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Abstract. Stack based languages are widely used as byte-codes, as in-
termediate languages, and as programming languages for embedded de-
vices. It is well-known how to check the types of simple stack-based
languages such as for the Java virtual machine language, using Hindley-
Milner type inference, or using Hoare logic. The simple Hindley-Milner
type inference algorithm is insufficient to type-check higher order instruc-
tions, such as abstraction operators, in a stack-based language without
annotations. This limitation occurs because we require first-class poly-
morphism.

Our contribution is to describe a simple type-system and type-inference
algorithm for higher-order instructions in a single stack stack-based lan-
guage.

1 Introduction

Many languages compile to intermediate languages that have stack-based se-
mantics [JVML [Lindholm and Yellin(1999)], Python [?], OCaml [?], Ruby [?],
CIL [?]]. Several languages used for embedded devices also have stack-based se-
mantics [Forth [Moore(1974)], PostScript [Inc.(1999)], there are even languages
designed specifically for general purpose application development with stack-
based semantics such as Factor [Pestov(2003)].

It is useful if we can statically verify certain properties of stack-based code:
e.g. the stack will never underflow, that an instruction will have the expected
number of argument with correct types on the stack when executed.

Some stack-based languages (e.g. the JVML, CIL), by introducing certain
restrictions, such as requiring the stack configuration to be the same regardless
of which branch the control flow takes. These restrictions can be expressed using
a type-system.

It is well-known how to check the types of simple stack-based languages such
as for subsets of JVML or CIL, using Hindley-Milner type inference, or Hoare
logic. However the simple Hindley-Milner type inference algorithm is insufficient
to type-check higher order instructions without annotations. This is because we
lack first-class polymorphism
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For example we can not push an arbitrary valid subroutine of stack-based
instructions on the stack, and apply it to the stack. We show a specific example
of this later on. The advantages of having higher-order instructions in a language
are well known [?], and are not discussed in this article. We are simply concerned
how to introduction higher-order functions to a stack-based language in a type-
safe manner.

2 Cat: A Simple Higher-Order Stack-Based Language

For this paper we will consider a statically-typed higher-order stack-based lan-
guage with only one stack called Cat. By higher-order we mean that functions
are first-class values that can be pushed on the stack, as well as taken from the
stack and applied to the rest of the stack.

For this article we will be considering a pure subset of Cat that has no effects
and does not allow any instruction to have unbounded access to the whole stack.
In this subset of Cat, all instructions are, in effect, functions that take a single
stack as input and return a single stack as output.

2.1 Abstract Syntax

There are only two operations in the Cat language, abstraction (called quotation
in Cat) which is denoted by square brackets ( [ and ] ) and composition which
is denoted by the sequence of terms.

The abstract syntax of Cat is described thusly:

term ::==

[term]

term term

empty

It is noteworthy that application is absent from the abstract syntax.

2.2 Type Notations

To express the type-signatures of instructions we use a specific notation based
on stack effect diagrams. A function (or instruction) is denoted as follows:

(c0 c1 ... cn -> p0 p1 ... pm)

Where c0 through c1 are kind expressions describing the types expected on
the stack before execution collectively known as the consumption and p0 through
pn are the types expected on the stack after execution, collectively known as the
production.

The abstract syntax of types of Cat that are considered in this paper is
summarized by the following grammar:
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kind ::==

type

stack

type ::==

a..z // type variable

(S0->S1) // function from stack to stack

stack ::==

A..Z // stack variable

S t // stack containing a type on top

Fig. 1. Type system abstract syntax

Note that the production rules explicitly forbid the empty stack, and from
putting stacks on stacks. This is key to keeping the Cat type system manageable.
We should point out that in the actual Cat implementation type variables and
stack variable are preceded by apostrophes and can have multiple characters.

It follows from the productions rules that all functions in Cat are polymor-
phic, because a stack variable has to be at the bottom of each stack. All functions
can be applied to any stack as long as the top items in the stack conform to the
consumption.

2.3 Well-typed Expressions

Well-typed expressions in Cat have the following characteristics:

Polymorphism over the rest of the stack All expressions in Cat are poly-
morphic over the rest of the stack:

expr : (R c0 c1 ... cn -> R p0 p1 ... pm)

In plain English this means that no instruction in Cat can have unlimited
access to the rest of the stack. This restricts certain kinds of instructions such
as clearing the stack or reversing the stack. In other words every instruction
has to have an effect on a number of items on the stack that can be estab-
lished statically through type inference. This is related to Wand’s notion of row
polymorphism [Wand(1987)].

