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Abstract

A central issue for operators of passenger transportatiamban rail is balancing the income
from tickets against the cost of the operation. The main pkathe income except for gov-
ernmental subsidies comes from sales of tickets. There aieus ways to ensure that all
passengers carry valid tickets, i.e. to avoid so cdiee evasion Many European companies
use spot checking of passengers and among these is DSB S-tog.

The current paper describes a decision support tool deselap DSB S-tog. Based on
historical data regarding when penalty fares are claimetilmased on the schedules of the
inspectors, this tool enables the construction of new adesdor tickets inspectors, so that the
income from penalty fares claimed from passengers withmalid ticket is maximised. Other
tools to increase income from ticket sales and penalty faresalso discussed.

1 Introduction

Many major cities throughout the world have extensive putshnsportation systems based on
railways, subways, trams, buses etc. The operators of treasgportation systems are usually
contractually obliged to provide transportation servibeth with respect to quality of service
and with respect to capacity. The operators may be publicrivate companies, however,
in both cases a costiient operation is of prime importance. On the cost side, ¢hils for
efficient planning and operation. On the income side, the facas increasing the use of public
transportation and on ensuring dfstiently large income in terms of sold tickets. Note that a
trade-df exists between attracting passengers through low pricésnasuring a dticiently
high income from tickets.

Most train companies operate with severdlatient approaches to ensure that all passengers
buy valid tickets for their travel. The approaches includilket check when passengers enter
andor leave the transportation network and spot check of teckatried out by ticket inspectors.
For the latter approach there is again a traffd&setween expenses for salaries etc. for the ticket
inspectors and increased income from ticket sales andtydaeds due to intensified inspection
activities.



In the Greater Copenhagen region, the major part of the pgss&ansportation by rail is
carried out by the operator DSB S-tog. In the DSB S-tog netwibis the responsibility of each
passenger to be in possession of a valid ticket - no checkiigdaut neither on entry to nor
on exit from the network. Spot checking of tickets is the anstrument used to ensure that all
passengers carry valid tickets. The spot checks are camitdal personnel mainly dedicated to
this task - the ticket inspectors. Several questions r@ggtte corps of ticket inspectors and its
use are immediate: For a given number of employees in thesclogw should the spot checking
be carried out both regarding the temporal (when), the ap@here) and the methodological
(how) dimension?

DSB S-tog is in the process of developing IT-based decisippart tools to address these
guestions. In the current paper we describe the systemapmaetto optimise the income from
penalty fares in the temporal dimension given the numbeckét inspectors available and the
rules and regulations regarding the activities of the intgre defined by union agreements and
organisational aspects of the company.

The paper is organised as follows: In section 2 we describaithation in DSB S-tog and
three other European operators with respect to spot chgckitickets. The available data and
the mathematical model on which the decision support tobhised are the topics of section
3. Section 4 reports experimental results, and sectioncusies further development of the
tool as well as tools to address the other questions raissbpisly. Finally, conclusions of the
work are presented in section 6.

2 Ticket spot checking at diferent rail operators

This section compares the overall procedures for the spatkcimspections of tickets for dif-
ferent operators. All of the operators operate 'open’ systewhere no checking of tickets is
performed upon entry to or exit from the system.

2.1 DSB S-tog, Copenhagen

At DSB S-tog, ticket inspections are mainly performed in tdifferent ways. Most of the
inspections are performed in the driving trains, usuallytgams of 1 - 4 ticket inspectors. In
larger control raids on stations, 10 - 15 ticket inspectoay participate. The ticket inspectors
mainly perform the inspections wearing uniform, howevarcsi September 2008, inspections
using plain clothes are also performed. The experienceg ysain clothes are good, there is
less trouble with unruly passengers. Approx. 8% of all 9lliamlpassengers per year have
their tickets inspected. Of thaespectedpassengers, approx. 2% travel without a ticket. We
believe that thdotal number of passengers travelling without a ticket is appré%. The
difference between these two figures lies in the fact that marsepgsrs travelling without at
ticket are able to escape inspection. An independent iigatitn [1] shows similar percentages
for questionedassengers, but these numbers are probably biased in tieensanas the ones
observed by the ticket inspectors themselves. Presen8f B-tog has approx. 160 ticket
inspectors employed. The train units operated by DSB S-tegedatively long: 84 and 43
meters, respectively. The value of a penalty fare is cuyré®0 DKK equivalent to 100 EUR.

