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Abstract. We present a simple implementation of a token-based dis-
tributed mutual exclusion algorithm for multithreaded systems. Several
per-node requests could be issued by threads running at each node. Our
algorithm relies on special-purpose alien threads running at host pro-
cessors on behalf of threads running at other processors. The algorithm
uses a tree to route requests for the token. We present a performance
simulation study comparing two versions of our algorithm with a known
algorithm based on path reversal on trees. Results show that our algo-
rithm performs very well under a high load of requests while obtaining
acceptable performance under a light load.

Keywords. Distributed mutual exclusion, multithreading, parallel pro-
gramming, concurrent programming, distributed shared memory.

1 Introduction

Mutual exclusion aims to provide synchronized access to shared resources en-
suring that, at any time, at most one process can be executing in its critical
section. Distributed mutual exclusion algorithms focus on mutual exclusion on
distributed environments lacking shared memory. Several algorithms address the
distributed mutual exclusion problem for systems where only one process is run-
ning at each processor. Multithreaded distributed systems allow the existence
of several threads of execution within each distributed process. Thus, there is
a need to provide mutual exclusion to a large number of distributed threads.
We are particularly interested in Distributed Shared Memory systems [1] with
support for multithreading and thread migration.

In this work, we present an algorithm for distributed mutual exclusion in a
multithreaded system. The algorithm is token-based, and it uses a tree to route
requests issued to acquire the token. We rely on special-purpose alien threads

running at host processors on behalf of threads running at other processors.
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When a thread asks for permission to enter its critical section, if the token is
not present at the processor it is running at, a remote alien thread is activated in
order to obtain the token and send it to the requesting processor. Alien threads
behave just like ordinary threads, and must compete for the token with other
user threads. Thus, our algorithm is simple but correct.

We performed a simulation study comparing two versions of our algorithm
with a previously proposed algorithm based on path reversal on trees. This al-
gorithm is, to the best of our knowledge, the only documented implementation
addressing the same problem. Results obtained from the simulation are encourag-
ing. Our algorithm performs very well under high load conditions, outperforming
the other proposal as the number of threads per node increases.

Our algorithm was successfully implemented on DSM-PEPE, a multithreaded
distributed system with support for thread migration [2].

2 The algorithm

2.1 System model

The system is a loosely-coupled network of computers, consisting of n processors:
p1, p2, ..., pn. At any time, at each processor pi, there are mi threads running.
Threads are allowed to migrate according to some system policy, for instance,
pursuing load balancing or minimal message exchange.

Processors communicate through message passing. We assume that message
delivery is guaranteed by the network. We also assume that two messages issued
at one processor and addressed to the same node are received in the same order
at the destination. This is the usual behavior of switched local area networks,
where there is only one possible route between each pair of computers.

A thread wishing to enter its critical section must obtain permission by calling
Acquire(). The thread could be delayed until mutual exclusion can be guar-
anteed. Once the thread leaves the critical section, it must notify the system
by calling Release(). Mutual exclusion must be ensured between the call to
Acquire() and the call to Release().

2.2 Brief description

Our algorithm is token-based. A thread wishing to enter its critical section must
obtain a single system-wide token. Uniqueness of the token guarantees the mu-
tual exclusion [3]. At the higher level, ownership of the token is not granted
directly to threads but to processors. Once a processor owns the token, threads
running at that processor can compete for it. Requests issued at each processor
are stored in a local queue owned by the processor. Ownership of the token is
granted to one of the processors during initialization. For the remaining proces-
sors a unique path must exist to allow them to reach the actual owner of the
token. This is accomplished through a chain of probable owners, building up a
tree rooted at the first owner.
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Fig. 1. Behavior of the algorithm when servicing several requests

Requests made by threads running at the processor currently owning the
token are serialized and served according to their arrival time. A request issued by
a thread running at a processor not owning the token involves sending a request
to the probable owner. Our algorithm accomplished this task, by signaling a
special-purpose thread running at the probable owner of the token.

