports the computing function services in a particular category but
does not support the registration mechanism, the computing function shall be prepared to handle the
requests without previous registration.)

If the server detects that a service request is invalid, a negative acknowledgement shall be generated.

Every service request and service response defined in this Standard allows the inclusion of non-
standardized, private data, that shall be informational in nature. Refer to 9.4, “Vendor Specific
Extensions”, on page 98, for more information.
Service Response (Acknowledgements)

The other part of a service is the acknowledgement to the service request. This acknowledgement is used
by the requesting function to verify that the other function has received the service request and that some
level of processing has been performed with respect to the service. There are two types of
acknowledgements: positive acknowledgements and negative acknowledgements, for a given service, as
well as two types of positive acknowledgement models which a given service can adhere to. These
definitions are documented in the following sections.

Note that there are some services defined in this Standard that do not provide a positive
acknowledgement. For these services, if the service request is invalid, a negative acknowledgement shall
be generated.

Positive Acknowledgement Models

All acknowledgements to each service request defined in this Standard shall follow the principles outlined
by one of two models defined below. The computing function learns which model a switching function
supports for each service through the capability exchange services described in Clause 13, “Capability
Exchange Services”, beginning on page 157.

Atomic Model

Switching functions that indicate support of the atomic acknowledgement model designate that the
particular service request can be accomplished in a single logical step. This acknowledgement model
reflects whether or not the service request has meet the completion conditions as documented by each
individual service.

An atomic positive acknowledgement indicates that not only were the parameters on the service request
valid, but the switching function has successfully completed the service requested as defined in that
service’s “Service Completion Conditions” section. The condition of the call(s) and/or connection states of

-906 -

»ecma

9.2.1.2

9.2.2

9.3

9.3.1

the device(s) associated with the service request have transitioned to that service’s Operational Model
After state.
Multi-Step Model

Switching functions that indicate support of the multi-step acknowledgement model designate that the
particular service request is accomplished as its name implies, in multiple logical steps. This
acknowledgement model reflects whether or not the parameters passed on the service were valid but
does not guarantee anything as far as the completion conditions is concerned for the service.

A multi-step positive acknowledgement guarantees only that the parameters passed on the service
request were accepted by the switching function to be valid. This positive acknowledgement does not
determine if the service request’s completion criteria are met. (However, depending on the switching
function, the positive acknowledgement may indicate, in certain situations, the service request's
completion conditions.) Therefore the computing function shall monitor for events associated with the
particular service request, affected call(s) or device(s) to verify completion. A computing function shall
also be prepared to handle the Service Completion Failure event and/or the Failed or Connection Cleared
events after receiving the positive acknowledgement. The Service Completion Failure event will only be
reported to the computing function which issues the service request and has a device-type monitor on the
device which has or had connection(s) that were used in the particular request. Each of these events are
provided by the switching function to indicate that the completion conditions for the service was not met.

If, through the event flow, a failure is detected, it is up to the computing function to apply the appropriate
recovery to return the call(s) and/or device(s) back to the original conditions (if needed). Finally, a
computing function should not issue subsequent service requests for a device until a previous multi-step
service request’'s completion conditions has been satisfied. Doing so may result in unpredictable results
generated by the switching function.

Negative Acknowledgement

A negative acknowledgement indicates that the service request has failed and the condition of the call(s)
and/or connection states of the device(s) associated with the service request have not changed as a
result of the failure (i.e., they remain as they were in the service’s Operational Model Before state).
Diagnostic Error Definitions

CSTA provides diagnostic error information in the negative acknowledgement to service requests. The
diagnostic error information consists of an error category and a category specific error value.

The definitions associated with the error categories and the error codes apply equally to services
requested by a computing function and to those requested by a switching function. An error value
indicates the server's best evaluation of the condition that caused the server to send a negative
acknowledgement to the service request.

Error Categories

The error categories consist of the following:
» Operation Errors - Error values in this category shall indicate an error in the service request.
» Security Errors - Error values in this category shall indicate a security error.

» State Incompatibility Errors - Error values in this category shall indicate that the service request was
not compatible with the condition of a related CSTA object.

» System Resource Availability Errors - Error values in this category shall indicate that the service
request could not be fulfilled because of a lack of system resources within the serving sub-domain.

« Subscribed Resource Availability Errors - Error values in this category shall indicate that the service
request could not be fulfilled because a required resource must be purchased or contracted by the
client system.

» Performance Management Errors - Error values in this category shall indicate that an error has been
returned as a performance management mechanism.

-97 -

acma

« Private Data Information Errors - Error values in this category shall indicate an error in the CSTA
Private Data of the service request. The reason(s) why the private data is incorrect is not relevant to

this Standard.

« Unspecified Errors - Error values in this category shall indicate that the error did not belong to any of

the other error value categories.

9.3.2 Error Values
The following definitions are used in all services to ensure a uniform meaning for error codes.

e Error codes reflect why the server could not carry out the service request on the specified call,

device, or connection and do not reflect the status of any other call, device or connection.

e Error codes reflect why the server could not perform the request at the time that it attempted to
execute the request. Thus a switching function will return the same error code in the same

circumstance regardless of the past history of any object involved in the request.

e This Standard does not require that service parameters are validated in any order. Thus, when there
are multiple errors in parameters (or when multiple errors apply to a single parameter), the computing

function may receive any of the applicable errors.

e There is a hierarchy of error return values. The errors range from one high level error that spans all
errors (Generic Unspecified) to specific detailed errors. The diagram below shows the hierarchy. The

errors become more detailed toward the bottom of the diagram.

Figure 9-1 ErrorValue Hierarchy
Error Return Hierarchy

Generic
Unspecified
Error

Generic Generic

Generic . . Generic Private
System Generic Subscribed

R State o . R Performance Data
esource Incompatibility peration esource Management Information
Availability E Error Availability E E
Error ror Error };\ /r‘rz
A A //‘\ ! ’

Value Out | Reque.sltﬂ
of Range nc.ompat.l N
with Object

AN NN AN AN

Object
Not Known

The specific error values are defined in 12.2.14, “ErrorValue”, on page 121.
9.4 Vendor Specific Extensions

This Standard allows the provision of value added services and events that are beyond what is defined in
this Standard. It is possible both to extend the existing services and events defined in this Standard as
well as to create completely new services and events. A vendor may choose to support a vendor specific
extension with the understanding that it may not interoperate with other CSTA (Phase lll)-compliant

products.

-08 -

»ecma

9.4.1

9.4.11

9.4.1.2

9.4.2

9421

Private Data

Every service in this Standard allows for the inclusion of implementation-specific private data. This may
be any supplemental information (not defined by this Standard) which provides access to vendor-specific
extensions.

The computing function and the switching function, by mutual agreement (e.g., using the private data
negotiation mechanism described below), assume full responsibility for the structure, representation
(including byte order) and interpretation of this data. It is recommended that vendors adopt a platform
independent encoding scheme (e.g., ASN.1/BER) for their private data.

If an implementation receives private data in a CSTA service or event that it does not recognize, it shall
ignore the private data and process the rest of the CSTA service or event.

The size of private data is not limited by this Standard and is switching function and/or computing function
specific. The capabilities exchange services can be used by the computing function to determine the
maximum size used by the switching function implementation.

Private Data Version Negotiation

Private data version negotiation may be performed using the following process:

1. The switching function provides the computing function with its manufacturer name in the positive
acknowledgement of the Get Switching Function Capabilities service. By associating the
manufacturer name with information in the computing function, the computing function can
determine if it supports the switching function’s private data and its associated private data version
negotiation mechanism. The switching function may also provide its supported private data versions
in the Get Switching Function Capabilities acknowledgement.

2. The computing function will send the version to be used in the Private Data Version service request.
The computing function may change the negotiated version by sending Private Data Version service
requests at any time.

Private Data on CSTA Services and Events

For the services defined in this Standard, the use of private data allows vendor specific parameters to be
added to each service. Private data should only be used to extend the existing definition of a service, and
never to redefine the meaning of a service or any of its specified parameters. If a completely new vendor
specific service is to be defined, the Escape service shall be used.

Private data can also be used to provide vendor specific parameters on events. As with services, private
data should only be used to extend the existing definition of an event, and never to redefine the meaning
of an event or any of its specified parameters. If a completely new event is to be defined, the Private
event shall be used.

Escape Services and Private Event

The Escape service and the Private event are unique in that they include only private data and no other
service specific parameters. Furthermore, they do not have any defined intent or meaning other than to
allow for vendor specific extensions. The Escape service and the Private event may be used to define
completely new services and events (i.e., ones not defined in this Standard), respectively.

Escape Registration

Before the computing function can receive any Escape service requests, it may be required to register
with the switching function for escape services using the Escape Register service. The positive
acknowledgement to this service contains the escape register identifier (escapeRegisterID) that the
computing function uses to identify service requests that arrive for this registration.

If the switching function supports the Escape Registration services, then the computing function shall use
the Escape Register services to register for escape services before it can receive any Escape service
requests. If the switching function does not support the Escape Registration services, then the computing

-99 -

acma

9.4.2.2

9.4.2.3

9.4.2.4

9.5

9.5.1

function may receive Escape service requests at any time. The capabilities exchange services can be
used to determine if the switching function supports the Escape Registration services.

An escape registration can be cancelled using the Escape Register Cancel service. Once the switching
function sends a positive acknowledgement to this, it will no longer send Escape service requests to the
computing function. Additionally, the switching function can cancel an escape registration at any time by
sending the computing function an Escape Register Abort service request.

While the Escape service itself is bi-directional, the Escape Registration services are not. These services
are only issued by the computing function. The switching function does not register with the computing
function for escape services. The switching function is considered to be (implicitly) registered to receive
Escape service requests from the computing function at any time. The computing function never needs
an escape registration to issue an Escape service request.

Private Data Version Service

The Private Data Version service is used by the computing function to negotiate a private data version (or
to negotiate no private data). The Private Data Version service can be used as needed to re-negotiate
(i.e., change) the private data version being used by the computing and switching functions.

Escape Service

The Escape service is used to request completely new, vendor-specific services not defined by this
Standard. This service is bi-directional (i.e., can be issued by either the switching function or computing
function). The vendor specific parameters to the Escape service request are transported by the private
data (privateData) parameter to the service request. It is the responsibility of the vendor to define any
extended services and the contents of the private data for these services.

The Escape service request may contain an escape registration identifier (escapeRegisterID) to identify
the associated escape registration (when escape registration is supported by the switching function). An
Escape service request from the computing function should never contain an escape registration
identifier.

Escape service requests are always acknowledged by a positive or negative acknowledgement from the
serving function (i.e., computing function or switching function processing the service request).
Private Event

The Private event is used to report completely new, vendor-specific events not defined by this Standard.
As with other events, the computing function shall use the monitoring mechanism (i.e., Status Reporting
services) in order to receive Private events. The type of monitors (i.e., call-type or device-type) on which a
Private event is reported is switching function implementation specific. The monitor cross reference
identifier (monitorCrossReflD) parameter associates the event with the monitor. There is no mechanism
defined to allow the computing function to send Private events to the switching function.

The vendor specific parameters associated with the Private event are transported by a private data
(privateData) parameter. It is the responsibility of the vendor to define any extended events and the
contents of the private data for these events.

General Services and Event Functional Requirements

The following sections discuss functional requirements that are applicable to the services and events

specified in this Standard.

Services

1. If a service is performed manually from a device, computing functions that have device-type or call-
type (for device or call) monitors on this device receive the same event sequence as reported when
performing the service through the service boundary (i.e., computing function-initiated). Refer to the
appropriate service’s “Monitoring Event Sequence” sections for details.

Depending on the particular switching function, additional events may also be reported as part of
manual invocation services. For example: 3

-100 -

»ecma

» A Held event, if the device already has an active call.

» A Service Initiated (event cause of NewCall) event for the device because a new call is needed
to execute the service manually. This is followed by a Connection Cleared (event cause of
Normal Clearing) event for the device when the service has been executed.

» Logical and Physical device events that are associated with the execution of the service. These
events may appear any time during the execution of the service.

2. If a service request is invoked after a device has manually gone off-hook (Service Initiated event), an
implementation may either accept the service or it may reject the service. If it accepts the service,
(unless otherwise specified for a particular service or event), the connection that has gone off-hook
will be cleared and the computing function will receive a Connection Cleared event, followed by
service specific events.

3. Other than for calls in the Initiated state, a service only affects connections that are specified by its
service description. If, prior to its completion, the execution of the requested service would cause the
switching function to affect any other connections, then the service shall be rejected with a negative
acknowledgement.

4. If the switching function permits the passing of Connection Identifiers without Call Identifiers, then
the Device ldentifiers they contain shall be within the switching sub-domain. In addition, if DevicelDs
only are passed in the Connection Identifiers, then:

« If only one call exists at the specified device and the service request supports a single
ConnectionlID, its connection shall be in one of the initial states specified by the service or the
service will be rejected.

« If more than one call is in an initial state defined by the service, the service request will be
rejected.

« If two calls exist at the specified device and the service request supports two ConnectionIDs in
the service request, the DevicelDs within the ConnectionIDs shall be identical or the service will
be rejected.

» If two calls exist at the specified device and the service request supports two ConnectionlDs in
the service request, both calls shall be a valid combination of initial states specified for that
service or the service will be rejected.

» If more than two calls exist at the specified device, the service will be rejected unless full and
valid ConnectionlDs are specified.

5. If the device that is the subject of a service request is not capable of performing the service, a
negative acknowledgement with an appropriate error code will be provided.

6. For optional parameters in service requests the following requirements apply:

a. If an optional parameter is supported by the switching function but is not supplied in a service
request, the switching function uses the specified default value associated with that parameter
unless otherwise specified.

b. If an optional parameter is not supported by the switching function, the switching function uses its
administered value unless otherwise specified. (In addition, if the non-supported parameter is
passed in the service request, see Services Requirement #7).

7. The switching function may either reject service requests that contain optional parameters that it
does not support, or, it may accept the service request and ignore the unsupported optional
parameters. However, the switching function shall handle unsupported optional parameters the same

3. These events are only reported if the computing function has the appropriate monitors started for the device (i.e., correct filters
and type of monitor) and those monitors are supported by the switching function.

-101 -

»ecind

9.5.2

10

10.1

way for all service requests. The switching function indicates how it handles unsupported optional
parameters via the capabilities exchange services.

When setting a value for a Physical or Logical Device Feature (specifically the “Set” features
described in Clause 21, “Physical Device Features”, on page 472 and Clause 22, “Logical Device
Features”, on page 522), the switching function shall return a positive acknowledgement when the
feature is already set to the requested value specified in the service request. (Since the service
request, in this case, did not result in a change of feature status, a feature event will not be
generated.)

It is the switching function’s responsibility to verify that connections in a call are in their proper initial
states prior to accepting a service request. Acceptable states are documented in each service
request’s description.

Events

1.

For the same telephony situation, the event generated for a call-type monitor will be the same as the
event generated for a device-type monitor, except that the localConnectioninfo and the
servicesPermitted parameters described in the Call Control event descriptions are not provided for
events generated for call-type monitors.

If the computing function has call-type monitoring in effect, the event seen for that monitor will be the
same event as the one seen for the subject device from a device-type monitor.

If the Device Identifier portion of a Connection Identifier is a static Device ldentifier, then that portion
of the Connection Identifier and the Device Identifier parameters in an event will not necessarily be
the same. For example, the switching function may have a static internal representation of a device
which will be used in the Connection Identifier, but the actual diallable representation for the same
device may be different and may be used in one of the Device Identifier parameters in the same
event. This requirement is in addition to and does not supersede the definition for the Connection
Identifier or Device Identifier parameters described in 12.3.9, “ConnectionID”, on page 148 and
12.3.11, “DevicelD”, on page 150.

The set of state transitions (refer to Figure 6-25, "Connection State Model" on page 51) supports the
services and features documented in this Standard.

CSTA Device Identifier Formats

This clause describes the formats that may be used for Device Identifiers, their usage, and examples.
Device ldentifier Formats

The possible types of Device Identifiers formats are:

Diallable Digits - this format is a sequence of characters to be dialled to reach a device. The
sequence of characters may contain diallable digits and/or special characters that specify to the
switching function how digits should be dialled (“,” indicates that a pause should be inserted into the
dialling sequence, for example). This format must be used when special dialling characters are
required or when it is necessary to provide partial or incomplete dialling sequences.

Switching Function Representation - this format is a sequence of characters that is used to reference
devices within a switching sub-domain. In addition to specifying the directory number of the device, it
also provides the ability to specify call appearance, agent identifier, subaddress, name, etc.

Device Number - this format is an non-diallable, integer representation of a Device ldentifier. This
format of Device Identifier can be used to reference switching sub-domain devices that may not be
typically associated with a diallable number such as trunks, line cards, etc.

-102 -

»ecma

10.11

* URI Representation - this format is a sequence of characters that is used to reference a logical or
physical resource (e.g. device, user) using a Uniform Resource Identifier (URI) according to the
guidelines in IETF RFC 2396.

In this section, the following example will be reflected. The called number is a subscriber in the US
(country code 1) in San Jose (area code 408). The local number is 996 1010. The extension is 321. The
name of the subscriber is “John Smith”.

Diallable Digits

Generic Format: DD

A first character of the Device Identifier string which is not “N” indicates that the Device Identifier uses the
Diallable Digits format. This format may contain from 0 (a null formatted Device Identifier) to 64
characters. DD is a string of dialling commands/digits. The following is the list of the complete set of
permitted dialling commands/digits and their definitions:

0-9 These characters represents the number digits on a telephone keypad.

* This represents the “*” character, typically found on a telephone keypad.

This represents the “#” character, typically found on a telephone keypad.

A-D These characters represent DTMF digits.

! The exclamation mark indicates that a hookflash is to be inserted into the dial string.

P The character P followed by a string of digits indicates that the string of digits is to be pulse
dialled.

T The character T followed by a string of digits indicates that the string of digits is to be tone
dialled.

, The comma character indicates that dialling is to be paused. The length of the pause is
provided by the switching function through the capabilities exchange services. Multiple
commas can be used to create a long pause.

w The character W followed by a string of digits indicates that the string of digits is to be
dialled only after dial tone has been detected by the switching function.

@ The “at” symbol indicates that the switching function shall wait for “Quiet Answer” before
dialling the rest of the string. This means that the switching function shall wait for remote
ringing indication, followed by 5 seconds of silence.

$ This dollar sign indicates that the switching function shall wait for the billing signal (i.e.,
credit card prompt tone) before continuing.

; The semi-colon character indicates that the digit string is incomplete and more digits will be
dialled using the Dial Digits service. This character may only be used in a Diallable String
Device Identifier.

+ The plus sign indicates that this number is an international number format.
To aid in readability, the digit string may contain the following visual separators: “-”, “(, and “)".
Examples:

« If the number is called from France (country prefix 00%), the string is “00,14089961010W321".

e If the number is called from a switch in New York (dial 9 to get outside line), the string is
“9,14089961010W321".

4. The country prefix is the sequence of digits that needs to be dialled to make an international call (011 when calling from the US).
It is always followed by the called country code.

-103 -

acma

¢ If the number is called from San Jose, the string is “9961010W321".
e If the number is called from inside the subscriber’'s PBX, the string is “321".

e +1(408)555-1212 indicates an international number that includes visual separators for readability.

Functional Requirements:

1. The switching function shall accept, as a minimum, digits 0-9 of this format when the computing
function wants to make a call.

2. The diallable digits format shall be used to represent a device’s dialling sequence. A device’s dialling
sequence is a string of outband digits used to initiate a call with another device. When placing a call
from a device to another device, there are basically two ways a device’s dialling sequence can be
used:

a. The entire sequence of digits is dialled to reach the destination. This is the most common way to
place a call.

b. The dialling sequence is broken up into a number of stages in order to execute and complete the
call. This is called “multi-stage” dialling in this Standard. This type of dialling is needed in cases
where the switching function prompts the device for more digits (by sending dial tone again or
some other tone).

Note that switching functions support different combinations of dialling sequences.

10.1.2 Switching Function Representation
Generic Format: N<DN!SA&CA/EXT%AID>NM (in this order)

The syntax of the generic format is broken down as follows:

N The “N” character at the beginning of the Device Identifier string (which is 2 to 64
characters in length) indicates that the Device Identifier uses the Switching Function
Representation format. At least one of the following components needs to be present in
this format:

<> The angled brackets characters encompass the string when a name (NM) string
representing the person associated with the device is provided after the “>” character. If
the character “<” is not the first character in the string after the N then the string will not
have a name string associated with it.