2.2 T-banedrift, Oslo

Compared to DSB S-tog, the network of T-banedrift [4], [14]] [s smaller and so is the
volume of passengers. T-banedrift has a relatively smatiber of ticket inspectors employed,



and thus the fraction of inspected passengers is consigesataller than that of DSB S-tog.
The train units operated by T-banedrift are shorter contpiréhe ones operated by DSB S-tog.
This, in combination with large teams of 7 - 8 ticket inspestat a time, makes it much harder
to escape inspection. Thus the fraction of inspected pgesemot holding a ticket is as high
as 4%, twice the number of DSB S-tog. Ticket inspection isnlgatonducted in plain clothes,
however, in the weekend uniforms are used to provide moteoatit. Presently the value of a
penalty fare is 900 NOK or 750 NOK upon direct payment. Thisdsivalent to 100 and 85
EUR, respectively.

2.3 SBB S-Bahn, Zirich

SBB S-Bahn Zirich [18], [17], [5], [15] operates a much largetwork than that of DSB S-tog.
The volume of passengers is also much higher. SBB has coablgenore inspectors employed
than DSB S-tog, however, relative to the network size andgqrager volume, DSB S-tog has
more inspectors employed. The percentagenepectedpassengers of thetal amount of
passengers is thus less than half of that of DSB S-tog. Tlk&dreof theinspectecpassengers
travelling without a tickets similar to that of DSB S-tog. Presently the value of a pgrialre

is 80, 120 and 150 CHF for the first, second and third time a pgeses encountered without
a ticket in a two year period. This is equivalent to 50, 80 add EUR. The train units operated
by SBB are of similar length to those of DSB S-tog, however shae two stories and toilets,
which complicates the inspection process considerabgsdmtly, SBB almost exclusively uses
uniformed personnel for ticket inspections. Earlier, ¢éitknspectors also operated in plain
clothes, however, contrary to the experience of DSB S-tbig, the experience of SBB that
inspectors in plain clothes result in more trouble with dypassengers. We believe this is
a cultural diference between the two countries. The Swiss legislatidassthat an operator
may not profit from collecting penalty fares [6]. This putsreconstraints upon thefert to
optimise the spot check inspection of tickets.

2.4 OBB S-Bahn, Vienna

OBB S-Bahn Wien [11], [12], [3] operates a network that is larged has more passenger
volume than DSB S-tog, however, OBB has much fewer ticketdo&ps employed. Some
of the trains operated by OBB have traditional train condwsctmntrolling the tickets of all
passengers in the train. Others are spot check inspecteth régard to optimisation, the
planning policy of OBB until now has been to inspect as mang@agers as possible. However,
through cooperation with DSB S-tog, OBB is presently ingzttng methods similar to those
described in the current paper and in [9]. Presently theevafia penalty fare is 60 EUR. The
fraction ofinspectegassengers travelling without a ticket is similar to thad&B S-tog. Also,
the characteristics of the rolling stock are similar.

3 Decision support for ticket inspector scheduling - the math-
ematical model
The overall purpose of the decision support model is to findavwvhich time it is best to

perform spot check ticket inspections in order to maximise niet revenue gained from the
penalty fares.
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Figure 1: Total value of penalty fares as a funcFigure 2: Gross ticketing intensity in inspectors
tion of the time of week the penalty fares wereper hour as a function of time of week.
claimed.

3.1 Available data for decision making

When a passenger not holding a valid ticket is encounterech&ypbDSB S-togs ticket inspec-
tors, a penalty fare is claimed. The penalty fare is a paper filed out by the ticket inspector.
One copy of the form is given to the passenger not holding i vaket, the other copy is
kept by the ticket inspector. The data from the form is latéeeed into a database. From this
database, the following data is available for decision mgkDate and time of issuance, place
of issuance (the last station), the train line that the pagsewithout a ticket was travelling
on, the destination station of the passenger, and, finalyntonetary value of the penalty fare
claimed. Consequently, with regards to where and when pefaks have been claimed, a
very good data basis for modelling already exists. Figuredivs how the value of the claimed
penalty fares are distributed throughout the week.

