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ABSTRACT 
A new technique to enter text using a mobile phone 
keypad is described.  For text input, the traditional touch-
tone phone keypad is ambiguous because each key 
encodes three or four letters.  Instead of using a stored 
dictionary to guess the intended word, our technique uses 
probabilities of letter sequences — “prefixes” — to guess 
the intended letter.  Compared to dictionary-based 
methods, this technique, called LetterWise, takes 
significantly less memory and allows entry of non-
dictionary words without switching to a special input 
mode. We conducted a longitudinal study to compare 
LetterWise to Multitap, the conventional text entry 
method for mobile phones.  The experiment included 20 
participants (10 LetterWise, 10 Multitap), and each 
entered phrases of text for 20 sessions of about 30 
minutes each.  Error rates were similar between the 
techniques; however, by the end of the experiment the 
mean entry speed was 36% faster with LetterWise than 
with Multitap. 
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INTRODUCTION 
In December 2000, fifteen billion text messages were sent 
using the standard 12-key mobile phone keypad.  This 
number is provided by the GSM World Association 
(www.gsmworld.com) who also note that volumes are 
doubling every six months.  This is particularly 
remarkable in view of the poor affordances of the mobile 
phone keypad.  Fifteen billion messages translates into 
about one trillion keystrokes, assuming six words per 
message and input via the conventional multitap 
technique used on mobile phones.  In this paper we 

present a new technique for entering text using a mobile 
phone keypad that approximately halves the number of 
keystrokes required.   

Mobile Phone Keypad 
Text entry on a mobile phone is based on the standard 
12-key telephone keypad (see Figure 1). 

 
Figure 1.  The standard 12-key telephone keypad 

The 12-key keypad consists of number keys 0-9 and two 
additional keys (* and #).  The letters a-z are spread 
over keys 2-9 in alphabetic order.  The SPACE character 
is often assigned to the 0 key, but this varies depending 
on the phone.  As alphabet size is typically at least 26 
letters, three or four letters are grouped on each key, and, 
so, ambiguity arises.   

In the following sections we describe three methods for 
working with this ambiguity.  The first, Multitap, is the 
established method for entering names into a mobile 
phone’s address book.  As a general purpose text input 
method, however, it is slow, inefficient, and not well 
liked by users [4].  The second is a dictionary-based 
method with several commercial implementations.  The 
third is a new method we call LetterWise.  LetterWise is a 
linguistically optimized technique that is not dictionary-
based. 
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Multitap 
With Multitap, the user presses each key one or more 
times to specify the desired letter.  For example, the 2 
key is pressed once for the letter a, twice for b, three 
times for c.  Besides requiring multiple keystrokes for 
many letters, Multitap requires a mechanism to segment 
consecutive letters on the same key.  An example is the 
word on, because both o and n are on the 6 key.  To 
enter on the user presses 6 three times, waits for the 
system to timeout, and then presses 6 twice more to enter 
n.  Another approach is to press a special key to skip the 
timeout (“timeout kill”), thus allowing direct entry of the 
next character on the same key.  Some phones use a 
combination of the two solutions.  For example, Nokia 
phones implement a 1.5 second timeout and a timeout-
kill using the DOWN-ARROW key.  The user decides which 
strategy to use. 

Dictionary-based Disambiguation 
Another way to overcome ambiguity is to add a 
dictionary to the system.  One such technique is known 
as dictionary-based disambiguation.  Commercial 
examples include T9 by Tegic Communications  
(www.tegic.com), eZiText from Zi Corp. 
(www.zicorp.com), or iTAP from the Lexicus division of 
Motorola (www.motorola.com/lexicus). 

With dictionary-based disambiguation, each key is 
pressed only once.  For example, to enter the, the user 
enters 8-4-3-0.  The 0 key, for SPACE, delimits words 
and terminates disambiguation of the preceding keys.  
The key sequence 8-4-3 has 3 × 3 × 3 = 27 possible 
renderings (see Figure 1).  The system compares the 
possibilities to a dictionary of words to guess the intended 
word. 

