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Abstract

A central issue for operators of passenger transportation in urban rail is balancing the income
from tickets against the cost of the operation. The main partof the income except for gov-
ernmental subsidies comes from sales of tickets. There are various ways to ensure that all
passengers carry valid tickets, i.e. to avoid so calledfare evasion. Many European companies
use spot checking of passengers and among these is DSB S-tog.

The current paper describes a decision support tool developed at DSB S-tog. Based on
historical data regarding when penalty fares are claimed and based on the schedules of the
inspectors, this tool enables the construction of new schedules for tickets inspectors, so that the
income from penalty fares claimed from passengers without avalid ticket is maximised. Other
tools to increase income from ticket sales and penalty faresare also discussed.

1 Introduction

Many major cities throughout the world have extensive public transportation systems based on
railways, subways, trams, buses etc. The operators of thesetransportation systems are usually
contractually obliged to provide transportation servicesboth with respect to quality of service
and with respect to capacity. The operators may be public or private companies, however,
in both cases a cost-efficient operation is of prime importance. On the cost side, this calls for
efficient planning and operation. On the income side, the focus is on increasing the use of public
transportation and on ensuring a sufficiently large income in terms of sold tickets. Note that a
trade-off exists between attracting passengers through low prices and ensuring a sufficiently
high income from tickets.

Most train companies operate with several different approaches to ensure that all passengers
buy valid tickets for their travel. The approaches include aticket check when passengers enter
and/or leave the transportation network and spot check of tickets carried out by ticket inspectors.
For the latter approach there is again a trade-off between expenses for salaries etc. for the ticket
inspectors and increased income from ticket sales and penalty fares due to intensified inspection
activities.
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In the Greater Copenhagen region, the major part of the passenger transportation by rail is
carried out by the operator DSB S-tog. In the DSB S-tog network, it is the responsibility of each
passenger to be in possession of a valid ticket - no check is carried out neither on entry to nor
on exit from the network. Spot checking of tickets is the onlyinstrument used to ensure that all
passengers carry valid tickets. The spot checks are carriedout by personnel mainly dedicated to
this task - the ticket inspectors. Several questions regarding the corps of ticket inspectors and its
use are immediate: For a given number of employees in the corps, how should the spot checking
be carried out both regarding the temporal (when), the spatial (where) and the methodological
(how) dimension?

DSB S-tog is in the process of developing IT-based decision support tools to address these
questions. In the current paper we describe the system developed to optimise the income from
penalty fares in the temporal dimension given the number of ticket inspectors available and the
rules and regulations regarding the activities of the inspectors defined by union agreements and
organisational aspects of the company.

The paper is organised as follows: In section 2 we describe the situation in DSB S-tog and
three other European operators with respect to spot checking of tickets. The available data and
the mathematical model on which the decision support tool isbased are the topics of section
3. Section 4 reports experimental results, and section 5 discusses further development of the
tool as well as tools to address the other questions raised previously. Finally, conclusions of the
work are presented in section 6.

2 Ticket spot checking at different rail operators

This section compares the overall procedures for the spot check inspections of tickets for dif-
ferent operators. All of the operators operate ’open’ systems, where no checking of tickets is
performed upon entry to or exit from the system.

2.1 DSB S-tog, Copenhagen

At DSB S-tog, ticket inspections are mainly performed in twodifferent ways. Most of the
inspections are performed in the driving trains, usually byteams of 1 - 4 ticket inspectors. In
larger control raids on stations, 10 - 15 ticket inspectors may participate. The ticket inspectors
mainly perform the inspections wearing uniform, however since September 2008, inspections
using plain clothes are also performed. The experiences using plain clothes are good, there is
less trouble with unruly passengers. Approx. 8% of all 91 million passengers per year have
their tickets inspected. Of theinspectedpassengers, approx. 2% travel without a ticket. We
believe that thetotal number of passengers travelling without a ticket is approx.4%. The
difference between these two figures lies in the fact that many passengers travelling without at
ticket are able to escape inspection. An independent investigation [1] shows similar percentages
for questionedpassengers, but these numbers are probably biased in the same way as the ones
observed by the ticket inspectors themselves. Presently, DSB S-tog has approx. 160 ticket
inspectors employed. The train units operated by DSB S-tog are relatively long: 84 and 43
meters, respectively. The value of a penalty fare is currently 750 DKK equivalent to 100 EUR.