DN The first string of characters represents the Directory Number (DN) associated with the
given device. The Directory Number shall contain characters selected from the following
set: “0” through “9”, “*", “#”, DTMF digits “A” through “D”. The “+” character as a prefix
indicates that the number is an international number format. To aid in readability, the

device identifier string may contain the following visual separators: “-”, “(*, and “)". The
Directory Number may use any of the following notations (refer to ECMA-155, ITU-T Rec.
E.131):

« Implicit TON (Type Of Number), (example: “0014089961010"°)
e PublicTON - unknown

¢ PublicTON - international number, (example: “14089961010")
¢ PublicTON - national, (example: “4089961010")

5. This example is a caller in France dialling the country prefix (00), the USA country code (1), the trunk code (408) and the
subscriber number.

- 104 -

%

NM

* PublicTON - subscriber, (example: “9961010")

* PublicTON - abbreviated, (example: “17")

* PrivateTON - unknown

* PrivateTON - level 3 regional, (example: “41396557321")
» PrivateTON - level 2 regional, (example: “96557321")

* PrivateTON - level 1 regional, (example: “557321")

* PrivateTON - local, (example: “321")

« PrivateTON - abbreviated, (example: “2")

» Other (other numbering plans)

« Generic (the notation is unknown)

This exclamation mark character represents the start of a Sub-Address (SA) string. If the
“I” character is not present, then there will be no sub-address associated with this Device
Identifier string. The termination character for the sub-address string will be the next key
character found in the string or null.

The ampersand symbol represents the start of a Call Appearance (CA) string. It is added
to the logical element’s device identifier to uniquely identify an addressable standard
appearance. The value of the string is switching function specific. The valid characters for
the call appearance string are 0-9. The termination character for the call appearance string
will be the next key character found in the string or null. Refer to 6.1.1.2.1, “Appearance”.

The slash symbol represents the start of a physical element extension (EXT) string. It is
added to the logical element’s device identifier to uniquely identify a bridged appearance.
Its value is the physical element’s device identifier that is associated with the appearance.
The termination character for the physical element extension string will be the next key
character found in the string or null. Refer to 6.1.1.2.1, “Appearance”.

The percent sign represents the start of an Agent ID (AID) string. This string represents an
ACD agent identifier associated with a device. This string may be present when the
computing function wants to focus a service at a specific agent identifier that is associated
with a device or when the switching function generates an event that is associated with a
particular device and agent. The valid characters for the agent identifier string are A-Z and
0-9. If the “%” character is not present then there will be no agent identifier associated with
this Device Identifier string. The termination character for the agent identifier string will be
the next key character found in the string or null.

The tilde sign represents the start of a resource ID (RID) string that indicates the resource
identifier associated with a device. This string should be present either when the
computing function wants to focus a service at, or when the switching function generates
an event that is associated with a particular resource of the device. The format for a valid
resource identifier string is specified in 12.3.25.

The name string (NM) represents the person associated with the device. This string can be
used for selecting a Device Identifier associated with a user or for logging and
informational purposes. The name string may contain any character. This can be used to
represent a SIP URI, for example.

- 105 -

acma

Examples:

¢ If the Device Identifier is PublicTON International, then the string can be “N14089961010".
¢ If the Device Identifier is PublicTON Subscriber, then the string can be “N<9961010>John Smith”.
< If the Device Identifier represents a SIP user, then the following strings can be used:

e SIP URI: “N<>sip:JohnSmith@anycompany.com”.

¢ SIP URI and a display name: “N<>John Smith<sip:JohnSmith@anycompany.com>"

¢ DN, SIP URI, and a display name: “N<9961010>John Smith<sip:
JohnSmith@anycompany.com>"

Functional Requirements:
1. This format shall always contain at least a directory number string, an agent ID string, or a name
string.

2. The interpretation of additional digits beyond those that are required to reach a destination are
switching function specific.

3. When there is more than one bridged appearance associated with a single physical element (see
6.1.1.3.6, “Hybrid”, on page 23 for an example) there are two methods for representing these
appearances: One is to have a unique call appearance (CA) and physical element extension (EXT)
combination for each appearance where EXT is used to represent the given physical element and
CA is used to represent multiple appearances associated with the same physical element. The other
is to have a single EXT for each appearance, independently of their association with the physical
element. In either case, the resulting Device Identifier is unique for the given appearance.

10.1.3 Device Number
Generic Format:

The Device Number format represents a Device ldentifier using an integer.
10.1.4 URI Representation

The URI Representation format represents a Device Identifier using a Uniform Resource Indicator (URI).

Generic Format:

<scheme>:<scheme-specific-part>

A Device Identifier character string that contains the colon character “;” uses the URI Representation. The
type of URI scheme defines the syntax of the scheme-specific-part. The types of schemes and the
specification of the syntax for the scheme-specific-part are outside the scope of this Standard.

Note that the Device Identifier string may contain additional information other than a URI. An example is a
display name that is frequently used in SIP header fields along with a SIP URI.

Examples:
sip:user@domain.com
sip:+16505551212 @domain.com; user=phone
tel:+14085551212
<user name> sip:userl@domain.com
10.2 DevicelD Tags

The devicelD formats specified in 10.1 can also contain one or more of the following tags:

- 106 -

»ecma

10.3

11

11.1

1111

privateNumber The privateNumber tag indicates that the number provided with the devicelD
is a private number and may be subject to privacy policies (e.g. presentation
restriction). Note that the devicelD used in some parameters can also
contain a value of Restricted which indicates that the number is restricted
and is also not provided.

privateName The privateName tag indicates that the name provided with the devicelD is a
private name and may be subject to privacy policies (e.g. presentation
restriction).

Functional Requirements

1. If the switching function detects a problem with a Device Identifier, the service will be rejected with a
negative acknowledgement.

2. The switching function may use any format in service acknowledgements and events.

3. For Device Identifiers in service requests, the computing function should check the devicelDFormat
parameter in a capabilities exchange service to determine:

* Which formats are supported.
» For the Switching Function Representation format, which notations are supported.
» For the Diallable Digits format, which special characters are supported.

4. Using the Diallable Digits Format, a null formatted Device Identifier (i.e., a Device Identifier field with
0 characters) can be specified. Some implementations that include only one device in their CSTA
Application Working Domain may allow this device to be referenced with a null formatted Device
Identifier. For example: callingDevice in the Make Call service, snapshotObject in the Snapshot
Device service, monitorObject in the Monitor Start service, physical and logical device features, etc.
Unless otherwise noted in this Standard, the interpretation of a null formatted Device Identifier is
switching function specific.

Template Descriptions

This Clause explains the template formats used to describe the CSTA services, events, and parameter
types defined in this Standard.
Service Template

The following sections describe the Services template components.
Service Description

This is textual description of the service that may be followed by a figure. The figure is included when a
service affects a connections state(s). The figure defines the role of devices and connections from a
before/after service execution perspective. Note that this figure indicates the successful completion of the
service but does not indicate the service completion criteria (see the Monitoring Event Sequences for the
service completion criteria).

In order to describe the nomenclature used in the figures in the templates, the figure from the CSTA
Answer Call service follows:

-107 -

acma

Figure 11-1 Example of a Figure in a CSTA Service (Answer Call)

BEFORE SERVICE AFTER SERVICE

D1 D2
@alerting) [~ & q—@— " (calling) b1 — ¢ _@_ " b2

DEVICES AFFECTED CONNECTIONS

D1 : alerting device D1C1 : callToBeAnswered connection
D2 : calling device

CONNECTION STATES
: alerting state
. connected state
: queued state
. (unspecified/unaffected)

CALLS
C1 : call that has been delivered to D1

*Q9 O o

In the figures, small boxes (labeled Dx) are used to represent devices, lines represent connections, ovals
(labeled Cx) represent calls, and dotted lines represent connections with partial (“Call ID only”)
connection identifiers (see 6.7.2). The legend (large box) associates names with devices and calls.
Names in italics refer to parameter names used in the service.

The connections are labeled with the set of possible connection states. In some cases the following
symbols are used in place of a specific connection state:

“*” indicates that the connection state is not specified and it is not affected by the service
“I” indicates that the connection state is unspecified but may be affected by the service

“#” indicates that the connection state is not specified but the connection state is inherited from a
connection that used to exist (for example, when a connection at a device changes its call identifier).

“@" indicates any non-Null connection state.
11.1.2 Service Request

This section contains a table with the possible parameters in the service request. Associated with each
parameter are:

« Parameter Name (“Parameter Name”) - This is used to reference the parameter from other parts of
the template and to distinguish the parameter from other parameters with the same parameter type.
An example of a parameter name is connectionToBeCleared.

e Parameter Type (“Type”)- This is the parameter type as defined in Clause 12, “Parameter Types”, on
page 111. In most cases a parameter type references a parameter type defined in either 12.2,
“Defined Parameter Types”, on page 112 (CorrelatorData, for example) or 12.3, “Identifier Parameter
Types”, on page 145 (ConnectionID, for example). In other cases the parameter type may be a
Boolean, Value, Enumerated, etc. Refer to 12.1, “Definitions”, on page 111 for more information.

e Parameter Optionality (“M/O/C”) - Indicates whether the parameter must be included (M for
mandatory), if the parameter is optional (O), or if the parameter is conditional (C). If a parameter is
conditional, then there are specific requirements when the parameter must be supported. These
requirements are described in the parameter description column.

« Parameter Description (“Description”) - This is a brief description of the parameter in the context of
the service. A description of the parameter in the context of its parameter type can be found with its
parameter type description in Clause 12, “Parameter Types”, on page 111.

-108 -

»ecma

11.1.3

11.1.4

11.2

11.21

11.2.2

Service Response
This section includes:

* a description of the type of acknowledgement model that can be used with the service (see 9.2.1,
“Positive Acknowledgement Models”, on page 96).

» atable that contains all of the parameters in the positive acknowledgement. The format of the table is
the same as in the service request (see 11.1.2).

« areference to the negative acknowledgement error codes.

Operational Model
The operational model consists of:

Connection State Transitions - This is a table with all possible connections affected by the service.
Associated with each connection is the:

« Connection Name (“Connection”) - This is used to reference the connection from other parts of the
template including the figure in the service description.

* Initial State (“Initial State (Required)”) - This is the set of allowed initial states (connection states
before the service is executed). An implementation shall support one or more of the specified initial
states associated with a service (as indicated in the capability exchange services).

« Final State (“Final State”) - This is the set of allowed final states (connection states after the service is
executed). An implementation shall support one or more of these states. In many cases there are
statements following the connection state transition table that further describe or clarify the
information in the table.

Monitoring Event Sequences - For services that affect connections, this section includes tables that
describes the event sequence generated for device-type and call-type monitors. Unless otherwise
specified, the events (and associated causes) in this table are required as part of the service completion
criteria. Each table contains:

« Monitored Device or Monitored Call (“Monitored Device” or “Monitored Call”) - For the device-type
monitoring table, this indicates the monitored device. For the call-type monitoring table, this indicates
the monitored call. The names can be used to reference back to the figure in the service description.

» Connection Name (“Connection”) - This column indicates the connection that is the subject of the event.
« Event (“Event”) - This is the name of the event generated as the result of the service.

» Event Cause (“Event Cause”) - This is the set of possible cause codes associated with the event. In
many cases there are statements following the connection state transition table that further describes
or clarifies the information in the table.

Functional Requirements - The functional requirements contain additional requirements associated with
the service.
Event Template

The following sections describe the Event Template components.

Event Description

This is textual description of the event followed by an optional figure. The figure is included when an
event indicates a change in one or more connections. The figure defines the role of devices and
connections from a before/after perspective. The nomenclature used in the figures is described in 11.1.2,
“Service Request”.

Event Parameters

This section consists of a table that contains all of the parameters in the event. The format of the table is
the same as in the service request table described in 11.1.2, “Service Request”.

- 109 -

acma

11.2.3

11.2.4

11.3

11.3.1

11.3.2

11.3.3

Event Causes
This section consists of a table that contains all of the possible cause codes that can be included with the
event. Associated with each cause code are:

e Event Cause (“Event Cause”) - This is the event cause name.
« Event Description (“Description”) - This is a description of the event cause in the context of the event.

¢ Associated Features (“Associated Features”) - This is the complete set of possible features associated
with the cause code. A feature may either correspond to a CSTA service or it may be associated with
switch features specified in 6.7, “Additional Services, Features & Behaviour”, on page 69.

Functional Requirements

Functional requirements contain additional requirements associated with the event.
Parameter Type Template

The following sections describe the Parameter Template components:

Parameter Type Description

This contains a description of the parameter type.
Format

This section specifies the format of the parameter type. For example, it could list the possible values
associated with a parameter type (enumerated list).

For parameter types that are a type of device identifier, the format contains the allowed statuses
associated with the parameter type (e.g. “Not Known”).

Functional Requirements

Functional requirements contain additional requirements associated with the parameter type.

-110 -

»ecma

12 Parameter Types
12.1 Definitions

This clause describes the parameter types for the parameters described in this Standard. There are five
sets of parameter types:

1. Basic parameter types are simple types that are not necessarily specific to these specifications. The
basic parameter types used in this Standard are:

* Boolean - Either TRUE or FALSE.
» Value - Integer value with a length of 4 bytes always.
» Characters - Character string of varying lengths, as specified in specific services or events.

2. Meta parameter types refer to constructions that combine one or more parameter types. The meta
parameter types used in this Standard are:

« Bitmap - Multiple values may be set in a specified set.
« Enumerated - One value only may be set in a specified set.

e Structure - A combination of different types combined into one parameter type, as defined in a
specific service or event. Multiple components may be present in the structure (each component
in the structure is defined as mandatory, optional, or conditional).

» Choice Structure - Like Structure, but one and only one component in the structure is present.
» List - List of a single specified parameter type or structure

3. Defined parameter types are specific to this Standard. They are briefly defined in Table 12-1 on
page 112, and further defined in the pages indicated.

4. Identifier parameter types are specific to this Standard. They are briefly defined in Table 12-2 on
page 145, and further defined in the pages indicated.

5. Capability bitmap parameter types are bitmaps included in the Get Physical Device Information, Get
Logical Device Information and Get Switching Function Capabilities services. They are defined in
Annex C.

-111 -

oechna

12.2 Defined Parameter Types

Defined parameter types specific to these specifications are summarized in the following table.

Table 12-1 Defined Parameter Types Summary

Defined Parameter Type Description Pg.
12.2.1 Accountinfo Contains computing sub-domain/business specific code that is to be applied or has 113
been applied to a call for accounting purposes.
12.2.2 AgentPassword Specifies the agent password. 113
12.2.3 AuthCode Contains an authorization code that the switching function understands and will use 113
to check to see if the user of the computing sub-domain is authorized to perform the
given service.
12.2.4 CallCharacteristics Specifies the high level characteristics of the call. 114
12.2.5 CallLinkageData Specifies the globally unique information that is used to associate CSTA calls that 114
are linked by a switching function because of the way the call was created or
manipulated.
12.2.6 CallQualifyingData Specifies information such as wrap codes, walk away codes, hold reasons, transfer 116
reasons, etc. that describes or helps qualify how a call is being (or has been)
handled by a user.
12.2.7 Charginglnfo Specifies information that represents a cumulative value of charging or currency 116
units charged to a device for a call in which the device was involved.
12.2.8 Specifies the connection information associated with the subject connection. 117
Connectioninformation
12.2.9 ConnectionList Specifies the list of devices/connections that are known to the switching function, 118
and which remain in the call after a conference or transfer.
12.2.10 CorrelatorData Contains computing sub-domain-specific data that has been or will be attached to a 119
call that the computing sub-domain is controlling or monitoring.
12.2.11 CSTAPrivateData Provides a mechanism for providing non-standard parameters in events. 119
12.2.12 CSTASecurityData Specifies the security attributes associated with the message. 120
12.2.13 DeviceHistory Specifies the list of devices that had been previously associated with the call. 120
12.2.14 ErrorValue Contains hierarchical error codes. 121
12.2.15 EventCause Provides additional information on why the event was generated. 132
12.2.16 Specifies the preferred language(s) associated with the call. 136
LanguagePreferences
12.2.17 Describes the connection state of the device associated with the Monitor Cross 136
LocalConnectionState Reference ID.
12.2.18 LocationInfo Describes the location information associated with a device. 137
12.2.19 LocationInfoList Describes the location information associated with a list of devices. 138
12.2.20 Specifies the media class (Voice, Digital Data, etc.) and media characteristics of the 138
MediaCallCharacteristics call.
12.2.21 MediaServiceType Specifies which media service is to be (or has been) attached to or detached from a 140
particular call or connection.
12.2.22 Messagelnfo Specifies the message information associated with a call. 141
12.2.23 MonitorFilter Specifies the events are filtered for a Monitor Start service. 141
12.2.24 ServicesPermitted Specifies the set of services that the switching function permits to be applied to a 142
connection.
12.2.25 SimpleCallState Provides the simple call state. 142
12.2.26 SubjectOfCall Indicates the subject or intent of the call. 143
12.2.27 SystemStatus Indicates the reason for the System Status service request. 143

-112 -

»ecma

12.2.1

12.2.2

12.2.3

Table 12-1 Defined Parameter Types Summary (continued)

Defined Parameter Type Description Pg.
12.2.28 Timelnfo Specifies the date and time. 144
12.2.29 UserData Contains device-to-device or computing sub-domain-to-computing sub-domain data. 144

Accountinfo

The Accountinfo parameter type contains a computing sub-domain/business specific code that is to be
applied or has been applied to a call for accounting purposes.

Format

This parameter type is a character string.

Functional Requirements

1. The management of the account code data is done by the switching function. To understand how the
switching function maintains this information with the call, you need to consult the switching function
specific documentation.

2. The computing sub-domain will only be notified that the account code data has been added or
changed through the Call Information event. This event will be generated when the user enters the
account code data manually or after a service has added or changed the data.

3. The way to clear the data on the call is to pass a null string of data on one of the above mentioned
services. (The actual parameter is passed, but the content is a null string.)

4. The switching function may choose to filter this information by not providing it in events for security
reasons.

5. When this information is being attached to a call through a service request, its association shall be
completed prior to any state transitions resulting from the request. Thus any state transition events
which contain this parameter shall contain the information passed on the request.

AgentPassword
The AgentPassword parameter type specifies the password for an ACD agent.

Format

This parameter is a character string.
AuthCode

The AuthCode parameter type contains an authorization code that the switching function understands
and will use to check if the computing function is authorized to perform a given service.

Format

This parameter type is a character string.

Functional Requirements

1. If the switching function requires this parameter, and either the authorization code supplied is not
valid or the parameter type is not supplied, then the service will be rejected with a negative
acknowledgement.

2. The switching function may choose to filter this information by not providing it in events for security
reasons.

-113 -

acma

3. When this information is being attached to a call through a service request, its association shall be

completed prior to any state transitions resulting from the request. Thus any state transition events
which contain this parameter shall contain the information passed on the request.

12.2.4 CallCharacteristics

The CallCharacteristics parameter type describes, when included on an event, the high level
characteristics associated with a call.

When this parameter is included on a switching function service request, it indicates the requested set of
high level characteristics that should be associated with the call.

Format

This parameter type is a bitmap. Multiple bits may be set. The complete set of possible values in the
bitmap is:

acdCall. This bit is set to indicate an ACD call. Once the call is no longer associated with the ACD,
this bit is no longer set. See Functional Requirement #1.

lowPriorityCall - This bit is set to indicate that the priority level associated with the call is low.
priorityCall - This bit is set to indicate that the priority level associated with the call is normal.
highPriorityCall - This bit is set to indicate that the priority level associated with the call is high.
maintenanceCall - This bit is set to indicate a maintenance call.

directAgent - This bit is set to indicate a call placed directly to a device such as an ACD device or
station. This may be used to indicate that e.g. ACD agent states, forwarding settings, or do not
disturb settings should be or have been overridden.

assistCall - This bit is set to indicate a call whose purpose is to request assistance.

voiceUnitCall - This bit is set to indicate a call involving a Voice Unit (e.g., voice mail system) or
Interactive Voice Device. Once the Voice Unit or Interactive Voice Device is no longer involved with
the call, this bit is no longer set.

privateCall - This bit is set to indicate that the sensitivity of the call is private.
personalCall - This bit is set to indicate that the sensitivity of the call is personal.
sensitiveCall - This bit is set to indicate that the sensitivity of the call is normal.
confidentialCall - This bit is set to indicate that the sensitivity of the call is confidential.

encryptedCall - This bit indicates that the payload/media associated with the call is encrypted. It may
also indicate that the signalling associated with the call is encrypted. The mechanism used for
encryption (TLS, IPSEC, SRPT, etc.) is implementation specific.

Functional Requirements

1. There are many conditions when a switching function may classify a call as an ACD call and when

an ACD call becomes a non-ACD call. The specific conditions are switching function dependent.

If multiple priority and/or security values are indicated, it is suggested (but not required) that the
highest value should be used. The levels of sensitivity are (in increasing order): privateCall,
personalCall, sensitiveCall, and confidentialCall. The levels of priority are (in increasing order):
lowPriorityCall, priorityCall, and highPriorityCall.

12.2.5 CallLinkageData

The CallLinkageData parameter type contains globally unique information that is used to associate CSTA
calls that are linked by a switching function because of the way that a call was created or manipulated.