Naturally, disambiguation is not perfect since multiple 
words may have the same key sequence.  In these cases 
the most-probable word is the default.  However, if the 
desired word is not the most-probable, overhead is 
incurred.  For example, there are four words matching 
the key sequence 2-2-5-3.  From most-to-least 
probable, the words and the required key sequences are 

able 2-2-5-3-0 
cake 2-2-5-3-N-0 
bald 2-2-5-3-N-N-0 
calf 2-2-5-3-N-N-N-0 

If the user intends calf, then three presses of a special 
NEXT key are required to reach the correct response.  
Clearly, “one key per letter” is an over simplification of 
user interaction with dictionary-based entry methods. 

Prefix-based Disambiguation 
LetterWise was developed to avoid the problems just 
noted.  It works with a stored database of probabilities of 
prefixes. A prefix is the letters preceding the current 
keystroke.  For example, if the user presses 3 with prefix 

th, the most likely next letter is e because the in 
English is far more probable than either thd or thf. 

The most significant departure is that LetterWise does 
not use a dictionary of stored words.  Instead, a priori 
analysis of a dictionary is used to distill probability 
information about letter sequences in the language.  This 
allows efficient entry of words and, unlike dictionary-
based approaches, generalizes to non-words. 

LetterWise occasionally guesses the wrong letter, and in 
these cases the user must press a special NEXT key to 
choose the next mostly likely letter for the given key and 
context.  This behaviour is examined in detail shortly. 

The performance of LetterWise improves with the 
number of preceding letters considered.  In LetterWise, 
improved performance means fewer presses of the NEXT 
key. Increasing the number of preceding characters 
considered also increases the memory footprint of the 
implementation — an important consideration for mobile 
devices.  Prefixes of length 3 were used in the experiment 
described in this paper.   

Letterwise databases store information on a selected 
subset of prefixes.  In practice, the memory requirements 
vary from about 500 bytes to 9000 bytes.  See [5] for 
details. 

Keystrokes Per Character (KSPC) 
Keystrokes per character (KSPC) is a useful metric for 
characterising overall text entry behaviour.  KSPC is the 
number of keystrokes, on average, required to produce 
each character using a given input method. 

As a baseline, consider KSPC = 1.  This is a reasonable 
measure for a Qwerty keyboard, because each letter has a 
dedicated key.  KSPC < 1 is possible, for example, with 
word prediction techniques.  KSPC > 1 is likely if the 
keyboard has fewer keys than symbols in the target 
language.   

An extreme example of KSPC > 1 is text input using a 5-
button two-way pager.  With these devices, the cursor is 
maneuvered over letters using four arrow buttons and 
then a letter is selected using the ENTER button.  If letters 
are presented alphabetically in two rows, the effect is 
KSPC = 6.18.  Bellman and MacKenzie [1] describe a 
technique to reduce this to KSPC = 4.03 by fluctuating 
the layout after each keystroke to minimize the cursor 
distance to the next letter. 

Multitap, T9, and LetterWise all have KSPC > 1.  It is 
possible to compute the KSPC characteristic for a given 
entry technique using a language corpus (see [8] for 
details).  For our investigations, we used the British 
National Corpus (ftp://ftp.itri.bton.ac.uk/bnc/).  For 
simplicity, we reduced the 90 million word corpus to a 
list of approximately 65 thousand unique words and their 
frequencies. 



Table 1 compares the KSPC characteristic for Multitap, 
LetterWise, and dictionary-based disambiguation 
techniques such T9.  The measures were computed 
considering only the letters a-z and the SPACE character.  
Punctuation and other symbols are excluded.   Although 
important, such symbols, by and large, do not represent a 
“point of differentiation” among the entry techniques 
considered. 

 

  Table 1 
Keystrokes Per Character  

(KSPC) for Various Techniques 

Technique KSPC 
Multitap  2.0342  
Dictionary-based disambiguation (T9) 1.0072a 
LetterWise 1.1500  
a see text for important assumptions 

 

 

At KSPC = 1.1500, LetterWise requires 43.5% fewer 
keystrokes per character than Multitap.   

The figure for dictionary-based disambiguation is quite 
impressive at first glance.  That it is so close to 1.0000 
suggests that presses of NEXT are relatively rare with 
dictionary-based disambiguating methods.  As noted by 
Silfverberg et al. [11], only about 5% of words require 
the NEXT function.  The keystroke overhead reflected in 
the KSPC figure (1.0072) is much less than 5% however, 
since it is weighted by word frequency.  Silfverberg et 
al.’s figure is unweighted: it is an absolute measure of the 
ratio of words requiring at least one press of NEXT.  
Importantly, their measure excludes the most probable 
word in any ambiguous set (e.g., “able”, mentioned 
earlier) because it is the default and is entered directly.  

