
Presenter First: Organizing Complex GUI Applications
for Test-Driven Development

Micah Alles
David Crosby Brian Harleton Greg Pattison
Carl Erickson Michael Marsiglia Curt Stienstra
Atomic Object X-Rite Burke Porter Machinery

Abstract

 Presenter First (PF) is a technique for
organizing source code and development activities to
produce fully tested GUI applications from customer
stories using test-driven development. The three
elements of Presenter First are a strategy for how
applications are developed and tested, a variant on
the Model View Presenter (MVP) design pattern, and
a particular means of composing MVP triads.
Presenter tests provide an economical alternative to
automated GUI system tests. We have used Presenter
First on projects ranging in size from several to a
hundred MVP triads. This paper describes MVP
creation, composition, scaling, and the tools and
process we use. An example C# application illustrates
the application of the Presenter First technique.

1. The Problem

Test-driven development from user stories lets us
build high quality code and deliver working software
early and often. In our experience, following this
approach with complex GUI applications is hard, as
testing the view through an application’s interface is
difficult and expensive. The cost of GUI testing and
the pain we felt in view changes drove us to find a
better way. Presenter First is what we call the better
way.

Presenter First is a combination of process and
pattern. The process aspect of Presenter First is the
most important. Learning how to build applications
Presenter First lets you do test-driven development for
large GUI applications following user-prioritized
stories.

We use a variant of the Model View Presenter
(MVP) design pattern. The three components of MVP
are:

Model The data and logic that serves the needs
of a presenter for some aspect of the business.
V i e w A portion of the interface of the
application−what the user sees and interacts with.

Presenter Behavior that corresponds directly to
customer stories. Application wiring.

Figure 1 shows the variant of MVP we use to build
applications following Presenter First. The model and
view are isolated from each other; the presenter is the
center of the universe.

Figure 1. MVP variant used in PF.

We have used Presenter First in at least six
applications, three languages, and diverse business
domains. It gives us test coverage corresponding
directly to user stories. It isolates our code and tests
from high rates of change in the view. It’s fairly easy
to learn. Once learned, it’s simple to apply. It scales
up. And it eliminates the pain of GUI testing.

2. Our Story

The evolution of our Presenter First approach began
with a software application written in C# that
interfaced with a device for measuring and managing
the color of sheets that are printed by large high speed
presses. The application consists of over 30 separate
user interfaces and a SQL Server database.

Our team was already applying agile design
practices. Though we had no formal standards in this
regard, we strove to separate the view from the
business logic. Our success at this was put to the test
when one year into a two year project, our company
hired a graphic design firm to redesign the user
interfaces for the entire application. We soon
discovered that our decoupling efforts were insufficient
for such a major change. The view portion of the code
base understandably had to be redone. However, we
also discovered that the control logic, such as ‘when

list is empty, disable button’, also had to be nearly
completely redone. In fact, even portions of our model
and business logic had to be modified to account for
redesigned user interfaces.

This experience convinced us that we needed a more
rigorous method of separating the view from the
business logic. We introduced a presenter/controller to
handle the interactions between view and model. There
are many versions and implementations of the MVC or
MVP pattern. Our prior experience with user interface
overhauls convinced us that we wanted the strictest
separation possible between these concerns.

Another requirement of this application was that it
had to support large customers who wanted to brand
the application with their own custom graphics, style,
and logos. Our goal was to isolate the changes to the
view portion of the code to support different
customers. The presenter/controller logic should
remain exactly the same. From this, it became clear
that if the view supported an interface for the presenter
to work with, then we could easily swap in and out the
appropriate view depending on the version of the
application. Not only did this improve the portability
of the view code, it greatly improved the testability of
the presenter.

Seeing this improvement of testability and
portability, we made interfaces for the models such
that the presenter no longer worked with any concrete
classes. Though we improved the decoupling of our
application and the testability of our presenters, we
still needed an effective way to test the most common
part of a user interface: the user’s interaction.