- 114 -

»ecma

For example, a call that is created as the result of the CSTA Consultation Call service (consulted call)
may be linked to the call placed on hold at the consultation device by the CallLinkageData parameter
type. The CallLinkageData parameter type can also be used to correlate calls in different switching sub-
domains with the same “end-to-end” or “global” call.

See 6.1.2.7, “Call Linkage”, on page 46 for a description of the call linkage feature.
Format
This parameter type is comprised of a sequence of the following:

» globalCallData (M) Structure - this component contains information that pertains to an “end-to-end” or
“global” call. It consists of the following:

« globalCallSwitchingSubDomainName (C) Characters - specifies the name of the switching sub-
domain that created the globalCallData. This component is required if the globalCallLinkagelD
component is not a globally unique value, otherwise it may be omitted. See Functional
Requirement #2.

» globalCallLinkagelD (M) Choice - specifies the global call linkage identifier. This consists of one
of the following choices:

« subDomainCallLinkagelD Characters - specifies the switching function specific call linkage
identifier. The maximum length supported by the switching function is provided via the
capabilities exchange services.

« (globallyUnigueCallLinkagelD Characters - specifies the globally unique call linkage
identifier. See functional requirement #2b.

» callLinkagelDTimestamp (O) Timeinfo - specifies the time that the globalCallData was created.
The format is described in 12.2.28.

» threadData (C) Structure - This information pertains to the entire call thread, i.e. all calls that are
linked together as part of the same thread. This component shall only be provided if the switching
function supports the thread linkage feature (as indicated by the capability exchange services). It
consists of the following:

e threadSwitchingSubDomainName (C) Characters - specifies the name of the switching sub-
domain that created the threadData. This is required if the threadID is not a globally unique
value, otherwise it may be omitted. See Functional Requirement #2.

» threadLinkagelD (M) Choice - specifies the thread linkage identifier. This consists of one of the
following choices:

» subDomainThreadlD Characters - specifies the switching function specific thread linkage
identifier. The maximum size supported by the switching function is provided via the
capabilities exchange services.

« globallyUniqueThreadlD Characters - specifies the globally unique thread linkage identifier.
See functional requirement #2b.

e threadIDTimestamp (O) Timeinfo - specifies the time that the threadData was created. The
format is described in 12.2.28.

Functional Requirements

1. The switching sub-domain names are used to distinguish one switching sub-domain from another. It
is the responsibility of the switching function to provide a value that is unique within the switching
domain.

-115-

acma

12.2.6

12.2.7

2. The switching function that creates the callLinkageData ensures that it is globally unique by one of
the following:

a. providing the switching sub-domain name component along with a switching sub-domain unique
identifier component. The combination of these two components provides call linkage data that is
globally unique.

b. providing a globally unique call linkage identifier component. The switching function that provides
this choice of linkage identifier must generate the globallyUniqueCallLinkagelD and/or the
globallyUniqueThreadID via the algorithm used to create the globally unique ID as specified in
ITU-T Rec. H.225.

3. Whenever the globalCallData or the threadData is updated, the corresponding timestamp
information shall also be updated.

4. When the switching function provides the globallyUniqueCallLinkagelD choice, it shall ensure that:

a. if the switching function also provides the globalCallSwitchingSubDomainName, there should be
a 1/1 correspondence between the node name field in the globallyUniqueCallLinkagelD and the
globalCallSwitchingSubDomainName.

b. if the switching function also provides the callLinkagelDTimestamp, the timestamp field in the
globallyUniqueCallLinkagelD should be consistent with the callLinkagelDTimestamp.

5. When the switching function provides the globallyUniqueThreadID choice, it shall ensure that:

a. if the switching function also provides the threadSwitchingSubDomainName, there should be a 1/
1 correspondence between the node name field in the globallyUniqueThreadlD and the
threadSwitchingSubDomainName.

b. if the switching function also provides the threadIDTimestamp, the timestamp field in the
globallyUniqueThreadID should be consistent with the threadIDTimestamp.

CallQualifyingData

The CallQualifyingData parameter type specifies information such as wrap codes, walk away codes, hold
reasons, transfer reasons, etc. that describes or helps qualify how a call is being (or has been) handled
by a user.

Format

This parameter type is a character string. The maximum size supported by the switching function is
provided via the capabilities exchange services.

Functional Requirements

1. The computing function will be notified that the call qualifying data has been added or changed
through the Call Information event. This event will be generated when the user enters the call
qualifying data manually or after a service (Associate Data) has added or changed the data.

CharginglInfo

The Charginglnfo parameter type represents a cumulative value of charging or currency units charged to
a device for a call in which the device was involved. This information can represent an intermediate
(during the call) or final total (when the device leaves the call).

Format

This parameter consists of the following components:

¢ numberUnits (M) Choice Structure - This component consists of one of the following choices:

-116 -

»ecma

numberOfChargingUnits (List Structure) - indicates a cumulative number of charging units. This
component consists of a sequence that may be repeated to report different types of charging
units. The sequence consists of:

« chargingUnits (M) Value - the number of charging units.

« typeOfUnits (O) Character String - the type of units. This may be included to differentiate
among these types. Its definition is network-dependent.

numberOfCurrencyUnits (List Structure) - indicates a cumulative value of currency units. This
sequence consists of:

e currencyType (M) Character String - indicates the type of currency. A null string (size of 0)
indicates the default currency. Its definition is network-dependent.

» currencyAmount (M) Value - indicates the cumulative value of currency units.

« currencyMultiplier (M) Enumerated - indicates the currency unit multiplier. The complete set
of possible values is: .001, .01, .1, 1, 10, 100, 1000.

« typeOfCharginginformation (M) Enumerated - This can have one of the following values:

Sub-total - indicates that the information is an intermediate value.

Total - indicates that the charging information is complete.

12.2.8 Connectioninformation
The Connectioninformation parameter type specifies the connection information associated with the
subject connection (i.e., the connection that is the focus of the event or positive acknowledgement being
reported).

Format

This parameter type is a comprised of the following parameters:

1. flowDirection (O) Enumerated - Specifics the direction of flow that is associated with the subject
connection. If this parameter is not present, the connection’s flow direction is unknown. The
complete set of possible values is:

Transmit - Media stream data is only capable of being transmitted on the connection by the
associated device.

Receive - Media stream data is only capable of being received on the connection by the
associated device.

Transmit and Receive - Media stream data is capable of being transmitted and received on the
connection by the associated device.

None - Media stream data is not capable of being transmitted or received on the connection by
the associated device.

2. numberOfChannels (O) Value - Specifies the number of media stream channels that are associated
with the subject connection. If this parameter is not present, the number of channels associated with
the connection is one.

3. mediaSessioninfo (O) Characters - Specifies the protocol specific information associated with the
connection related to the media stream. This could be information derived from the Session
Description Protocol (SDP), for example. The format, meaning and behaviour of the media session
information is specific to the given switching function.

-117 -

reCima

Functional Requirements

12.2.9

1.

The initial connectioninformation associated with a connection that is being created can be specified
on certain CSTA services.

The ParticipationType parameter in certain CSTA Services (Intrude Call, Join Call, Single Step
Conference, etc.) can also be used to specify the flowDirection when a device is becoming part of a
call.

After a connection is created, the Change Connection Information service can be used to modify the
connectioninformation associated with a connection. This can be used to change a connection that
was created with a “Receive” flowDirection (initially set up as for “silent monitoring”) to “Transmit and
Receive” (active participation), for example.

ConnectionList

The ConnectionList parameter type provides the linkage mechanism between a device’s old connection
ID and new connection ID resulting from the conference or transfer.

Format

This parameter includes the following components for every device or connection being reported:

L]

new ConnectionID (C) ConnectionID - The CalllD portion of this ConnectionID refers to the resulting
call. This component is optional for the transferringDevice in the Transferred event, otherwise it is
mandatory.

old ConnectionID (C) ConnectionID - The CalllD portion of this ConnectionlD refers to the original
call. This component is mandatory if the switching function previously reported the CalllD, otherwise it
is optional.

endPoint DevicelD (O) DevicelD - For internal calls, this is the representation of the device inside the
switching sub-domain. For external calls (incoming or outgoing), this is the representation of the
externally located device (if known by the switching function). This component is a character string.
The maximum length supported by the switching function is provided via the capabilities exchange
services. It may be:

« of any device identifier format
« of the following statuses: “Provided” “Not Known” “Restricted”

associatedNID (C) DevicelD - For external calls (incoming and/or outgoing), this component specifies
the Network Interface Device (e.g., trunk, CO line) within the switching sub-domain that is associated
with the externally located device. In that case the component endPoint DevicelD (if provided) shall
represent the externally located device. The associatedNID component is mandatory in case of
external calls and shall be omitted when the device is located inside the switching sub-domain. This
component may be:

« of any device identifier format
« of the following statuses: “Provided” or “Not Known”

resultingConnectioninformation (O) Connectioninformation - This component contains the flow
direction and channel characteristics associated with the resulting connection.

Functional Requirements

1.

This list should be used by the computing function to associate devices which remain in a call, as a
result of a Conference or Transfer, with the connection IDs that are used to manipulate them.

-118 -

»ecma

12.2.10 CorrelatorData

The CorrelatorData parameter type contains computing sub-domain specific data that has been or will be
attached to a call that the computing function is controlling or monitoring. This allows the computing
function to associate its own information with a call and, as a result, share it with other computing
functions. For example, this information might be a key to a database entry, a computing function
command sequence, file name, etc. This feature is useful when calls are moving from one computing
function to another in a distributed computer network or from one switching sub-domain to another.

See 6.1.2.3, “Correlator Data”, on page 42 for specific rules on the use of Correlator Data.

Annex B defines one possible mechanism for delivering correlator data through an external ISDN
network.

Format

This parameter type is a string. The maximum length supported by the switching function is provided via
the capabilities exchange services.

Functional Requirements

1. The correlator data will stay with the call as long as the call exists. This means that the correlator
data will be presented to the computing function on events that have this parameter and that the
switching sub-domain supports.

2. The correlator data can be changed during the life of the call by any of the services that has the
parameter or by using the Associate Data service.

3. The way to clear the data on the call is to pass a null string of data on one of the above mentioned
services. (The actual parameter is passed but the content is a null string.) If correlator data is
cleared, then the switching function notifies the computing function by sending a null string.

4. See 6.1.2.3, “Correlator Data”, on page 42 for a description of how Correlator Data is inherited by
calls during a conference or transfer.

5. If the computing function issues the Consultation Call service without correlator data, initially the
secondary call will not have correlator data associated with it, as it does not inherit any correlator
data that may be associated with the primary call. If the computing function issues the Consultation
Call service with correlator data, this data is for the secondary call only and does not affect any
correlator data that may be currently associated with the primary call.

6. When correlator data is associated with a call, for all Call Control events listed in 17.2 on page 340
except for the Bridged, Call Cleared, Connection Cleared, Held, and the Retrieved events (i.e. call
events that may indicate that a device becomes part of a call) shall include the correlator data (if
supported). Correlator data can optionally be included with the four event exceptions listed above.

7. When this data is being attached to a call through a service request, its association shall be
completed prior to any state transitions resulting from the request. Thus any state transition events
which contain this parameter shall contain the information passed on the request.

8. If a computing function issues a Snapshot Call service after a service request has been issued with
this information, but prior to the switching function making any state transitions, it is switching
function specific as to what will be returned in the positive acknowledgement with regards to this
parameter.

12.2.11 CSTAPrivateData

The PrivateData parameter type provides a mechanism for providing non-standard parameters in
messages.

-119 -

acma

12.2.12

12.2.13

Format

This parameter type is a choice of one of the following:

e string of any length. The maximum length supported by the switching function is provided via the
capabilities exchange services.

e ASN.1 NULL type. If this choice is used, an implementation shall replace the ASN.1 NULL type with
another valid ASN.1 type.

CSTASecurityData

The CSTASecurityData parameter type provides information that can be used to determine if a message
in a sequence has been lost, the time that a message was sent, and security information that can be
used to provide security such as access control and authentication.

Format

The CSTASecurityData parameter type consists of the following components:

¢ messageSequenceNumber (Value) Optional. Shall be a sequential number that can be used to detect
missing messages in a sequence and verify that their order has not been altered.

< timestamp (Timeinfo) Optional. Shall be a generalized time value that can provide an indication of the
“freshness” of a message. It can indicate that the received message is not a replay of another
message from a previous association or from the current association after the sequence numbers
have recycled.

« securitylnfo (Choice Structure) Optional - Shall indicate the security data that may be used to make
appropriate access control decisions or to carry out the current security policy. This contents of this
information is not defined by this Standard. This component is a choice of one of the following:

e string of any length. The maximum length supported by the switching function is provided via the
capabilities exchange services.

¢« ASN.1 NULL type. If this choice is used, an implementation shall replace the ASN.1 NULL type
with another valid ASN.1 type.

DeviceHistory

The DeviceHistory parameter type specifies a list of devicelDs that were previously associated with the
call. A device becomes associated with the call whenever there is a CSTA connection created at the
device for the call. The association may also result from a relationship between a device and a call
outside the CSTA switching function. A device becomes part of the DeviceHistory list when it is no longer
associated with the call (for example: when a call is redirected from a device, when a call is transferred
away from a device, and when a device clears from a call).

Format

The parameter type consists of a list of entries. Each entry contains information regarding a devicelD that
had previously been associated with the call. The list is ordered from the first device that left the call to
the device that most recently left the call (see Functional Requirement #2). Each entry consists of:

« oldDevicelD (M) DevicelD - the device that left the call. This information should be consistent with the
subject device in the event that represented the device leaving the call. For example: the
divertingDevice provided in the Diverted event for that redirection, the transferring device in the
Transferred event for a transfer, or the clearing device in the Connection Cleared event. This device
identifier type may be one of the following:

« of any device identifier format (see Clause 10, “CSTA Device ldentifier Formats”, on page 102
for more information).

-120 -

»ecma

* “Not Known” - indicates that the device identifier associated with this entry in the DeviceHistory
list cannot be provided.

» “Restricted” - indicates that the device associated with this entry in the DeviceHistory list cannot
be provided due to regulatory and/or privacy reasons.

« “Not Required” - indicates that there are no devices that have left the call. If this value is
provided, it shall be provided as the only entry in the list and the eventCause and
oldConnectionID shall not be provided with this list entry.

* “Not Specified” - indicates that the switching function cannot determine whether or not any
devices have previously left the call. If this value is provided, it shall be provided as the only
entry in the list and the eventCause and oldConnectionID shall not be provided with this list
entry.

eventCause (O) EventCause - the reason the device left the call or was redirected. This information
should be consistent with the eventCause provided in the event that represented the device leaving
the call (for example, the cause code provided in the Diverted, Transferred, or Connection Cleared
event).

oldConnectionID (O) ConnectionID - the CSTA connectionID that represents the last connectionlD
associated with the device that left the call. This information should be consistent with the subject
connection in the event that represented the device leaving the call (for example, the connectionID
provided in the Diverted, Transferred, or Connection Cleared event).

Functional Requirements

1.
2.

The last entry in the list represents the last device that left the call.

If a resulting call is being formed (due to a transfer or conference, for example) from one or more
calls with different DeviceHistory parameters, the DeviceHistory for each of the old calls should be
combined and associated with the resulting call. The ordering of the DeviceHistory for the
"combined" call is switching function specific.

The switching function can indicate the maximum number of entries of the DeviceHistory parameter
type in the response Get Switching Function Capability service. If the switching function supports this
parameter and the length of the DeviceHistory is exceeded, it is switching function-dependent which
entries are included in the parameter.

A device may be associated with a call outside the CSTA switching sub-domain. This may become
known to the CSTA switching function through information provided by the external network (using
protocol specific information elements). Such devices may be added to the DeviceHistory list if their
association with the call is known to the switching function.

12.2.14 ErrorValue
The ErrorValue parameter type defines error codes.

Format

This parameter contains the following:

Error Category - Operation, Security, State Incompatibility, System Resource Availability, Subscribed
Resource Availability, Performance Management, Private Data, Private Error Code, and Unspecified.

Error Value - A value describing the error. The following text describes the various categories and
values within each category.

Note that the error code hierarchy described in Figure 9-1, “ErrorValue Hierarchy,” on page 98 is
represented by indented bullet lists in the following sections, each indent representing an additional error
code level.

-121 -

acma

12.2.14.1 Operation Errors

Error values in this category shall indicate an error in the Service Request. This category shall include
one of the following specific error values:

e generic - The server has detected an operational error in the service request and the error is either
not a specified Operation Class error or the switching function cannot be more specific.

atLeastOneConditionalParameterNotProvided - The service definition specifies a set of
conditional parameters, at least one of which shall be provided. No parameter from this set was
present.

featureAlreadySet - The feature cannot be set because it is already set.

invalidMessageldentifier - There is no message with the specified Message Identifier.

invalidParameterValue - A value for a parameter is invalid. A value is in the specified range but
invalid in the circumstance where it is used.

invalidAccountCode - The account code parameter is invalid.
invalidAgentGroup - An agent group is invalid.
invalidAgentldentifier - An agent identifier is invalid.
invalidAgentPassward - An agent password is invalid.
invalidAgentState - An agent state setting is invalid.
invalidAlertTime - The alertTime parameter is invalid.

invalidAllocationState - The service request (MakePredictiveCall) specified an allocation
state that is invalid in the present circumstance.

invalidAuthorizationCode - The authorization code is invalid.
invalidAutoAnswer - The autoanswer parameter is invalid.
invalidBitRate - The bitRate parameter is invalid.
invalidButtonldentifier - A button identifier is invalid.
invalidButtonLabel - A button label is invalid.

invalidCallType - The callType parameter is invalid.
invalidConnectionRate - The connectionRate parameter is invalid.
invalidConsultPurpose - The consultPurpose parameter is not valid.
invalidCorrelatorData - The Correlator Data parameter is not valid.

invalidCrossReferenceldentifier - The service request specified a Cross Reference Identifier
that is not in use.

invalidDelayTolerance - The delayTolerance parameter is invalid.

invalidDestination - The service request contains a destination that is invalid. Note that for a
forwarding destination, the switching function returns the invalidForwardingDestination
error. This occurs when the calledDirectoryNumber, newDestination, or routeSelected
parameter is invalid.

invalidDestinationDetect - the destinationDetect parameter is invalid.
invalidDoNotDisturb - The do not disturb setting is invalid.

invalidEscapeCrossReferenceldentifier - The escape registration request identifier is
invalid.

-122 -

»ecma

« invalidFeature - The service request specified a feature that is invalid. Often, this is
because the switching or computing function does not support the requested feature.

» invalidFile - The specified file is not accessible.

» invalidFlowDirection - The flowDirection parameter is invalid.

» invalidForwardingDestination - The forwarding destination device is not valid.
 invalidForwardingFlag - The forwarding flag is invalid.

» invalidForwardingType - The forwarding type is invalid.

» invalidHookswitchType - A hookswitch type is invalid.

» invalidHookswitchComponent - A hookswitch component is invalid.

» invalidLampldentifier - A lamp identifier is invalid.

* invalidLampMode - A lamp mode is invalid.

» invalidMessageWaitingSetting - A message waiting setting is invalid. The switching function
returns this error for the messageWaitingOn parameter.

« invalidMicrophoneGain - A microphone gain setting is invalid.
« invalidMicrophoneMute - A microphone mute setting is invalid.

« invalidMonitorCrossReferenceldentifier - The service request specified a monitor cross
reference identifier that is not in use.

» invalidMonitorFilter - The monitor filter is invalid.

< invalidMonitorObject - The monitor object is invalid.

¢ invalidMonitorType - The monitor type is invalid.

« invalidNumberOfChannels - The numberOfChannels parameter is invalid.

« invalidParticipationType - The participationType parameter is invalid.

« invalidRemainRetry - The value of the remainRetry parameter is invalid.

« invalidRingCount - The ring count setting is invalid.

< invalidRingPattern - A ring pattern setting is invalid.

« invalidRingVolume - A ring volume setting is invalid.

« invalidRouteingAlgorithm - The computing function does not support the routeing algorithm.

« invalidRouteingCrossReferenceldentifier - The service request specified a routeing cross
reference identifier that is not in use.

« invalidRouteRegistrationCrossReferenceldentifier - The route registration request identifier
is invalid.

« invalidSpeakerVolume - A speaker volume is invalid.
» invalidSpeakerMute - A speaker mute setting is invalid.

« invalidSwitchingSubdomainCharsType - The switchingSubDomainCCIEType parameter is
invalid.

» invalidObjectType - A parameter in the service request contains an object type that is not the
defined object type for that parameter.

« invalidActiveCallObject - The value supplied for activeCall or one of its components is hot of
the proper type.

