Notes on how to prove
Chebyshev’s equioscillation theorem

The main issue is to characterize the minimax approximation p of a con-
tinuous function f:[a,b] — R over all polynomials p with degp < n.
Chebyshev showed that this could be achieved if f — p had the follow-
ing “equioscillation” property: there are n + 2 points zg, =1, 2, ..., Tp1
witha <zrg<ri <1< - <2, <Tpy1 <band

f(x) —plx)) = o(=1)"|If —pll, o=+l

This is not too difficult once we learn how to take “derivatives” of g +—
llgll o, = max,<z<p |g(z)|. The trouble is that this is not a smooth functions,
and does not have ordinary derivatives everywhere. It is, however, a con-
vex function and so it has directional derivatives. This will not be proved
here, but we will take it for a fact. (It is — or can — be proved in Opti-
mization Techniques, 22M:174.)

Let ¢(9) = ||lgll.- Now the direction derivative in the direction r where
r: [a,b] — R (continuous) is

Sgir) = lim og +er) — dlg)

€l0 €

Now ||g + er||, = |g(xc) + er(z.)| for some z, € [a,b]. We will show that
'(g; = sign
dlgir) = max sign(g())r(z)

where M(g) = {z € [a,b] | |g(z)| = ||g||, }, at least assuming that g is not
everywhere zero.
We want to compute the limit (|g(z.) + e7(z.)| — ||g]|,.) /e. Now
lg(ze) +er(ad)] = sign(gze) +er(ae)) (9(xe) +er(ze))
= sign(g(z.)) (9(z) +er(ze))
since, g(z.) is bounded away from zero. To see this, note that
lg(z)l = |g(xe) +er(xe)| — € |r(zc)|
= llg+erle —elr(zdl
> gl = 2¢ 7l
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provided ||g||,, > 3¢ ||Ir]|,, we have |g(z.)| > € |r(z)| and so the signs of
g(z.) and g(x.) + er(z.) are the same. Also |g(z.)| — ||g||, ase€ | 0.

Now z. € [a,b] for all € > 0, so since [a,b] is a compact set, there is a
convergent subsequence (also denoted z.) which has a limit . Since g is
continuous, |¢(z)| = limjo |g(z.)| = ||g]|,, (taking the limit in the subse-
quence). So T € M(g).

Now,

lg+erllee = lglwe) + er(zo)]
sign(g(zc) + er(xe)) (g9(xe) + er(zc))

= sign(g(zo)) (9(xe) + er(zc))

= lg(zo)| + sign(g(zc)) er(xe)

< gl + esign(g(ze)) r(ze).

Therefore, for e > 0,
lg+erllo —llgllee N9l + esignlg(ze)) r(ze) — [lgllo
€ o €
= sign(g(z)) r(ze) — sign(g(z)) r(z)
ase | 0. Thus ¢/(g;r) < sign(g(Z)) 7(Z) < maxgem(g) sign(g(x)) r(x).
On the other hand, for ¢ > 0 sufficiently small and z € M(g),

lg + erlloe = llglloe - 19(@) +er(@)] — 9(®)]
sign(g(z)) (9(F) + er(x)) — |9(7)|
|9(%)] + esign(g(@)) r(Z) — |9(7)]

€

— sign(¢(2)) r(3)
Since this is true for all 7 € M(g),

lg +erlloe — 19l > max sign(g(z)) r(z).

€ zeM(g)

Since we have inequalities going both ways,

& (g;r) = a:g\%é) sign(g(x)) r(x).



Finishing the proof

To finish the proof, we first note that there is an optimum polynomial p
of degree < n: if ||p||,, — oo then ||f — p||,, — oo as well. To search for
an optimum we need consider only ||p||., < ||f||..- This in turn bounds
the coefficients of p. Then the set of possible p is a bounded, closed, finite-
dimensional set, and so is compact. Thus a minimizer exists.

At such a minimizer we need ¢'(f —p; ) > 0 for any polynomial r of degree
< n. That is, for any polynomial of degree < n we must have

maxsign(f(a) — pla)) (@) = 0.

If the number of points in M(f — p) is less than n + 2, then we can simply
make r(x) the polynomial interpolant of (z;) = —sign(f(z;)—p(x;)) where
M(f —p) = {xo, 21, ..., zx}. Then this condition fails. So we must have
at least n + 2 points in M(f —p).

To show the oscillation property, suppose that f(z) — p(x) changes sign
only k times on M(f — p) with & < n + 1. Then pick the points z; to lie
between the points where f(z) — p(z) changes sign on M(f — p), and set
r(z) = £(x — z1)(x — 22) -+ (x — 2) so that degr = k < n. Choosing
the sign appropriately we can make sign(f(z) — p(x)) r(z) < 0 for every
r € M(f—p). Thus f(x) —p(z) changes sign at least n + 1 times on M(f —
p). Thus there are at least n + 2 points z; (z;41 > z;) in M(f — p) where
f(z;) — p(z;) alternate in sign as i increases; this is precisely Chebyshev’s
equioscillation theorem.