The apparently impressive KSPC figure with T9 is 
predicated on the rather generous assumption that users 
only enter dictionary words.  It is well known that text 
messaging users employ a rich dialect of abbreviations, 
slang, etc. [3]  When confronted with non-dictionary 
words, or when the user makes spelling or typing errors, 
dictionary-based disambiguation fails completely, and the 
user’s only recourse is to switch to an alternate entry 
mode, such as Multitap.   LetterWise bears no such 
assumptions, because it is not dictionary-based.  We will 
describe the behaviour of LetterWise and T9 on non-
dictionary words later. 

Presses of NEXT 
In our implementation LetterWise, prefixes do not cross 
word boundaries.  Thus, when entering the first letter of 
a word, the prefix is empty.  For the second letter, the 
prefix has size one, and so on to the maximum prefix 
length. For this reason, keystroke overhead occurs 

primarily at the beginning of words.  The probability of a 
letter appearing correctly increases sharply with position 
within a word. 

Normalizing for word frequency, 50.1% of all words can 
be entered without ever pressing the NEXT key.  Of the 
remaining 49.9%, most presses of NEXT occur on the first 
letter in a word, and, of these, usually just one press of 
NEXT is needed.  Once the user successfully enters the 
first letter in a word, the need for presses of NEXT is 
greatly reduced (see Figure 2).   
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Figure 2. Press of NEXT vs. letter position in word 

 

Non-Dictionary Words 
Since LetterWise is prefix-based, not dictionary-based, it 
does not fail catastrophically when the user attempts to 
enter a non-dictionary word, such as a proper noun, 
abbreviation, or slang.  The user can always succeed and, 
the more the word resembles English, the fewer presses 
of NEXT required.  For example, the German word 
"haltestelle" is entered in LetterWise  as follows: 

h altes telle 
4N25837N83553 

Even if the word does not resemble English, users can 
always succeed in entering it.  For example hokkaido 
is entered in LetterWise as follows: 

h ok k aid o 
4N65N5N243N6 

There is no need to switch to Multitap mode to enter non-
dictionary words, as is the case with T9 and other 
dictionary-based methods. 

Predicting Asymptotic Text Entry Rates 
Soukoreff and MacKenzie [12] developed a model that 
combines Fitts’ law and digram probabilities in a 
language to predict asymptotic text entry rates for 
tapping on a soft keyboard with a stylus.  Silfverberg et 
al. [11] extended the model to finger input on a mobile 
phone keypad using various techniques.  Table 2 



reproduces Silverberg et al.’s figures and adds an 
additional entry for LetterWise. 

 
Table 2 

Predicted Asymptotic Text Entry Rates (wpm) 

Method Index finger Thumb 
Multitap 
    - wait for timeout 
    - timeout kill 

 
22.5   
27.2   

 
20.8   
24.5   

T9 45.7 a 40.6 a 
LetterWise 38.1   33.7   
a see text for important assumptions 

 
LetterWise’s position is not surprising, given the KSPC 
values in Table 1.  At 33-38 wpm, the predicted entry 
rates for LetterWise rates are lower than those for T9, 
however, they do not carry similar assumptions with 
respect to ambiguous words or non-dictionary words.   

Phrase Set 
One of the first steps in designing an empirical 
evaluation is constructing a set of phrases to be entered.  
Our phrase set was created manually.  We began with 
MacKenzie and Zhang’s [9] set of 70 phrases and 
expanded it to 500 phrases. The goal was to construct 
phrases that were of moderate length, easy to remember, 
and with letter frequencies typical of English.  The 
phrases included only letters and spaces.  Figure 3 gives 
the main characteristics of the phrase set.  The letter 
frequencies were tested against a standard reference [10].  
The high correlation (r = .9541) indicates the phrase set 
was representative of English. 

 

Number of phrases 500 
Average phrase length (min / max) 28.6 (16 / 43) 
Number of words (unique words) 2711 (1163) 
Average word length (min / max) 4.45 (1 / 13) 
Letter correlation with English r = .9541 

Figure 3. Characteristics of phrase set 

With this background, we now present our empirical 
evaluation of LetterWise.  We used Multitap as the point 
of comparison. 