2.2 T-banedrift, Oslo

Compared to DSB S-tog, the network of T-banedrift [4], [14], [7] is smaller and so is the
volume of passengers. T-banedrift has a relatively small number of ticket inspectors employed,
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and thus the fraction of inspected passengers is considerably smaller than that of DSB S-tog.
The train units operated by T-banedrift are shorter compared to the ones operated by DSB S-tog.
This, in combination with large teams of 7 - 8 ticket inspectors at a time, makes it much harder
to escape inspection. Thus the fraction of inspected passengers not holding a ticket is as high
as 4%, twice the number of DSB S-tog. Ticket inspection is mainly conducted in plain clothes,
however, in the weekend uniforms are used to provide more authority. Presently the value of a
penalty fare is 900 NOK or 750 NOK upon direct payment. This isequivalent to 100 and 85
EUR, respectively.

2.3 SBB S-Bahn, Zürich

SBB S-Bahn Zürich [18], [17], [5], [15] operates a much larger network than that of DSB S-tog.
The volume of passengers is also much higher. SBB has considerably more inspectors employed
than DSB S-tog, however, relative to the network size and passenger volume, DSB S-tog has
more inspectors employed. The percentage ofinspectedpassengers of thetotal amount of
passengers is thus less than half of that of DSB S-tog. The fraction of theinspectedpassengers
travelling without a ticketis similar to that of DSB S-tog. Presently the value of a penalty fare
is 80, 120 and 150 CHF for the first, second and third time a passenger is encountered without
a ticket in a two year period. This is equivalent to 50, 80 and 100 EUR. The train units operated
by SBB are of similar length to those of DSB S-tog, however somehave two stories and toilets,
which complicates the inspection process considerably. Presently, SBB almost exclusively uses
uniformed personnel for ticket inspections. Earlier, ticket inspectors also operated in plain
clothes, however, contrary to the experience of DSB S-tog, it is the experience of SBB that
inspectors in plain clothes result in more trouble with unruly passengers. We believe this is
a cultural difference between the two countries. The Swiss legislation states that an operator
may not profit from collecting penalty fares [6]. This puts some constraints upon the effort to
optimise the spot check inspection of tickets.

2.4 ÖBB S-Bahn, Vienna

ÖBB S-Bahn Wien [11], [12], [3] operates a network that is larger and has more passenger
volume than DSB S-tog, however, ÖBB has much fewer ticket inspectors employed. Some
of the trains operated by ÖBB have traditional train conductors controlling the tickets of all
passengers in the train. Others are spot check inspected. With regard to optimisation, the
planning policy of ÖBB until now has been to inspect as many passengers as possible. However,
through cooperation with DSB S-tog, ÖBB is presently investigating methods similar to those
described in the current paper and in [9]. Presently the value of a penalty fare is 60 EUR. The
fraction ofinspectedpassengers travelling without a ticket is similar to that ofDSB S-tog. Also,
the characteristics of the rolling stock are similar.

3 Decision support for ticket inspector scheduling - the math-
ematical model

The overall purpose of the decision support model is to find out at which time it is best to
perform spot check ticket inspections in order to maximise the net revenue gained from the
penalty fares.
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Figure 2: Gross ticketing intensity in inspectors
per hour as a function of time of week.