As testing views is difficult and tedious, we
decided the view should be as thin and simple as
possible. Ideally, the view should simply act as a pass-
through of user events and as getters and setters of
display information. To handle this, all user events
such as button clicks and item selections were
represented by events on the view interface. With the
view and model as members of the presenter, the
presenter can then attach itself to these view events.
View events could easily be mocked and fired in the
presenter unit tests, simulating customer interaction.
Likewise, model events such as a measurement from
the scanning device or a project loaded from the data
source could be captured and tested in a similar
fashion.

This led us to the realization that the presenter was
only the interpreter of events and no longer had a
public API. An interesting side effect of this was that
we no longer even had to hold a reference to the
presenter. We simply constructed the presenter with the
appropriate view and model, which glued them
together for the lifetime of the application. Further
interaction with the presenter was no longer needed.
Figure 2 demonstrates the relationships between
classes in Presenter First.

Figure 2. Class diagram of Presenter First
MVP classes, tests classes, and interfaces.

After developing several tests for the presenter, it
became clear that they closely resembled the original
user stories. For example, a test named something like
test_UserClicksSave_Measurement sounds
much like the title of a story. The strong relationship
between stories and tests led us into the technique we
now call Presenter First.

3. Building an Application Presenter First

Presenter First is dry walling, not quantum
physics. Once you learn it, you can do it repeatably,
regularly, and (with good tools) quickly. Development
proceeds according to the pseudo-code in Figure 3.

The outer loop of the Presenter First process
requires frequent refactoring of the model and view
interfaces. These refactorings are not expensive,
however, since at this point there are only mock
implementations of these interfaces. After the presenter
is complete, specifications for the view and model are
both complete and minimal and ready to be
implemented.

The view portion of the code could be handed off to
someone with usability expertise who does not need
much programming knowledge. When the user sees the
application interface, they often request changes such
as ‘move this button over here’, or ‘put these controls
in a group box’. With Presenter First these changes are
isolated to the view portion of the code and do not
affect the rest of the application. Changes to the view
become easy to make and present very low risk to the
application.

Testing the view may either be automated, if the
tools, budget, and risk dictate, or left to a final manual
system test phase. The view is very thin, with
methods that consist of little more than firing properly
typed events to be handled by the presenter. Assuming
that the underlying GUI widgets work, the primary use
of unit tests on the view are to assert that the widgets

Figure 3. Algorithm for doing presenter first
development.

are properly placed on the screen, and that they are
programmed to fire the correct event type. A
consequence of the shallow view is that the view
interface takes only primitive types as parameters.
Sending complex types to the view would require
processing in the view, widening the view and
requiring unit testing.

The presenter is intentionally stateless and has no
public methods. The unit tests of the presenter
implicitly test the proper implementation of the wiring
of the application as expressed by the presenter's
private methods. The application's functionality is
coordinated between the view and the model by the
presenter. This makes the presenter, and its suite of
unit tests, a cohesive and centralized source of
documentation for the application's behavior. In effect
the presenter and its tests are a living, executable
specification for the application. Our experience is that
changes and additions to application requirements (as
distinct from user interface tweaks) can often be
handled solely in the presenter. Because the presenter
has thorough unit test coverage, this work can be done
quickly and confidently, making modifications to the
application simple from both the customer and
developer perspective.

Communication with the presenter is made possible
by the use of an event subsystem to loosely couple the
model and view to the presenter. The most common

case is for the view to fire events that the presenter
consumes, though model triggered events are also
possible. Using events to communicate with the
presenter allows for separate packaging of components,
reduces compilation dependencies, and allows for the
same view to be connected to presenters with different
behaviors.

Presenter First allows our application development
to satisfy one of the most fundamental pillars of the
agile approach: developing exactly what your customer
wants, and nothing more. The portions of the code
most prone to ambiguity and over-development (model
and view) have specific and complete requirements
based on customer stories. This substantially reduces
over-engineering of code and wasted development
time.

3.1 Scaling Presenter First

Our naive first approach to applying the MVP
pattern ran into scalability problems. One problem is
where the model, view, and presenter objects are
created. Our approach is to pass the model and view to
the presenter via its constructor. This arrangement of
dependency injection allows straightforward testing of
the presenter, and answers the question of where model
and view objects are created. The remaining, crucial
question of where the presenters should be created is
deceivingly simple. Answering it lead us to a
breakthrough in scalability of the MVP pattern.