METHOD 
Participants 
Twenty participants volunteered for the experiment.  
They were recruited based on contacts within two 
university communities.  Participants were paid an 
hourly rate, plus a bonus upon completion. 

We used a between-subjects design and randomly 
assigned participants to either the LetterWise or Multitap 
condition, ten subjects per condition.  A within-subjects 
design was considered, but not employed because of the 

potential for interference between the cognitive and 
motor skills needed for each technique. 

Apparatus 
Hardware 
The experiment was conducted on computer systems 
running Mandrake's GNU/Linux version 7.2.   Output 
was viewed on a 19” colour monitor.  Text entry was 
performed using a PC Concepts KB-5640 numeric 
keypad with standard 19 mm keys re-labeled to match the 
letter and number assignments typical of mobile phone 
keypads (see Figure 4).  Participants pressed keys using a 
technique of their choosing, typically using the index 
finger of the right (preferred) hand.  The keypad was 
either held in their left hand or positioned on the desk, as 
desired by each participant. 

 

 
Figure 4. Keypad used in the experiment 

Software 
Our experimental software and analysis routines were 
developed in C, C++, Python, Perl, and Java.  Figure 5 
shows the interface. 

 

 
Figure 5. Screen shot of the experimental software 



Procedure 
Participants entered short phrases of text presented to 
them on the display.   The instructions were brief, with 
the intent to simulate one or two screens of text on a 
mobile phone.   

LetterWise instructions: When typing, press the key with 
the letter you want. Most probably, the letter you intend 
will appear. If it does not, press the NEXT key repeatedly 
until the right letter appears. 

Multitap instructions: When typing, press the key with 
the letter you want. Press the key repeatedly until the 
letter appears. (Example: on the 2 key, press once for a, 
twice for b, three times for c.)  If the same key is needed 
for two consecutive letters, such as ba in bat, then enter 
b, press the NEXT key, and then enter a. 

Some additional instructions were given on the operation 
of the software, the treatment of errors, and the need to 
press the NEXT key at the end of a phrase to bring up the 
next phrase. 

A beep was sounded if the software detected a keystroke 
error.  In this case, participants had to adjust subsequent 
keystrokes to correct the error and regain synchronization 
with the presented text.  With this procedure, the final 
product was error-free.  Therefore, our error analyses are 
of keystroke errors, rather than character errors. 

Participants were also told to rest at their discretion 
between phrases, but to proceed expeditiously through a 
phrase once the first character was entered. 

Design 
Participants performed twenty sessions of about 25-30 
minutes each.  Participants signed up for 1-hour 
appointments, and thus completed two sessions per 
appointment, with about a 5-minute rest in between.  
Appointments were booked on consecutive days (with 
occasional gaps of two days for weekends), with as many 
as two appointments per day, provided appointments 
were separated by at least one hour.  This was done to 
ensure adequate rest. 

The experiment was a 2 × 20 factorial design.  “Entry 
method” was a between-subjects factor (LetterWise vs. 
Multitap), and “Session” was a within-subjects factor (1, 
2, 3 … 20). 

RESULTS 
Data Summary 
The files collected for 20 participants tested over 20 
sessions of 25-30 minutes contained about 16 MB of raw 
data.  These contained keystroke-level data for 23,709 
phrases, totaling 1,076,676 keystrokes of input. 

Entry Speed 
The means for session one were 7.3 wpm and 7.2 wpm 
for LetterWise and Multitap, respectively.  Improvement 
with practice was readily seen with both methods.  On 
the 20th session entry speeds were 21.0 wpm and 15.5 
wpm for LetterWise and Multitap, respectively.  Thus, 
although LetterWise was only marginally faster initially
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Figure 6.  Entry speed (wpm) by entry method and session 



(1.1%), the spread increased to 36.3% by the end of the 
experiment (see Figure 6). 

An analysis of variance indicated significant main effects 
for entry method (F1,18 = 4.33, p = .05) and session 
(F19,342 = 58.52, p < .0001), and a significant entry 
method by session interaction (F19,342 = 8.74, p = .0005).  
These effects are seen in Figure 6. 

