Notes on how to prove Chebyshev's equioscillation theorem

The main issue is to characterize the minimax approximation p of a continuous function $f:[a,b] \to \mathbb{R}$ over all polynomials p with deg $p \leq n$. Chebyshev showed that this could be achieved if f - p had the following "equioscillation" property: there are n + 2 points $x_0, x_1, x_2, \ldots, x_{n+1}$ with $a \leq x_0 < x_1 < x_2 < \cdots < x_n < x_{n+1} \leq b$ and

$$f(x_i) - p(x_i) = \sigma (-1)^i ||f - p||_{\infty}, \quad \sigma = \pm 1.$$

This is not too difficult once we learn how to take "derivatives" of $g \mapsto ||g||_{\infty} := \max_{a \le x \le b} |g(x)|$. The trouble is that this is not a smooth functions, and does not have ordinary derivatives everywhere. It is, however, a convex function and so it has *directional* derivatives. This will not be proved here, but we will take it for a fact. (It is — or can — be proved in Optimization Techniques, 22M:174.)

Let $\phi(g) = ||g||_{\infty}$. Now the direction derivative in the direction r where $r: [a, b] \to \mathbb{R}$ (continuous) is

$$\phi'(g;r) := \lim_{\epsilon \downarrow 0} \frac{\phi(g+\epsilon r) - \phi(g)}{\epsilon}.$$

Now $||g + \epsilon r||_{\infty} = |g(x_{\epsilon}) + \epsilon r(x_{\epsilon})|$ for some $x_{\epsilon} \in [a, b]$. We will show that

$$\phi'(g;r) = \max_{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x)$$

where $\mathcal{M}(g) = \{ x \in [a, b] \mid |g(x)| = ||g||_{\infty} \}$, at least assuming that g is not everywhere zero.

We want to compute the limit $(|g(x_{\epsilon}) + \epsilon r(x_{\epsilon})| - ||g||_{\infty}) / \epsilon$. Now

$$|g(x_{\epsilon}) + \epsilon r(x_{\epsilon})| = \operatorname{sign} (g(x_{\epsilon}) + \epsilon r(x_{\epsilon})) (g(x_{\epsilon}) + \epsilon r(x_{\epsilon}))$$

= sign (g(x_{\epsilon})) (g(x_{\epsilon}) + \epsilon r(x_{\epsilon}))

since, $g(x_{\epsilon})$ is bounded away from zero. To see this, note that

$$|g(x_{\epsilon})| \geq |g(x_{\epsilon}) + \epsilon r(x_{\epsilon})| - \epsilon |r(x_{\epsilon})|$$

= $||g + \epsilon r||_{\infty} - \epsilon |r(x_{\epsilon})|$
 $\geq ||g||_{\infty} - 2\epsilon ||r||_{\infty};$

provided $||g||_{\infty} > 3\epsilon ||r||_{\infty}$ we have $|g(x_{\epsilon})| > \epsilon |r(x_{\epsilon})|$ and so the signs of $g(x_{\epsilon})$ and $g(x_{\epsilon}) + \epsilon r(x_{\epsilon})$ are the same. Also $|g(x_{\epsilon})| \to ||g||_{\infty}$ as $\epsilon \downarrow 0$.

Now $x_{\epsilon} \in [a, b]$ for all $\epsilon > 0$, so since [a, b] is a compact set, there is a convergent subsequence (also denoted x_{ϵ}) which has a limit \hat{x} . Since g is continuous, $|g(\hat{x})| = \lim_{\epsilon \downarrow 0} |g(x_{\epsilon})| = ||g||_{\infty}$ (taking the limit in the subsequence). So $\hat{x} \in \mathcal{M}(g)$.