3.1 Available data for decision making

When a passenger not holding a valid ticket is encountered by one of DSB S-togs ticket inspec-
tors, a penalty fare is claimed. The penalty fare is a paper form filled out by the ticket inspector.
One copy of the form is given to the passenger not holding a valid ticket, the other copy is
kept by the ticket inspector. The data from the form is later entered into a database. From this
database, the following data is available for decision making: Date and time of issuance, place
of issuance (the last station), the train line that the passenger without a ticket was travelling
on, the destination station of the passenger, and, finally, the monetary value of the penalty fare
claimed. Consequently, with regards to where and when penalty fares have been claimed, a
very good data basis for modelling already exists. Figure 1 shows how the value of the claimed
penalty fares are distributed throughout the week.

Unfortunately, DSB S-tog does not presently record in detail when and where ticket inspec-
tions have taken place. One reason is that the ticket inspectors perform other ad-hoc service-
related tasks during their duty and that the detailed recording of the different tasks is time
consuming. However, detailed records of the actual workingschedule (check-in, check-out)
for each ticket inspector do exist. These data can be aggregated to the so-calledgross ticketing
intensity, i.e. the number of inspectors on duty per hour (figure 2). As mentioned earlier, the
ticket inspectors also perform service-oriented ad-hoc tasks apart from ticket inspections. For
the modelling purposes described in this paper it is assumedthat the ticket inspectors in general
perform ticket inspections with a constant intensity over the entire active duty. Unfortunately, it
is not recorded in detail when the individual ticket inspectors take their breaks. Consequently,
we assume that half of the inspectors take their break of one hour duration in the third hour of
their duty and the rest in the forth hour of their duty. Applying this assumption to the data from
figure 2 yields thebreak intensityas shown in figure 3. The validity of all of the assumptions
has been thoroughly asserted through analysis of the data.

Subtracting the data on breaks in figure 3 from the gross ticketing intensity data of figure 2
yields thenet ticketing intensityas shown in figure 4.

The penalty fare intensity(figure 5) is calculated as the total penalty fare value (figure 1)
divided by the net ticketing intensity (figure 4). The penalty fare intensity is a measure of how
much revenue one can expect to gain from a ticket inspector per inspection hour.

On the expense side, the salary of the ticket inspectors is composed of the following terms:
Base salary, night-time bonus, weekend bonus and per-duty bonus. The sum of the base salary,
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Figure 6: Ticket inspector salary rate in DKK
per hour as a function of time of week.

night-time and weekend bonuses may be seen from figure 6. The per-duty bonus is a constant
bonus given for each duty.

3.2 The mathematical model

The decision support tool for scheduling the corps of ticketinspectors is a so-called mathe-
matical programming model [8], [16]. Similar models to optimise the scheduling of the ticket
inspection process have not been found in literature. However, the model has some similarity
to the work force approximation model described in [2].

The goal of the model is to maximise the net income from a givencorps of ticket inspectors,
i.e. to maximise the differences between the incomes from penalty fares and the expenses used
to obtain that income. The planning period for the model is a week in order to take into account
that activities during week-ends differ from activities on working days. Therefore, the model
generates generic plans which can be used in a multi-period planning context.

A mathematical programming model is based on a set of decision variables which together
express the potential decisions. In addition, parameters describing the problem to be solved are
parts of the model. Each potential decision may in practice be feasible or infeasible, and a set
of constraints expressed in terms of equations and inequalities constrains the set of potential
decisions to the set of feasible decisions. Finally, an objective function expresses the value of
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a particular set of decisions. The goal of solving such a model is to find that set of feasible
solutions which maximises the value of the objective function.

At DSB S-tog, the size of the inspector corps, the possibleduty profilesfor an inspector duty
(when are breaks taken, how intensively is the ticketing carried out, see figure 10), check-in and
check-out, and the minimum and maximum number of inspectorson duty for each time interval
over each day of the week are examples of parameters for the problem. For each time interval
during the week, the resulting plan must indicate exactly how many inspectors start their duties
at that particular time interval, and which duty profiles areto be used. The constraints define
the sets of feasible solutions, for instance by ensuring that the number of inspectors on duty at
a particular time interval during the week is between the minimum and the maximum number
allowed, and the objective function measures the net incomefor a given feasible set of decisions.

