Notes on how to prove Chebyshev's equioscillation theorem

The main issue is to characterize the minimax approximation p of a continuous function $f:[a, b] \rightarrow \mathbb{R}$ over all polynomials p with $\operatorname{deg} p \leq n$. Chebyshev showed that this could be achieved if $f-p$ had the following "equioscillation" property: there are $n+2$ points $x_{0}, x_{1}, x_{2}, \ldots, x_{n+1}$ with $a \leq x_{0}<x_{1}<x_{2}<\cdots<x_{n}<x_{n+1} \leq b$ and

$$
f\left(x_{i}\right)-p\left(x_{i}\right)=\sigma(-1)^{i}\|f-p\|_{\infty}, \quad \sigma= \pm 1
$$

This is not too difficult once we learn how to take "derivatives" of $g \mapsto$ $\|g\|_{\infty}:=\max _{a \leq x \leq b}|g(x)|$. The trouble is that this is not a smooth functions, and does not have ordinary derivatives everywhere. It is, however, a convex function and so it has directional derivatives. This will not be proved here, but we will take it for a fact. (It is - or can - be proved in Optimization Techniques, 22M:174.)
Let $\phi(g)=\|g\|_{\infty}$. Now the direction derivative in the direction r where $r:[a, b] \rightarrow \mathbb{R}$ (continuous) is

$$
\phi^{\prime}(g ; r):=\lim _{\epsilon \downarrow 0} \frac{\phi(g+\epsilon r)-\phi(g)}{\epsilon} .
$$

Now $\|g+\epsilon r\|_{\infty}=\left|g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right|$ for some $x_{\epsilon} \in[a, b]$. We will show that

$$
\phi^{\prime}(g ; r)=\max _{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x)
$$

where $\mathcal{M}(g)=\left\{x \in[a, b]| | g(x) \mid=\|g\|_{\infty}\right\}$, at least assuming that g is not everywhere zero.
We want to compute the limit $\left(\left|g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right|-\|g\|_{\infty}\right) / \epsilon$. Now

$$
\begin{aligned}
\left|g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right| & =\operatorname{sign}\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right)\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right) \\
& =\operatorname{sign}\left(g\left(x_{\epsilon}\right)\right)\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right)
\end{aligned}
$$

since, $g\left(x_{\epsilon}\right)$ is bounded away from zero. To see this, note that

$$
\begin{aligned}
\left|g\left(x_{\epsilon}\right)\right| & \geq\left|g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right|-\epsilon\left|r\left(x_{\epsilon}\right)\right| \\
& =\|g+\epsilon r\|_{\infty}-\epsilon\left|r\left(x_{\epsilon}\right)\right| \\
& \geq\|g\|_{\infty}-2 \epsilon\|r\|_{\infty} ;
\end{aligned}
$$

provided $\|g\|_{\infty}>3 \epsilon\|r\|_{\infty}$ we have $\left|g\left(x_{\epsilon}\right)\right|>\epsilon\left|r\left(x_{\epsilon}\right)\right|$ and so the signs of $g\left(x_{\epsilon}\right)$ and $g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)$ are the same. Also $\left|g\left(x_{\epsilon}\right)\right| \rightarrow\|g\|_{\infty}$ as $\epsilon \downarrow 0$.
Now $x_{\epsilon} \in[a, b]$ for all $\epsilon>0$, so since $[a, b]$ is a compact set, there is a convergent subsequence (also denoted x_{ϵ}) which has a limit \widehat{x}. Since g is continuous, $|g(\widehat{x})|=\lim _{\epsilon \downarrow 0}\left|g\left(x_{\epsilon}\right)\right|=\|g\|_{\infty}$ (taking the limit in the subsequence). So $\widehat{x} \in \mathcal{M}(g)$.

Now,

$$
\begin{aligned}
\|g+\epsilon r\|_{\infty} & =\left|g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right| \\
& =\operatorname{sign}\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right)\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right) \\
& =\operatorname{sign}\left(g\left(x_{\epsilon}\right)\right)\left(g\left(x_{\epsilon}\right)+\epsilon r\left(x_{\epsilon}\right)\right) \\
& =\left|g\left(x_{\epsilon}\right)\right|+\operatorname{sign}\left(g\left(x_{\epsilon}\right)\right) \epsilon r\left(x_{\epsilon}\right) \\
& \leq\|g\|_{\infty}+\epsilon \operatorname{sign}\left(g\left(x_{\epsilon}\right)\right) r\left(x_{\epsilon}\right) .
\end{aligned}
$$