-123 -

acma

invalidCalledDeviceObjectType - The value supplied for calledDevice is not of the proper
type.
invalidCallingDeviceObjectType - The value supplied for callingDevice is not of the proper
type.

invalidCallToBePickedUpObjectType - The value supplied for callToBePickedUp or one of
its components is not of the proper type.

invalidCallToDivertObjectType - The value supplied for callToBeDiverted is not of the proper
type.

invalidCallToParkObjectType - The value supplied for callToPark or one of its components is
not of the proper type.

invalidDestinationDeviceObject - The value supplied for newDestination in a or one of its
components is not of the proper type.

invalidHeldCallObject - The value supplied for heldCall or one of its components is not of
the proper type.

invalidMonitorObjectType - The monitorObject type is invalid.
invalidParkToObjectType - The value supplied for r parkTo is not of the proper type.

* messageldentifierRequired - The request requires a Message Identifier.

¢ notDifferentDevices - Multiple parameters in the service request that shall specify different
devices do not specify different devices.

« notSameDevice - Multiple parameters in the service request that shall specify the same device
do not specify the same device.

« objectNotKnown - An object parameter (connection, device, or call) has a value that is not
known.

L]

invalidCallldentifier - A call identifier parameter or a call identifier component of a
connection identifier parameter is invalid or is not known to the switching function.

* invalidActiveCallldentifier - The call identifier in the activeCall connection does not
specify a valid call.

« invalidHeldCallldentifier - The call identifier in the heldCall connection does not
specify a valid call.

invalidConnectionldentifier - A connection identifier or some component of the connection
identifier is invalid.

< invalidActiveConnectionldentifier - The activeCall connection does not specify a valid
call.

¢ invalidHeldConnectionldentifier - The heldCall connection does not specify a valid
call.

invalidDeviceldentifier - A device identifier parameter or a device identifier component of a
connection identifier parameter is invalid or is not known to the switching function.

* invalidActiveDeviceldentifier - The device identifier in the activeCall connection does
not specify a valid device.

< invalidCalledDeviceldentifier - The called device parameter is invalid.

< invalidCallingDeviceldentifier - The calling device parameter is invalid.

- 124 -

* invalidCallToParkDeviceldentifier - The device identifier in the callToPark connection
does not specify a valid device.

« invalidDestinationDeviceldentifier - The device identifier in the newDestination does
not specify a valid device.

« invalidDivertingDeviceldentifier - The diverting device identifier is invalid.

« invalidHeldDeviceldentifier - The device identifier in the heldCall connection does not
specify a valid device.

« invalidParkToDeviceldentifier - parkTo does not specify a valid device.

« invalidPickUpDeviceldentifier - The device identifier in the callToBePickedUp does not
specify a valid device.

parameterNotSupported - The switching function does not support a parameter.

accountCodeNotSupported - The accountCode parameter is not supported.
agentGroupNotSupported - The agent group parameter is not supported.
agentPasswordNotSupported - The agent password parameter is not supported.
agentStateNotSupported - The agent state is not supported.
alertTimeNotSupported - The alertTime parameter is not supported.
allocationNotSupported - The allocation parameter is not supported.
authorisationCodeNotSupported - The authorization code is not supported.
autoAnswerNotSupported - The autoAnswer parameter is not supported.
bitRateNotSupported - The bitRate parameter is not supported.
buttonNotSupported - The button parameter is not supported.
callTypeNotSupported - The callType parameter is not supported.
charactersToSendNotSupported - The charactersToSend parameter is not supported.
connectionRateNotSupported - The connectionRate parameter is not supported.

connectionReservationNotSupported. The connectionReservation parameter is not
supported.

consultPurposeNotSupported - The consultPurpose parameter is not supported.
correlatorDataNotSupported - The correlator data parameter is not supported.
delayToleranceNotSupported - The delayTolerance parameter is not supported.
destinationDetectNotSupported - The destinationDetect parameter is not supported.
digitModeNotSupported - The digitMode parameter is not supported.
errorValueNotSupported - The errorValue parameter is not supported.
flowDirectionNotSupported - The flowDirection parameter is not supported.

forwardingDestinationNotSupported - The forwarding destination parameter is not
supported.

lampNotSupported - The lamp parameter is not supported.
monitorTypeNotSupported - The monitor type is not supported.
numberOfChannelsNotSupported - The humberOfChannels parameter is not supported.

parameterTypeNotSupported - The participationType parameter is not supported.

-125 -

»ecind

priorityNotSupported - The priority parameter is not supported.
privateDataNotSupported - The privateData parameter is not supported.
pulseDurationNotSupported - The pulseDuration parameter is not supported.
pulseRateNotSupported - The pulseRate parameter is not supported.
remainRetryNotSupported - The remainRetry parameter is not supported.
ringCountNotSupported - The ringCount parameter is not supported.
routeUsedNotSupported - The routeUsed parameter is not supported.
securityNotSupported - The security parameter is not supported.

switchingSubDomainCCIETypeNotSupported - The switchingSubDomainCCIEType
parameter is not supported.

toneDurationNotSupported - The toneDuration parameter is not supported.
securityNotSupported - The security parameter is not supported.
sysStatRegIDNotSupported - The sysStatRegID parameter is not supported.

userDataNotSupported - The userData parameter is not supported.

< privilegeViolationSpecifiedDevice - Performing the service request would result in a privilege
violation.

privilegeViolationActiveDevice - The request would violate a switching function restriction
on the device activeCall that limits the device in some way.

privilegeViolationCalledDevice - Performing the service request would violate a switching
function restriction that limits the called device in some way.

privilegeViolationCallingDevice - Performing the service request would violate a switching
function restriction that limits the calling device in some way.

privilegeViolationCallToParkDevice - The service request would violate a switching function
restriction on the device in callToPark connection that limits the device in some way.

privilegeViolationDestinationDevice - The request would violate a switching function
restriction on the device newDestination that limits the device in some way.

privilegeViolationOnDivertingDevice - The service request would violate a switching
function restriction on the diverting device in some way.

privilegeViolationHeldDevice - The request would violate a switching function restriction on
the device in heldCall that limits the device in some way.

privilegeViolationOnParkToDevice - The service request would violate a switching function
restriction on the device parkTo that limits the device in some way.

privilegeViolationPickupDevice - The request would violate a switching function restriction
on the device in callToBePickedUp that limits the device in some way.

« routeingTimerExpired - The routeing timer or delayed ringback timer expired for a routeing
request.

¢ requestincompatibleWithObject - The service request is not compatible with the corresponding
object specified in the service request. This error shall not reflect state incompatibility errors of
an object.

requestincompatibleWithConnection - The service request is not compatible with a
connection specified in the service definition.

-126 -

»ecma

* requestincompatibleWithActiveConnection - The request is incompatible with the
activeCall connection.

* requestincompatibleWithHeldConnection - The request is incompatible with the
heldCall connection.

requestincompatibleWithDevice - The service request is not compatible with a device
specified in the service request.

» requestincompatibleWithCalledDevice - The service request is not compatible with the
called device.

« requestincompatibleWithCallingDevice - The service request is hot compatible with
the calling device.

* requestincompatibleWithSubjectDevice - The service request is not compatible with
the subject device (not a called or calling device).

* requestincompatibleWithActiveDevice - The service request is incompatible with
the device in the activeCall connection.

* requestincompatibleWithCallToParkDevice - The service request is not
compatible with the device in callToPark connection.

» requestincompatibleWithDestinationDevice - The service request is
incompatible with the device in the newDestination connection.

« requestincompatibleWithDivertingDevice - The service request is incompatible
with the device in the callToBeDiverted connection.

« requestincompatibleWithHeldDevice - The service request is incompatible with
the device in the heldCall connection.

* requestincompatibleWithMedia - The media type associated with the message
is incompatible with the associated device.

* requestincompatibleWithParkToDevice - The service request is not compatible
with parkTo.

» requestincompatibleWithPickupDevice - The service request is incompatible
with the device in the callToBePickedUp connection.

» serviceNotSupported - The service is not supported.

e securityViolation - The service request violates security.

« valueOutOfRange - A parameter (other than a CSTA object) has a value that is not in the
enumeration or range specified for that parameter.

agentStateOutOfRange - An agent state is not one of the defined values.

alertTimeOutOfRange - The alertTime parameter has a value that is out of its permitted
range.

allocationOutOfRange - The allocation parameter has a value that is out of its permitted
range.

autoAnswerOutOfRange - The autoAnswer parameter has a value that is out of range.
bitRateOutOfRange - The bitRate parameter value is out of the defined range.
callTypeOutOfRange - The callType parameter value is out of the defined range.

connectionRateOutOfRange - The connectionRate parameter value is out of the defined
range.

-127 -

acma

¢ connectionReservationOutOfRange - The connectionReservation parameter has a value
that is out of range.

¢ consultPurposeOutOfRange - The consultPurpose parameter has a value that is out of its
permitted range.

« correlatorDataOutOfRange - The length of the correlator data exceeds the maximum length
that the switching function supports.

« delayToleranceOutOfRange - The delayTolerance parameter is out of the defined range.

« destinationDetectOutOfRange - The destinationDetect parameter has a value that is out of
its permitted range.

« digitModeOutOfRange - The digitMode parameter value is out of the defined range.

« doNotDisturbOutOfRange- The do not disturb setting in the doNotDisturb parameter is out
of range.

« flowDirectionOutOfRange - The flowDirection parameter is out of the defined range.
« forwardingFlagOutOfRange - The forwarding flag is out of range.

« forwardingTypeOutOfRange - The forwardingType parameter is not one of the defined
values.

* hookswitchComponentOutOfRange - A hookswitch component is not one of the defined
components.

* hookSwithTypeOutOfRange - A hookswitch type is out of range.
« lampModeOutOfRange - A lamp mode setting is out of range.

¢ messageWaitingSettingOutOfRange - A message waiting setting is out of range. The
switching function returns this error for the messageWaitingOn parameter.

¢ micGainOutOfRange - A microphone gain setting is out of range.
« micMuteOutOfRange - A microphone mute setting is out of range.
« monitorTypeOutOfRange - The monitor type is not a defined value.

¢ numberOfChannelsOutOfRange - The numberOfChannels parameter is out of the defined
range.

¢ participationTypeOutOfRange - the participationType parameter has a value that is out of
range.

¢ pulseDurationOutOfRange- The pulseDuration parameter value is out of range.

¢ pulseRateOutOfRange - The pulseRate parameter value is out of range.

¢ ringCountOutOfRange - The ring count is out of range.

« ringPatternOutOfRange - A ring patterns setting is out of range.

¢ ringVolumnOutOfRange - A ring volume is out of range.

¢ routingAlgorithmOutOfRange - The routeSelAlgorithm is not one of the defined values.
« speakerMuteOutOfRange - A speaker mute setting is out of range.

« speakerVolumeOutOfRange - A speaker volume is out of range.

¢ switchingCcittType - The switchingSubDomainCCIEType parameter is out of the defined
range.

« systemStatusOutOfRange - The system status is not one of the defined values.

-128 -

»ecma

» toneCharacterOutOfRange - One of more characters in the charctersToSend parameter is
not in the permitted set.

» toneDurationOutOfRange - The toneDuration parameter value is out of range.

12.2.14.2 Security Errors

Error values in this category shall indicate a security error. This category shall include one of the following
specific error values:

e generic - This is a general purpose value that can be used when the server is unable to be any more
specific about the cause of the error.

» sequenceNumberViolated - Indicates that the server has detected an error in the operation’s
message sequence number.

» timeStampViolated - Indicates that the server has detected an error in the operation’s time
stamp.

» securitylnfoViolated - Indicates that the server has detected an error in the operation’s security
data.

12.2.14.3 State Incompatibility Errors

Error values in this category shall indicate that the service request was not compatible with the condition
of a related CSTA object. This category shall include one of the following specific error values:

» generic - This is a general purpose value that can be used when the server is unable to be any more
specific about the cause of the error.

» invalidObjectState - An object (device, connection, call, message) is in an incorrect state for the
service. This error value may be used when the server cannot be any more specific.

« invalidDeviceState - A device object is in an incorrect state for the service request.

e connectedCallExists - A physical element is already associated with another
connection in the connected state.

« invalidActiveDeviceState - The device in activeCall or callToBePickedUp connection is
not in the correct state.

* invalidCalledDeviceState - The device in the calledDevice connection is not in the
correct state.

» invalidCallingDeviceState - The device in the callingDevice connection is not in the
correct state.

« invalidCallToParkDeviceState - The device in the callToPark connection is not in the
correct state.

» invalidDestinationDeviceState - The newDestination device is not in the correct state.
« invalidDivertingDeviceState - The diverting device is not in a correct state.
» invalidHeldDeviceState - The device in heldCall connection is not in the correct state.
« invalidParkToDeviceState - The parkTo device is not in the correct state.

« invalidConnectionState - A connection object is in an incorrect state for the service request.
» invalidActiveConnectionState - The activeCall connection is not in the correct state.

« invalidConnectionldentifierForActiveCall - A Connection Identifier specified as the
activeCall in the service request is not in the correct state.

* invalidHeldConnectionState - The heldCall connection is not in the correct state.

-129 -

* noActiveCall - The service request operates on an active call, but there was no active
call.

« noCallToAnswer - There is no call active for the connection identifier specified as the
callToBeAnswered.

* noCallToClear - There is no call associated with the connection identifier of the Clear
Call request.

« noCallToComplete - There is no call active for the connection Identifier specified as
the callToBeCompleted.

« noConnectionToClear - There is no connection for the connection identifier specified
as the connectionToBeCleared.

¢ noHeldCall - The service request operates on a held call, but the specified call was
not in the Hold state.

* incorrectMessageState - A message object is in an incorrect state for the service.
* beginningOfMessage - The message pointer is at the beginning of the message.
« endOfMessage - The message pointer is at the end of the message.

¢ messageSuspended - The specified message is already suspended on the same
Connection.

« notAbleToPlay - The specified message exists, but cannot be played.
« notAbleToResume - The specified message cannot be resumed.

12.2.14.4 System Resource Availability Errors

Error values in this category shall indicate that the service request could not be fulfilled because of a lack
of system resources within the serving sub-domain. This category shall include one of the following
specific error values:

e generic - This is a general purpose value that can be used when the server is unable to be any more
specific about the cause of the error.

e resourceBusy - The service is supported by the server, but is unavailable due to a resource that
is busy.

< internalResourceBusy - An internal resource is in use.
« classifierBusy - All available classifiers are in use.

* noMediaChannelsAvailable - There are no available media stream channels to
complete the request.

¢ channelsinUseForBridgedDevices - All applicable media stream channels are in
use by other devices associated in a bridged device configuration.

¢ channelsinUseForData - All applicable media stream channels are in use for
digital data connections.

« toneDetectorBusy - All available tone detectors are in use.
* toneGeneratorBusy - All available tone generators are in use.
¢ networkBusy - The server sub-domain is busy.

* resourceOutOfService - The service is supported by the server, but is unavailable due to a
resource that is out of service.

« deviceOutOfService - A device that is needed to carry out the service is out of service.

-130 -

activeDeviceOutOfService - The device specified in activeCall connection is out of
service.

calledDeviceOutOfService - The device specified in the calledDevice connection is
out of service.

callingDeviceOutOfService - The device specified in the callingDevice connection is
out of service.

callToParkDeviceOutOfService - The device specified in callToPark connection is out
of service.

destinationDeviceOutOfService - The newDestination device is out of service.

divertingDeviceOutOfService - The device specified as the diverting device is out of
service.

heldDeviceOutOfService- The device specified in heldCall connection is out of
service.

parkToDeviceOutOfService - The device specified in parkTo is out of service.
pickupDeviceOutOfService - The device in callToBePickedUp is out of service.

divertingDeviceOutOfService - The device specified as the diverting device is out of
service.

networkOutOfService - The server sub-domain is Out Of Service.

otherResourceOutOfService - Some resource needed to carry out the service other than
the above is out of service.

» resourcelLimitExceeded - The service is supported by the server, but is unavailable because it
would exceed the internal usage limit of the resource.

overallMonitorLimitExceeded - The service request would exceed a switching function limit
on the number of monitors (either an overall limit on the aggregate number of monitors or a
limit on the number of monitors of different types (device-type, call-type) or some
combination of the two).

conferenceMemberLimitExceeded - The requested service would exceed the server’s limit
on the number of members of a conference.

registrationLimitExceeded - This service would exceed the switching function’s maximum
number of registrations.

conferenceResourceCannotBeSatisfied - The requested service includes a parameter that
cannot be satisfied.

maxDevicesExceeded - The maxDevices parameter is too large.

startTimeOutOfRange- The startTime parameter is out of range (i.e. too far in the
future).

durationExceeded - The duration parameter is too large.

12.2.14.5Subscribed Resource Availability Errors
Error values in this category shall indicate that the service request could not be fulfilled because a
required resource must be purchased or contracted by the client system. This category shall include one
of the following specific error values:

generic - This is a general purpose value to be used when the server is unable to be any more
specific about the cause of the error.

-131-

acma

« objectMonitorLimitExceeded - The service request would exceed the server’s limit of monitors
for the specified object.

e trunkLimitExceeded - The service request would exceed the server’s limit of trunks.

¢ outstandingRequestsLimitExceeded - The service request would exceed the servers’s limit on
the number of outstanding service requests.

« objectRegistrationLimitExceeded - This service request would exceed the switching function’s
limit on the number of registrations for this device.

12.2.14.6 Performance Management Errors

Error values in this category shall indicate that an error has been returned as a performance
management mechanism. This category shall include one of the following specific error values:

e generic - This is a general purpose value to be used when the server is unable to be any more
specific about the cause of the error.

e performancelLimitExceeded - A performance limit has been exceeded.

12.2.14.7 Private Data Information Errors

Error values in this category shall indicate an error in the CSTA Private Data Information. The reason(s)
why the Private Data Information is incorrect is not relevant to this Standard. This category shall include
the following specific error value:

e CcSTAPrivateDatalnfoError - An error occurred in the privateData parameter. The reason for this error
is implementation specific.

12.2.14.8 Private Error Code

Error values in this category shall indicate a vendor specific error. This category shall include a vendor
specific character string indicating a vendor specific error.
12.2.14.9 Unspecified Errors

Error values in this category shall indicate that the error did not belong to any of the other error value
categories. This category shall include the following error value:

« unspecifiedError - Some error other than those covered by the error categories has occurred or
server cannot determine the category of the error.

12.2.15 EventCause
The EventCause parameter type provides additional information on why an event was generated.

Format

Event causes are defined within the context of an event. For a description of an event cause refer to the
event cause description associated with a specific event.

This parameter type contains one of the following event causes:
e ACD Busy

* ACD Forward

e ACD Saturated

e Activation

¢ Active Participation

e Alert Time Expired

¢ Alternate

e Auto Work

-132 -

- ecma

 Babble
* Bad Attribute

 Bad Grammar

» Bad Voice
e Bad URI

» Blocked

e Busy

e Busy Overflow

« Calendar Overflow

» Call Back

» Call Cancelled

» Call Forward

e Call Forward - Busy

» Call Forward - Immediate
» Call Forward - No Answer
» Call Not Answered

» Call Pickup

e Camp On

e Camp On Trunks

» Capacity Overflow

+ Character Count Reached
» Conference

+ Consultation

+ Destination Detected

» Destination Not Obtainable
» Destination Out of Order
» Distributed

» Distribution Delay

* Do Not Disturb

» DTMF Digit Detected

* Duplicate DTMF

» Duration Exceeded

» Early Stop

* Empty Queue

» End of Message Detected
» Entering Distribution

* Forced Pause

-133 -

acma

¢ Forced Transition

¢ Incompatible Destination
e inter-digit Timeout

e Intrude

¢ Invalid Account Code

¢ Invalid Connection

¢ Invalid Connection State
¢ Invalid Number Format
e Join Call

« Key Operation

¢ Key Operation In Use

¢ Lockout

¢ Maintenance

e Make Call

¢ Make Connection

¢ Make Predictive Call

¢ Max Timeout

e Message Duration Exceeded
* Message Size Exceeded
e Multiple Alerting

¢ Multiple Queuing

¢ Network Congestion

¢ Network Dialling

¢ Network Not Obtainable
¢ Network Out of Order

« Network Signal

¢ New Call

¢ Next Message

¢ No Audio Saved

* No Available Agents

¢ No Queue

¢ Normal

¢ Normal Clearing

¢ No Rule

¢ No Speech Detected

* Not Available Bearer Service

* Not Supported Bearer Service

- 134 -

»ecma

* Number Changed
* Number Unallocated

¢ Out Of Grammar

* Overflow
¢ Qverride
« Park

» Path Replacement

* Queue Cleared

¢ Queue Time Overflow

* Recall

* Recall - Busy

* Recall - Forwarded

» Recall - No Answer

* Recall - Resources Not Available
* Redirected

* Remains in Queue

* Reorder Tone

* Reserved

* Resources Not Available

e Selected Trunk Busy

» Silent Participation

* Single Step Conference

» Single Step Transfer

» Speech Detected

* Suspend

* Switching Function Terminated
» Termination Character Received
e Timeout

e Transfer

* Trunks Busy

* Unauthorized Bearer Service

* Unknown Overflow

Functional Requirements

1. Event causes are only present in events that result from the feature/situation associated with the
meaning of the cause. Once that feature or situation ceases to be active, then the event cause is no
longer present in the events.