We first tried instantiating and wiring together all of
the application's MVP triads from the main function.
This soon became brittle, tedious, and un-testable. For
larger, more dynamic applications we experimented
with classes we called constructors and composers.
Similar to factories, these classes were given the sole
job of creating MVP objects. The repetitive,
predictable nature of these classes and a dislike for
silly typing inspired us to build or find tools to
generate them.

3.2 Tools

Good tools help make Presenter First practical for
large-scale applications. The importance of good tools
cannot be underestimated. Presenter First requires the
creation of many, many interfaces and test classes.
Automating the tedious aspect of this work makes
development more fun and improves the likelihood of
sticking with the process.

We use passive custom code generators written in
Ruby for creating new MVP triplets. All new classes
are automatically added to the Visual Studio IDE's
project file by the tool.

Using Spring.NET streamlines the composition of
MVPs into the application [1]. Leveraging Spring
provides two significant benefits: painless MVP

construction and the ability to test that construction.
By relying on constructor based dependency injection
for all application composition, both the pain of
adding many small classes to the application was
reduced and cyclic dependencies were easily avoided.
Spring.NET also allows us to test that we are properly
creating all necessary model, view, and presenter
objects.

The Resharper plugin for the Visual Studio IDE aids
in the liberal use of interfaces throughout the
application [9]. It provides a micro level of just-in-
time passive code generation that aids in stubbing
methods in interfaces and implementations, as well as
quick templates for subscription patterns and
conventions we developed.

Since almost every class created in the application
has a corresponding interface, we use NMock to create
dynamic mocks for the models and views when testing
presenters [10]. Resharper templates are also used for
test case method generation, NMock dynamic mock
creation and usage, and other convenient shortcuts.
NMock removes much of the tedium of creating mock
objects for the interaction testing we favor when using
Presenter First [11].

4. Example Uses

Atomic Object works closely with manufacturers of
low-volume, high-value products for which software
represents a competitive advantage. Presenter First was
developed and refined during projects with two of our
customers. X-Rite is a global provider of color
measurement solutions. X-Rite systems comprise
hardware, software and services for the verification and
communication of color data. Burke Porter Machinery
is a world-leader in advanced electrical, mechanical,
and software solutions for automotive test systems.

4.1 Adapters for Complex Views

A Presenter can become overburdened when you're
trying to present complex, abstract data structures to
the user for viewing and editing; there is no natural, it-
just-works user component that can handle your
structure. It's fine to send up a few words or
numbers—every GUI toolkit has a text field or label
construct, so view-level implementation is trivial—but
what about when you need to show a data-table view
of your Contact database? (Some GUI toolkits provide
nice data-table controls that can be used without much
effort—let's say, though, that there isn't one to suit our
needs. For example, .NET's DataTable wasn't good
enough for us in a recent project.)

The language level of our Presenter starts out at the
domain level; we speak in terms of Contacts, e.g., "the
user edits a Contact's name," "the model notifies us of
a change in Contact data," and so on. But we've

decided to use a 3rd-party data grid whose API
provides a lot of flexibility in terms of cells, cell
behavior, and cell rendering, but not in terms of
Contacts or column headers. Wrapping the API's cell-
and-string-oriented functions with domain-oriented
functions will require some logic, string formatting
and parsing, cell-click event handling, etc. We're not
comfortable putting that responsibility inside our
view, since we're not going to be able unit test that
code.

Our initial response was to shift this code into our
model, and make the presenter speak between the
model and view in terms of cell coordinates and
multidimensional arrays of strings. Suddenly our
domain language was mixed with (or replaced entirely
by) "widget" language. In addition to (or instead of)
editing Contacts, we're pushing typeless string arrays
around, subtracting column indices and row counts to
account for headers, reinterpreting mouse clicks, etc.
And worse, our model has become overloaded with the
responsibility of data conversion, data cell location
offsets, and internal management of both Contacts and
a translated version of presentation data. This is very
hard to test, very hard to read, and hard to understand
if you just wanted to know what the model was
supposed to do. And reading the presenter doesn't help
much anymore.

Wouldn't it be nice if our view just handled
Contacts directly? We could extract edited Contact
objects from the view and store them in the model,
and vice versa.