Unfortunately, DSB S-tog does not presently record in detaen and where ticket inspec-
tions have taken place. One reason is that the ticket insggeperform other ad-hoc service-
related tasks during their duty and that the detailed rengrdf the diferent tasks is time
consuming. However, detailed records of the actual worlsicigedule (check-in, check-out)
for each ticket inspector do exist. These data can be aggtathe so-calledross ticketing
intensity i.e. the number of inspectors on duty per hour (figure 2). Aationed earlier, the
ticket inspectors also perform service-oriented ad-hseksa@part from ticket inspections. For
the modelling purposes described in this paper it is assuhadhe ticket inspectors in general
perform ticket inspections with a constant intensity oher éntire active duty. Unfortunately, it
is not recorded in detail when the individual ticket inspesttake their breaks. Consequently,
we assume that half of the inspectors take their break of one duration in the third hour of
their duty and the rest in the forth hour of their duty. Applyithis assumption to the data from
figure 2 yields theébreak intensityas shown in figure 3. The validity of all of the assumptions
has been thoroughly asserted through analysis of the data.

Subtracting the data on breaks in figure 3 from the grossttigéntensity data of figure 2
yields thenet ticketing intensitas shown in figure 4.

The penalty fare intensityfigure 5) is calculated as the total penalty fare value (&gl
divided by the net ticketing intensity (figure 4). The pepddire intensity is a measure of how
much revenue one can expect to gain from a ticket inspectanggection hour.

On the expense side, the salary of the ticket inspectoramposed of the following terms:
Base salary, night-time bonus, weekend bonus and per-datysbd@he sum of the base salary,
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Figure 5: Penalty fare intensity in DKK per in- Figure 6: Ticket inspector salary rate in DKK
spection hour as a function of time of week. per hour as a function of time of week.

night-time and weekend bonuses may be seen from figure 6. dikeuty bonus is a constant
bonus given for each duty.

3.2 The mathematical model

The decision support tool for scheduling the corps of tickepectors is a so-called mathe-
matical programming model [8], [16]. Similar models to opise the scheduling of the ticket
inspection process have not been found in literature. Hewelie model has some similarity
to the work force approximation model described in [2].

The goal of the model is to maximise the net income from a gogps of ticket inspectors,
i.e. to maximise the dierences between the incomes from penalty fares and the segpased
to obtain that income. The planning period for the model isakiin order to take into account
that activities during week-endsfiir from activities on working days. Therefore, the model
generates generic plans which can be used in a multi-pel@oohimg context.

A mathematical programming model is based on a set of decisidables which together
express the potential decisions. In addition, parametssribing the problem to be solved are
parts of the model. Each potential decision may in practeéhsible or infeasible, and a set
of constraints expressed in terms of equations and indggpgationstrains the set of potential
decisions to the set of feasible decisions. Finally, analwe function expresses the value of



a particular set of decisions. The goal of solving such a rhzd® find that set of feasible
solutions which maximises the value of the objective fuorcti

At DSB S-tog, the size of the inspector corps, the possibtg profilesfor an inspector duty
(when are breaks taken, how intensively is the ticketingediout, see figure 10), check-in and
check-out, and the minimum and maximum number of inspectoduty for each time interval
over each day of the week are examples of parameters for ¢iodepn. For each time interval
during the week, the resulting plan must indicate exactly hany inspectors start their duties
at that particular time interval, and which duty profiles tode used. The constraints define
the sets of feasible solutions, for instance by ensuringttfeanumber of inspectors on duty at
a particular time interval during the week is between theimirm and the maximum number
allowed, and the objective function measures the net indonegegiven feasible set of decisions.

The model is developed with the time intervals over a weekeadral concepts. The set
of these is denoted and indexed by € {0, ...,|T| — 1}. We do not allow duties to start in all
intervals during the week. B¢ c T and indexed by we denote the set of time intervals, in
which it is possible for an inspector to start a duty, i.e. heak-in. Duties may have filerent
profiles regarding breaks and ticket checking intensifiée® set of duty profiles (see figure 10)
is denoted/ and indexed by € {0, ..., |V| - 1}. Each duty profiles covers a set of time intervals
Sy indexed bys € {0, ..., |S,| — 1}.

