
LetterWise: Prefix-based Disambiguation for
Mobile Text Input

I. Scott MacKenzie1, Hedy Kober2, Derek Smith3, Terry Jones3, and Eugene Skepner3

1Dept of Computer Science

York University
Toronto, ON, Canada

+1 416 736-2100
mack@yorku.ca

2Dept. of Psychology
Columbia University

New York, NY
+1 212-854-3608

hk384@columbia.edu

3Eatoni Ergonomics, Inc.

171 Madison Ave.
New York, NY

+1 212 725 9766
{dsmith,terry,eu}@eatoni.com

ABSTRACT
A new technique to enter text using a mobile phone
keypad is described. For text input, the traditional touch-
tone phone keypad is ambiguous because each key
encodes three or four letters. Instead of using a stored
dictionary to guess the intended word, our technique uses
probabilities of letter sequences — “prefixes” — to guess
the intended letter. Compared to dictionary-based
methods, this technique, called LetterWise, takes
significantly less memory and allows entry of non-
dictionary words without switching to a special input
mode. We conducted a longitudinal study to compare
LetterWise to Multitap, the conventional text entry
method for mobile phones. The experiment included 20
participants (10 LetterWise, 10 Multitap), and each
entered phrases of text for 20 sessions of about 30
minutes each. Error rates were similar between the
techniques; however, by the end of the experiment the
mean entry speed was 36% faster with LetterWise than
with Multitap.

Keywords
Text entry, mobile phones, language modeling

INTRODUCTION
In December 2000, fifteen billion text messages were sent
using the standard 12-key mobile phone keypad. This
number is provided by the GSM World Association
(www.gsmworld.com) who also note that volumes are
doubling every six months. This is particularly
remarkable in view of the poor affordances of the mobile
phone keypad. Fifteen billion messages translates into
about one trillion keystrokes, assuming six words per
message and input via the conventional multitap
technique used on mobile phones. In this paper we

present a new technique for entering text using a mobile
phone keypad that approximately halves the number of
keystrokes required.

Mobile Phone Keypad
Text entry on a mobile phone is based on the standard
12-key telephone keypad (see Figure 1).

Figure 1. The standard 12-key telephone keypad

The 12-key keypad consists of number keys 0-9 and two
additional keys (* and #). The letters a-z are spread
over keys 2-9 in alphabetic order. The SPACE character
is often assigned to the 0 key, but this varies depending
on the phone. As alphabet size is typically at least 26
letters, three or four letters are grouped on each key, and,
so, ambiguity arises.

In the following sections we describe three methods for
working with this ambiguity. The first, Multitap, is the
established method for entering names into a mobile
phone’s address book. As a general purpose text input
method, however, it is slow, inefficient, and not well
liked by users [4]. The second is a dictionary-based
method with several commercial implementations. The
third is a new method we call LetterWise. LetterWise is a
linguistically optimized technique that is not dictionary-
based.

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

Multitap
With Multitap, the user presses each key one or more
times to specify the desired letter. For example, the 2
key is pressed once for the letter a, twice for b, three
times for c. Besides requiring multiple keystrokes for
many letters, Multitap requires a mechanism to segment
consecutive letters on the same key. An example is the
word on, because both o and n are on the 6 key. To
enter on the user presses 6 three times, waits for the
system to timeout, and then presses 6 twice more to enter
n. Another approach is to press a special key to skip the
timeout (“timeout kill”), thus allowing direct entry of the
next character on the same key. Some phones use a
combination of the two solutions. For example, Nokia
phones implement a 1.5 second timeout and a timeout-
kill using the DOWN-ARROW key. The user decides which
strategy to use.

Dictionary-based Disambiguation
Another way to overcome ambiguity is to add a
dictionary to the system. One such technique is known
as dictionary-based disambiguation. Commercial
examples include T9 by Tegic Communications
(www.tegic.com), eZiText from Zi Corp.
(www.zicorp.com), or iTAP from the Lexicus division of
Motorola (www.motorola.com/lexicus).

With dictionary-based disambiguation, each key is
pressed only once. For example, to enter the, the user
enters 8-4-3-0. The 0 key, for SPACE, delimits words
and terminates disambiguation of the preceding keys.
The key sequence 8-4-3 has 3 × 3 × 3 = 27 possible
renderings (see Figure 1). The system compares the
possibilities to a dictionary of words to guess the intended
word.