Therefore, for $\epsilon>0$,

$$
\begin{aligned}
\frac{\|g+\epsilon r\|_{\infty}-\|g\|_{\infty}}{\epsilon} & \leq \frac{\|g\|_{\infty}+\epsilon \operatorname{sign}\left(g\left(x_{\epsilon}\right)\right) r\left(x_{\epsilon}\right)-\|g\|_{\infty}}{\epsilon} \\
& =\operatorname{sign}\left(g\left(x_{\epsilon}\right)\right) r\left(x_{\epsilon}\right) \rightarrow \operatorname{sign}(g(\widehat{x})) r(\widehat{x})
\end{aligned}
$$

as $\epsilon \downarrow 0$. Thus $\phi^{\prime}(g ; r) \leq \operatorname{sign}(g(\widehat{x})) r(\widehat{x}) \leq \max _{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x)$.
On the other hand, for $\epsilon>0$ sufficiently small and $\widehat{x} \in \mathcal{M}(g)$,

$$
\begin{aligned}
\frac{\|g+\epsilon r\|_{\infty}-\|g\|_{\infty}}{\epsilon} & \geq \frac{|g(\widehat{x})+\epsilon r(\widehat{x})|-|g(\widehat{x})|}{\epsilon} \\
& =\frac{\operatorname{sign}(g(\widehat{x}))(g(\widehat{x})+\epsilon r(\widehat{x}))-|g(\widehat{x})|}{\epsilon} \\
& =\frac{|g(\widehat{x})|+\epsilon \operatorname{sign}(g(\widehat{x})) r(\widehat{x})-|g(\widehat{x})|}{\epsilon} \\
& =\operatorname{sign}(g(\widehat{x})) r(\widehat{x}) .
\end{aligned}
$$

Since this is true for all $\widehat{x} \in \mathcal{M}(g)$,

$$
\frac{\|g+\epsilon r\|_{\infty}-\|g\|_{\infty}}{\epsilon} \geq \max _{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x)
$$

Since we have inequalities going both ways,

$$
\phi^{\prime}(g ; r)=\max _{x \in \mathcal{M}(g)} \operatorname{sign}(g(x)) r(x) .
$$

Finishing the proof

To finish the proof, we first note that there is an optimum polynomial p of degree $\leq n$: if $\|p\|_{\infty} \rightarrow \infty$ then $\|f-p\|_{\infty} \rightarrow \infty$ as well. To search for an optimum we need consider only $\|p\|_{\infty} \leq\|f\|_{\infty}$. This in turn bounds the coefficients of p. Then the set of possible p is a bounded, closed, finitedimensional set, and so is compact. Thus a minimizer exists.
At such a minimizer we need $\phi^{\prime}(f-p ; r) \geq 0$ for any polynomial r of degree $\leq n$. That is, for any polynomial of degree $\leq n$ we must have

$$
\max _{x \in \mathcal{M}(f-p)} \operatorname{sign}(f(x)-p(x)) r(x) \geq 0
$$

If the number of points in $\mathcal{M}(f-p)$ is less than $n+2$, then we can simply make $r(x)$ the polynomial interpolant of $r\left(x_{i}\right)=-\operatorname{sign}\left(f\left(x_{i}\right)-p\left(x_{i}\right)\right)$ where $\mathcal{M}(f-p)=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Then this condition fails. So we must have at least $n+2$ points in $\mathcal{M}(f-p)$.
To show the oscillation property, suppose that $f(x)-p(x)$ changes sign only k times on $\mathcal{M}(f-p)$ with $k<n+1$. Then pick the points z_{i} to lie between the points where $f(x)-p(x)$ changes sign on $\mathcal{M}(f-p)$, and set $r(x)= \pm\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{k}\right)$ so that $\operatorname{deg} r=k \leq n$. Choosing the sign appropriately we can make $\operatorname{sign}(f(x)-p(x)) r(x)<0$ for every $x \in \mathcal{M}(f-p)$. Thus $f(x)-p(x)$ changes sign at least $n+1$ times on $\mathcal{M}(f-$ p). Thus there are at least $n+2$ points $x_{i}\left(x_{i+1}>x_{i}\right)$ in $\mathcal{M}(f-p)$ where $f\left(x_{i}\right)-p\left(x_{i}\right)$ alternate in sign as i increases; this is precisely Chebyshev's equioscillation theorem.

