
Notes on how to prove
Chebyshev’s equioscillation theorem

The main issue is to characterize the minimax approximation p of a con-
tinuous function f : [a, b] → R over all polynomials p with deg p ≤ n.
Chebyshev showed that this could be achieved if f − p had the follow-
ing “equioscillation” property: there are n + 2 points x0, x1, x2, . . . , xn+1

with a ≤ x0 < x1 < x2 < · · · < xn < xn+1 ≤ b and

f(xi)− p(xi) = σ (−1)i ‖f − p‖∞ , σ = ±1.

This is not too difficult once we learn how to take “derivatives” of g 7→
‖g‖∞ := maxa≤x≤b |g(x)|. The trouble is that this is not a smooth functions,
and does not have ordinary derivatives everywhere. It is, however, a con-
vex function and so it has directional derivatives. This will not be proved
here, but we will take it for a fact. (It is — or can — be proved in Opti-
mization Techniques, 22M:174.)

Let φ(g) = ‖g‖∞. Now the direction derivative in the direction r where
r: [a, b]→ R (continuous) is

φ′(g; r) := lim
ε↓0

φ(g + εr)− φ(g)

ε
.

Now ‖g + εr‖∞ = |g(xε) + εr(xε)| for some xε ∈ [a, b]. We will show that

φ′(g; r) = max
x∈M(g)

sign(g(x)) r(x)

whereM(g) = {x ∈ [a, b] | |g(x)| = ‖g‖∞ }, at least assuming that g is not
everywhere zero.

We want to compute the limit (|g(xε) + ε r(xε)| − ‖g‖∞) /ε. Now

|g(xε) + ε r(xε)| = sign (g(xε) + ε r(xε)) (g(xε) + ε r(xε))

= sign (g(xε)) (g(xε) + ε r(xε))

since, g(xε) is bounded away from zero. To see this, note that

|g(xε)| ≥ |g(xε) + ε r(xε)| − ε |r(xε)|
= ‖g + ε r‖∞ − ε |r(xε)|
≥ ‖g‖∞ − 2ε ‖r‖∞ ;
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provided ‖g‖∞ > 3ε ‖r‖∞ we have |g(xε)| > ε |r(xε)| and so the signs of
g(xε) and g(xε) + εr(xε) are the same. Also |g(xε)| → ‖g‖∞ as ε ↓ 0.

Now xε ∈ [a, b] for all ε > 0, so since [a, b] is a compact set, there is a
convergent subsequence (also denoted xε) which has a limit x̂. Since g is
continuous, |g(x̂)| = limε↓0 |g(xε)| = ‖g‖∞ (taking the limit in the subse-
quence). So x̂ ∈M(g).

Now,

‖g + εr‖∞ = |g(xε) + εr(xε)|
= sign(g(xε) + εr(xε)) (g(xε) + εr(xε))

= sign(g(xε)) (g(xε) + εr(xε))

= |g(xε)|+ sign(g(xε)) ε r(xε)

≤ ‖g‖∞ + ε sign(g(xε)) r(xε).

Therefore, for ε > 0,

‖g + εr‖∞ − ‖g‖∞
ε

≤ ‖g‖∞ + ε sign(g(xε)) r(xε)− ‖g‖∞
ε

= sign(g(xε)) r(xε)→ sign(g(x̂)) r(x̂)

as ε ↓ 0. Thus φ′(g; r) ≤ sign(g(x̂)) r(x̂) ≤ maxx∈M(g) sign(g(x)) r(x).

On the other hand, for ε > 0 sufficiently small and x̂ ∈M(g),

‖g + εr‖∞ − ‖g‖∞
ε

≥ |g(x̂) + εr(x̂)| − |g(x̂)|
ε

=
sign(g(x̂)) (g(x̂) + εr(x̂))− |g(x̂)|

ε

=
|g(x̂)|+ ε sign(g(x̂)) r(x̂)− |g(x̂)|

ε
= sign(g(x̂)) r(x̂).

Since this is true for all x̂ ∈M(g),

‖g + εr‖∞ − ‖g‖∞
ε

≥ max
x∈M(g)

sign(g(x)) r(x).

Since we have inequalities going both ways,

φ′(g; r) = max
x∈M(g)

sign(g(x)) r(x).
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Finishing the proof

To finish the proof, we first note that there is an optimum polynomial p
of degree ≤ n: if ‖p‖∞ → ∞ then ‖f − p‖∞ → ∞ as well. To search for
an optimum we need consider only ‖p‖∞ ≤ ‖f‖∞. This in turn bounds
the coefficients of p. Then the set of possible p is a bounded, closed, finite-
dimensional set, and so is compact. Thus a minimizer exists.

At such a minimizer we need φ′(f−p; r) ≥ 0 for any polynomial r of degree
≤ n. That is, for any polynomial of degree ≤ n we must have

max
x∈M(f−p)

sign(f(x)− p(x)) r(x) ≥ 0.

If the number of points inM(f − p) is less than n+ 2, then we can simply
make r(x) the polynomial interpolant of r(xi) = −sign(f(xi)−p(xi)) where
M(f − p) = {x0, x1, . . . , xk}. Then this condition fails. So we must have
at least n+ 2 points inM(f − p).

To show the oscillation property, suppose that f(x) − p(x) changes sign
only k times on M(f − p) with k < n + 1. Then pick the points zi to lie
between the points where f(x) − p(x) changes sign onM(f − p), and set
r(x) = ±(x − z1)(x − z2) · · · (x − zk) so that deg r = k ≤ n. Choosing
the sign appropriately we can make sign(f(x) − p(x)) r(x) < 0 for every
x ∈M(f −p). Thus f(x)−p(x) changes sign at least n+1 times onM(f −
p). Thus there are at least n + 2 points xi (xi+1 > xi) in M(f − p) where
f(xi) − p(xi) alternate in sign as i increases; this is precisely Chebyshev’s
equioscillation theorem.
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