Thus, when describing the parameters and constraints ahtidel, we in general use
to indicate the weekly time interval currently under coesation,c to indicate the check-in
interval of the current duty under consideration, antb indicate the current time interval
relative to the start of the duty.

As an example, consider that we want to indicate whether &cpkar duty with profile
v € V started at time intervat € C covers the time interval € T under consideration. The
parametep(v, ¢, t) € {0, 1} takes the value 1 if the duty coverand O otherwise:

1 ifte[c,c+]|S,-1]
0 otherwise

pmao={

i.e. ifanse S, exists such that=c + s.

The duty gross ticketing intensity (figure 2), denotedafy, s) € [0..1], in time intervals
of the duty profilev, is the fraction of the time in that interval spent on tickedpection as well
as on breaks. The duty break intensfv, s) € [0..1] is the fraction of time in the interval
spent on breaks. Thus, the duty net ticketing intensity (Ggl), denoted(v, s) € [0..1], is
defined as the flierence between the duty gross ticketing intensity and theldeak intensity:
b(v, s) = a(v, s) — p(v, s). Since a ticket inspector is not claiming penalty faresl&vhaving a
break, the amount of penalty fares a ticket inspector carsbenaed to claim is related to the
net ticketing intensity.

The penalty fare intensity (figure 5), denotg) € R, is defined as the monetary value of
the penalty fares claimed in time intentadlivided by the net number of inspectors on duty in
the time interval.

Since the time indexs (denoting the current time interval relative to the checkine c of
the relevant duty profile) equals O for the time of check-in, the following relation holds with
regards to the general time indefor the current time intervals = t—c. Henceg(t) = g(c+9),
and one can infer whether a duty with profilstarted in time intervat has a break in interval
t from p(v,t — ¢) = p(v, 9).

For a duty profilev starting in time intervat we denote by(v, c, s) € R* theincome from
penalty faresclaimed by a ticket inspector starting his duty of typan time intervals of the
duty:



i(v,c,s) =g(c+9s)-b(v,s), se{0,..|S/ -1}

For each time intervdlwe denote thealary rate(figure 6) of an inspector bijt) € R*. The
salary rate in the time interval is composed of a base satdeywith night-time and weekend
bonuses. Thealary expensequ c, s) € R in time intervals of the duty for an inspector starting
his duty of typev in time intervalcis u(v,c,s) = I(c+s), s€{0,...,|S,| — 1}. In addition, an
inspector receives per-duty bonus me R.

The number of inspectors available in the inspector corgen®ted € N. The total amount
of hours inspectors are available on duty per week &R. The number of inspector duties
available per week id € N. rp,n(t) € N andrna(t) € N is the minimum and maximum number
of inspectors required to be on duty in time intertalpmat) € N indicates the maximum
allowed number of coinciding breaks in time intervak,,(C) € N is the maximum number of
allowed ticket inspector check-ins in time intereaNote that these parameters are conceptually
different from those previously described, as these represatégc decisions to be taken by
the operator prior to solving the model. An extended mode}l melude these as variables in
the optimisation.

The decision variables of the model ax@s,c), v € V, ¢ € C denoting the number of
inspectors using duty profike who start their duty (check-in) in time interval x(v,c) € Ny
and hence these variables are integer variables.

The objective functiorz € R of the model calculates the net income from the complete
weekly duty scheme given by the values of the decision viasadnd has to be maximised.

z= Z Z X(V, c)( Z (iv.c.9) - u(v.c.9)) - m)

veV ceC SeESy

Thus, the objective function is theftBrence between the sum of income from penalty fares
i(v, c, s) and the sum of salary expens€s, c, ) and the per-duty bonuses for all combinations
of duty profilesV, check-in interval€ and duty profile time intervalS.