The model is developed with the time intervals over a week as central concepts. The set
of these is denotedT and indexed byt ∈ {0, ..., |T | − 1}. We do not allow duties to start in all
intervals during the week. ByC ⊂ T and indexed byc we denote the set of time intervals, in
which it is possible for an inspector to start a duty, i.e. to check-in. Duties may have different
profiles regarding breaks and ticket checking intensities.The set of duty profiles (see figure 10)
is denotedV and indexed byv ∈ {0, ..., |V| −1}. Each duty profilev covers a set of time intervals
Sv indexed bys ∈ {0, ..., |Sv| − 1}.

Thus, when describing the parameters and constraints of themodel, we in general uset
to indicate the weekly time interval currently under consideration,c to indicate the check-in
interval of the current duty under consideration, ands to indicate the current time interval
relative to the start of the duty.

As an example, consider that we want to indicate whether a particular duty with profile
v ∈ V started at time intervalc ∈ C covers the time intervalt ∈ T under consideration. The
parameterρ(v, c, t) ∈ {0,1} takes the value 1 if the duty coverst and 0 otherwise:

ρ(v, c, t) =

{

1 if t ∈ [c; c+ |Sv| − 1]
0 otherwise

i.e. if ans ∈ Sv exists such thatt = c+ s.
The duty gross ticketing intensity (figure 2), denoted bya(v, s) ∈ [0..1], in time intervals

of the duty profilev, is the fraction of the time in that interval spent on ticket inspection as well
as on breaks. The duty break intensityp(v, s) ∈ [0..1] is the fraction of time in the interval
spent on breaks. Thus, the duty net ticketing intensity (figure 4), denotedb(v, s) ∈ [0..1], is
defined as the difference between the duty gross ticketing intensity and the duty break intensity:
b(v, s) = a(v, s) − p(v, s). Since a ticket inspector is not claiming penalty fares while having a
break, the amount of penalty fares a ticket inspector can be assumed to claim is related to the
net ticketing intensity.

The penalty fare intensity (figure 5), denotedg(t) ∈ R, is defined as the monetary value of
the penalty fares claimed in time intervalt divided by the net number of inspectors on duty in
the time interval.

Since the time indexs (denoting the current time interval relative to the check-in timec of
the relevant duty profilev) equals 0 for the timec of check-in, the following relation holds with
regards to the general time indext for the current time interval:s= t−c. Hence,g(t) = g(c+ s),
and one can infer whether a duty with profilev started in time intervalc has a break in interval
t from p(v, t − c) = p(v, s).

For a duty profilev starting in time intervalc we denote byi(v, c, s) ∈ R+ the income from
penalty faresclaimed by a ticket inspector starting his duty of typev in time intervals of the
duty:
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i(v, c, s) = g(c+ s) · b(v, s), s ∈ {0, ..., |Sv| − 1}

For each time intervalt we denote thesalary rate(figure 6) of an inspector byl(t) ∈ R+. The
salary rate in the time interval is composed of a base salary rate with night-time and weekend
bonuses. Thesalary expenses u(v, c, s) ∈ R in time intervalsof the duty for an inspector starting
his duty of typev in time intervalc is u(v, c, s) = l(c+ s), s ∈ {0, ..., |Sv| − 1}. In addition, an
inspector receives aper-duty bonus m∈ R.

The number of inspectors available in the inspector corps isdenotedr ∈ N. The total amount
of hours inspectors are available on duty per week isn ∈ R. The number of inspector duties
available per week isd ∈ N. rmin(t) ∈ N andrmax(t) ∈ N is the minimum and maximum number
of inspectors required to be on duty in time intervalt. pmax(t) ∈ N indicates the maximum
allowed number of coinciding breaks in time intervalt. xmax(c) ∈ N is the maximum number of
allowed ticket inspector check-ins in time intervalc. Note that these parameters are conceptually
different from those previously described, as these represent strategic decisions to be taken by
the operator prior to solving the model. An extended model may include these as variables in
the optimisation.