At any processor, there are n− 1 alien threads, each acting on behalf of one
of the remaining n − 1 processors in the system. Alien threads behave just like
ordinary threads, but they are blocked most of the time. An alien thread at
processor pi is signaled when some thread at the home processor –that is, the
processor for which the alien thread is working on behalf of– is requiring the
token, and it is presumed that the token is held by processor pi, that is, the
probable owner at the home processor is set to pi. The woken alien thread asks
for the token at its host processor. Then, once the token is granted, the alien
thread sends the token to the processor it is representing.

Note that it is possible for a woken alien thread to find out that the token
is no longer on its host processor. When this situation occurs, the alien thread
acts like an ordinary thread requesting the token. The alien thread signals the
alien thread on the processor where the token apparently went to, that is, the
probable owner on its host processor. This scenario could appear several times,
until the processor currently holding the token is reached. This kind of forwarding
resembles the algorithm described by Raymond for distributed mutual exclusion
of single-threaded processors [4].

Figure 1 shows the behavior of our algorithm in a system with 3 nodes.
Initially, node 1 owns the token –represented as a filled circle– and several threads
are blocked at that node, each waiting to enter its critical section (Figure 1a).



Note that node 1, the owner of the token, is at the root of the tree used to route
the requests. At this moment, several requests are issued from threads running
at node 3. The first of these requests produces a signal to an alien thread on
node 2, to wake up and act on behalf of node 3 (Figure 1b). However, since the
token is not present at 2, the recently woken alien thread blocks, producing a
signal to an alien thread on node 1, to wake up and act on behalf of node 2.
This alien thread waits at the end of the local queue of node 1. Note that the
request made by a thread running at node 3 produced two requests at remote
nodes, issued by alien threads. After that, some threads issued new requests at
nodes 1 and 2, producing their local enqueueing (Figure 1c). At this point it
is important to note the behavior of the alien threads currently active in the
system. An alien thread is waiting for the token at node 1, the current owner of
the token, on behalf of 2, and another alien thread is waiting for the token at
node 2, on behalf of 3. The thread that issued the original request is waiting for
the token at node 3. A node only sees a queue of requests, some issued by local
threads and some issued by alien threads. Eventually, the alien thread running
at node 1 on behalf of 2 obtains the token, and sends it to node 2. Since the
queue was not empty at this time, that is, there are pending requests at node
1, an alien thread on node 2 is signaled to bring the token back to node 1. At
the head of the queue at node 2 was the alien thread that acts on behalf of node
3, so it sends the token to node 3, and an alien thread on node 3 is signaled to
bring the token back to node 2. Note that, at node 2 there are several pending
requests, including one that will bring the token back to node 1 (Figure 1d).
Eventually, the token returns to node 2 (Figure 1e) and to node 1 (Figure 1f).

2.3 Detailed description

Each processor must hold the following information:

– probOwner: process identifier –pid– of the processor last known as the token
owner. Initially set in such a way that there is a single path, following the
probOwners chain, from each node to the initial owner of the token. The
first owner sets probOwner to its pid.

– tokenRequested: true if there are pending requests for the token issued from
this processor, i.e., a request for the token has been already sent. Initially
false at every processor.

– numLocal: number of requests for the token that have been issued locally;
initially 0 at every processor. Recall that only the first request actually makes
an alien thread to be signaled.

Local mutual exclusion for the operations showed below is mandatory. How-
ever it has been omitted intentionally to illustrate the solution more clearly.
Semantics of the wait and signal operations are consistent with those on con-
ditions variables. A signal across processors involve sending a message to the
target processor.



A thread acquiring the token must execute:

Acquire() {

numLocal++;

if (probOwner != pid) && (! tokenRequested) {

// Not owner and not previously requested => Request token

signal(alien thread on probOwner);

tokenRequested = true; // to avoid multiple requests

wait(for signal from the alien thread);

probOwner = pid; // processor becomes owner

tokenRequested = false;

}

else {

// Processor owns token, or token has been requested already

if (numLocal > 1) {

wait(for signal from another local thread);

}

}

}

If the token is not currently held by the processor it must be requested, by
signaling the alien thread on the probable owner. The thread blocks waiting for
the token to arrive. If some other thread has previously called Acquire, we must
prevent multiple requests. If the token is held by the processor, or it has been
requested already, there is no need for remote requests. If the token is held but
free the thread is allowed to enter its critical section.