-135-

acma

12.2.16 LanguagePreferences

The LanguagePreferences parameter type describes one or more preferred languages associated with
the call.

Format

The parameter type is a character string. The string consists of one or more language tags that indicate
the preferred languages associated with the call. The syntax of the language tag is specified in IETF RFC
3066. Each language tag is space separated.

Examples:
< ‘“en” indicates that English is the preferred language.

« ‘“ende nl” indicates that the preference for the following languages, in priority order: English, German,
and Dutch.

Functional Requirements

1. The language preference may become associated with a call in a number of ways. For example:
e it can be provided via the underlying call control protocol signalling.
e it can be specified on the CSTA service that creates a call (e.g. Make Call service).

e it can be associated with a call when a CSTA feature is applied to a call (e.g. Single Step
Transfer Call).

« it can be associated with an existing call via the Associate Data service.

2. The language preference can be changed (or cleared by providing a null string) during the life of the
call by any of the services that includes the parameter including the Associate Data service. The
language preference can also be changed by the underlying call control protocol specific signaling.

3. If a resulting call is being formed (due to a transfer or conference, for example) from one or more
calls with different language preferences, the language preferences for each of the old calls shall be
combined and associated with the resulting call. The ordering of the language tags for the
"combined" call is switching function specific.

12.2.17 LocalConnectionState

The LocalConnectionState parameter type describes the connection state of the device associated with
the Monitor Cross Reference ID.

This parameter type is only applicable for events generated by device-type monitors.

Format

This parameter type shall contain one of the following connection states:

e Alerting

e Connected
e Fall

e Hold

e Initiated

e Null

¢ Queued

-136 -

»ecma

Refer to 6.1.3, “Connection”, for detailed descriptions of the connection states.

12.2.18

Example

The following is a scenario that illustrates the usage of this parameter.

Consider the case of a two device call where device one has called device two, and device two is ringing.
If both devices are monitored, then the switching function generates two separate (Delivered) events to
indicate that the call has been delivered. While the subject device is identical for both Delivered events,
the localConnectioninfo parameters are different.

Both events contain the same subject device, device two in this case, since that is the device in the
call being alerted.

The connection state for device one is connected (most likely listening to ringback). This is reported
in the localConnectioninfo parameter of the Delivered event for device one.

The connection state for device two is alerting. This is reported in the localConnectioninfo parameter
of the Delivered event for device two.

LocationInfo

The CSTA Locationinfo parameter type contains a PIDF-LO (Presence Information Data Format -
Location Object) for carrying location information as defined in IETF RFC-4119 as updated by IETF RFC-
5139.

Location information in a PIDF-LO is contained in a GEOPRIV element. The GEOPRIV element consists
of the following elements:

location-info - consisting of one or more chunks - each chunk can be either in GML format or civic
address format as discussed in 6.8.1.1. Note that when two chunks are provided in a location-info
element that corresponds to the same place, this is referred to as a compound location.

usage-rules - associated with the location info (retransmissions-allowed, retention-expires, ruleset-
reference)

method - how location info was derived or discovered (e.g. GPS)

provided-by - source of the location info to provide additional information to locate service providers in
case of problems with the location info.

A GEOPRIV element can be associated with a person or a device (or a generic tuple) using the data
model in RFC-4479.

There can be multiple GEOPRIV elements in a single PIDF-LO. For example:

For a CSTA user with 2 devices, location information in a single PIFDF-LO may be in three GEOPRIV
elements: one contained in a person element, one contained in a device element (for a cell phone),
and one contained in another device element (for an office phone).

For a CSTA device such as an office phone, location information may be in a single GEOPRIV
element contained in device element. The GEOPRIV location-info element contains two chunks of
location information - one that specifies a location using Geospatial format and one that contains an
office number as a civic address type that augments the Geospatial information.

For a CSTA group-device consisting of 3 member devices, location information may be in three
GEOPRIV elements each contained in separate device elements.

Format

The data in a PIDF-LO is specified by the schemas published in RFC-4119 and RFC-4479.

-137 -

acma

12.2.19

12.2.20

Functional Requirements:

1. RFC-4119 (or its replacement RFC) shall be used to specify the usage and interpretation of the
information in this parameter type.

2. Location Information should be secured. The mechanism to secure this information (XML element
level encryption, digital signature properties, etc.) is outside the scope of CSTA.

3. In order to remove some of the ambiguity interpreting data in an PIDF-LO and to improve
interoperability there are two CSTA PIDF-LO Profile options to interpret the data in a PIDF-LO.

a. PIDF Profile Option 1 - the rules and guidelines as specified in IETF RFC-5491 shall be followed.
This includes applying the rules 1, 3, 5, and 7 as normative rules and 2, 4, 6, 8, and 9 as
informative guidelines.

b. PIDF Profile Option 2 - in order to reduce ambiguity even further, the rules and guidelines 1-9 as
specified in RFC-5491 shall be applied as normative rules.

The Start Location Tracking Service response provides a parameter that indicates which PIDF-LO
Profile option is supported by the switching function for the specific location tracking session.

LocationInfoList

The LocationinfoList parameter type provides a sequence of one or more Presence Information Data
Format - Location Objects (PIDF-LO) as defined in 12.2.18, “LocationInfo”.

This parameter type is used when multiple PIDF-LO are provided in a CSTA parameter. For example in
call control events when location information is provided for multiple devices in a call.
MediaCallCharacteristics

The MediaCallCharacteristics parameter type specifies the media (voice, digital data, etc.) characteristics
of the call.

Format

This parameter type is comprised of the following:
1. mediaClass (M) Bitmap - Specifies the media class (voice, digital data, etc.).
A CSTA call shall belong to at least one and may belong to more than one of the following classes:

« Audio - 3.1 KHz audio. Calls in this class involve devices that are used to make audio calls
excluding speech calls. This includes calls involving devices such as G3 FAX and facsimile
machines.

« Chat - A type of Data class call that involves text-based messages that are exchanged between
devices in the call using electronic media. A chat call is interactive since devices in the call can
participate at the same time (i.e. originate and receive messages during the call.) The Data class
bit must also be set for a Chat call.

e Data - This class of calls involve digital data calls (both circuit switched and packet switched).
Calls in this class include devices such as digital computer interfaces and G4 facsimile
machines.

e Email - This class of calls involve a text-based message that is sent using electronic media. This
is a non-interactive call (i.e. only one device involved with the call at one time). This is a specific
type of mediaClass associated with electronic mail systems.

« Image - Digital data calls involving imaging, or high-speed, circuit-switched data in general. This
includes calls involving devices such as digital video telephones and CODECs.

« IM (Instant Message) - This class of calls involve a text-based message that is sent using
electronic media. This is a non-interactive call (i.e. only one device is involved with the call at

-138 -

~ecna

one time). The message contents associated with these calls can usually be displayed on the
called devices. This is a specific type of Message media class associate with Instant Messaging
systems.

» Message - This class of calls involve a text-based message that is sent using electronic media.
This is a non-interactive call (i.e. only one device is involved with the call at one time). The
message contents associated with these calls can usually be displayed on the called devices.
Instant Messages (IM), Short Message Service (SMS) are examples of this mediaClass.

« MMS (Multi-media Message Service) - This class of calls involve a text-based message that is
sent using electronic media. This is a non-interactive call (i.e. only one device is involved with
the call at one time). The message contents associated with these calls can usually be displayed
on the called devices. This is a specific type of Message media class associated with Multi-
Media Message Service systems.

 SMS (Short Message Service) - This class of calls involve a text-based message that is sent
using electronic media. This is a non-interactive call (i.e. only one device is involved with the call
at one time). The message contents associated with these calls can usually be displayed on the
called devices. This is a specific type of Message media class associate with Short Message
Service systems.

* Voice - Speech calls. This class of calls involves devices such as standard telephones.
* Not Known - The media class is not known.
» Other - A class of call not belonging to one of the specified mediaClass.

2. connectionRate (O) Value - The digital data connection rate of the call. The contents of this
parameter is switching function specific (the capability exchange services may be used to obtain the
list of possible values that are supported by the switching function). A value of zero (0) indicates that
the type of media stream associated with the connection is digital data but the connection rate is
unknown.

3. bitRate (O) Enumerated - The digital data bit rate of the call. If this parameter is not present, the bit
rate of the call is a constant bit. The following is the complete set of possible values:

» Constant (Default) - A bit rate which ensures a dedicated bandwidth and a constant rate of
media stream delivery.

» \Variable - A bit rate which may variable during the life of the call.

4. delayTolerance (O) Value - The digital data delay tolerance of the call. This parameter specifies the
maximum amount of media stream delivery delay that will be toleranced for the call. If the bit rate is
constant, then this value will indicate the actual amount of media stream delivery delay for the life of
the call. Where as if the bit rate is variable, it will be the maximum delay allowed during the life of the
call. The contents of this parameter is switching function specific, use the capability exchange
services to obtain the list of possible values that are supported by the switching function. If this
parameter is not present, the delay tolerance of the call is not known.

5. switchingSubDomainCCIEType (O) Enumerated - The type of switching sub-domain private call
control information elements that are present in the switchingSubDomaininformationElements
parameter. If this parameter is not present, there are no information elements associated with the
call and the switchingSubDomaininformationElements parameter should be ignored. The following is
the complete set of possible values:

* ISDN
* ATM (B-ISDN)
* ISO-Ethernet (TDM part only)

-139 -

acma

« RSVP
« SIP
¢ Other (switching sub-domain specific)

6. switchingSubDomaininformationElements (C) Characters - These parameters contain the private
information elements that are available from the switching sub-domain (as specified by
switchingSubDomainCCIEType) which represents a specific set of information elements. The format,
meaning and behaviour of these information elements are specific to the given switching function.
This parameter is only present and mandatory when the switchingSubDomainCCIEType parameter
is present.

12.2.21 MediaServiceType

The mediaServiceType parameter type is used to indicate which media service is to be (or has been)
attached to or detached from a particular call or connection that the computing function is controlling and/
or monitoring.

Format

This parameter type shall contain one of the following values:
* cstaVoiceUnit

e dataModem

« digitalDatalsochronousleeel394

¢ digitalDatalsochronousGeoport

¢ digitalDatalsochronousleeeAtm

¢ digitalDatalsochronousleeelsdn

¢ digitalDataAPI

* ectfS100MediaServicesDefault

* ectfS100MediaServicesASI

e ivrScriptl
e ivrScript2
e ivrScript3
e ivrScript4
e ivrScripts
e ivrScripté
e ivrScript7
e ivrScript8
e ivrScript9

e ivrScriptl0

¢ liveSoundCaptureAnalog

¢ liveSoundTransmitAnalog

¢ liveSoundCaptureleeel394
* liveSoundTransmitleeel394

¢ liveSoundCaptureTransmitGeoport

- 140 -

»ecma

12.2.22

12.2.23

* liveSoundCaptureTransmitAtm
* liveSoundCaptureTransmitiISDN
» soundCaptureTransmitADPCM
* soundCaptureTransmitApi

* ush

« sfSpecificl

» sfSpecific2

» sfSpecific3

« sfSpecific4

» sfSpecifics

» sfSpecificé

» sfSpecific7

» sfSpecific8

» sfSpecific9

» sfSpecificl0

Refer to Table 6-10 on page 75 for a description of these service types.
Messagelnfo

The Messagelnfo parameter type specifies the message information associated with a call. The message
information could consist of text to be displayed on a device (for an Instant Message) or the body and
attachment parts associated with Email.

Format

The parameter type consists of a sequence of parts. Each part consists of the following:

« contentTypeAndSubtype (O) Characters. A character string indicating the IANA assigned media
content type and subtype. If this component is omitted the default is “text/plain”.

» contents (M) Characters. A sequence of characters representing the contents of the message part. A
null-formatted contents parameter (the parameter is provided but is empty) in a CSTA event indicates
that there is contents associated with this part but the contents is not being provided in this message.
The CSTA Snapshot Call service can be used to obtain the specific message contents when it is
needed.

« contentsLength (O) Value. The length of the contents associated with this part (number of bytes).

MonitorFilter

The MonitorFilter parameter type specifies the list of events that are filtered (not sent) for a specific
monitor.

Format

The parameter type consists of a list of bitmaps, each entry corresponding to a category of events, each
bit in each category corresponding to a CSTA event. If the bit is TRUE, then the event corresponding to
the bit is filtered (not sent) for the monitor. The list of bitmaps include:

« call control events - bitmap of the call control events as specified in Table 17-150 on page 340.

« call associated events - bitmap of the call associated events as specified in Table 18-26 on page 427.

- 141 -

acma

media attachment events - bit map of the media attachment events as specified in Table 19-14 on
page 448.

physical device events - bitmap of the physical device events as specified in Table 21-59 on
page 508.

logical device events - bitmap of the logical device events as specified in Table 22-56 on page 558.
maintenance events - bit map of the maintenance events as specified in Table 23-1 on page 577.
voice events - bit map of the voice events as specified in Table 26-58 on page 652.

vendor specific (private) events - bit map of the vendor specific events as specified in Table 29-12 on
page 716.

12.2.24 ServicesPermitted
The ServicesPermitted parameter type specifies the set of services that the switching function permits to
be applied to a connection.

The servicesPermitted parameter (when provided in a call event) is similar to the localConnectioninfo
parameter in that it applies to the services permitted for the connection at the monitored device.

This parameter type is only applicable for events generated by device-type monitors.

Format

This parameter type is a list of bitmaps where each bit represents a service that can be applied to a
connection. When a bit is set, the corresponding service is permitted. The following is the list of bitmaps
(multiple bits may be set in this parameter):

L]

L]

L]

L]

L]

call control services - the call control services as specified in Table 17-1 on page 240.

call associated services - the call associated services as specified in Table 18-1 on page 411.
media attachment services - the media attachment services as specified in Table 19-1 on page 440.
routeing services - the routeing services as specified in Table 20-7 on page 458.

voice services - the voice services as specified in Table 26-1 on page 615.

Functional Requirements

1.
2.

This parameter indicates which of a subset of CSTA services are permitted.

When the servicesPermitted parameter is provided in an event, it applies to the connection at the
monitored device. This may or may not be the same as the subject device.

If there are multiple connections at a device, the information reported in the servicesPermitted
parameter may not accurately reflect all possible service restrictions and interactions between
multiple connections at a device.

There may be situations in a switching function that cause a service to fail after being presented as
permitted in the servicesPermitted parameter. This may be due to dynamic system and/or resource
conditions that may cause service availability restrictions. The switching function shall provide the
appropriate error code in the negative acknowledgement to the failed service request.

12.2.25 SimpleCallState

The SimpleCallState parameter type indicates the main call states in simplified encoding. The semantics
are identical to the sequence of connection states but they are represented by an item from the list below.

Format

This parameter type may contain one of the following:

callNull

- 142 -

»ecma

callPending
callOriginated
callDelivered
callDeliveredHeld
callReceived
callEstablished
callEstablishedHeld
callReceivedOnHold
callEstablishedOnHold
callQueued
callQueuedHeld
callFailed
callFailedHeld

callBlocked

12.2.26 SubjectOfCall
The SubjectOfCall parameter type indicates the subject or intent of the call.

12.2.27

For example, this could represent the contents of an Email subject line (for an Email call) or could
represent the reason for a voice call, for example.

Format

This parameter type is a character string. The maximum length supported by the switching function is
provided by the capability exchange services.
SystemStatus

The SystemStatus parameter type indicates the reason for the System Status service request.

Format

The complete set of possible values are:

Disabled - Existing Monitor Requests have been disabled. Other requests and acknowledgements
also may be disabled, but negative acknowledgements should always be provided.

Partially Disabled - Some of the objects in the system can not be reached. Existing monitors on these
objects will not provide events and computer requests targeting these objects will be rejected. This
cause indicates to the receiving function that a degradation of service level may occur but not
complete system disability. Automatic or manual actions may be taken to remedy the parts disabled.

Enabled - Requests and acknowledgements have been enabled. This usually occurs after a
disruption or restart. This status cause is always sent after an Initializing cause has been sent and
may be sent under other conditions. This status indicates that there are no outstanding monitors
(existing monitors and their associated monitor cross reference identifiers are no longer valid).

Initializing - The system is initializing or restarting. This status indicates that a system is temporarily
unable to respond to any requests. If provided, this status message is followed by an Enabled status
message to indicate that the initialization process has completed.

Messages Lost - Requests and/or acknowledgements, including event reports, may have been lost.

- 143 -

»ecind

12.2.28

12.2.29

* Normal - May be sent at any time and indicates that the status is normal. This status has no effect on
other Services.

¢ Overload Imminent - The receiver is requested to take initiative to shed load.

¢ Overload Reached - The requester may take initiative to shed load. This cause may be followed by
Stop Monitor requests sent to the client and by rejections to additional service requests.

¢ Overload Relieved - The overload condition has passed.

Timelnfo

The Timelnfo parameter type provides the calendar date and the time of day. There are three possible
value representations: as local time, coordinated universal time, or as local time with a time differential
factor. All representations use a four character representation of the year.

Format

This parameter type is based upon the GeneralizedTime as defined in ISO/IEC 8824.

UserData

The UserData parameter type contains computing sub-domain to computing sub-domain data. Note that
the capabilities exchange services return the maximum length of the user data for a switching function.

User Data is described further in 6.1.2.4, “User Data”, on page 43. Also, refer to 12.2.10,
“CorrelatorData”, on page 119.

Annex B defines one possible mechanism for delivering user data through an external ISDN network.

Format

This parameter type is a sequence of characters. The maximum length supported by the switching
function is provided via the capabilities exchange services.

Functional Requirements

1. The ability to send User Data, the timing of when user data can be sent, and the size of user data, is
dependent upon the switching function’s capabilities and the underlying network (such as ISDN).

2. Unlike correlator data, User Data is not attached to a call for the life of the call. User Data that has
been associated with a primary or secondary call does not get retained with a resulting conference
or transferred call.

3. The switching function reflects the delivery of User Data in the call control events that result from the
switching function or network carrying out the call control activity with which the User Data was
associated. When the switching function receives user data independent of call activity (i.e., Send
User Information service), the User Data is provided in the Call Information event.

4. User data addresses a specific user in a call (e.g. the initially called device). The delivery and
propagation of the user data to other devices inside the switching sub-domain in regards to features
that apply to the call (e.g. forwarding, do not disturb) is switching function dependent.

5. When this data is being attached to a call through a service request, its association shall be
completed prior to any state transitions resulting from the request. Thus any state transition events
which contain this parameter shall contain the information passed on the request.

6. If a computing function issues a Snapshot Call service after a service request has been issued with
this information, but prior to the switching function making any state transitions, it is switching
function specific as to what will be returned in the positive acknowledgement with regards to this
parameter.

- 144 -

oecha

12.3 Identifier Parameter Types

Identifier parameter types specific to these specifications are summarized in the following table.

Table 12-2 Identifier Parameter Types Summary

Defined Parameter Type Description Pg.
12.3.1 AgentID Identifies an ACD agent. 146
12.3.2 Describes the switching function’s internal representation of the originally called 146
AssociatedCalledDevicelD device in a call.

12.3.3 Describes the switching function’s internal representation of the calling device in 146

AssociatedCallingDevicelD the call when the calling device is outside the switching sub-domain (i.e., trunk
number).

12.3.4 AuditoryApparatusID Indicates the auditory apparatus containing the speaker whose volume has 147
changed.

12.3.5 ButtonID Specifies the button identifier on a device. 147

12.3.6 CalledDevicelD Specifies the device to be called via a service. This parameter describes the 147
originally called device associated with a call.

12.3.7 CallingDevicelD Describes the calling device associated with the call. 148

12.3.8 CDRCrossRefID Specifies the CDR services cross reference identifier. 148

12.3.9 ConnectionID Describes a device’s connection in a given call. 148

12.3.10 DColICrossRefID Used to identify a specific data collection. 150

12.3.11 DevicelD Identifies or represents a device in the switching function. 150

12.3.12 DisplaylD Specifies the display identifier on a device. 151

12.3.13 EscapeRegisterID Used to identify an escape services registration. 151

12.3.14 HookswitchID Used to specify the hookswitch to query at a specified device. 151

12.3.15 I0CrossRefID Specifies the 1/0 services cross reference identifier. 151

12.3.16 IORegisterReqID Used to identify an 1/O services registration. 151

12.3.17 LampID Specifies the lamp identifier. 152

12.3.18 Identifies a particular media access service instance (e.g., specific media access 152

MediaServicelnstancelD server or subsystem)

12.3.19 MediaStreamID Specifies a media stream identifier that can be used to access an attached media 152
service.

12.3.20 MessagelD Specifies a particular Voice Unit message. 152

12.3.21 MonitorCrossReflD Specifies an identifier that is used to correlate an event to an established monitor. 152

12.3.22 Specifies the called device information provided by the network for external 152

NetworkCalledDevicelD incoming calls.