The decision variables of the model arex(v, c), v ∈ V, c ∈ C denoting the number of
inspectors using duty profilev who start their duty (check-in) in time intervalc. x(v, c) ∈ N0

and hence these variables are integer variables.
The objective functionz ∈ R of the model calculates the net income from the complete

weekly duty scheme given by the values of the decision variables and has to be maximised.

z=
∑

v∈V

∑

c∈C

x(v, c)
(

∑

s∈Sv

(

i(v, c, s) − u(v, c, s)
)

−m
)

Thus, the objective function is the difference between the sum of income from penalty fares
i(v, c, s) and the sum of salary expensesu(v, c, s) and the per-duty bonuses for all combinations
of duty profilesV, check-in intervalsC and duty profile time intervalsS.

The constraints of the model cover seven issues: The available number of inspectors, the
available amount of inspector time per week, the available amount of inspector duties per week,
for each time interval the minimum and maximum number of inspectors allowed on duty, the
maximum number of inspectors concurrently having a break, and the maximum number of
inspectors starting their duty in a particular time interval. The constraints are:

∀t ∈ T :
∑

v∈V
∑

c∈C x(v, c) · ρ(v, c, t) ≤ r
∑

v∈V
∑

c∈C x(v, c)
∑

s∈Sv
a(v, s) ≤ n

∑

v∈V
∑

c∈C x(v, c) ≤ d
∀t ∈ T :

∑

v∈V
∑

c∈C x(v, c) · ρ(v, c, t) ≥ rmin(t)
∀t ∈ T :

∑

v∈V
∑

c∈C x(v, c) · ρ(v, c, t) ≤ rmax(t)
∀t ∈ T :

∑

v∈V
∑

c∈C x(v, c) · p(v, t − c) ≤ pmax(t)
∀c ∈ C :

∑

v∈V ≤ xmax(c)

Note that in general, the constraints regarding maximum number of inspectors concurrently
on duty makes the constraints regarding the available number of inspectors superfluous.

3.3 Output from the model

One set of all the necessary parameters for a calculation is handled collectively as a so-called
scenario. This enables us to easily compare the results of different calculations using different
sets of the parameters in the model.
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Figure 7: Parameters and optimisation results of the model:The number of allowed inspectors
on duty, the present (status-quo) number of inspectors on duty and the number of inspectors on
duty as optimised by the model.

The output from the model is in the form of a an optimisation report, one report for each
scenario. An optimisation report contains a tabular overview of the parameters describing the
scenario, the calculated optimal duty plan for the given scenario, as well as key economic figures
of the calculated duty plan. The key economic figures includethe expected net income, the
expected expenses and the expected balance per week and year. Furthermore the optimisation
report also includes several graphs. Examples of the graphical output in the optimisation reports
are given in figures 7 to 10.

In the example in figure 7, the parameters of the scenario are set to demand a minimum
of 10 inspectors on duty on all days from early in the morning to late at night and to allow a
maximum of 65 inspectors on duty Monday to Friday and a maximum of 55 inspectors in the
weekend. In the example in figure 8 the parameters of the scenario are set to allow a maximum
of 15 coinciding breaks at all times. In figure 9 the parameters of the scenario are set to allow
a maximum of 30 simultaneous check-ins at all times. Figure 10 shows the four different duty
profiles in the scenario, three of standard duration and one of short duration. The ones with
standard duration have the breaks in the middle, early and late in the duty respectively.

4 Experimental results

The results from the model are promising. Using a parameter set-up that is considered real-
istically implementable with regard to union agreements etc. a revenue increase in the order
of 15% may be gained from changing the present duty schedulesto the ones optimised by the
model.
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Figure 8: Parameters and optimisation results of the model:The model constraints with re-
gard to maximum number of coinciding breaks, the present (status-quo) number of coinciding
breaks, and the number of coinciding breaks in the duty plan optimised by the model.