Since we're reserving the "view" term for actual
concrete views, let's insert an adapter in between the
view and the presenter. The presenter now references
the adapter, which in turn references the view. We
clean up our presenter and model to speak only about
Contact-centric events and to deal only in Contact
objects. Now, it's the adapter's responsibility to handle
the translation. By adding this extra layer of
abstraction between our presenter and view, we have a
logical, isolated zone for translating GUI-centric events
and data structures to and from Contact-centric events
and structures. Figure 4 shows the new classes and
their event messaging relationships.

Figure 4. Adapter classes extend MVP for
complex views.

If we think of the adapter as a sort of presenter for
our custom user control, we might want to give it an
adapter model. Incoming data from the presenter,
pushed into the adapter via a public setter, could be
passed blindly into the AdapterModel, which could
carve up Contacts and create string arrays, emit an
event saying the grid data has changed (which the
Adapter is listening for), and the adapter could pull
that string data out of the AdapterModel and push it
into the view. The lower-level events from the view
could be forwarded down to that same AdapterModel,
which could use its correlative knowledge of Contacts
and the string-array representation of that data, to
c o n v e r t "C e l l 0 , 2 C l i c k e d " into
"UserSelectedContact2", which could then be
relayed through the adapter, which the presenter is
listening to, and so on.

We've effectively created an MVP triplet whose
language is geared toward the problem of a custom
user control for Contact data without polluting the
end-user domain language of contacts. We chose the
name adapter because it seemed to make semantic
sense. However, these classes also fit the classical
Adapter design pattern, in that it bridges the gap
between our desired interface and the reality of
available user controls.

4.2 Automotive Test Cell Controller

The Presenter First technique was used consistently
throughout the development of a visually configured
automotive test and measurement application for Burke
Porter Machinery. The application consists of
approximately 1200 classes, 100 simple MVP triads
and 20 adapters. A toolbox allows users to drag
graphical elements onto a canvas. Depending on the
type of canvas that is currently active, either display
elements (dial gauges, strip charts, etc.) or control
elements (machinery mode control commands, logging
controls, etc.) are found in the toolbox.

Code for the toolbox MVP triad is shown in
Appendix 1. Looking at the ToolboxPresenter
constructor we can quickly see the view must notify
the presenter when an item is dragged. The model
must notify the presenter when the available toolbox
items change (when the canvas switches between
display and control elements.) The final line in the
constructor insures the toolbox is initially empty.

The two private methods define what is done when
the view and model fire events to indicate something
of interest has occurred. These methods partially define
the required public interfaces of the model and view. In
the case of ToolboxItemsChanged, the view is
updated with a list of names and images to use.
ItemDrag gets the selected item from the view,
verifies the selected item can be dragged via the model

and then passes the required data to the view to initiate
the window’s DragDrop.

The model is constructed with the two types of
registries (widgetRegistry has the display elements,
seqRegistry has the control elements) and a holder.
The holder knows what type of canvas is active so the
ToolboxModel subscribes for notification of changes
to the ActiveDocument (i.e. canvas). If the active
document changes, the ActiveDocumentType-
Changed method notifies the presenter of the change.
It’s up to the presenter to decide what to do about the
change. Other methods provide the presenter with the
required data (extracted from the registries that the
model was constructed with.)

The view was the last code written and has very
little logic in it. SetToolboxItemTypes takes an
array of names and images (simple data types) and
converts them to the format needed by this particular
view (an image list.) Data is then added into the
listview. GetSelectedToolboxItemIndex is a more
typical view method in that is has only a single line of
code. In this case it returns the index of the selected
item in the listbox. Events from the view are typically
wired up to fire events to the presenter as demonstrated
by the m_listView_ItemDrag method.

4.3 Modal Dialog

A modal dialog box is a hard stop in the flow of an
application; users cannot do anything else in the
application until they respond to it. Modal dialogs are
most commonly used to display information or gather
data before the application can continue. Although we
always strive to keep the GUI elements separated from
the business logic, it is especially important in the
case of modal dialogs—we do not want something out
of our control halting the progress of test suites.

Presenter First provides a solution that cleanly
separates the dialog box action from the logical
components of the application we wish to test. The
following code sample demonstrates how this is done.