The constraints of the model cover seven issues: The alaitaimber of inspectors, the
available amount of inspector time per week, the availatieunt of inspector duties per week,
for each time interval the minimum and maximum number of @tdprs allowed on duty, the
maximum number of inspectors concurrently having a breakl, the maximum number of
inspectors starting their duty in a particular time intérVde constraints are:

YEeT: Yiev Xeec X(V,C) - p(V,C,t) <r

Zvev ZceC X(V’ C) Zses\, a(V’ S) <n

ZVEV ZCEC X(V’ C) < d
YteT: Zvev ZCGC X(V’ C) ' p(V, C, t) 2 rmin(t)
VteT: Zvev ZCEC X(V’ C) P (V’ C, t) < rmax(t)
VEeT: 2iev 2eec X(V;C) - P(V,t—C) < Pma(t)
VceC: Zvev < XmaX(C)

Note that in general, the constraints regarding maximumbeurof inspectors concurrently
on duty makes the constraints regarding the available nuofbespectors superfluous.

3.3 Output from the model

One set of all the necessary parameters for a calculatioandléd collectively as a so-called
scenario. This enables us to easily compare the resultsfefett calculations using ftierent
sets of the parameters in the model.
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Figure 7: Parameters and optimisation results of the mdded:number of allowed inspectors
on duty, the present (status-quo) number of inspectors tynathd the number of inspectors on
duty as optimised by the model.

The output from the model is in the form of a an optimisatiopart, one report for each
scenario. An optimisation report contains a tabular owswof the parameters describing the
scenario, the calculated optimal duty plan for the givemade, as well as key economic figures
of the calculated duty plan. The key economic figures inclindeexpected net income, the
expected expenses and the expected balance per week ané&yehermore the optimisation
report also includes several graphs. Examples of the grapduitput in the optimisation reports
are given in figures 7 to 10.

In the example in figure 7, the parameters of the scenarioar®® demand a minimum
of 10 inspectors on duty on all days from early in the mornimdate at night and to allow a
maximum of 65 inspectors on duty Monday to Friday and a marinofi 55 inspectors in the
weekend. In the example in figure 8 the parameters of the Boaara set to allow a maximum
of 15 coinciding breaks at all times. In figure 9 the paransetéithe scenario are set to allow
a maximum of 30 simultaneous check-ins at all times. FigrsHows the four dierent duty
profiles in the scenario, three of standard duration and éshart duration. The ones with
standard duration have the breaks in the middle, early dadridhe duty respectively.

4 Experimental results

The results from the model are promising. Using a parameteus that is considered real-

istically implementable with regard to union agreements et revenue increase in the order
of 15% may be gained from changing the present duty schetlulbe ones optimised by the

model.



18 T T T T T

T T T T T T T T
Model constraint: Maximum number of coinciding breaks
Status quo: Number of coinding breaks

16 L Optimized: Number of coinding breaks |

l |

12 -

14

10 + -

0 1 = 1 h 1 1 h u 1 1

Monday Tuesday  Wednesday  Thursday Friday Saturday Sunday
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One form of output from the model is the set of flagents to the objective function, as
shown in figure 11. These figures show how much net revenue mggihed from a ticket in-
spector starting his duty at a certain time of the week usicegrtin duty profile. The ¢lierence
between the value of the graph for two points in time is thesaimount one may gain (or lose)
by moving a duty of a ticket inspector between those two gamtime. The diference between
two duty profiles is equivalently the amount one would gainlg¢se) if one would change the
duty profile of a ticket inspector. Figure 11 may be used tatereules-of-thumb on how the
ticket inspectors should schedule their duties. As may ke §®m figure 11, the values are
high for all days just after midday. This has to do with the that inspectors starting their duty
at this time are able to inspect tickets in the afternoon-hmlir (where the passenger volume is
high and where many passengers travel without a ticketjki® their break at a time where the
passenger volume is low (few passengers without a ticket),ta return to inspections when
the fraction of passengers travelling without at ticketisgng in the early hours of the evening
(compare to the penalty fare intensity shown in figure 5). |& nf thumb may thus be to make
afternoon duties start at 1400h. Similarly other rules afith may be deducted: Favour duties
on Fridays and Saturdays, favour morning duties at 0600hdeipno Thursday, at 1000h on
Friday and at 0700h in the weekend. From figure 11 it may alsmbbkerved that the fierences
between the duty profiles with early, standard and late tifioeamk are negligible. This clearly
shows that the ticket inspectors should be allowed to ddoidihemselves when they want to
take their break.