The improvement with practice is further illustrated in 
the trend lines and prediction equations in Figure 6.  
These were computed through a least squares fit using 
the conventional power law of learning (see [1, 9] for 
examples).  The following models resulted: 

 

LetterWise: y = 7.1429 x 0.3469, R2 = .9927 

Multitap: y = 7.0997 x 0.2445, R2 = .9805 

 

where y is the predicted entry speed in “words per 
minute” and x is the number of 30-minute sessions.  An 
extrapolation to the 40th session is shown in the figure.  
The high R2 values imply that the fitted models provide a 
very good prediction of user behaviour.  In both cases 
over 98% of the variance is accounted for in the models.  
For both entry methods the observed and predicted entry 
speeds are well below the speeds predicted in Table 2, 
suggesting there is plenty of room for improvement with 
practice. 

Error Rates 
The grand mean for error rate was 5.2% (see Figure 7).  
Overall, the error rates were slightly higher for 
LetterWise than for Multitap; however an ANOVA 
revealed that the differences by entry method were not 
statistically significant (F1,18 = 0.384, ns).  There was 
also no statistical significance for the session main effect 
(F19,342 = 1,692, p > .05) or for the entry method by 
session interaction (F16,342 = .653, ns). 
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Figure 7. Errors rates (%) by entry method and session 

DISCUSSION 
Skill Acquisition 
Our analyses and observations suggest that learning is 
divided into three phases: 

Discovery phase.  In this phase, speed of entry is 
dominated by users’ familiarity with convention, such as 
alphabetic ordering.  It appears that this phase lasts only 
a few hundred keystrokes. 

Motor reflex acquisition phase.  This phase begins after 
the discovery phase and lasts for thousands of keystrokes.  
During this phase, speed of input increases 
logarithmically.  Participants in the present experiment 
performed about 50,000 keystrokes each over the 20 
sessions of data entry.  Learning was continuing, even at 
the end of the experiment (see Figure 6).  On a log-log 
plot (not shown), it is more clearly seen that learning 
continues in the usual power-law fashion [1, 9]. 

Terminal (Fitts’ law) phase.  For advanced experts, all 
reflexes are learned, and entry speed is determined by 
keypad geometry and the frequency with which pairs of 
keys are operated in succession.  Fitts’ law pertains to 
this advanced stage of learning [11, 13].  At this stage, 
all functions of all keys are known perfectly well, and 
entry time is purely a function of motor constraints in the 
interface.  Although such behaviour is unlikely to ever 
take hold fully, the approximations afforded from Fitts’ 
law analyses represent a useful point in the interaction 
space — an asymptote toward which experts progress.   

In comparison with the Fitts’ law predictions in Table 1 
for Multitap (index finger, timeout kill) and LetterWise, 
our participants are well short of reaching their expected 
asymptotic rates.  For Multitap, the session 20 mean of 
15.5 wpm is 56.8% of  the expert prediction of 27.2 
wpm.  Simarily for LetterWise, the session 20 mean of 
21.0 wpm is 55.1% of the predicted asymptotic rate of 
38.1 wpm. 

Components of Character Entry Time 
In this section we present more-detailed analyses of 
users’ interaction with Multitap and LetterWise.   

To operate Multitap successfully, the user must discover 
the following processes for entering letters: 

Find - locate the key for the desired letter, and press it. 

Adjust - if the desired letter does not appear, press the 
key again until it does. 

Timeout kill - if the same key is required for consecutive 
letters, press a timeout-kill button between the 
letters.  

To operate LetterWise, the process is a bit simpler: 

Find - locate the key for the desired letter, and press it. 

Adjust -  If the desired letter does not appear, press the 
NEXT key until it does. 



Separate analyses of these components are presented 
below. 

Finding a Key 
The time to find a key, tF , was defined operationally as 
the time from the last keystroke of one character to the 
first correct keystroke of the next character.  One simple 
hypothesis for this component of character entry time is 
that novices find letters by visually scanning the keys 
sequentially.  This should diminish with practice, with 
just motor constraints remaining. 

There is no reason to suspect any difference in tF between 
Multitap and LetterWise.  In fact this was the case.  tF 
was essentially the same for both techniques, starting at 
about 1500 ms for session 1 and improving to about 
550 ms on session 20. 

Adjust Time and Timeout Kill 
The time to adjust, tA , was defined operationally as the 
time from the first correct keystroke for a character until 
the character was actually obtained through presses of the 
same key (Multitap), or presses of the NEXT key 
(LetterWise).  In many cases tA was zero as no 
adjustment was necessary.    