// Model code
if (unable to open file) {
 FireMessageBoxEvent("can't open file");
}

// Presenter code (in the constructor)
model.SubscribeForMessageBoxEvent();

// upon catching a messagebox event
view.ShowMessageBox(event.Text);

// View code
ShowMessageBoxEvent(text){
 MessageBox.Show(text);
}

Although this takes care of one problem with
modal dialogs, it neglects another: quite often, dialogs
are used to gather information back from the user. This
raises the question of how the user’s response is best
handled. It is tempting to have the view handle this,
but this is difficult in that many languages do not
support returning data from events. And some
languages that do support return values also support
multiple listeners for those events. This makes
predicting the return value of an event from multiple
listeners ambiguous. In addition, this method takes a
lot of code in several different class to accomplish
what is essentially a logging function (or database
access function in the case of message boxes that return
information).

Our solution is to compose the model object with a
reference to a “shower” object. The shower object’s
responsibility is to abstract away the details of
displaying and retrieving data from the user.

Let's consider the modal dialog's purpose again. We
pop one up to inform the user of something, or to
obtain their input, and then we're on our way again.
From the model's perspective it is just log information
in the case of a message, or a database access in the
case of getting information. The dialog doesn't care if
the user sits there three second or for an hour before
finally hitting the magic [OK] button – the model
makes the call, and when the call returns we move on.

We've seen this before: making calls on objects
we've been composed with. Need to access the
database? Compose your model with the
IDatabaseReader interface. Need to log messages?
Compose your model with the ILogWriter interface.
As we already know, by accessing a composed
interface, the code remains easily testable and
decoupled from the functionality represented by that
interface.

Whenever the model needs data from the user, it
can delegate this duty to the shower. The following is
the code from above modified to use a shower:

if (!m_fileReader.Open(filename)) {
m_messageboxShower.ShowErrorMessage(
 "Cannot open the file");
}

// or, for fetching information:
string filename =

m_openFileDialogShower.Show(
"Select file to load");

if (filename != null) {
 // Do something
}

Tests for this code are just as simple:

// happy day case...

fileReaderMock.ExpectAndReturn(
 "Open", true, filename);

// failure handling test
fileReaderMock.ExpectAndReturn(
 "Open", false, filename);
messageboxShowerMock.Expect(
 "ShowErrorMessage", "Cannot open the
file");

So, there you have a simple, testable method of
displaying those modal dialogs we all use every day.
But what about our own custom modal dialogs? What
if the modal dialog itself is represented by one (or
more) MVP triads?

The solution, from the calling model's standpoint,
is pretty much the same. You add a shower interface
for your modal dialog, and users of the dialog access it
through the shower. The tricky bits are found in the
model and the view of your modal dialog. From the
modal dialog user's perspective there is little difference
between popping up a built in dialog via a shower and
popping up a custom, MVP based one:

m_fancyModalDialogShower.Show();

To make this work on the inside, however, requires
a bit of finesse. There are three basic steps to running a
PF based modal dialog: initialize it, show it, close it.

The shower is composed with an interface to the
dialog's model. All interaction between the dialog and
shower are funneled through the model. Figure 5
represents the event flow between the various objects.

Figure 5. Sequence diagram for modal dialog
MVP with shower.

Notice that as the dialog runs, the model stays up-
to-date with the information content of the dialog. As
in any other PF construction, we want our view to
remain as stateless as possible. All information relative

to the outside world should be maintained in the
model. The view part of the dialog may request a close
in more than one way—an Accept event, a Cancel
event, or just a Close event (usually treated the same
as a cancel). It is the responsibility of the model to
determine the proper result code to return to the
shower.

One aspect you may notice in this construct is that
the Shower is a thin wrapper for the model. Users of
the shower class will call Show(), and make queries on
the results. In most cases these calls will be directly
mapped to similar (if not identical) methods on the
model. We like to use the shower here anyway, as it
leaves the consuming class completely ignorant of the
construct of the dialog. It appears to the consumer as
just another base modal dialog.

5. History

Presenter First builds on other people’s good ideas
and has evolved over the course of many of our
projects and evolutionary dead-ends. This section
describes some of this legacy.