Naturally, disambiguation is not perfect since multiple
words may have the same key sequence. In these cases
the most-probable word is the default. However, if the
desired word is not the most-probable, overhead is
incurred. For example, there are four words matching
the key sequence 2-2-5-3. From most-to-least
probable, the words and the required key sequences are

able 2-2-5-3-0
cake 2-2-5-3-N-0
bald 2-2-5-3-N-N-0
calf 2-2-5-3-N-N-N-0

If the user intends calf, then three presses of a special
NEXT key are required to reach the correct response.
Clearly, “one key per letter” is an over simplification of
user interaction with dictionary-based entry methods.

Prefix-based Disambiguation
LetterWise was developed to avoid the problems just
noted. It works with a stored database of probabilities of
prefixes. A prefix is the letters preceding the current
keystroke. For example, if the user presses 3 with prefix

th, the most likely next letter is e because the in
English is far more probable than either thd or thf.

The most significant departure is that LetterWise does
not use a dictionary of stored words. Instead, a priori
analysis of a dictionary is used to distill probability
information about letter sequences in the language. This
allows efficient entry of words and, unlike dictionary-
based approaches, generalizes to non-words.

LetterWise occasionally guesses the wrong letter, and in
these cases the user must press a special NEXT key to
choose the next mostly likely letter for the given key and
context. This behaviour is examined in detail shortly.

The performance of LetterWise improves with the
number of preceding letters considered. In LetterWise,
improved performance means fewer presses of the NEXT
key. Increasing the number of preceding characters
considered also increases the memory footprint of the
implementation — an important consideration for mobile
devices. Prefixes of length 3 were used in the experiment
described in this paper.

Letterwise databases store information on a selected
subset of prefixes. In practice, the memory requirements
vary from about 500 bytes to 9000 bytes. See [5] for
details.

Keystrokes Per Character (KSPC)
Keystrokes per character (KSPC) is a useful metric for
characterising overall text entry behaviour. KSPC is the
number of keystrokes, on average, required to produce
each character using a given input method.

As a baseline, consider KSPC = 1. This is a reasonable
measure for a Qwerty keyboard, because each letter has a
dedicated key. KSPC < 1 is possible, for example, with
word prediction techniques. KSPC > 1 is likely if the
keyboard has fewer keys than symbols in the target
language.

An extreme example of KSPC > 1 is text input using a 5-
button two-way pager. With these devices, the cursor is
maneuvered over letters using four arrow buttons and
then a letter is selected using the ENTER button. If letters
are presented alphabetically in two rows, the effect is
KSPC = 6.18. Bellman and MacKenzie [1] describe a
technique to reduce this to KSPC = 4.03 by fluctuating
the layout after each keystroke to minimize the cursor
distance to the next letter.

Multitap, T9, and LetterWise all have KSPC > 1. It is
possible to compute the KSPC characteristic for a given
entry technique using a language corpus (see [8] for
details). For our investigations, we used the British
National Corpus (ftp://ftp.itri.bton.ac.uk/bnc/). For
simplicity, we reduced the 90 million word corpus to a
list of approximately 65 thousand unique words and their
frequencies.

Table 1 compares the KSPC characteristic for Multitap,
LetterWise, and dictionary-based disambiguation
techniques such T9. The measures were computed
considering only the letters a-z and the SPACE character.
Punctuation and other symbols are excluded. Although
important, such symbols, by and large, do not represent a
“point of differentiation” among the entry techniques
considered.

 Table 1
Keystrokes Per Character

(KSPC) for Various Techniques

Technique KSPC
Multitap 2.0342
Dictionary-based disambiguation (T9) 1.0072a
LetterWise 1.1500
a see text for important assumptions

At KSPC = 1.1500, LetterWise requires 43.5% fewer
keystrokes per character than Multitap.