Stacks can not be placed on stacks It follows from the syntax rules of types
that a stack variables may not occur above another stack variable.

Types can not occur below stack It follows from the syntax rules of types
that a stack variables may not occur above a type variable.
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Variable can not occur only in productions A type variable or stack vari-
able must be contained with the consumption of the function, or the consumption
of a function appearing in the production.

The following are examples of well-typed expressions that don’t violate this
rule:

(A (A -> B) -> A)

(A -> A (C (C -> D) -> D))

The following are examples of ill-typed expressions that violate this rule:

(A -> B)

(A -> (A -> B))

2.4 Primitives

The core Cat language consist of the following primitive instructions.

– dup - for any stack with at least one item, duplicate the top item
– pop - for any stack with at least one item, remove the top item
– swap - for any stack with at least two items, swap the top two items
– apply - for any stack with a function on top, apply the function to the rest

the stack
– quote - for any stack with at least one item, replace the top item with a

function that returns that value. Alternatively this could be considered a
thunk generating function.

– compose - for any stack with two functions on the top, replace these functions
with a new function that is the result of composing the top function with
the second function.

The types of these primitives are expressed in our notation as:

– dup : (A b → A b b)
– pop : (A b → A)
– swap : (A b c → A c b)
– apply : (A (A → B) → B)
– quote : (A b → A (C → C b))
– compose : (A (B → C) (C → D) → A (B → D)))

A simple evaluator for the Cat primitives, can be expressed using the follow-
ing series of term-rewriting rules:

– rule { $a dup } ⇒ { $a $a }
– rule { $a pop } ⇒ { }
– rule { $a $b swap } ⇒ { $b $a }
– rule { [$A] apply } ⇒ { $A }
– rule { $a quote } ⇒ { [$a] }
– compose { [$A] [$B] compose } ⇒ { [$A $B] }
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In these rules single value expressions are expressed as lower-case variables
preceded by a $ character, whereas arbitrary length expressions bounded by
quotation delimiters are expressed as upper-case variables names preceded by a
$ character.

A smaller basis (i.e. set of primitive instructions) is of course possible, in fact
we can reduce these down to two instructions [Kerby(2002)] and even flatten
all code [?] (i.e. remove the explicit quotation operator), however this basis was
chosen for its combination of simplicity and clarity.

2.5 Composition versus Application

The sequence of terms in Cat denotes composition rather than application. This
means that the following terms are equivalent:

f g = [f] [g] compose apply

f g h = [f] [g] compose apply [h] compose apply

The property of distributivity of function application over function compo-
sition, leads to an interesting result for programs of three or more terms:

f g h = [f] [g] compose [h] compose apply

= [f] [g] [h] compose compose apply

This means that there are many different yet equally valid ways to evaluate a
Cat program, and equivalently many different ways to type-check a Cat program.

3 Type System

Given that there are only two operations in Cat, there are only two typing
judgements in the Cat language: quotation (a.k.a abstraction), and composition.
Cat also lacks identifiers, thus we have no need for a type environment, to map
from identifiers to types.

3.1 Universal Quantification

In Cat type variables are all universally quantified. The forall quantifying oper-
ator is omitted from type annotation since it can be deduced from the following
rule:

Any type or stack variable is assumed to be universally quantified over
the inner-most function that includes all occurences of that type variable.

The usage of such a rule simplifies type inference greatly. To demonstrate this
rule , consider the types of the primitives with explicit universal quantification:

– dup : forall.A.b.(A b → A b b)
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– pop : forall.A.b.(A b → A)
– swap : forall.A.b.c.(A b c → A c b)
– apply : forall.A.B.(A (A → B) → B)
– quote : forall.A.b.(A b → A forall.C.(C → C b))
– compose : forall.A.B.C.D.(A (B → C) (C → D) → A (B → D)))

Including explicit forall qualifiers would make expressing typing judgements
much more complicated than necessary, because we would have to explicitly
manage forall qualifiers. By omitting them we can construct a type reconstruc-
tion algorithm that only has to deal with type variables and stack variables.
However, an explicit renaming step has to be added.