A thread releasing the token must execute:

Release() {

numLocal--;

signal(local thread waiting for the token);

}

Note that the thread being signaled could be a user thread or an alien thread.
The alien thread executing on processor host on behalf of processor home

must execute the following code:

alienThread(host_pid, home_pid) {

while(true) {

wait(for signal from home processor); // stay idle

Acquire(); // acquire token on host processor

signal(thread waiting for the token on the home processor);

probOwner = home_pid; // update host-processor’s probOwner

numLocal--;

if (numLocal > 0) {

// Request the token on behalf of host processor

tokenRequested = true; // to avoid multiple requests

signal(alien thread on home processor on behalf of host);

}

}

}



An alien thread waits until signaled from its home processor. Then, it acquires
the token, competing with local threads on the host processor, as well as with
other alien threads trying to get the token on behalf of their homes. Once an alien
thread succeeded on acquiring the token, it signals its home processor, allowing
a remote waiting thread to resume under mutual exclusion. It is possible to
have additional threads left on the local queue when an alien thread acquires
the token delivering it to its home processor. If this happens, the alien thread
requests the token before turning idle. This is accomplished by signaling the alien
thread that represents its host on its home processor. A simple improvement to
the algorithm presented involves piggybacking this request on the same signaling
message that delivers the token.

The behavior of an alien thread holding the token is slightly different from
the behavior of a user thread. A user thread is expected to release the token
once it leaves the critical section. However, an alien thread does not release the
token, but delivers it directly to another thread at his home processor instead.

2.4 A variant on the proposed algorithm

An alien thread forwards requests when the token is not present at its host
processor. This is done by signaling the alien thread on the probable owner, on
behalf of its host processor. Thus, the token is forced to follow exactly the same
path followed by the requests. This behavior is desirable under high requests
load, because there will be always pending requests on the returning path of the
token, avoiding the exchange of extra messages. However, under a light load,
the token could be sent directly to the processor that issued the first request,
avoiding the extra steps produced by the forwarding. Only the code executed by
the alien threads must be modified in order to implement this variant:

alienThread(host_pid, home_pid) {

while(true) {

wait(for signal from home processor); // stay idle

if ((probOwner != host_pid) && (numLocal == 0)) {

signal(alien thread on behalf of home, on host’s probOwner);

}

else {

// Behaves like the original alien thread

Acquire(); // acquire token on host processor

signal(thread waiting for the token on the home processor);

probOwner = home_pid; // update host-processor’s probOwner

numLocal--;

if (numLocal > 0) {

// Request the token on behalf of host processor

tokenRequested = true; // to avoid multiple requests

signal(alien thread on home processor on behalf of host);

}

}

}

}
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Fig. 2. Behavior of the modified algorithm when servicing several requests

Instead of simply forwarding requests, the improved alien thread checks first
if there are local requests at its host processor that justify acquiring the token.
Otherwise, it signals an alien thread on behalf of its home processor, avoiding
the passing of the token across its host processor.

Figure 2 shows the behavior of the modified algorithm for the same requests
sequence used in the example of the original algorithm in Section 2.2. Note that,
when the first request by a thread running at node 3 is issued, the alien thread
at node 2 does not remain active because the queue at node 2 is empty. It just
forwards the signal to an alien thread at node 1, to wake up and act on behalf
of node 3 instead (Figure 2b). Eventually, this alien thread obtains the token,
and sends it directly to node 3 (Figure 2d).

The path followed by the token back to the requester node is not necessarily
the same path previously followed by the request on its way to the owner of the
token. Note that several alien threads in the request path just forwarded the
request, changing the topology of the tree.