12.3.23 Specifies the calling device information provided by the network for external 153

NetworkCallingDevicelD incoming calls.

12.3.24 RedirectionDevicelD Describes the last device known by the switching function from which the current 154
call was routed.

12.3.25 ResourcelD Specifies a particular voice resource. 154

12.3.26 RingerlD Specifies the ringer identifier associated with a physical device 154

12.3.27 RouteingCrossRefID References the routeing dialogues initiated by the switching function within a 154
routeing registration.

12.3.28 RouteRegisterReqID Identifies a routeing registration for which the computing function (acting as a 155
routeing server) will receive routeing requests.

12.3.29 ServiceCrossReflD Specifies an identifier that is used to correlate one service request to another 155
service request.

12.3.30 SubjectDevicelD Describes the device where a telephony event occurred or was invoked. 155

- 145 -

acma

1231

12.3.2

12.3.3

Table 12-2 Identifier Parameter Types Summary (continued)

Defined Parameter Type Description Pg.
12.3.31 SysStatRegister|D Used to identify system status registration. 156
AgentID

The AgentID parameter type identifies an ACD agent.

Format

This parameter type is a character string. The maximum length supported by the switching function is
provided via the capabilities exchange services.
AssociatedCalledDevicelD

For outgoing external calls, the AssociatedCalledDevicelD parameter type specifies the Network Interface
Device (e.g., trunk, CO Line) within the switching sub-domain that is associated with the called device.
This parameter in mandatory on all events dealing with external outgoing calls.

For incoming external calls, this parameter specifies a device within the switching sub-domain that is
associated with the originally called device (such as a switching function internal representation of DNIS,
for example). This parameter is optional on all events dealing with incoming external calls.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device |dentifier Formats”,
on page 102 for more information):

¢ acharacter string when using the Diallable Digits and the Switching Function Representation formats.
¢ an integer value when using the Device Number format.

¢ avalue of “Not Known".

Functional Requirements

1. A device identifier of this type will only be present when the switching sub-domain is using a network
interface device for an external call; that is, the call is an External Outgoing or External Incoming
call.

2. A device identifier of this type is not used to provide DNIS (Dialed Number Identification Service) or
DID (Direct Inward Dialing) digit information or a string of digits that represents the called device.
(This information is provided in the corresponding CalledDevicelD parameter.)

3. A device identifier of this type is set to “Not Known” when the switching function does not know the
Network Interface Device associated with the called device.

4. A device identifier of this type will never contain the value “Not Required” or “Not Specified”.

AssociatedCallingDevicelD

The AssociatedCallingDevicelD parameter type specifies the Network Interface Device (e.g., trunk, CO
line) within the switching sub-domain that is associated with the calling device in the call if the call is an
external incoming call. This parameter shall be included on all external incoming calls.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):
¢ a character string when using the Diallable Digits and the Switching Function Representation formats.

¢ aninteger value when using the Device Number format.

- 146 -

»ecma

12.3.4

12.3.5

12.3.6

a value of “Not Known”.

Functional Requirements

1.

A device identifier of this type will only be present when the switching function is using a network
interface device for an inbound call; that is, the call is an external incoming call.

A device identifier of this type is not used to provide ANI (Automatic Number Identification), CLID
(CallerID) or SID (Station Identification) digit information or a string of digits that represents the
calling device. (This information is provided in the corresponding CallingDevicelD parameter.)

A device identifier of this type will never contain the value “Not Required” or “Not Specified”.

If a call is created that contains multiple AssociatedCallingDevicelDs (i.e., a conference call calling
back to a device), the AssociatedCallingDevicelD status shall be “Not Known”.

AuditoryApparatusID

The AuditoryApparatusiD parameter type specifies a particular auditory apparatus associated with the
device.

Format

This parameter type is a sequence of characters.
ButtonlID

The ButtonID parameter type specifies the button identifier on a device.

Format

This parameter type is a sequence of characters.

Table 12-3 Reserved Button ID Assighments

Button ID Button Label
0-9 Keypad Digits: “0” through “9”
10 Keypad Symbol: “*”
11 Keypad Symbol: “#"

CalledDevicelD
A device identifier of the CalledDevicelD type describes the originally called device associated with a call.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

a character string when using the Diallable Digits and the Switching Function Representation formats.
an integer value when using the Device Number format.

a value of “Not Known”.

Functional Requirements

1.

A device identifier of this type contains the originally called device in the call. For External Incoming
calls, a device identifier of this type will contain DNIS (Dialed Number Identification Service) or DID
(Direct Inward Dialing).

This parameter will never contain the value “Not Required” or “Not Specified”.

- 147 -

acma

12.3.7

12.3.8

12.3.9

3. When two calls are being joined through a conference or transfer, the CalledDevicelD information for
the resulting call shall be taken from the secondary call.

4. This parameter type is different from the NetworkCalledDevicelD parameter type in that the
CalledDevicelD information may change if the call is transferred and/or conferenced whereby the
NetworkCalledDevicelD information does not change as long as the NID associated with the original
calling device remains in the call. Also, the NetworkCalledDevicelD is limited to information passed
over a Network Interface Device.

CallingDevicelD

The CallingDevicelD parameter type specifies the calling device associated with the call.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

e acharacter string when using the Diallable Digits and the Switching Function Representation formats.
¢ aninteger value when using the Device Number format.

» avalue of “Not Known”.

e avalue of “Restricted” - provided when the callingDevicelD cannot be provided due to regulatory and/
or privacy reasons.

Functional Requirements

1. A device identifier of this type contains the calling device in the call. For External Incoming calls, a
device identifier of this type will contain ANI (Automatic Number Identification), CLID (CallerID) or
SID (Station Identification) digit information or a string of digits that represents the calling device.

2. This parameter will never contain the value “Not Required” or “Not Specified”.

3. If more than one device is the calling device in a call (i.e., a conference call calling back to a device),
the CallingDevicelD status will be “Not Known”.

4. This parameter type is different from the NetworkCallingDevicelD parameter type in that the
CallingDevicelD information may change if the call is transferred and/or conferenced whereby the
NetworkCallingDevicelD information does not change as long as the NID associated with the original
calling device remains in the call. Also, the NetworkCallingDevicelD is limited to information passed
over a Network Interface Device.

CDRCrossRefID

The CDRCrossRefID is used to correlate subsequent CDR services to the Start Call Detail Records
Transmission service.

Format

This parameter type is a sequence of characters.
ConnectionID

The ConnectionID parameter type describes a device’s connection in a given call. (Connection Identifiers
are also discussed in 6.1.3, “Connection”, on page 49.)

- 148 -

»ecma

Format

The ConnectionID is always comprised of the following parameters (except in special cases which are
described below):

1.

calllD (M) Character String - An identifier used by the switching function to represent a valid call. The
maximum length supported by the switching function is provided via the capabilities exchange
services. These IDs are created by the switching function and are globally unique among all calls
within the switching sub-domain.

devicelD (M) DevicelD - An identifier which is used to represent a device in the switching sub-
domain. This identifier can be either one of the two following values:

« Static - This type of identifier is defined in 6.1.1, “Device”, on page 8.

« Dynamic - This type of identifier is one that is created by the switching function for a device
when it enters into a call and shall remain constant for the life of the device’s participation in the
call (i.e., the creation of a connection identifier for the device). As soon as the device leaves the
call, the identifier becomes invalid. The use of a dynamic identifier by a switching function is
determined when the switching function does not have a static identifier for the device or the
identifier can not uniquely identify the device in a call. This type of identifier is sequence of
characters. It is never a dialable number and can never be used outside the context of the
connection identifier. This type of identifier is not directly related to a device element but is
strictly used to make the connection identifier unique. Refer to 6.1.6, “Management of
Dynamically-Assigned Identifiers”, on page 56, for more information.

Functional Requirements

1.

The computing function shall not fabricate its own Connection IDs. This will lead to unpredictable
results.

The Connection IDs in events and service acknowledgements are always allocated by the switching
function.

Computing functions can extract Device IDs from Connection IDs and use them on services that
have Device ID parameters only if the Device ID extracted is a static Device ID that the switching
function accepts. Otherwise, the Device ID cannot be used.

Computing functions shall extract Call IDs from Connection IDs, provided by the switching function,
to correlate event reports associated with devices that are connected together in a call.

The computing function will always receive an event to indicate the termination of a Connection ID if
the appropriate monitor is started. Refer to the individual services and events to better understand
the meaning of individual events with respect to connection states.

If the computing function issues a service with a Connection ID that cannot be controlled by the
switching function, the service will be rejected with a negative acknowledgement.

Connection IDs used as parameters can only have three formats:

a. A complete Connection ID (i.e., call ID and device ID). This extracted from either events received
by the computing function or positive acknowledgements received as a result of services issued.

When supplied as a parameter, the Connection ID will be validated by the switching function with
respect to the service being issued. If this Connection ID is not valid, the service request will be
rejected with a negative acknowledgement.

b. A DevicelD only Connection ID. If a service has more than one Connection ID parameter, the
switching function supports this type of Connection ID, and the computing function wants to use
this type of Connection ID, then all Connection ID parameters in the service shall be of this type.

- 149 -

acma

If this type of Connection ID is used as the Connection ID parameter for a service, then rules
documented in the services sections will determine whether it is accepted or not by the switching
function. If this type of Connection ID is not accepted, then the service will be rejected with a
negative acknowledgement.

c. A Call ID only Connection ID. In events, this format can only be used for the Call Cleared and
Failed event. If this format is used for any service other than Clear Call, Monitor Start, or Snapshot
Call, it will be rejected with a negative acknowledgement.

8. If a call changes its Call ID when a Conference or Transfer occurs, Connection IDs shall be provided
to link the old Call IDs to the new Call IDs. When this occurs, the event will contain a list of originally
known Connection IDs of devices that are still in the call along with the new replacement Connection
IDs. When the new Connection IDs are created in such cases, new dynamic Device IDs may also be
used to create the Connection IDs.

9. Connection IDs that come from the switching function (events and positive acknowledgements to
services) will always contain both the Call ID and Device ID portions (see item 7a above) except for
the Call Cleared and Failed events that may also contain only a valid call ID in the connection ID
(see item 7c above).

10. The computing function should never assume the reuse of calllDs, although some switching
functions may reuse one or the other.

12.3.10 DCollCrossRefID

The DCollCrossRefID parameter type identifies a specific data collection that was initiated via the Start
Data Collection service. The DCollCrossRefID is valid only for the duration of the data collection.

Format

This parameter type is a sequence of characters.
12.3.11 DevicelD
The DevicelD parameter type identifies or represents a device.

Format

This DevicelD parameter type consists of two components:

< Device Identifier - A mandatory component that specifies the device identifier as described in Clause
10, “CSTA Device ldentifier Formats”, on page 102. This may include one of the following:

e a character string when using the Diallable Digits and the Switching Function Representation
formats.

¢ an integer value when using the Device Number format.

* Media Call Characteristics - An optional component that specifies the media (voice, digital data, etc.)
characteristics of the device. This may be used for selecting a device based upon a particular media
capability, for example. Refer to 12.2.15, “MediaCallCharacteristics”, on page 113 for the complete
set of possible values.

The maximum length of the Device Identifier component that is supported by the switching function is
provided via the capabilities exchange services.

Functional Requirements

1. For more details on DevicelD parameter types, refer to 6.1.1, “Device”.

2. For information on DevicelD in Connection Identifiers, refer to 12.3.9, “ConnectionID”, on page 148
and 6.1.3, “Connection”, on page 49.

-150 -

»ecma

12.3.12

12.3.13

12.3.14

12.3.15

12.3.16

DisplayID
The DisplaylD parameter type specifies a particular display associated with the device.

Format

This parameter type is a sequence of characters.
EscapeRegisterID

The EscapeRegisterID parameter type is used to identify an escape service registration.

Format

This parameter type is a sequence of characters.
HookswitchlID

The HookswitchID parameter type is used to specify the hookswitch to query at a specified device. If not
provided, the default is to get the status of each hookswitch at the specified device.

Format

This parameter type is a sequence of characters.

IOCrossRefID

The 10CrossRefID parameter type identifies each I/O data path. The computing function receives a
IOCrossRefID in each I/O service request. The Start Data Path service initiates an I/O data path. The
IOCrossRefID is only valid for the duration of the data path.

The IOCrossRefID is unique within the 1/O registration (IORegisterReqlID). Some switching functions may
provide the additional benefit of a unique 10CrossRefID across the entire switching sub-domain. This is
also the case if I/O registration is not supported by the switching function.

The parameter type also specifies if the switching function or the computing function started the data
path.

Format

This parameter type shall be one of the following:

» switchProvided (sequence of characters) - indicates that the switching function has started the data
path.

« computerProvided (sequence of characters) - indicates that the computing function has started the
data path.

IORegisterReqlD

The I0RegisterReqID parameter type identifies a I/O registration for which the computing function (acting
as an I/O server) will receive I/O service requests. This identifier may be associated with a particular
device within the switching sub-domain or it may indicate that the computing sub-domain is the 1/0O server
for all devices within the switching sub-domain. When the computing function uses the I/0O Register
service to register for /O services, it receives a IORegisterReqID in the positive acknowledgement sent
by the switching function. The IORegisterReqID is only valid until the I/O registration is ended by the
computing function or switching function.

IORegisterReqlID parameters are unique across a given CSTA service boundary.

Format

This parameter type is sequence of characters.

-151 -

acma

12.3.17

12.3.18

12.3.19

12.3.20

12.3.21

12.3.22

LamplID
The LamplD parameter type specifies the lamp identifier.

Format

This parameter type is a sequence of characters.
MediaServicelnstancelD

The MediaServicelnstancelD parameter type identifies a particular media access service instance (e.g.,
specific media access server or subsystem).

Format

This parameter type is a sequence of characters.
MediaStreamID

The MediaStreamID parameter type specifies a media stream identifier that can be used to access an
attached media service. The usage of the mediaStreamID is defined by a particular media service.

Format

This parameter type is a sequence of characters. The maximum length supported by the switching
function is provided via the capabilities exchange services.
MessagelD

The MessagelD parameter type specifies a particular Voice Unit message.

Format

This parameter type is character string. The maximum length supported by the switching function is
provided via the capabilities exchange services.

MonitorCrossRefID

The MonitorCrossReflD parameter type specifies an identifier that is used to correlate an event to an
established monitor. When a monitor is established using the Monitor Start service, a
monitorCrossReferencelD parameter is returned as part of the positive acknowledgement message. This
monitorCrossReferencelD parameter is included in every event for that specific monitor.

Format

This parameter type is a sequence of characters. The maximum length supported by the switching
function is provided via the capabilities exchange services.

Functional Requirements

1. This parameter is allocated by the switching function.

2. The switching function is responsible for providing uniqgue monitorCrossReferencelD parameters
over a specific service boundary.

NetworkCalledDevicelD

For external incoming calls, this parameter specifies the called device information that was provided by
the Network over a Network Interface Device. For example, this may contain DNIS (Dialed Number
Identification Service) or DID (Direct Inward Dialing) digit information or a string of digits that represents
the called device.

This information is established when the call is first created and stays with the call as long as the Network
Interface Device (NID) associated with the original calling device remains in the call, even if the call is
transferred from the original called device, for example.

-152 -

»ecma

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

a character string when using the Diallable Digits and the Switching Function Representation formats.
an integer value when using the Device Number format.

a value of “Not Known”.

Functional Requirements

1.
2.

This parameter will never contain the value “Not Required” or “Not Specified”.

This parameter type is different from the CalledDevicelD parameter type in that the CalledDevicelD
information may change if the «call is transferred and/or conferenced whereby the
NetworkCalledDevicelD information does not change as long as the NID associated with the original
calling device remains in the call. Also, the NetworkCalledDevicelD is limited to information passed
over a Network Interface Device.

12.3.23 NetworkCallingDevicelD
For external incoming calls, this parameter specifies the calling device information that was provided by
the Network over a Network Interface Device. For example, this may contain ANI (Automatic Number
Identification), CLID (CallerID) or SID (Station Identification) digit information or a string of digits that
represents the calling device.

This information is established when the call is first created and stays with the call as long as the Network
Interface Device (NID) associated with the original calling device remains in the call, even if the call is
transferred from the original called device, for example.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

a character string when using the Diallable Digits and the Switching Function Representation formats.
an integer value when using the Device Number format.
a value of “Not Known”.

a value of “Restricted” - provided when the callingDevicelD cannot be provided due to regulatory and/
or privacy reasons.

Functional Requirements

This parameter will never contain the value “Not Required” or “Not Specified”.

This parameter type is different from the CallingDevicelD parameter type in that the CallingDevicelD
information may change if the «call is transferred and/or conferenced whereby the
NetworkCallingDevicelD information does not change as long as the NID associated with the original
calling device remains in the call. Also, the NetworkCallingDevicelD is limited to information passed
over a Network Interface Device.

12.3.24 RedirectionDevicelD

The RedirectionDevicelD parameter type describes the last device known by the switching function from
which the current call was routed. “Routed” includes forwarded from, diverted from, or redirected from.

- 153 -

acma

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

a character string when using the Diallable Digits and the Switching Function Representation formats.
an integer value when using the Device Number format.
“Provided” - indicates that the DevicelD of the last redirection device is provided.

“Not Known” - indicates that the call has been redirected but the switching function cannot provide the
DevicelD.

“Not Required” - indicates that the current call has never been redirected during the existence of the
call.

“Not Specified” - indicates that the switching function cannot determine whether or not the call has
ever been redirected.

“Restricted” - provided when the device cannot be provided due to regulatory and/or privacy reasons.

Functional Requirements

1. The information in a device identifier of this type will stay with the call until the call is established. If

the call is routed multiple time before it is established, then the information in this parameter will be
updated to the last known device from which the call was routed. If the call was redirected from a
device, but the device identifier is unknown, “Not Known” shall be used. Depending on the
capabilities of the switching function, the last known device for the call might be reflected by only one
device identifier and in actuality the call might have been routed several times before arriving at the
final destination.

Note that in the case of Immediate Forwarding, where forwarding is triggered before the call is
delivered to a device, the lastRedirectionDevice in the event associated with the delivery of the call
to a new device (after it was immediately forwarded) shall contain “Not Known”. Refer to 6.7.1,
“Forwarding”, on page 69 for more information.

12.3.25 ResourcelD
The ResourcelD parameter type specifies a particular Voice device resource.

12.3.26

12.3.27

Format

This parameter type is character string.
RingerID
Specifies the ringer identifier associated with a physical element.

A device can be associated with one or more ringers.

Format

This parameter type is sequence of characters.

RouteingCrossRefID

The routeingCrossReflID parameter type identifies each routeing dialogue. The computing function
receives a routeingCrossReflD in each Route Request service request. The Route Request service
initiates a routeing dialogue. The routeingCrossRefID is only valid for the duration of the routeing dialogue
pertaining to a specific call.

The routeingCrossRefID is unique within the routeing registration (routeRegisterReqID). Some switching
functions may provide the additional benefit of a unique routeing cross reference identifier across the

- 154 -

»ecma

12.3.28

12.3.29

12.3.30

entire switching sub-domain. This is also the case if routeing registration is not supported by the switching
function.

Format

This parameter type is a sequence of characters.
RouteRegisterReqID

The RouteRegisterReqlD parameter type identifies a routeing registration for which the computing
function (acting as a routeing server) will receive routeing requests. This identifier may be associated with
a particular routeing device within the switching sub-domain or it may indicate that the computing sub-
domain is the routeing server for all routeing devices within the switching sub-domain. When the
computing function uses the Route Register service to register for routeing services, it receives a
routeRegisterReqlD in the positive acknowledgement sent by the switching function. The
routeRegisterReqID is only valid until the routeing registration is ended by the computing function or
switching function.

routeRegisterReqID parameters are unigue across a given CSTA service boundary.

Format

This parameter type is a sequence of characters.
ServiceCrossRefID

The ServiceCrossReflID parameter type specifies an identifier that is used to correlate one service
request to another service request.

For example, a service may be specified to request information from a switching function using an
asynchronous mechanism. In this case there would be a service request from the computing function
requesting information. The switching function would return a ServiceCrossReflID in the positive
acknowledgement to this request. The switching function would subsequently send messages in the form
of Service Requests to the computing function that would contain the same ServiceCrossRefID that could
be used to correlate the service request with the original service request.

Format

This parameter type is sequence of characters.

Functional Requirements

1. This parameter is allocated by the switching function.

2. The switching function is responsible for providing unique ServiceCrossRefIDs over a specific CSTA
service boundary.

SubjectDevicelD

The SubjectDevicelD parameter type represents a device which is the focus of the action associated with
the event being reported.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”,
on page 102 for more information):

» a character string when using the Diallable Digits and the Switching Function Representation formats.
* an integer value when using the Device Number format.