Now,

$$\begin{aligned} \|g + \epsilon r\|_{\infty} &= |g(x_{\epsilon}) + \epsilon r(x_{\epsilon})| \\ &= \operatorname{sign}(g(x_{\epsilon}) + \epsilon r(x_{\epsilon})) (g(x_{\epsilon}) + \epsilon r(x_{\epsilon})) \\ &= \operatorname{sign}(g(x_{\epsilon})) (g(x_{\epsilon}) + \epsilon r(x_{\epsilon})) \\ &= |g(x_{\epsilon})| + \operatorname{sign}(g(x_{\epsilon})) \epsilon r(x_{\epsilon}) \\ &\leq \|g\|_{\infty} + \epsilon \operatorname{sign}(g(x_{\epsilon})) r(x_{\epsilon}). \end{aligned}$$

Therefore, for $\epsilon > 0$,

$$\frac{\|g + \epsilon r\|_{\infty} - \|g\|_{\infty}}{\epsilon} \leq \frac{\|g\|_{\infty} + \epsilon \operatorname{sign}(g(x_{\epsilon})) r(x_{\epsilon}) - \|g\|_{\infty}}{\epsilon}$$
$$= \operatorname{sign}(g(x_{\epsilon})) r(x_{\epsilon}) \to \operatorname{sign}(g(\widehat{x})) r(\widehat{x})$$

as $\epsilon \downarrow 0$. Thus $\phi'(g; r) \leq \operatorname{sign}(g(\widehat{x})) r(\widehat{x}) \leq \max_{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x)$. On the other hand, for $\epsilon > 0$ sufficiently small and $\widehat{x} \in \mathcal{M}(g)$,

$$\begin{split} \frac{\|g + \epsilon r\|_{\infty} - \|g\|_{\infty}}{\epsilon} &\geq \frac{|g(\widehat{x}) + \epsilon r(\widehat{x})| - |g(\widehat{x})|}{\epsilon} \\ &= \frac{\operatorname{sign}(g(\widehat{x})) (g(\widehat{x}) + \epsilon r(\widehat{x})) - |g(\widehat{x})|}{\epsilon} \\ &= \frac{|g(\widehat{x})| + \epsilon \operatorname{sign}(g(\widehat{x})) r(\widehat{x}) - |g(\widehat{x})|}{\epsilon} \\ &= \operatorname{sign}(g(\widehat{x})) r(\widehat{x}). \end{split}$$

Since this is true for all $\widehat{x} \in \mathcal{M}(g)$,

$$\frac{\|g + \epsilon r\|_{\infty} - \|g\|_{\infty}}{\epsilon} \geq \max_{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x).$$

Since we have inequalities going both ways,

$$\phi'(g;r) = \max_{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x).$$

Finishing the proof

To finish the proof, we first note that there *is* an optimum polynomial p of degree $\leq n$: if $||p||_{\infty} \to \infty$ then $||f - p||_{\infty} \to \infty$ as well. To search for an optimum we need consider only $||p||_{\infty} \leq ||f||_{\infty}$. This in turn bounds the coefficients of p. Then the set of possible p is a bounded, closed, finite-dimensional set, and so is compact. Thus a minimizer exists.

At such a minimizer we need $\phi'(f-p; r) \ge 0$ for *any* polynomial *r* of degree $\le n$. That is, for any polynomial of degree $\le n$ we must have

$$\max_{x \in \mathcal{M}(f-p)} \operatorname{sign}(f(x) - p(x)) r(x) \ge 0.$$

If the number of points in $\mathcal{M}(f - p)$ is less than n + 2, then we can simply make r(x) the polynomial interpolant of $r(x_i) = -\text{sign}(f(x_i) - p(x_i))$ where $\mathcal{M}(f - p) = \{x_0, x_1, \dots, x_k\}$. Then this condition fails. So we must have at least n + 2 points in $\mathcal{M}(f - p)$.

To show the oscillation property, suppose that f(x) - p(x) changes sign only k times on $\mathcal{M}(f - p)$ with k < n + 1. Then pick the points z_i to lie between the points where f(x) - p(x) changes sign on $\mathcal{M}(f - p)$, and set $r(x) = \pm (x - z_1)(x - z_2) \cdots (x - z_k)$ so that deg $r = k \leq n$. Choosing the sign appropriately we can make sign(f(x) - p(x)) r(x) < 0 for every $x \in \mathcal{M}(f - p)$. Thus f(x) - p(x) changes sign at least n + 1 times on $\mathcal{M}(f - p)$. Thus there are at least n + 2 points $x_i (x_{i+1} > x_i)$ in $\mathcal{M}(f - p)$ where $f(x_i) - p(x_i)$ alternate in sign as i increases; this is precisely Chebyshev's equioscillation theorem.