The figure for dictionary-based disambiguation is quite
impressive at first glance. That it is so close to 1.0000
suggests that presses of NEXT are relatively rare with
dictionary-based disambiguating methods. As noted by
Silfverberg et al. [11], only about 5% of words require
the NEXT function. The keystroke overhead reflected in
the KSPC figure (1.0072) is much less than 5% however,
since it is weighted by word frequency. Silfverberg et
al.’s figure is unweighted: it is an absolute measure of the
ratio of words requiring at least one press of NEXT.
Importantly, their measure excludes the most probable
word in any ambiguous set (e.g., “able”, mentioned
earlier) because it is the default and is entered directly.

The apparently impressive KSPC figure with T9 is
predicated on the rather generous assumption that users
only enter dictionary words. It is well known that text
messaging users employ a rich dialect of abbreviations,
slang, etc. [3] When confronted with non-dictionary
words, or when the user makes spelling or typing errors,
dictionary-based disambiguation fails completely, and the
user’s only recourse is to switch to an alternate entry
mode, such as Multitap. LetterWise bears no such
assumptions, because it is not dictionary-based. We will
describe the behaviour of LetterWise and T9 on non-
dictionary words later.

Presses of NEXT
In our implementation LetterWise, prefixes do not cross
word boundaries. Thus, when entering the first letter of
a word, the prefix is empty. For the second letter, the
prefix has size one, and so on to the maximum prefix
length. For this reason, keystroke overhead occurs

primarily at the beginning of words. The probability of a
letter appearing correctly increases sharply with position
within a word.

Normalizing for word frequency, 50.1% of all words can
be entered without ever pressing the NEXT key. Of the
remaining 49.9%, most presses of NEXT occur on the first
letter in a word, and, of these, usually just one press of
NEXT is needed. Once the user successfully enters the
first letter in a word, the need for presses of NEXT is
greatly reduced (see Figure 2).

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Position In Word
W

or
ds

 (
%

) 3 Presses of NEXT

2 Presses of NEXT

1 Press of NEXT

Figure 2. Press of NEXT vs. letter position in word

Non-Dictionary Words
Since LetterWise is prefix-based, not dictionary-based, it
does not fail catastrophically when the user attempts to
enter a non-dictionary word, such as a proper noun,
abbreviation, or slang. The user can always succeed and,
the more the word resembles English, the fewer presses
of NEXT required. For example, the German word
"haltestelle" is entered in LetterWise as follows:

h altes telle
4N25837N83553

Even if the word does not resemble English, users can
always succeed in entering it. For example hokkaido
is entered in LetterWise as follows:

h ok k aid o
4N65N5N243N6

There is no need to switch to Multitap mode to enter non-
dictionary words, as is the case with T9 and other
dictionary-based methods.

Predicting Asymptotic Text Entry Rates
Soukoreff and MacKenzie [12] developed a model that
combines Fitts’ law and digram probabilities in a
language to predict asymptotic text entry rates for
tapping on a soft keyboard with a stylus. Silfverberg et
al. [11] extended the model to finger input on a mobile
phone keypad using various techniques. Table 2

reproduces Silverberg et al.’s figures and adds an
additional entry for LetterWise.

Table 2

Predicted Asymptotic Text Entry Rates (wpm)

Method Index finger Thumb
Multitap
 - wait for timeout
 - timeout kill

22.5
27.2

20.8
24.5

T9 45.7 a 40.6 a
LetterWise 38.1 33.7
a see text for important assumptions

LetterWise’s position is not surprising, given the KSPC
values in Table 1. At 33-38 wpm, the predicted entry
rates for LetterWise rates are lower than those for T9,
however, they do not carry similar assumptions with
respect to ambiguous words or non-dictionary words.

Phrase Set
One of the first steps in designing an empirical
evaluation is constructing a set of phrases to be entered.
Our phrase set was created manually. We began with
MacKenzie and Zhang’s [9] set of 70 phrases and
expanded it to 500 phrases. The goal was to construct
phrases that were of moderate length, easy to remember,
and with letter frequencies typical of English. The
phrases included only letters and spaces. Figure 3 gives
the main characteristics of the phrase set. The letter
frequencies were tested against a standard reference [10].
The high correlation (r = .9541) indicates the phrase set
was representative of English.

Number of phrases 500
Average phrase length (min / max) 28.6 (16 / 43)
Number of words (unique words) 2711 (1163)
Average word length (min / max) 4.45 (1 / 13)
Letter correlation with English r = .9541

Figure 3. Characteristics of phrase set

With this background, we now present our empirical
evaluation of LetterWise. We used Multitap as the point
of comparison.