3 Proof outline

A mutual exclusion algorithm must satisfy several conditions. The following is
an outline of the proof of correctness for three of these conditions, considering
the original algorithm.

Mutual exclusion: It must be assured that, at any time, at most one thread
can be executing in its critical section. Our algorithm is token-based: there is a
single system-wide token, owned by the node having probOwner == pid. This



condition is enforced during initialization. A thread asks for the token by exe-
cuting Acquire and could be delayed on two conditions: (1) when the token is
currently held by its host node but it is assigned to another thread, or (2) when
the token is not locally present at the time. Either way, the thread is allowed to
continue executing in its critical section only when the thread currently holding
the token relinquished it by executing Release, or when an alien thread signals
the blocked thread remotely. In the former, it is straightforward to verify that
mutual exclusion is assured. In the latter, the signaling alien thread previously
obtained the mutual exclusion by executing Acquire on its host processor. Since
an alien thread does not have a critical section, it relinquishes the mutual exclu-
sion on behalf of the thread that made the request on its home processor. This
way, mutual exclusion among threads is assured.

Deadlock freedom: It is easy to verify that a deadlock can not occur under
some reasonable restrictions. For a deadlock to occur there must be a circular-
wait condition involving two or more threads in the system. Assuming that a
thread executing in its critical section is not allowed to execute Acquire again,
this condition will never occur.

Starvation freedom: If we assume the use of a fair policy for serving local
requests at each node starvation will not occur. Recall that we have a single path
from each node to the node currently holding the token. Note that a request
issued at a node not owning the token results in an alien thread being queued at
the node currently owning the token. If the local service policy is fair, the alien
thread eventually obtains the token and allows the thread it is acting on behalf
of, to enter its critical section.

4 Performance

Analytic studies of distributed mutual exclusion algorithms are hard to perform,
due to the rapid growth of the cardinality of the state space as the number
of nodes increases [5]. In multithreaded systems, the size of the state space
grows even faster. For this reason, we choose a simulation approach to study the
performance of our proposal.

4.1 Simulation model

We use a simulation model based on similar studies [5], [6]. We assume that
requests to enter the critical section arrive at each node according to a Pois-
son process with parameter λ. Thus, the time elapsed between critical section
requests behaves according to an exponential distribution. We assume that, at
every node, requests are made by randomly-chosen user threads. It is important
to note that the simulation process remains under Poisson behavior as long as
any running –not waiting– local thread exists in a node. When all the threads
running at a node are waiting to enter to its critical section, the process stops
until the first local thread completes its critical section.



The λ parameter will give us a notion of the load of the entire system. The
time taken by a thread to execute its critical section is modeled as a constant C.
The message propagation delay is a constant M multiplied by a random number
having a uniform distribution between 0 and 1.

We are interested in two main measures: the average number of messages
exchanged per critical section entry, and the average waiting time for the per-
mission to enter the critical section.

To obtain statistically reliable results we made long-time simulations execut-
ing 100, 000 critical section entries. On each experiment we use N = 31 nodes,
because we have a binary complete tree for the initial state. We simulate a vari-
able number of threads per node. The parameter λ takes values in the [0, 1]
interval. The parameter M was taken as 0.1 and the parameter C as 0.01. These
values are consistent with those used in similar studies [5],[6].

4.2 Results

Figures 3 through 5 show the results of the simulations for the two versions of our
algorithm –using piggybacking– as well as the algorithm proposed by Mueller [7],
using 1, 5 and 10 threads per node. In Figure 3 there is a single thread per node.
In this case, the first implementation of our algorithm resembles the algorithm
by Raymond [4]. Obtained results are consistent with that fact [6].

Under a light load, the second version of our algorithm requires fewer mes-
sages than the first one, because the token is sent from the releaser node to the
requester directly. The alien thread that was waiting for the token at the releaser
node, acts on behalf of the requester node. The first implementation enforces the
token to travel along the tree structure to reach the requester node. This is so
because several alien threads need to be signaled in the path previously followed
by the requests. The algorithm proposed by Mueller has the best comparative
performance under a light load, considering the number of messages exchanged.
This is due to the aggressive path compression technique, characteristic of the
path reversal approach [8].
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Fig. 3. Performance comparison of the 3 algorithms with a single thread per node.