3.2 Quotation

Quotation is the Cat equivalent of an abstraction operation. It pushes a Cat
expression on the stack without evaluation. Quotation is denoted by square
brackets, e.g. [t0 t1 ... tn]. The type of a term that is quoted is defined by the
following typing rule:

f : (A -> B)

----------------------- T-QUOTE

[f] : (C -> C (A -> B))

Note that this is a short form of the following more complete rule:

f : forall.R.(R c0 ... cn -> R p0 ... pm)

------------------------------------------------------------------- T-QUOTE

[f] : forall.S.(S -> S forall.R.(R c0 ... cn -> R p0 ... pm))

However, as we stated previously the forall qualifiers are implied.

3.3 Composition

Composition is indicated in Cat by the sequencing of two terms together.

f : (A -> B) g : (B -> C)

------------------------- T-COMPOSE

f g : (A -> C)

4 Type Inference

Type inference, also called type reconstruction, is the process of finding the best
type that satisfies an expression. Failure to do so, indicates a type error. By far
the most widely used and understood type inference algorithm is the Hindley-
Milner (HM) type inference algorithm. The type inference algorithm used by Cat
is essentially the same as HM with the introduction of a new rule for renaming
generic variables.

Type reconstruction consists of the following steps:
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– applying the type judgement rules T-QUOTE or T-COMPOSE
– generate constraints
– solve constraints using unification

When composing two functions, a constraint is generated because the pro-
duction of the first term must be equal to the consumption of the second term.

When generating constraints we follow a recursive process:

– when constraining two vectors if both vectors have a top type, create a new
constraint by equating the two tops, then generate constraint by equating
the rest of the vector

– when constraining two functions, generating constraints by equating the con-
sumption then the production

Given a set of constraints we apply a unification algorithm. This is explained
very well in Programming Languages: Application and Interpretation by Shri-
ram Krishnamurthi [Krishnamurthi(2006)], and in many other sources. Our only
modification is that during substitution, when substituting a function for a type
variable we rename all generic variables in the function.

4.1 Type Reconstruction Example

A simple example that is illustrative of the Cat type inference algorithm are
deriving the type of the expression ”‘[dup] apply”’:

Starting with ”‘dup”’ we apply the quotation rule as follows:

dup : (A0 b0 -> A0 b0 b0)

------------------------------------- T-QUOTE

[dup] : (A1 -> A1 (A0 b0 -> A0 b0 b0)

Next we compose with apply as follows:

apply : (A2 (A2 -> B2) -> B2)

----------------------------- T-COMPOSE

[dup] apply : (A1 -> B2)

Of course this is not the end of the story, the following constraint is generated:

A1 (A0 b0 -> A0 b0 b0) = A2 (A2 -> B2)

Unifying these two generate the following additional constraints:

(A0 b0 -> A0 b0 b0) = (A2 -> B2)

A1 = A2

Next we unify the two functions:

A0 b0 = A2

A0 b0 b0 = B2

A1 = A2
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No more unifications are left to do, so we start with the substitution. We
replace all instances of ”‘A2”’ with ”‘A0 b0”’ because it is longer.

A0 b0 b0 = B2

A1 = A0 b0

Now we replace ”‘B2”’ with ”‘A0 b0 b0”’ and ”‘A1”’ with ”‘A0 b0”’ in our
final result giving us:

[dup] apply : (A0 b0 -> A0 b0 b0)

This type is now immediately recognizable as being the precise type we ex-
pect.

4.2 Generic and Non-Generic Type Variables

In [Cardelli(1987)] Luca Cardelli the notion of generic and non-generic type
variables. In order to infer types in Cat we have to consider the genericity of
type and stack variables. Type and stack variables are considered either generic
or non-generic relative to a particular function. A generic type variable does not
occur outside of the particular function. This is not a property that we manage,
but rather something that we query during unification.

There is a correlation between forall quantifiers and generic variables: The
forall quantifier expresses that a function is the outer-most enclosing function
for which the variable is generic.

4.3 Renaming Variables

In the Cat type inference algorithm an important rule which is absent from
simple ML type-inference is to assign unique names to all generic variable in a
function when unifying a function with a type variable.

Consider the case of composing the expression ”‘[1] : (A -¿ A (B -¿ B int))”’
with the expression ”‘dup : (A b -¿ A b b)”’. Following the normal type unifica-
tion process we would arrive at the following rules:

[1] dup : (A -> A (B -> B int) (B -> B int))

The problem in the above code is that B is non-generic relative to each of
the two functions on the stack. In other words the types of both functions are
polymorphic, but dependent.