One form of output from the model is the set of coefficients to the objective function, as
shown in figure 11. These figures show how much net revenue may be gained from a ticket in-
spector starting his duty at a certain time of the week using acertain duty profile. The difference
between the value of the graph for two points in time is thus the amount one may gain (or lose)
by moving a duty of a ticket inspector between those two points in time. The difference between
two duty profiles is equivalently the amount one would gain (or lose) if one would change the
duty profile of a ticket inspector. Figure 11 may be used to create rules-of-thumb on how the
ticket inspectors should schedule their duties. As may be seen from figure 11, the values are
high for all days just after midday. This has to do with the fact that inspectors starting their duty
at this time are able to inspect tickets in the afternoon rush-hour (where the passenger volume is
high and where many passengers travel without a ticket), to take their break at a time where the
passenger volume is low (few passengers without a ticket), and to return to inspections when
the fraction of passengers travelling without at ticket is rising in the early hours of the evening
(compare to the penalty fare intensity shown in figure 5). A rule of thumb may thus be to make
afternoon duties start at 1400h. Similarly other rules of thumb may be deducted: Favour duties
on Fridays and Saturdays, favour morning duties at 0600h Monday to Thursday, at 1000h on
Friday and at 0700h in the weekend. From figure 11 it may also beobserved that the differences
between the duty profiles with early, standard and late time of break are negligible. This clearly
shows that the ticket inspectors should be allowed to decidefor themselves when they want to
take their break.

The current model is, as already mentioned, a mixed integer programming model, a MIP
model. However, solving the model as an linear programming model without the integrality
constraint on the variables leads to quite similar results.The results from the LP model include
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Figure 11: The value of the coefficients to the objective function of the model (MIP) for the time
of week and the four different duty profiles corresponding to the profiles shown in figure 10.
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Figure 12: The value of the marginals in the corresponding LPformulation of the model for
the time of week and the four different duty profiles corresponding to the profiles shown in
figure 10.

11



so-called marginals for variables and constraints. Each marginal shows, how much the objective
function would change, if the bounds on the variable/constraint is increased one unit. Since the
MIP and the LP solutions are similar, these marginals are also expected to contain information
valid for the MIP solution. Figure 12 shows the marginals forthe decision variables. It may
be seen that forcing a positive number of duties to start early is very costly. The marginals
for constraints may be used to evaluate the cost of the lower bound on the number of ticket
inspectors on duty in a time interval - the marginals for these constraints indicate the increase
in the objective function, if the lower bound is decreased.

5 Further development and other models

The model described in this paper represents just one way of analysing the problem of optimis-
ing spot check ticket inspections, namely in the time (when)dimension. DSB S-tog is currently
exploring three other ways of analysing the problem, namelyin the spatial (where) dimension,
in the quantitative (how much) dimension and in the methodological (how) dimension. These
models are all still in the development stage.

The spatial model is envisioned as a statistical, real-time, tactical decision support model,
producing a map of where the most passengers not having a ticket may be expected, e.g. for
the next two hours. This map may then be used to dispatch ticket inspectors to the areas where
most revenue may be gained from ticket inspection. The map can even be shown to the ticket
inspectors in the field using their mobile PDA equipment. Thefurther development of the model
at DSB S-tog currently awaits new GPS equipment for better localisation of the ticket inspectors
to produce data for the modelling purposes.

The quantitative model is envisioned as a statistical, strategic model answering the question:
“What is the optimal number of ticket inspectors to be employed?” The more spot checks
are carried out, the less passengers are likely to find it attractive to not have a ticket. Key
aspects of the model thus include the relation between the number of ticket inspectors (i.e. the
volume of ticket spot check inspections) and the volume of passengers not having a ticket. A
major challenge will be the calibration of the model since the number of ticket inspectors has
been quite constant over the years. One way of overcoming this problem would be to slowly
hire more ticket inspectors and to follow the development inpassenger reactions. Another
way would be to experiment with more spot checking on certainlines and less on others, then
reversing the inspection intensity on the lines for a periodand following the passenger reactions
carefully. Others have proposed similar models to the one weare currently exploring, see [10]
and [6]. The latter explores game theory to produce a simple decision model.