Timeout kill time, tK , is simply the time from the 
keystroke that produced the correct character to correctly 
pressing the timeout kill key, if needed.  tK is only 
required in Multitap mode. 

The separate effects of tA and tK are shown in Figure 8 for  

LetterWise (bottom line) and Multitap (top two lines).  It 
is seen that tA for LetterWise (bottom line) decreases with 
practice, starting initially at about 250 ms and dropping 
steadily to 100 ms by session 20.  Improvement continues 
to the end of the experiment.  The values are small 
throughout, and this is because the figure is an average 
over all characters entered.  With LetterWise 86% of 
characters are entered without an adjustment; i.e., tA = 0  
86% of the time.   

For Multitap (top two lines), the situation is different.  
Time to adjust, tA , starts off at about 340 ms, improves to 
260 ms by session 5, and then remains the same 
thereafter.  Thus, participants quickly learn the requisite 
behaviour for “multi-tapping”, but the motor component 
remains and is fixed following this initial period of 
learning — about 2.5 hours in our experiment.  The 
multi-tapping behaviour is required at least once for 
about 56% of all characters.  Figure 8 suggests that 
multi-tapping adds on average 260 ms to character entry 
time. 

Timeout kill time, tK , with Multitap is shown as an 
additive component of character entry time in Figure 8.  
It adds about 150 ms to the character entry time initially, 
but drops to about 60 ms by session 7.  Only slight 
improvement appears thereafter.  Again, the value is 
small because it is an average over all characters entered.  
Timeout kill is only needed about 8% of the time with 
Multitap.   
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A timeout kill in Multitap is in some sense similar to a 
press of the NEXT key in LetterWise.  Both are required 
infrequently, and, in these experiments, both are 
accomplished using the same key — the # key on the 
standard telephone keypad.  

Components of Character Entry Time for T9 
To include dictionary-based entry methods in our 
analyses, we need to identify the components of character 
entry time, as just done for Multitap and LetterWise.  
Importantly, the behaviour for ambiguous words and 
non-dictionary words must be included.  Our 
observations with several T9-equipped mobile phones 
suggest the following components: 

Find - locate the key for the desired letter and press it; 
continue for each letter in the word. 

Adjust - at the end of the word, if the intended word does 
not appear, then  

(a) press the NEXT key until the intended word appears, 
or the originally displayed word re-appears, then 

(b) if the intended word failed to appear, enter the word 
using Multitap. 

For T9, the Adjust phase is complex and the strategy to 
adjust depends on many factors.  For one, note that the 
adjustment occurs at the end of a word, rather than after 
each letter.  Indeed, a “leap of faith” is expected during 
word entry because the display is unstable and often 
fluctuates unpredictably.  As an example, consider the 
word “golf ”, as entered in T9-mode on a Nokia 3210 
mobile phone.  Figure 9, reading top to bottom, 
illustrates the required keystrokes and the displayed 
output at each keystroke. 

 

 

Keystroke Display Comment 

4  i wrong first letter 

6  in still wrong  

5  ink still wrong 

3  hold wrong word appears 

*  hole adjust - wrong word  

*  gold adjust - wrong word 

*  golf adjust - correct word  

0  golf accept word 

Figure 9. Entering “golf ” in T9-mode on a 
Nokia 3210 mobile phone (‘0’ is the SPACE key) 

 

The interaction illustrated in Figure 9 is more complex 
than suggested by a simple keystroke count.  Perceptual 
and cognitive processes are clearly at work as the user 

considers the system’s response to each keystroke.  At 
each keystroke where a response is considered, about 
190-260 ms is added to visually perceive and process the 
choice [7].  If the intended word ultimately does not 
appear, then the interaction is even more complex. 

To examine the performance cost of interaction in the 
presence of non-dictionary words, we undertook a 
parametric analysis based on our data.  We first obtained 
the observed entry time for each word in our phrase set at 
each stage of learning.  Recall that our phrase set had 
2711 words, of which 1163 were unique (see Figure 3).   
We extracted the entry time for each word considering 
only the time to find each letter in the word, tF .  Time to 
adjust or timeout kill time was ignored; thus, the time 
should be a reasonable approximation of the T9 entry 
time because it is based on only one keystroke per letter. 