If we make the universal quantifier operator explicit, it may help to illustrate
the problem. The following is the erroneous type:

[1] dup : forall.A.B.(A -> A (B -> B int) (B -> B int))

The following is the correct type:

[1] dup : forall.A.(A -> A forall.B.(B -> B int) forall.C.(C -> C int))
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4.4 Decidability

We do not know whether or not the type reconstruction algorithm we have de-
scribed is decidable. Nonetheless we have yet to see it fail in practice, and are
optimistic that practical application of the algorithm in compilers will not be im-
peded even if decidability is not proven. To quote Luca Cardelli [Cardelli(1987)]

Type checking is usually restricted to decidable type systems, for
which type checking algorithms can be found. However in some cases un-
decidable systems could be treated by incomplete type checking heuris-
tics (this has never been done in practice, so far), which only attempt
to prove theorems in that system, but may at some point give up. This
could be acceptable in practice because there are limits to the complexity
of a program: its meaning could get out of hand long before the limits
of the type checking heuristics are reached.

Proving the decidability of the algorithm, would be an interesting area of
research, out of the scope of this technical report.

5 Related Work

5.1 Type Systems

The following description of Hindley-Milner type systems by Daan Leijen [Leijen(2008)]
is a very lucid and accurate summary of the limitations of HM types as they ap-
ply to languages that require firs-class polymorphic values such as higher-order
stack-based languages like Cat:

The Hindley-Milner type system restricts polymorphism where function
arguments and elements of structures to be monomorphic. Formally, this
means that universal quantifiers can only appear at the outermost level
(i.e. higher-ranked types are not allowed), and quantified variables can
only be instantiated with monomorphic types (i.e. impredicative instan-
tiation is not allowed).

These two limitations of the HM type system are precisely what we have
had to address in this paper. We allow impredicative instantiation of types, and
higher ranked types.

The type system which appears to have the most in common with the one
presented in this paper is the HMF [?] type system, which is the Hindley-Milner
type system extended with regular System F [?] types. System F allows poly-
morphic values as first-class citizens.

5.2 Languages

[to do]
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6 Extending Cat with Self Types

It appears to be possible to extend the typing discipline with a limited form of
equirecursive [?] function type to enable the typing of a wider number of phrases.

A motivating example of the need for recursive types is the m-combinator
defined by the expression ”‘dup apply”’ which is an important component of the
y-combinator.

The approach we propose is for the recursive relation checker to return a
special indicator, to indicate a recursive type has occurred. We identify these as
”‘self”’ types.

During the unification algorithm recursive types can be identified when a
constraint is generated in which a type variable is required to be equivalent to
a function within which the type variable occurs. This requires an additional
check to see that a type variable is contained within a particular function. This
is a simple scan of the type variables in a function, which are finite, thus the al-
gorithm is guaranteed to terminate and should not affect the overall decidability
of the program.

For example, when computing the type of ”‘dup apply”’ we have to compose
the types:

dup:(A0 b0 -> A0 b0 b0) apply:(A1 (A1 -> B1) -> B1)

This gives us:

dup apply : (A0 b0 -> B1)

With the following initial constraints:

(A1 -> B1) = b0

A1 = A0 b0

Note however that as we unify constraints we end up with a constraint to a
function that refers to itself:

A1 = A0 (A1 -> B1)

When we expand the variable A1 we get:

A1 = A0 (A0 (A1 -> B1) -> B1)

Because we see that (A1 → B1) is equal to (A0 (A1 → B1) → B1) which
contains (A1 → B1) we can replace (A1 → B1) with a ”‘self”’ type.

A1 = A0 (A0 self -> B1)

Now we perform the substitutions with the original result:
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A0 = A0

b0 = (A1 -> B1)

A1 = A0 (A0 self -> B1)

b0 = (A0 (A0 self -> B1) -> B1)

dup apply : (A0 (A0 (A0 self -> B1) -> B1) -> B1)

There is a final step called a roll-up, where any function type containing a
function with a self type is checked for equivalency. If all aspect are equal, we
replace it with the child. This is demonstrated in the following steps:

dup apply : (A0 (A0 (A0 self -> B1) -> B1) -> B1)

dup apply : (A0 (A0 self -> B1) -> B1)

dup apply : (A0 self -> B1)

Self types are restricted to functions which refer to themselves. If a function
f contains a function g that refers to f, then this is considered a type error and
can not be handled by the type inference algorithm.

When unifying a self type with a type variable, the type variable takes prece-
dence. It is considered a better match for a type than a self because it is more
general.
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