Considering the waiting time, the second version of our algorithm behaves
better than the first one under all loads. The algorithm proposed by Mueller
outperforms the other two.

Under a high load, both versions of our algorithm need almost the same
number of messages per critical section. When the first alien thread associated
to a request is signaled, it is most likely that the token was already requested
on the host node. This will make both versions of the algorithm behave the
same way. This situation can be easily observed in the code of the alien thread:
both versions will execute the same code under high load conditions. This is also
the cause of the very small number of messages exchanged per critical section
under high loads. Both implementations of the alien thread algorithm outperform
Mueller’s algorithm.

When we turn to multithreaded scenarios (Figures 4 and 5) the relative be-
havior among the two versions of our algorithm remains unchanged. Moreover,
the waiting time is almost identical, for every number of threads per node. Be-
sides, an important decrease in the number of messages exchanged per critical
section entry is achieved under high loads as the number of per-node threads
increases. Once a request has been sent from a node –that is, an alien thread
has been signaled–, subsequent requests issued by threads on the home node do
not involve the sending of additional messages. Thus, most of the requests issued
by threads wishing to enter the critical section will be served without message
exchange. The algorithm proposed by Mueller does not show any of these be-
haviors. The number of messages exchanged does not change significantly as the
number of threads per node increases. Waiting time increases abruptly as the
system load increases. The growing rate of the waiting time in the Mueller’s algo-
rithm, also increases as the number of threads per node increases. His algorithm
is very sensitive to load growth on multithreaded scenarios.

The second version of the alien thread algorithm outperforms the initial
version in all aspects. The algorithm proposed by Mueller showed better perfor-
mance under a light load. Under high loads, the alien thread algorithm showed
better results.
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Fig. 4. Performance comparison of the 3 algorithms with 5 threads per node.
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Fig. 5. Performance comparison of the 3 algorithms with 10 threads per node.

5 Related work

Several distributed mutual exclusion algorithms have been proposed in the litera-
ture. They can be classified as permission-based or token-based [9]. We focus our
study on token-based distributed algorithms, excluding those algorithms that
use a central coordinator.

Token-based algorithms rely on a unique token which must be acquired by a
process wishing to enter its critical section. The token could be traveling from one
process to another continuously or could be obtained by sending a request. The
algorithms proposed by Raymond [4], by Neilsen and Mizuno [10], by Banerjee
and Chrysanthis [11], and by Naimi, et al. [8] fall into this category.

Distributed mutual exclusion for multithreaded environments has not been
studied extensively. The design and implementation of distributed synchroniza-
tion primitives are presented by Mueller, focusing on the impact of multithread-
ing on synchronization [7]. Distributed mutual exclusion is based on a token-
passing mechanism based on the algorithm described by Naimi, et al. [8].

6 Conclusions

We presented a simple implementation of a token-based algorithm providing
mutual exclusion to distributed threads running on a loosely-coupled system.
This mechanism has been successfully implemented on a Distributed Shared
Memory system supporting thread migration.

We developed two versions of the algorithm and compare them to a known
implementation of another algorithm, targeting to the same problem. A simu-
lation of performance shows that both of our algorithms outperforms the other
implementation under high load conditions. The difference increases as the num-
ber of threads per node increases. Under a light load, our algorithms still perform
within reasonable limits.



The first version of our algorithm, limited to a single user thread per node,
behaves just like a well-known single-threaded distributed mutual exclusion al-
gorithm [4]. The third algorithm considered in our study [7], was originally con-
ceived as an extension of another single-threaded algorithm based on path rever-
sal on trees [8]. Our intention is to extend the study to several single-threaded
algorithms for distributed mutual exclusion, exploring the feasibility of extend
them using the same ideas used to develop the alien-threads algorithm.
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