METHOD
Participants
Twenty participants volunteered for the experiment.
They were recruited based on contacts within two
university communities. Participants were paid an
hourly rate, plus a bonus upon completion.

We used a between-subjects design and randomly
assigned participants to either the LetterWise or Multitap
condition, ten subjects per condition. A within-subjects
design was considered, but not employed because of the

potential for interference between the cognitive and
motor skills needed for each technique.

Apparatus
Hardware
The experiment was conducted on computer systems
running Mandrake's GNU/Linux version 7.2. Output
was viewed on a 19” colour monitor. Text entry was
performed using a PC Concepts KB-5640 numeric
keypad with standard 19 mm keys re-labeled to match the
letter and number assignments typical of mobile phone
keypads (see Figure 4). Participants pressed keys using a
technique of their choosing, typically using the index
finger of the right (preferred) hand. The keypad was
either held in their left hand or positioned on the desk, as
desired by each participant.

Figure 4. Keypad used in the experiment

Software
Our experimental software and analysis routines were
developed in C, C++, Python, Perl, and Java. Figure 5
shows the interface.

Figure 5. Screen shot of the experimental software

Procedure
Participants entered short phrases of text presented to
them on the display. The instructions were brief, with
the intent to simulate one or two screens of text on a
mobile phone.

LetterWise instructions: When typing, press the key with
the letter you want. Most probably, the letter you intend
will appear. If it does not, press the NEXT key repeatedly
until the right letter appears.

Multitap instructions: When typing, press the key with
the letter you want. Press the key repeatedly until the
letter appears. (Example: on the 2 key, press once for a,
twice for b, three times for c.) If the same key is needed
for two consecutive letters, such as ba in bat, then enter
b, press the NEXT key, and then enter a.

Some additional instructions were given on the operation
of the software, the treatment of errors, and the need to
press the NEXT key at the end of a phrase to bring up the
next phrase.

A beep was sounded if the software detected a keystroke
error. In this case, participants had to adjust subsequent
keystrokes to correct the error and regain synchronization
with the presented text. With this procedure, the final
product was error-free. Therefore, our error analyses are
of keystroke errors, rather than character errors.

Participants were also told to rest at their discretion
between phrases, but to proceed expeditiously through a
phrase once the first character was entered.

Design
Participants performed twenty sessions of about 25-30
minutes each. Participants signed up for 1-hour
appointments, and thus completed two sessions per
appointment, with about a 5-minute rest in between.
Appointments were booked on consecutive days (with
occasional gaps of two days for weekends), with as many
as two appointments per day, provided appointments
were separated by at least one hour. This was done to
ensure adequate rest.

The experiment was a 2 × 20 factorial design. “Entry
method” was a between-subjects factor (LetterWise vs.
Multitap), and “Session” was a within-subjects factor (1,
2, 3 … 20).

RESULTS
Data Summary
The files collected for 20 participants tested over 20
sessions of 25-30 minutes contained about 16 MB of raw
data. These contained keystroke-level data for 23,709
phrases, totaling 1,076,676 keystrokes of input.

Entry Speed
The means for session one were 7.3 wpm and 7.2 wpm
for LetterWise and Multitap, respectively. Improvement
with practice was readily seen with both methods. On
the 20th session entry speeds were 21.0 wpm and 15.5
wpm for LetterWise and Multitap, respectively. Thus,
although LetterWise was only marginally faster initially

y = 7.1429x0.3469

R2 = 0.9927

y = 7.0997x0.2445

R2 = 0.9805

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Session

E
nt

ry
 S

pe
ed

 (
w

pm
)

LetterWise

Multitap

Figure 6. Entry speed (wpm) by entry method and session

(1.1%), the spread increased to 36.3% by the end of the
experiment (see Figure 6).

An analysis of variance indicated significant main effects
for entry method (F1,18 = 4.33, p = .05) and session
(F19,342 = 58.52, p < .0001), and a significant entry
method by session interaction (F19,342 = 8.74, p = .0005).
These effects are seen in Figure 6.