* avalue of “Not Known”.

- 155 -

oecind

12.3.31 SysStatRegisterID
The SysStatRegisterID parameter type is used to identify system status registration.

Format and Status

This parameter type is a sequence of characters.

- 156 -

»ecma

13 Capability Exchange Services

This clause describes the Capability Exchange Services.

13.1 Services

Table 13-1 Capability Exchange Services Summary

devices that can be controlled and/or observed).

Capability Exchange Description Pg.
Service

13.1.1 Get CSTA Features Obtains the list of supported CSTA services and events. 158

13.1.2 Get Logical Device Information Obtains the current set of logical device information for a given device 160
identifier.

13.1.3 Get Physical Device Information Obtains the current set of physical device information for a given device 169
identifier.

13.1.4 Get Switching Function Obtains the current set of capabilities for the entire switching function. 173

Capabilities

13.1.5 Get Switching Function Devices Obtains the devices in the application working domain (i.e. devices that 189
can be controlled and/or observed).

13.1.6 Switching Function Devices Provides the actual list of devices in the application working domain (i.e. 191

- 157 -

secma

13.1.1 Get CSTA Features C —»S
The Get CSTA Features service obtains the list of CSTA services and events supported by the switching
function.

13.1.1.1 Service Request

Table 13-2 Get CSTA Features—Service Request

Parameter Name Type M/ Description
o/C
security CSTASecurityData O Specifies timestamp information, message sequence

number, and security information.

privateData CSTAPrivateData o Specifies non-standardized information.

13.1.1.2 Service Response

This service follows the atomic acknowledgement model for this request.
13.1.1.2.1 Positive Acknowledgement

Table 13-3 Get CSTA Features—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
supportedServices Bitmap M Specifies the list of CSTA services supported by the

switching function. Each entry in the lists represents a
supported service.

Services are organized into the following categories:
« capExchangeServList (O) CapExchangeServList
« systemStatServList (O) SystemStatServList
* monitoringServList (O) monitoringServList
¢ snapshotServList (O) snapshotServList
« callControlServList (O) CallControlServList
« callAssociatedServList (O) CallAssociatedServList
* mediaServList (O) MediaServList
« routeingServList (O) routeingServList
« physDevServList (O) physDevServList
« logicalServList (O) LogicalServList
¢ ioServicesServList (O) I0ServicesServList
« dataCollectionServList (O) DataCollectionServList
¢ voiceServList (O) VoiceServList
« cDRServList (O) CDRServList
« vendorSpecificServList (O) VendorSpecificServList
« locServicesServList (O) LocServicesServList

If a service’s bitmap entry is not included in the list, then
the service is not supported by any device in the switching
function.

- 158 -

~ecna

Table 13-3 Get CSTA Features—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

supportedEvents

Bitmap

M

Specifies the list of CSTA events supported by the
switching function. Each entry in the lists represents a
supported event.

Events are organized into the following categories:
 callControlEvtsList (O) CallControlEvtsList
+ callAssociatedEvtsList (O) CallAssociatedEvtsList
* mediaEvtsList (O) MediaEvtsList
» physDevEvtsList (O) physDevEvtsList
* logicalEvtsList (O) LogicalEvtsList
» deviceMaintEvtsList (O) DeviceMaintEvtsList
» voiceEvtsList (O) VoiceEvtsList
« vendorSpecificEvtsList (O) VendorSpecificEvtsList

If an event’s bitmap entry is not included in the list, then the
event is not supported by any device in the switching
function.

security

CSTASecurityDat
a

Specifies timestamp information, message sequence
number, and security information.

privateData

CSTAPrivateData

Specifies non-standardized information.

13.1.1.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.14, “ErrorValue”, on page 121.

13.1.1.3 Operational Model

13.1.1.3.1 Connection State Transitions

There are no connection state changes as the result of this service.
13.1.1.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.1.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.

13.1.1.3.4 Functional Requirements

1. The services provided in the positive response reflect the list of services supported by some or all of
the devices in the switching function. Some services may not be supported for a particular device in
the switching function. An application can determine if a service is supported by a particular device
by one of the following mechanisms:

a. Use the Get Logical Device Information service or the Get Physical Device Information service to
determine the CSTA services supported by a specific device.

b. Use the servicesPermitted parameter (12.2.24, “ServicesPermitted”, on page 142) to determine
the services that can be applied to a connection.

2. The events provided in the positive response reflect the list of events supported by some or all of the
devices in the switching function for all of the possible types of monitors. Some events may not be
supported for a particular device in the switching function or when a specific monitor type is used. An
application can determine if an event is supported by a particular device by:

a. Use the Get Logical Device Information service or the Get Physical Device Information service to
determine the CSTA events supported by a specific device for a specific type of monitor.

- 159 -

oecind

13.1.2 Get Logical Device Information C —»S

The Get Logical Device Information service is used to obtain the current set of characteristics/capabilities
associated with the logical element of a given device.
13.1.2.1 Service Request

Table 13-4 Get Logical Device Information—Service Request

Parameter Name Type M/ Description
o/C
device DevicelD M Specifies the device being queried.
security CSTASecurityData O Specifies timestamp information, message sequence

number, and security information.

privateData CSTAPrivateData (@) Specifies non-standardized information.

13.1.2.2 Service Response

This service follows the atomic acknowledgement model for this request.
13.1.2.2.1 Positive Acknowledgement

Table 13-5 Get Logical Device Information—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
deviceCategory Enumerated M Specifies the device category (station, ACD device, etc.) of

the device in the service request. The complete set of
possible values is:

« ACD

¢ Group

* Network Interface (e.g., trunk, CO line)
e Park

¢ Routeing Device

« Station (default)

* Voice Unit

» Generic Interactive Voice

« Listener Interactive Voice

* DTMF Interactive Voice

* Prompt Interactive Voice

* Prompt Queue Interactive Voice
* Message Interactive Voice

» Conference

e Other

groupDeviceAttributes Bitmap C Specifies the group device attributes of the device being
queried. If a bit is TRUE then the specified attribute is
present. The following is the list of bits (multiple bits may be
set):

« ACD

e Hunt

« Pick

* User

* Agent

e Other

This parameter shall be provided if the deviceCategory is
Group, otherwise it shall not be provided.

- 160 -

»ecma

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name Type M/ Description
o/C
namedDeviceTypes Enumerated O If assigned by the switching function, this parameter
indicates the named device type associated with the device
in the service request. The complete set of possible values
are:
*+ ACD
* ACD Group
e Button
e Button Group
» Conference Bridge
* Line
* Line Group
* Operator
» Operator Group
» Parking Device
e Station
» Station Group
e Trunk
* Trunk Group
e Other
» Other Group
shortFormDevicelD DevicelD O Specifies an alternative (a shorter length, for example)
device identifier that the switching function may use to
reference the device in the service request.
hasPhysicalElement Boolean M Specifies if the device has a physical element associated
with this device identifier. The complete set of possible
values is:
* FALSE - The device does not have a physical element.
* TRUE - The device does have a physical element.
The device identifier in the service request should be used
with the Get Physical Device Information service to obtain
the physical element’s characteristics for this device.
acdModels Bitmap M Specifies the type of ACD Model(s) that are present at this

device. If a bit is TRUE, then the specified model is
supported. The following is the list of bits (multiple bits may
be set):

« Visible ACD-related Devices
* Non-Visible ACD-related Devices

Note that these bits are valid when the device is an ACD
device.

-161 -

oecind

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

agentLogOnModels

Bitmap

C

Specifies the types of agent log on models that are
supported by the device. If a bit is TRUE, then the specified
agent log on model is supported. The following is the list of
bits (multiple bits may be set):

¢ Log On to an ACD device

* Log On to an ACD Group (explicit/one step)

* Log On to an ACD Group (explicit/two steps)
¢ Log On to an ACD Group (implicit/one step)

Note that Log On to an ACD Group (implicit/one step)
model cannot be simultaneously supported with the Log On
to an ACD device model.

The switching function shall provide this parameter if the
agent log on model is configured by the switching function
at the logical device element level (agent, ACD device, or
ACD group), otherwise the parameter may or may not be
provided.

appearanceAddressable

Boolean

Specifies whether the appearances of the logical element
are addressable (via the Call Appearance “CA” string or the
physical element extension “EXT” string in the Switching
Function Representation Device Identifier format). The
complete set of possible values is:

¢ FALSE - The appearances are not addressable.

* TRUE - The appearances are addressable

appearanceType

Enumerated

Specifies the type of appearances associated with the
logical element. The complete set of possible values is:

» Selected-Standard

» Basic-Standard

¢ Basic-Bridged

« Exclusive-Bridged

* Independent-Shared-Bridged
¢ Interdependent-Shared-Bridged

appearanceList

List of Characters

Specifies the list of device identifier suffices for each of the
appearances that are available at the logical element. This
parameter is mandatory if the appearances are
addressable and if it is a Selected-Standard or a Basic-
Standard type. This list will only contain appearance
suffices that can be observed and/or controlled within the
switching sub-domain (via the Call Appearance string in the
Switching Function Representation Device Identifier
format).

-162 -

»ecma

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

otherPhysicalDeviceList

List of DevicelDs

C

Specifies the list of device identifiers for other devices with
physical elements that are associated with the logical
element appearance.

This parameter is mandatory if the appearances are
addressable and any type of bridged appearance. The Get
Physical Device Information service should be used to
obtain the physical element characteristics associated with
these other devices. This list will only contain devices that
can be either observed and/or controlled within the
switching sub-domain.

Note that, for a Hybrid configuration, the order of device
identifiers in this list is the same as the order of devices in
the appearanceList parameter. See Functional
Requirement #3 in 10.1.2 for additional information.

miscMonitorCaps

Bitmap

Specifies the special types of monitoring considerations for
this device. If a bit is TRUE then the monitoring
consideration is associated with the device. The following is
the list of bits (Multiple bits may be set):

» Group Inclusive Model - the scope of the monitor on the
group device includes the distribution mechanism and all
member devices. This bit is only valid for group devices
that include a distribution mechanism (e.g. Hunt and
ACD groups). This bit shall not be set if the Group
Exclusive Model bit is set.

» Group Exclusive Model - the scope of the monitor on the
group device includes only the distribution mechanism.
This bit is only valid for group devices that include a
distribution mechanism (e.g. Hunt and ACD groups).
This bit shall not be set if the Group Inclusive Model bit is
set

» Monitor the physical element to report call control events
for all appearances associated with a device. (Only a
valid bit if the appearanceType is any form of bridge
appearance.) (i.e. use the device identifiers from the
otherPhysicalDeviceList).

* ACD Deuvice Inclusive - the scope of the monitor on an
ACD device includes both the ACD device and the
distributed-to devices (including ACD groups). (This
capability is valid only for ACD devices). This bit shall not
be set if the ACD Device Exclusive bit is set

» ACD Device Exclusive - the scope of the monitor on an
ACD device only the ACD device. (This capability is valid
only for ACD devices). This bit shall not be set if the ACD
Device Inclusive bit is set

Note that if this parameter is not present, then the
monitoring considerations are not known.

-163 -

oecind

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

associatedGrouplList

List of DevicelDs

c

Specifies the list of device identifiers for all the other
devices which are members of this group device. Use the
appropriate capabilities exchange services to obtain the
characteristics of these devices. This list shall only contain
devices that can be either observed and/or controlled within
the switching sub-domain.

This parameter shall be provided when the device is a
Group device. It may or may not be provided if the device is
a member of a group and shall not be provided if the device
is neither a Group device nor is a member of a group.

maxCallbacks

Value

Specifies the maximum number of concurrent call back
requests that can be outstanding for this device. If this
parameter is not present, then the maximum number of
concurrent callback requests is not known for the device.

maxAutoAnswerRings

Value

Specifies the maximum number of rings before a call is
auto-answered at this device. If this parameter is not
present, then the maximum number of Auto Answer rings is
not known for the device.

maxActiveCalls

Value

Specifies the maximum number of concurrent calls that can
be active at any one time for this device. If this parameter is
not present, then the maximum number of active calls is
not known for the device.

maxHeldCalls

Value

Specifies the maximum number of concurrent calls that can
be held at any one time for this device. If this parameter is

not present, then the maximum number of held calls is not

known for the device.

maxFwdSettings

Value

Specifies the maximum number of user-specified settings
(forwarding-type/forward-destination combinations) that can
be activated at any one time for this device. If this
parameter is not present, then the maximum number of
activated user-specified settings is not known for the
device.

maxDevicesInConf

Value

Specifies the maximum number of devices both within and
outside the switching function that this device can
conference into a call. If this parameter is not present, then
the maximum number of devices in a conference is not
known for the device. The minimum value that can be
supplied for this value is 3.

transAndConfSetup

Bitmap

Specifies the different ways that this device can set up for a
conference and/or transfer. (Note that if this parameter is
not present, then the device can only set up transfers and
conferences through the Consultation Call service.) If the
bit is TRUE, then the specified way to setup a conference
or transfer is supported by the switching function. The
following is the list is of bits (multiple bits may be set):

» Consultation Call

* Hold Call - Make Call

* Alternate Call

« two calls in the initial state of Hold

¢ two calls in the initial state of Connected

- 164 -

oecha

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

deviceOnDeviceMonitorFilter

MonitorFilter

c

Specifies the complete monitorFilter parameter that this
device supports with respect to device-type monitoring.
This parameter shall be provided if this form of device-type
monitoring is supported, otherwise the parameter shall not
be provided.

The information in the monitor filter parameters used in the
Get Logical Device Information and the Get Physical
Device Information services should be the same when the
same device identifier is used (assuming that the device
identifier has a logical and a physical element).

deviceOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that
connections at this device supports with respect to device-
type monitoring. This parameter shall be provided if this
form of device-type monitoring is supported, otherwise the
parameter shall not be provided.

callOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that this
device supports with respect to call-type monitoring on a
device. This parameter shall be provided if this form of call-
type monitoring is supported, otherwise the parameter shall
not be provided.

callOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that this
device supports with respect to call-type monitoring for a
connection at this device. This parameter shall be provided
if this form of call-type monitoring is supported, otherwise
the parameter shall not be provided.

mediaClassSupport

Bitmap

Specifies the media class of calls that the device can
support. If a bit is TRUE then the specified type of call can
be present at the device. The following is the list of bits
(multiple bits may be set):

* Audio
» Data
* Image
» Voice
» Other
* Chat
e Email
* Message
e IM

+ SMS
* MMS

- 165 -

oecind

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

mediaServiceCapsList

List of Structures

Cc

Specifies a list of structures of the media service types,
version, media service instances, connection modes
supported. This parameter is a list, each element of which
contains the following:

* mediaServiceType (M) MediaServiceType - A media
service type used to identify the media service.

* mediaSeviceVersion (O) Value - The version of the
media service.

* mediaServicelnstance (O) MediaServicelnstancelD - A
media service instance associated with the media
service.

« connectionModeBMap (O) Bitmap - The media service
connection modes supported for the media service type,
version and instance. The following is the list of bits
(multiple bits may be set):

» consultationConference

« consultationConferenceHold
» deflect

e directedPickup

e join

« singleStepConference

* singleStepConferenceHold

* singleStepTransfer

» transfer

» direct

* mediaStream|DSupported (M) Boolean - Specifies if the
mediaStreamID is supported for the combination of
media service type, version, and instance. The complete
set of values is:

¢ TRUE - indicates that the switching function shall
provide the conditional mediaStreamID parameter
where specified.

¢ FALSE - indicates that the conditional
mediaStreamID is not provided.

This parameter shall be provided if the device is capable of
media access and shall not be provided otherwise.

connectionRateList

List of Values

Specifies the list of connection rates that are supported for
this device.

delayTolerancelList

List of Values

Specifies the list of delay Tolerances that are supported for
this device.

numberOfChannels

Value

Specifies the number of available channels at this device. If
the parameter is not present, the number of channels at the
device is not known but it is one or greater.

maxChannelBind

Value

Specifies the maximum number of channels that can be
associated with a given connection at a device. If the
parameter is not present, the maximum number of
channels per connection is one.

- 166 -

»ecma

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

routeingServList

RouteingServList

C

Specifies a list of bitmaps. Each bitmap entry represents a
Routeing service that is supported by the device (both
service requests to and from the switching function, when
the service is bi-directional). This includes the following
categories of services:

» Routing Services

This parameter shall be provided if the switching function
supports any of these categories of services for this device.

If a Routeing service’s bitmap entry is not included in the
list, then the service is not supported by the switching
function.

Note that the Routeing Mode feature is grouped with
Logical Device features.

logDevServList

Structure

Specifies a list of capability bitmap parameter types
corresponding to categories of services. Each bitmap entry
in the lists represents a service that applies to a logical
device that is supported by the device. This includes the
following categories of services:

 callControlServList (O) CallControlServList - specifies
the list of call control services supported.

» callAssociatedServList (O) CallAssociatedServList -
specifies the list of call associated services supported.

* logicalServList (O) LogicalServList - specifies the list of
logical device feature services supported.

* mediaServList (O) MediaServList - specifies the list of
media services supported.

» ioServicesServList (O) I0ServicesServList - specifies
the list of I/O services supported.

» dataCollectionServList (O) DataCollectionServList -
specifies the list of data collection services supported.

» voiceServList (O) VoiceServList - specifies the list of
voice services supported.

» locServicesServList (O) LocServicesServList - specifies
the list of location services supported.

This parameter shall be provided if the switching function
supports at least one of these categories of services for this
device.

If a logical device service’s bitmap entry is not included in
the list, then the service is not supported by the device.

- 167 -

oecind

Table 13-5 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name Type M/ Description
ol/C
logDevEvtsList Structure C Specifies a list of capability bitmap parameter types

corresponding to categories of events. Each bitmap entry in
the lists represents an event that applies to a logical device
that is supported by the device. This includes the following
categories of events:

« callControlEvtsList (O) CallControlEvtsList - specifies
the list of call control events supported.

« callAssociatedEvtsList (O) CallAssociatedEvtsList -
specifies the list of call associated events supported.

 logicalEvtsList (O) LogicalEvtsList - specifies the list of
logical device feature events supported.

« mediaEvtsList (O) MediaEvtsList - specifies the list of
media events supported.

« voiceEvtsList (O) VoiceEvtsList - specifies the list of
voice events supported.

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a logical device event's bitmap entry is not included in the
list, then the event is not supported by the device.

deviceMaintEvtsList DeviceMaintEvts C Specifies a list of bitmaps. Each bitmap entry represents a
List device maintenance event that is supported by the device.
This includes the following categories of services:

¢ Device Maintenance events

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a device maintenance’s bitmap entry is not included in
the list, then the event is not supported by the switching

function.
security CSTASecurityDat (0] Specifies timestamp information, message sequence
a number, and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

13.1.2.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.14, “ErrorValue”, on page 121.
13.1.2.3 Operational Model
13.1.2.3.1 Connection State Transitions
There are no connection state changes as the result of this service.
13.1.2.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.2.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.2.3.4 Functional Requirements
1. This service shall be rejected with a negative acknowledgement (i.e., Error Value of Object Not
Known), if the device does not contain a logical element.

- 168 -

~ecna

13.1.3 Get Physical Device Information

CcC —» S

The Get Physical Device Information service is used to obtain the current set of characteristics/
capabilities associated with the physical element of a given device.

13.1.3.1 Service Request

Table 13-6 Get Physical Device Information—Service Request

Parameter Name Type M/ Description
o/C
device DevicelD M Specifies the device being queried.
security CSTASecurityData (@) Specifies timestamp information, message sequence
number, and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

13.1.3.2 Service Response

This service follows the atomic acknowledgement model for this service request.
13.1.3.2.1 Positive Acknowledgement

Table 13-7 Get Physical Device Information—Positive Acknowledgement

of the device being queried. The complete set of possible

Parameter Name Type M/ Description
o/C
deviceCategory Enumerated M Specifies the device category (station, ACD device, etc.)

values is:

ACD

Group

Network Interface (i.e., trunk)
Park

Routeing

Station (default)

Voice Unit

Generic Interactive Voice
Listener Interactive Voice
DTMF Interactive Voice
Prompt Interactive Voice
Prompt Queue Interactive Voice
Message Interactive Voice
Conference

Other

- 169 -

»ecind

Table 13-7 Get Physical Device Information—Positive Acknowledgement
(continued)

Parameter Name Type M/ Description
o/C
groupDeviceAttributes Bitmap C Specifies the group device attributes of the device being
queried. If a bit is TRUE then the specified attribute is
present. The following is the list of bits (multiple bits may
be set):
* ACD
* Hunt
* Pick
e User
e Agent
e Other
This parameter shall be provided if the deviceCategory is
Group, otherwise it shall not be provided.
namedDeviceTypes Enumerated (@) If assigned by the switching function, this parameter
indicates the named device type associated with the
device being queried. The complete set of possible values
are:
* ACD
* ACD Group
* Button
¢ Button Group
» Conference Bridge
e Line
¢ Line Group
* Operator
* Operator Group
« Parking Device
« Station
» Station Group
e Trunk
e Trunk Group
e Other
e Other Group
hasLogicalElement Boolean M Specifies if the device has a logical element associated
with this device identifier. The complete set of possible
values is:
* FALSE - The device does not have a logical element.
¢ TRUE - The device does have a logical element.
The device identifier in the service request should be
used with the Get Logical Device Information service to
obtain the logical element’s characteristics for this device.
otherLogicalDeviceList List of Device IDs (0] Specifies the list of device identifiers for other devices
with logical elements that are associated with this device.
The Get Logical Device Information service should be
used to obtain the logical element characteristics
associated with these other devices. This list will only
contain devices that can be either observed and/or
controlled within the switching function.