The methodological model is envisioned as a strategic, agent-based simulation model [13]
answering the question: “How should the spot check ticket inspection be performed in and
around the train?” The purpose of the model is to explore different physical ways of conducting
the spot check ticket inspections by calculating how many ofthe passengers not having a ticket
we are able to inspect. Key aspects of the model include: Sizeof inspection team, type of
clothing worn (uniform, plain clothes) and movement pattern of inspection team. In order
to illustrate these aspects a simple animation has been produced. Showing this animation to
management and to the ticket inspectors have already started a change in awareness of the
physical way the ticket inspections are carried out. This awareness may prove it unnecessary to
complete the model, since the changes are already widely implemented.

For a further discussion of all of these proposed models, please refer to [9].
The scheduling model described in this paper and the proposed models described above all

interact with each other. However, the individual models are models each with their own limited
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domain. Future development includes investigation of the possibilities of integrating all models
and taking into account the interaction between the different decisions the models represent.

6 Conclusions

We have described ongoing developments in DSB S-tog on decision support tools to be used
in the process of maximising the income from penalty fares and increased ticket sales. One of
these tools is ready to use - the others are still in the development phase.

The tools are based on IT and different mathematical models and clearly demonstrate the
value of using methods from Operations Research in the process of analysing and planning the
activities of ticket inspectors. Furthermore, the discussion spawned by the modelling activity
does in itself influence both the planning process and the operation due to increased awareness
of the possibilities and their consequences in the planningdepartment and in the operational
department.

References

[1] COWI. HUR, DSB og ØSS: Rejsehjemmelsundersøgelse 2006. Årsrapport. 2007.

[2] Michael Folkmann, Julie Jespersen, and Morten Nielsen.Estimates on Rolling Stock and
Crew in DSB S-tog Based on Timetables. Lecture Notes in Computer Science. Springer,
2004.

[3] ÖBB. Home Page. http://www.oebb.at/.

[4] T-banedrift Oslo.Personal communication. 2008.

[5] SBB. Home Page. http://www.sbb.ch/en/index.htm.

[6] Patrick Schuler. Schwarzfahren: Eine ökonomische Betrachtung. Lehrstuhl für Indus-
trieökonomik, Sozialökonomisches Institut, UniversitätZürich. 2006.

[7] Oslo T-Banedrift.Home Page. http://www.tbane.no/.

[8] Hamdy A. Taha.Operations Research. Prentice-Hall, 2003.

[9] Per Thorlacius. Optimering af stikprøvekontrol af billetter: Hvordan foretages dette?
DSB S-tog, Production Planning, Kalvebod Brygge 32, DK-1560København V, Denmark.
2008.

[10] Verband Deutscher Verkehrsunternehmen (VDV).Maßnahmen zur Einnahmensicherung,
Teil II: Kennzahlen der Fahrausweisprüfung und optimaler Kontrollgrad. Number 9708
in VDV Mitteilung. 2001.

[11] ÖBB Vienna.Personal communication. 2009.

[12] Schnellbahn Wien.Home Page. http://www.schnellbahn-wien.at/index.htm.

[13] Wikipedia. Agent-based Model. http://en.wikipedia.org/wiki /Agent_based_model.

[14] Wikipedia. Oslo Metro. http://en.wikipedia.org/wiki /Oslo_Metro.

13



[15] Wikipedia. Zürich S-Bahn. http://en.wikipedia.org/wiki /Zürich_S-Bahn.

[16] Laurence A. Wolsey.Integer Programming. Wiley-Interscience Series in Discrete Math-
ematics and Optimization. John Wiley and Sons, 1998.

[17] ZVV. Home Page. http://www.zvv.ch/en/.

[18] SBB Zürich.Personal communication. 2007.

14