The current model is, as already mentioned, a mixed integeggramming model, a MIP
model. However, solving the model as an linear programmingehwithout the integrality
constraint on the variables leads to quite similar resillt& results from the LP model include
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so-called marginals for variables and constraints. Eaalgimal shows, how much the objective
function would change, if the bounds on the variatdastraint is increased one unit. Since the
MIP and the LP solutions are similar, these marginals a@etpected to contain information
valid for the MIP solution. Figure 12 shows the marginalstfoe decision variables. It may
be seen that forcing a positive number of duties to staryearvery costly. The marginals
for constraints may be used to evaluate the cost of the lowend on the number of ticket
inspectors on duty in a time interval - the marginals for éhesnstraints indicate the increase
in the objective function, if the lower bound is decreased.

5 Further development and other models

The model described in this paper represents just one wayabysing the problem of optimis-
ing spot check ticket inspections, namely in the time (whtBmension. DSB S-tog is currently
exploring three other ways of analysing the problem, narmetiie spatial (where) dimension,
in the quantitative (how much) dimension and in the methogichl (how) dimension. These
models are all still in the development stage.

The spatial model is envisioned as a statistical, realsttaetical decision support model,
producing a map of where the most passengers not havinget titky be expected, e.g. for
the next two hours. This map may then be used to dispatch iitkgectors to the areas where
most revenue may be gained from ticket inspection. The mageean be shown to the ticket
inspectors in the field using their mobile PDA equipment. fthither development of the model
at DSB S-tog currently awaits new GPS equipment for bettalisation of the ticket inspectors
to produce data for the modelling purposes.

The quantitative model is envisioned as a statisticaltesjra model answering the question:
“What is the optimal number of ticket inspectors to be empit®e The more spot checks
are carried out, the less passengers are likely to find sciive to not have a ticket. Key
aspects of the model thus include the relation between thauof ticket inspectors (i.e. the
volume of ticket spot check inspections) and the volume s6pagers not having a ticket. A
major challenge will be the calibration of the model since ttumber of ticket inspectors has
been quite constant over the years. One way of overcomisgptioblem would be to slowly
hire more ticket inspectors and to follow the developmenpassenger reactions. Another
way would be to experiment with more spot checking on cettags and less on others, then
reversing the inspection intensity on the lines for a peand following the passenger reactions
carefully. Others have proposed similar models to the onare&urrently exploring, see [10]
and [6]. The latter explores game theory to produce a simgdestbn model.

The methodological model is envisioned as a strategic,teggesed simulation model [13]
answering the question: “How should the spot check tickspection be performed in and
around the train?” The purpose of the model is to explofiedint physical ways of conducting
the spot check ticket inspections by calculating how marthefpassengers not having a ticket
we are able to inspect. Key aspects of the model include: &izespection team, type of
clothing worn (uniform, plain clothes) and movement pattef inspection team. In order
to illustrate these aspects a simple animation has beemugedd Showing this animation to
management and to the ticket inspectors have already dtartthange in awareness of the
physical way the ticket inspections are carried out. Thiarawess may prove it unnecessary to
complete the model, since the changes are already widelgimgmted.

For a further discussion of all of these proposed modelsgeleefer to [9].

The scheduling model described in this paper and the prdposelels described above all
interact with each other. However, the individual modeésrandels each with their own limited
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domain. Future development includes investigation of thespbilities of integrating all models
and taking into account the interaction between tlkecént decisions the models represent.

6 Conclusions

We have described ongoing developments in DSB S-tog onideasipport tools to be used
in the process of maximising the income from penalty faresinoreased ticket sales. One of
these tools is ready to use - the others are still in the dpusdmt phase.

The tools are based on IT andférent mathematical models and clearly demonstrate the
value of using methods from Operations Research in the ppafemalysing and planning the
activities of ticket inspectors. Furthermore, the discusspawned by the modelling activity
does in itself influence both the planning process and theatipa due to increased awareness
of the possibilities and their consequences in the plandeqartment and in the operational
department.
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