To accurately model typing and spelling errors, we took 
the typing and spelling errors from the Multitap user 
study, and mimicked the behaviour of the T9 
implementation in the Nokia 3210.  This T9 
implementation attempts to notify the user when a typing 
or spelling error occurs by beeping when the input does 
not match any prefix in the dictionary. The beep 
generally occurs near the end of the word, regardless of 
where in the word the error occurred.  Hearing the beep, 
the simulated user backspaced to the error (at expert 
speeds — again favorable to T9), corrected the error, and 
continued. 

Our next assumption was that the underlying dictionary 
contained the vocabulary of our phrase set.  Thus, we 
obtained novice-to-expert predictions under the 
“all words in dictionary” assumption.   

We then removed words from the dictionary in stages, 
leaving .95, .90, .85, then .80 of the words in the 
dictionary.  Then, we modeled user input with T9 with 
the removed words entered as non-dictionary words.  The 
time to enter these words was approximated as the T9 
time plus the Multitap time.  This is reasonable, since 
users of T9-equipped phones do not have a priori 
knowledge of whether or not words are in the phone’s 
dictionary.  They must enter a word first, then, 
discovering that it is not in the dictionary, they must re-
enter the word in Multitap mode.   

Our analysis is generous to T9 in several ways.  First, 
words were removed at each stage systematically, starting 
with the least-probable entries.  As well, we ignored  the 
time for the user to consider and cycle through the 
alternatives in sets of ambiguous words.  The results are 
shown in Figure 10. 



The top line in the figure is the ideal situation where all 
words entered are in the dictionary.  As a reality check, 
note that the figures for session 1 (9.3 wpm) and session 
20 (21.7 wpm) are very close to the figures cited by 
James and Reischel [6].  They reported 9.09 wpm for 

novice T9 users and 20.4 wpm for expert T9 users.  In 
their study, all words entered were in the dictionary, so 
the appropriate comparison is with the top line in Figure 
10.   
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Figure 10. Simulated T9 analysis for non-dictionary words. Lines show  

T9 performance with decreasing ratios of words in dictionary 
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Figure 11. Comparison of entry rates (wpm) with practice for LetterWise, T9, and Multitap.  

(Note: LetterWise and Multitap figure are from Figure 6. Simulated T9 figures are from Figure 10 
with 0.85 frequency of words in dictionary) 



The other lines in Figure 10 represent various 
degradations in performance in the presence of non-
dictionary words.  The dashed line labeled “0.85” 
represents entry wherein 15% of the user’s words are not 
in the dictionary.  In this case, the performance with T9 
is about the same as for Multitap (see Figure 11). 

If the user is predisposed to use an even higher 
proportion of non-dictionary words, performance is 
further degraded, and is well below that for Multitap.  Of 
course, at some point users will simply give-up in 
frustration, and work exclusively in the alternate entry 
mode.  This was observed with at least some participants 
in Grinter and Eldridge’s study with teenagers [3].  If the 
title of their study is any indication — y do tngrs luv 2 txt 
msg? — a high frequency of non-dictionary words is 
common, a phenomenon of text messaging they call 
“evolving language”.  As another example, a collection 
of text from the 1988 Wall Street Journal containing 
20,691,239 words was found to contain not only 
8,633,941 ambiguous words, but also 4,007,375 words 
which were not in Webster’s seventh dictionary [2]. 

MULTILINGUAL INPUT 
Languages throughout the world are currently supported 
in various forms in mobile computing, and this will 
continue.  While the focus in the present paper is on 
English, the discussions apply to other languages, 
particularly those based on alphabets.  Databases for 
LetterWise are presently available for 35 languages, with 
databases for other languages under development.  See 
www.eatoni.com for details. 

CONCLUSION 
We have demonstrated prefix-based disambiguation to be 
an efficient means for text entry on keypad-based devices 
such as mobile phones.  Keystroke count is reduced by 
close to 50% in comparison to Multitap, and entry rate is 
higher by about 36% after ten hours of use.  Furthermore, 
the technique is not limited to the entry of words in a 
stored database, as with dictionary-based entry methods.  
A simulated comparison with T9 shows that LetterWise 
and T9 have similar entry speeds when all words are in 
T9's dictionary, but when as few as 15% of the least 
common words are missing, T9’s speed is similar to that 
of Multitap, and about 30% slower than LetterWise. 
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