- 170 -

secma

Table 13-7 Get Physical Device Information—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

deviceModelName

Characters

O

Specifies the switching function specific model nhame of
the device. If this parameter is not present, then the
model name is not known.

deviceOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the
device supports with respect to device-type monitoring.
This parameter shall be provided if this form of device-
type monitoring is supported, otherwise the parameter
shall not be provided.

The information in the monitor filter parameters used in
the Get Logical Device Information and the Get Physical
Device Information services should be the same when the
same device identifier is used (assuming that the device
identifier has a logical and a physical element).

deviceOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that a
connection at the device supports with respect to device-
type monitoring. This parameter shall be provided if this
form of device-type monitoring is supported, otherwise the
parameter shall not be provided.

callOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the
device supports with respect to call-type monitoring on a
device. This parameter shall be provided if this form of
call-type monitoring is supported, otherwise the
parameter shall not be provided.

callOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the
device supports with respect to call-type monitoring on a
connection at the device. This parameter shall be
provided if this form of call-type monitoring is supported,
otherwise the parameter shall not be provided.

maxDisplays

Value

Specifies the maximum number of displays associated
with the device being queried. If this parameter is not
present, then the device either does not have any
displays or the maximum number of displays at this
device is not known.

maxButtons

Value

Specifies the maximum number of buttons associated
with the device being queried. If this parameter is not
present, then the device either does not have any buttons
or the maximum number of buttons at this device is not
known.

maxLamps

Value

Specifies the maximum number of lamps associated with
the device being queried. If this parameter is not present,
then the device either does not have any lamps or the
maximum number of lamps at this device is not known.

maxRingPatterns

Value

Specifies the maximum number of ring patterns that the
ringer has for the device being queried. If this parameter
is not present, then the device either does not have a
ringer or the maximum number of ring patterns at this
device is not known.

-171 -

»ecind

Table 13-7 Get Physical Device Information—Positive Acknowledgement
(continued)

Parameter Name Type M/ Description
o/C
physDevServList PhysDevServList C Specifies a list of bitmaps. Each bitmap entry represents

a Physical Device service that is supported by the
specified device. This includes the following categories of
services:

» Physical Device Feature services

This parameter shall be provided if the switching function
supports any of these categories of services for this
device.

If a physical device service’s bitmap entry is not included
in the list, then the service is not supported by the
specified device.

physDevEvtsList PhysDevVEvtsList C Specifies a list of bitmaps. Each bitmap entry represents
a Physical Device Event that is supported by the specified
device. This includes the following categories of events:

* Physical Device Feature events

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a physical device event's bitmap entry is not included in
the list, then the event is not supported by the specified
device.

security CSTASecurityData (@) Specifies timestamp information, message sequence
number, and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.3.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.14, “ErrorValue”, on page 121.
13.1.3.3 Operational Model
13.1.3.3.1 Connection State Transitions
There are no connection state changes as the result of this service.
13.1.3.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.3.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.3.3.4 Functional Requirements
1. This service shall be rejected with a negative acknowledgement (i.e., Error Value of Object Not
Known), if the device does not have a physical element.

2. In order to obtain the entire set of physical device capabilities and characteristics, the computing
function shall also use the Get Button Information, Get Lamp Information, and Get Display services
to collect the detailed information on the device’s buttons, lamps, and displays.

-172 -

»ecma

13.1.4 Get Switching Function Capabilities C —»S

The Get Switching Function Capabilities service is used by the computing function to obtain the current
set of capabilities for the entire switching function.
13.1.4.1 Service Request

Table 13-8 Get Switching Function Capabilities—Service Request

Parameter Name Type M/ Description
o/C
security CSTASecurityData (@) Specifies timestamp information, message sequence

number, and security information.

privateData CSTAPrivateData o Specifies non-standardized information.

13.1.4.2 Service Response

This service follows the atomic acknowledgement model for this service request.
13.1.4.2.1 Positive Acknowledgement

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
switchingSubDomainName Character (64) M Specifies the name of switching sub-domain
which distinguishes it from other switching sub-
domains.
manufacturerName Characters (64) M Specifies the name of the manufacturer of the

switching sub-domain.

profiles Bitmap M Specifies the CSTA Profiles supported by the
switching function. The following is the list of the
possible profiles (multiple bits may be set):

« Basic Telephony Profile

« Routing Profile

* Level 1a Voice Browser Profile

« Level 1b Voice browser Profile

« Level 2 Voice Browser Profile

¢ Minimal Endpoint Call Control Profile

« Basic Endpoint Call Control Profile

« Advanced Endpoint Call Control Profile

« Conferencing Endpoint Call Control Profile
« Basic Endpoint Device Feature Profile

« Advanced Endpoint Device Feature Profile
« Basic Speech Service Profile

« Advanced Speech Service Profile

Note that at least one profile shall be supported
by the switching function.

-173 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name Type M/ Description
o/C
devicelDFormat Bitmap M Specifies the types of device ID formats

supported by the switching function in service
requests. If a bit is TRUE, then the specified
format is used by the switching function. The
following is the list of the possible formats
(multiple bits may be set):

« Diallable Digits format - “*”

« Diallable Digits format - “#”

« Diallable Digits format - “A-D”
+ Diallable Digits format - “!”

» Diallable Digits format - “P”

+ Diallable Digits format - “T”

» Diallable Digits format - “,”

» Diallable Digits format - “W”

« Diallable Digits format - “@"

« Diallable Digits format - “$”

+ Diallable Digits format - *;”

» SF Representation format - “!”

» SF Representation format - “&”

* SF Representation format - “/”

* SF Representation format - “%”

* SF Representation format - “NM”

* SF Representation format - Generic

* SF Representation format - ImplicitTON

* SF Representation format - PublicTON -
unknown

* SF Representation format - PublicTON -
international number

* SF Representation format - PublicTON -
national

* SF Representation format - PublicTON -
subscriber

* SF Representation format - Public TON -
abbreviated

* SF Representation format - PrivateTON -
unknown

* SF Representation format - PrivateTON -
level 3 regional

* SF Representation format - PrivateTON -
level 2 regional

* SF Representation format - PrivateTON -
level 1 regional

* SF Representation format - PrivateTON -
local

* SF Representation format - PrivateTON -
abbreviated

* SF Representation format - Other

- 174 -

-
i

recCina

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

devicelDFormat (continued)

» Device Number format

¢ SF Representation format - “~"
¢ DevicelD Tag - privateNumber
« DevicelD Tag - privateName

Note that the Diallable Digits format with the 0-9
characters shall be supported by the switching
function.

swDomainFeatures

Bitmap

Specifies which features are supported by the
switching function. If a bit is TRUE, then the
specified feature is supported. The following is
the list of possible features (multiple bits can be
set):

Forwarding Call Associated models:

¢ s (Immediate) Forwarding triggered before
the call is logically delivered to the device?

¢ s (Immediate) Forwarding triggered after the
call is logically delivered to the device?

Level of Forwarding Default Settings:

¢ Switching function default setting - allows
activation/deactivation of a single switching
function forwarding type/forwarding
destination combination.

« User specified settings - allows the setting of
individual forwarding types and forwarding
destinations.

« User specified setting (default forwarding
type) - If this is TRUE, when the forwarding
type is omitted in the Set Forward service, the
switching function applies a default value,
otherwise there is no default value applied.

« User specified setting (default forward
destination) - If this is TRUE, when the
forward destination is omitted in the Set
Forward service, the switching function
applies a default value, otherwise there is no
default value applied.

Connection Failure:
¢ Negative Acknowledgement

« Support of Failed event with an associated
failed connection

« Support of Failed event without an associated
failed connection

« Support of Failed event with an associated
failed connection, not reported via monitors
on the failing device

Other:

* Recall

» Call Back

¢ External Calls—Incoming Calls
¢ External Calls—Outgoing Calls
¢ Prompting

-175 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

swAppearanceAddressability

Bitmap

M

Specifies what types of appearance
addressability is available within the switching
sub-domain. The following is the list of bits
(multiple bits can be set):

¢ addressable

¢ non-addressable

SswAppearanceTypes

Bitmap

Specifies what types of appearances are
available within the switching sub-domain The
following is the list of bits (multiple bits can be
set):

» Selected-Standard

» Basic-Standard

* Basic-Bridged

» Exclusive-Bridged

* Independent-Shared-Bridged
 Interdependent-Shared-Bridged

ignoreUnsupportedParameters

Enumerated

Specifies how the switching function handles
unsupported optional parameters in service
requests. The complete set of possible values
is:
* Ignore parameters - This indicates that the
switching function treats unsupported

optional parameters as if they were not
present.

* Reject Request - This indicates that the
switching function returns a negative
acknowledgement in response to any
requests that contain unsupported optional
parameters.

callCharacteristicsSupported

Bitmap

Specifies the characteristics that the switching
function reports via the callCharacteristics
parameter. If a bit is TRUE then the specified
characteristic is reported. The following is the
list of bits (multiple bits may be set):

» acdCall
 priorityCall

* maintenanceCall
« directAgent

* assistCall

* voiceUnitCall
* privateCall

* personalCall

» sensitiveCall
 confidentialCall
* encryptedCall

This parameter shall be provided if the switching
function characterizes calls via the
callCharacteristics parameter.

-176 -

cectma

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

mediaClassSupport

Bitmap

(0]

Specifies the media class of calls the switching
sub-domain can support. If a bit is TRUE then
the specified type of call can be present within
the switching function. The following is the list of
bits (multiple bits may be set):

¢ Audio
* Data
* Image
* Voice
e Other
e Chat
e Email
* Message
e IM

¢ SMS
« MMS

If this parameter is not present, then the
switching function only supports voice calls.

numberOfChannels

Value

Specifies the highest number of available
channels at a given device within the switching
sub-domain. If the parameter is not present, the
number of channels at a device is not known but
is one or greater.

maxChannelBind

Value

Specifies the highest maximum number of
channels that can be associated with a given
connection at a device within the switching sub-
domain. If the parameter is not present, the
maximum number of channels per connection is
one.

miscMediaCallCharacteristics

Bitmap

Specifies the media call characteristics
supported. If a bit is TRUE then the specified
feature is present within the switching function.
The following is the list of bits (multiple bits can
be set)

« Does the switching function support the
adjustment of the media characteristics when
a call is being made?

connectionRateList

List of Values

Specifies the list of connection rates that are
supported for the given switching function.

delayToleranceRateList

List of Values

Specifies the list of delay tolerances that are
supported for the given switching function.

pauseTime

Value (1..2000)

Specifies the amount time that a pause (as
specified by the comma “,” character in the
Diallable Digits Device Identifier format) within a
dialling sequence will last for in the switching
function. This time is specified in milliseconds. If
this parameter is not present, then the pause

time is not known for the switching function.

currentTime

Timelnfo

Specifies the current date and time of the
switching function.

-177 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

messageSegNumbers

Bitmap

C

Specifies if the switching function supports
message sequence numbers (via the security
parameter) on services and events. If a bit is
TRUE, then it is supported. The following is the
list of bits (multiple bits may be set):

» allEvents - message sequence number is
provided on all events from the switching
function.

 allAcks - message sequence number is
provided on all (positive and negative)
acknowledgements from the switching
function.

» allServReqs - message sequence number is
provided on all service requests from the
switching function.

This parameter shall be provided if the switching
function provides message sequence number
information.

timeStampMode

Bitmap

Specifies when the switching function provides
timestamp information (via the security
parameter). If a bit is TRUE, then the mode is
supported. The following is the list of bits
(multiple bits may be set):

« allEvents - timestamp parameter is provided
on all events from the switching function.

« allAcks - timestamp parameter is provided on
all (positive and negative)
acknowledgements from the switching
function.

» allServReqs - timestamp parameter is
provided on all service requests from the
switching function.

This parameter shall be provided if the switching
function provides timestamp information.

securityMode

Enumerated

Specifies when the switching function provides
securitylnfo (via the security parameter). The
following is the list of bits (multiple bits may be
set):
 allEvents - securityInfo is provided on all
events from the switching function.

» allAcks - securitylnfo is provided on all
(positive and negative) acknowledgements
from the switching function.

» allServReqs - securitylnfo is provided on all
service requests from the switching function.

This parameter shall be provided if the switching
function provides securitylnfo via the security
parameter.

-178 -

-
i

recCina

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

securityFormat

Bitmap

C

Specifies the format(s) of the securitylnfo

information (in the security parameter)

supported by the switching function. The

following is the list of bits (multiple bits may be

set):

« octetStringFromSF - the switching function

provides securityData in the octetString
format

« otherTypeFromSF - the switching function
provides securityData in another format.

¢ octetStringToSF - the switching function
supports receiving securityData in the
octetString format

« otherTypeToSF - the switching function

supports receiving securityData in another
format.

This parameter shall be provided if the switching
function supports sending or receiving
securitylnfo in the security parameter.

privateDataFormat

Bitmap

Specifies the format(s) of the privateData
information supported by the switching function.
The following is the list of bits (multiple bits may
be set):

¢ octetStringFromSF - the switching function
provides privateData in the octetString format

« otherTypeFromSF - the switching function
provides privateData in another format.

« octetStringToSF - the switching function
supports receiving privateData in the
octetString format

« otherTypeToSF - the switching function
supports receiving privateData in another
format.

This parameter shall be provided if the switching
function supports sending or receiving
privateData.

transAndConfSetup

Bitmap

Specifies the different ways that the switching
function can set up for a conference and/or
transfer. (Note that if this parameter is not
present, then the switching function can only set
up transfers and conferences through the
Consultation Call service.) If the bit is TRUE,
then the specified way to setup a conference or
transfer is supported by at least one device in
the switching sub-domain. The following is the
list is of bits (multiple bits may be set):

« Consultation Call

* Hold Call - Make Call

» Alternate Call

« two calls in the initial state of Hold

¢ two calls in the initial state of Connected

-179 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

deviceOnDeviceMonitorFilter

MonitorFilter

C

Specifies the complete monitorFilter parameter
that is supported by the switching function when
the monitorObject is a device and the
monitorType is a device. Each bitmap entry
represents an event that is supported by at least
one of the devices in the switching function.

This parameter shall be provided if this form of
device-type monitoring is supported by at least
one of the devices in the switching function,
otherwise it shall not be provided.

deviceOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter
that is supported by the switching function when
the monitorObject is a connection and the
monitorType is a device. Each bitmap entry
represents an event that is supported by at least
one of the devices in the switching function.

This parameter shall be provided if this form of
device-type monitoring is supported by at least
one of the devices in the switching function,
otherwise it shall not be provided.

callOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter
that is supported by the switching function when
the monitorObject is a device and the
monitorType is a call. Each bitmap entry
represents an event that is supported by at least
one of the devices in the switching function.

This parameter shall be provided if this form of
call-type monitoring is supported by at least one
of the devices in the switching function,
otherwise it shall not be provided.

callonConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter
that is supported by the switching function when
the monitorObject is a connection and the
monitorType is a call. Each bitmap entry
represents an event that is supported by at least
one of the devices in the switching function.

This parameter shall be provided if this form of
call-type monitoring is supported in the
switching function, otherwise it shall not be
provided.

-180 -

secma

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

miscMonitorCaps

Bitmap

(0]

Specifies the special types of monitoring
capabilities that are present within the switching
sub-domain. If a bit is TRUE then the monitoring
capability is present within the switching sub-
domain. The following is the list of bits (multiple
bits may be set):

« Group Inclusive Model - the scope of the
monitor on a group device includes the
distribution mechanism and all member
devices. This bit applies to group devices that
include a distribution mechanism (e.g. Hunt
and ACD groups).

¢ Group Exclusive Model - the scope of the
monitor on the group device includes only the
distribution mechanism. This bit applies to
group devices that include a distribution
mechanism (e.g. Hunt and ACD groups).

* Monitor the physical element to report call
control events for all appearances associated
with a device. (This capability is valid only if
an appearanceType of any form of a bridge
appearance is supported.)

* ACD Device Inclusive - the scope of the
monitor on an ACD device includes both the
ACD device and the distributed-to devices
(including ACD groups). (This capability is
valid only for ACD devices).

« ACD Device Exclusive - the scope of the
monitor on an ACD device only the ACD
device. (This capability is valid only for ACD
devices).

If this parameter is not present, then the
monitoring considerations are not known.

correlatorDataSupported

Boolean

Specifies if the switching function supports the
correlatorData parameter on service requests
and events. The complete set of possible values
is:

« TRUE - Option supported.
¢ FALSE - Option is not supported.

Refer to “Correlator Data” on page 42 for the
required events that shall support correlator
data if this option is supported.

dynamicFeatureSupported

Enumerated

Specifies how the switching function provides
the servicesPermitted parameter on events. The
complete set of possible values is:

¢ none - servicesPermitted not provided on any
events

« all - servicesPermitted provided on all events
where it is specified

¢ some - servicesPermitted provided on some
events. Refer to the logDeVvEvtsList
parameter for the events that support the
parameter.

-181 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

callLinkageOptions

Bitmap

O

Specifies if the switching function supports the
call linkage and thread linkage features. The
complete set of possible values is:

 callLinkageFeatureSupported - the switching
function supports the call linkage feature.
This feature shall be supported if the thread
linkage feature is supported.

 threadLinkageFeatureSupported - the
switching function supports the thread
linkage feature.

Refer to 6.1.2.7, “Call Linkage”, on page 46.

acdModels

Bitmap

Specifies the types of ACD models that are
supported by the switching function. If a bit is
TRUE, then the specified ACD model is
supported by the switching function. The
following is the list of bits (multiple bits may be
set):

» Visible ACD-Related Devices
¢ Non-Visible ACD-Related Devices

Note that if more than one type of ACD model is
present in the switching function, then the Get
Logical Device Information service shall be used
to determine the particular ACD models
supported by for each ACD device or ACD
group by the switching function.

agentLogOnModels

Bitmap

Specifies the types of agent log on models that
are supported by the switching function. If a bit
is TRUE, then the specified agent log on model
is supported by the switching function. The
following is the list of bits (multiple bits may be
set):

¢ Log On to an ACD device

* Log On to an ACD Group (explicit/one step)

* Log On to an ACD Group (explicit/two steps)
* Log On to an ACD Group (implicit/one step)

Note that if more than one type of model is
present in the switching function, then the Get
Logical Device Information service shall be used
to determine the particular Log On models
supported for each device which is or can be
associated with an agent.

-182 -

»ecma

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

agentStateModels

Bitmap

(0]

Specifies the types of agent models that are
supported by the switching function. If a bit is
TRUE, then the specified agent model is
supported by the switching function. The
following is the list of bits (multiple bits may be
set):

« Agent Multi-State Model

« Agent Multi-State Model (Semi-Independent
Linked)

« Agent Oriented Model

Note that if more than one type of model is
present in the switching function, then the Get
Logical Device Information service shall be used
to determine the particular Agent models
supported for each ACD device or ACD group
by the switching function.

connectionView

Enumerated

Specifies the meaning of the primary and
secondary old call parameters in the
Conferenced and Transferred events. The
complete set of possible values is:

« fixed view - the contents of the primary and
secondary old call parameters are
independent of the monitoring type and the
role of the device in the conference or
transfer.

« local view - the contents of the primary and
secondary old call parameters are dependent
upon which device is being monitored.

Refer to the descriptions of the Conferenced
and the Transferred events for more information.

-183 -

oecind

Table 13-9 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name Type M/ Description
o/C
maxLengthParameters List of Values M Each value is the switching function’s maximum

length (in characters) for the corresponding
parameters and parameter types. The
computing function should not send larger data
or the service request will be rejected. The
following list provides the different parameters
and parameter types for which a maximum
value is provided. The number in parenthesis,
where included, specifies the maximum possible
length.

* Accountinfo parameter type

« AuthCode parameter type

* AgentID parameter type

» AgentPassword parameter type:

« calllD in the ConnectionID parameter type

» CorrelatorData parameter type

* CSTAPrivateData parameter type

« Device Identifiers parameter types

* UserData parameter type

* buttonLabel parameters:

¢ lampLabel parameters:

» charactersToSend parameter: (64)

If any of the above values is zero, then the
parameter or parameter type is not supported.

maxLengthParametersContinu