The Model View Presenter pattern derives from the
classic Model View Controller [7] pattern of
Smalltalk, was first described by Taligent [5], was
widely used by Dolphin [4], and is in the process of
being documented by Fowler [6]. The intent of MVP
is to separate business rules from the user interface, as
with MVC, but to further isolate the behavior of the
application from the mechanics of the presentation.

Michael Feathers' Humble Dialog Box improved
the testability of our applications with graphical user
interfaces by removing all functionality and logic from
the view [8]. Humble widgets shift logic from the
view to the model, creating a "smart object" (model
and presenter) and a "dumb object" (view). The smart
object is more testable, as it is decoupled from the
GUI. The dumb view object is so thin that it does not
require unit testing. Humble dialog took us a step
forward, but was ultimately insufficient. We found
evolving smart objects over time difficult as the
behavior of the application is now bundled with the
business logic of the application.

5.1 Why the Presenter First?

The process aspect of Presenter First addresses the
question of how development is organized over time,
and how the application is tested while it is being
developed. The first question every application
development effort faces is: where to start? For
applications based on MVP, there are three possible
answers. Starting with the model is a form of the
"infrastructure first" mistake of traditional software
development [3]. Drawbacks to this include building
the model before knowing with certainty what it needs

to support, and focusing early development on things
invisible to the user. We feel that the key to success is
to delay working on the model until the requirements
for the model have been uncovered by feature requests
from the customer.

Starting with the view seems quite logical when
following a customer prioritized feature-driven
development process. The logic of this approach is
seductive: customer stories describe actions taken on
the view and results shown in the view, feedback from
the customer requires some interface for them to use
the application, and the importance of the model
(infrastructure) is minimized. Unfortunately view first
is an easily made and expensive mistake.

View first development has several drawbacks. The
view is special in that it tends to attract strong
feelings, a hesitancy to commit to specifics, and a high
rate of change requests from customers. In our
experience, user stories rarely specify detailed
interfaces, but do describe application functionality
more generally. The remaining ambiguity can mean
spending long hours creating an interface only to have
it be dismissed by the customer. In addition, focusing
on the view tends to increase the danger of fattening
the view with business logic. Lastly, the difficulty of
testing the interface undermines the desirable test-
driven development cycle.

In our experience, the best alternative of the three
possibilities is to start with the presenter. By starting
with the presenter, and organizing development around
it, the application may be built from user stories
following test-driven development practices. Unit tests
on the presenter are economical to write and maintain,
and confirm the correct operation of the application's
functionality without being coupled to specific
interface elements.

6. Summary

Presenter First is an economical, effective technique
for building large GUI applications and driving
development from user stories in a test-driven fashion.
Specifications for model and view classes develop
naturally from user stories, thereby avoiding the
overbuilding that is common for these types of classes.

Presenter First forces the separation between
interface and business logic. The view of an
application can be replaced without disturbing the
application or business logic classes.

Once mastered, Presenter First can be used to build
a large GUI application in a way that is repeatable,
maintainable, thoroughly tested, and user specified.

Further examples, descriptions and lessons learned
using Presenter First a re available at
http://atomicobject.com/presenterfirst

Acknowledgments

Thanks to Matt Fletcher and Scott Miller for help
writing and editing this paper.

References

[1] Spring.NET Application Framework,
www.springframework.net/

[2] Carl Erickson, Ralph Palmer, David Crosby, Michael
Marsiglia, Micah Alles, "Make Haste, not Waste:
Automated System Testing", Extreme Programming and
Agile Methods - XP Agile Universe 2003, New Orleans, LA,
USA

[3] Ron Jeffries, "Implications of delivering software
early and often", XP West Michigan User Group,
xpwestmichigan.org/site/node/29, September 2004.

[4] Andy Bower, Blair McGlashan, "Twisting the Triad:
The evolution of the Dolphin Smalltalk MVP application
framework", European Smalltalk User Group (ESUG),
2000.

[5] Mike Potel, "MVP: Model-View-Presenter The Taligent
Programming Model for C++ and Java", Taligent Inc,
1996.

[6] Martin Fowler, "Model View Presenter",
www.martinfowler.com/eaaDev/ModelViewPresenter.html,
July 2004.

[7] Trygve Reenskaug, "MODELS - VIEWS -
CONTROLLERS", Technical note, Xerox PARC, December
1979.

[8] Michael Feathers, "The Humble Dialog Box", Object
Mentor, 2002.

[9] Resharper Visual Studio.NET Plugin,
http://www.jetbrains.com/resharper/

[10] NMock: A Dynamic Mock Object Library for .NET,
http://www.nmock.org/

[11] “Mocks Aren’t Stubs,” Martin Fowler,
www.martinfowler.com/articles/mocksArentStubs.html,
July 2004

Appendix 1. MVP for Toolbox in Automotive Test Cell Controller

//

// View interface
//

public interface IToolboxView
{
 void SubscribeItemDrag(UpdateDelegate listener);
 void SetToolboxItemTypes(string[] typeNames, Image[] imageList);
 int GetSelectedToolboxItemIndex();
 void StartDragDrop(BepHostDragDropData data);
}

//
// Model interface
//

public interface IToolboxModel
{
 void SubscribeToolboxItemsChanged(UpdateDelegate listener);
 string[] ToolboxItemTypes { get; }
 string[] FriendlyToolboxItemNames { get; }
 Image[] ToolboxIcons { get; }
 BepHostDragDropData CreateDragDropData(int idx);
}

//
// Presenter
//

public class ToolboxPresenter {
 private IToolboxModel m_model;
 private IToolboxView m_view;

 public ToolboxPresenter(IToolboxModel model, IToolboxView view) {
 m_model = model;
 m_view = view;
 m_view.SubscribeItemDrag(new UpdateDelegate(ItemDrag));
 m_model.SubscribeToolboxItemsChanged(new

UpdateDelegate(ToolboxItemsChanged));
 m_view.SetToolboxItemTypes(new string[0], new Image[0]);
 }

 private void ToolboxItemsChanged() {
 m_view.SetToolboxItemTypes(m_model.FriendlyToolboxItemNames,

m_model.ToolboxIcons);
 }

 private void ItemDrag() {
 int idx = m_view.GetSelectedToolboxItemIndex();
 BepHostDragDropData data = m_model.CreateDragDropData(idx);
 if (data != null) {
 m_view.StartDragDrop(data);
 }
 }
}

//
// Selected portions of ToolboxView.cs, pertinent to the subscription for
// ItemDrag events, and the relaying of the lower-level GUI event that causes
// us to emit ItemDrag.
//
public class ToolboxView : UserControl, IToolboxView
{
 private ListView m_listView;
 private event UpdateDelegate ItemDragEvent;
 ...
 private void InitializeComponent()
 { ...
 this.m_listView.ItemDrag +=

new System.Windows.Forms.ItemDragEventHandler(this.m_listView_ItemDrag);
 ...
 }
 public void SubscribeItemDrag(UpdateDelegate listener)
 {
 ItemDragEvent += listener;
 }
 private void FireItemDrag()
 {
 UpdateDelegate evtCopy = ItemDragEvent; // Make a copy to avoid concurrent

 // mods to dispatch list
 if (evtCopy != null) // avoid no-subscribers situation
 evtCopy(); // Fire the event
 }
 ...
}
//
// Model implementation
//

public class ToolboxModel : ItoolboxModel {
 // ivars not shown
 public ToolboxModel(IToolboxItemRegistry widgetRegistry,
 IToolboxItemRegistry seqRegistry,
 IActiveDocumentHolder holder) {
 // ivar initialization
 m_holder.SubscribeActiveDocumentChanged(

new UpdateDelegate(ActiveDocumentTypeChanged));
 }
 private void ActiveDocumentTypeChanged() {
 // code to check what type of document is now active and check I
 // there is a new type document was removed
 if (docTypeHasActuallyChanged){
 FireToolboxItemsChanged();
 }
 }
 // List of human-friendly widget names.
 public string[] FriendlyToolboxItemNames { … }
 public string[] ToolboxItemTypes { … }
 public Image[] ToolboxIcons { … }

 public BepHostDragDropData CreateDragDropData(int idx) { … }
 private void FireToolboxItemsChanged(){ … }
 public void SubscribeToolboxItemsChanged(UpdateDelegate listener) { … }
}