The improvement with practice is further illustrated in
the trend lines and prediction equations in Figure 6.
These were computed through a least squares fit using
the conventional power law of learning (see [1, 9] for
examples). The following models resulted:

LetterWise: y = 7.1429 x 0.3469, R2 = .9927

Multitap: y = 7.0997 x 0.2445, R2 = .9805

where y is the predicted entry speed in “words per
minute” and x is the number of 30-minute sessions. An
extrapolation to the 40th session is shown in the figure.
The high R2 values imply that the fitted models provide a
very good prediction of user behaviour. In both cases
over 98% of the variance is accounted for in the models.
For both entry methods the observed and predicted entry
speeds are well below the speeds predicted in Table 2,
suggesting there is plenty of room for improvement with
practice.

Error Rates
The grand mean for error rate was 5.2% (see Figure 7).
Overall, the error rates were slightly higher for
LetterWise than for Multitap; however an ANOVA
revealed that the differences by entry method were not
statistically significant (F1,18 = 0.384, ns). There was
also no statistical significance for the session main effect
(F19,342 = 1,692, p > .05) or for the entry method by
session interaction (F16,342 = .653, ns).

0

2

4

6

8

1 3 5 7 9 11 13 15 17 19

Session

E
rr

or
 R

at
e

(%
)

LetterWise
Multitap

Figure 7. Errors rates (%) by entry method and session

DISCUSSION
Skill Acquisition
Our analyses and observations suggest that learning is
divided into three phases:

Discovery phase. In this phase, speed of entry is
dominated by users’ familiarity with convention, such as
alphabetic ordering. It appears that this phase lasts only
a few hundred keystrokes.

Motor reflex acquisition phase. This phase begins after
the discovery phase and lasts for thousands of keystrokes.
During this phase, speed of input increases
logarithmically. Participants in the present experiment
performed about 50,000 keystrokes each over the 20
sessions of data entry. Learning was continuing, even at
the end of the experiment (see Figure 6). On a log-log
plot (not shown), it is more clearly seen that learning
continues in the usual power-law fashion [1, 9].

Terminal (Fitts’ law) phase. For advanced experts, all
reflexes are learned, and entry speed is determined by
keypad geometry and the frequency with which pairs of
keys are operated in succession. Fitts’ law pertains to
this advanced stage of learning [11, 13]. At this stage,
all functions of all keys are known perfectly well, and
entry time is purely a function of motor constraints in the
interface. Although such behaviour is unlikely to ever
take hold fully, the approximations afforded from Fitts’
law analyses represent a useful point in the interaction
space — an asymptote toward which experts progress.

In comparison with the Fitts’ law predictions in Table 1
for Multitap (index finger, timeout kill) and LetterWise,
our participants are well short of reaching their expected
asymptotic rates. For Multitap, the session 20 mean of
15.5 wpm is 56.8% of the expert prediction of 27.2
wpm. Simarily for LetterWise, the session 20 mean of
21.0 wpm is 55.1% of the predicted asymptotic rate of
38.1 wpm.

Components of Character Entry Time
In this section we present more-detailed analyses of
users’ interaction with Multitap and LetterWise.

To operate Multitap successfully, the user must discover
the following processes for entering letters:

Find - locate the key for the desired letter, and press it.

Adjust - if the desired letter does not appear, press the
key again until it does.

Timeout kill - if the same key is required for consecutive
letters, press a timeout-kill button between the
letters.

To operate LetterWise, the process is a bit simpler:

Find - locate the key for the desired letter, and press it.

Adjust - If the desired letter does not appear, press the
NEXT key until it does.

Separate analyses of these components are presented
below.

Finding a Key
The time to find a key, tF , was defined operationally as
the time from the last keystroke of one character to the
first correct keystroke of the next character. One simple
hypothesis for this component of character entry time is
that novices find letters by visually scanning the keys
sequentially. This should diminish with practice, with
just motor constraints remaining.

There is no reason to suspect any difference in tF between
Multitap and LetterWise. In fact this was the case. tF
was essentially the same for both techniques, starting at
about 1500 ms for session 1 and improving to about
550 ms on session 20.

Adjust Time and Timeout Kill
The time to adjust, tA , was defined operationally as the
time from the first correct keystroke for a character until
the character was actually obtained through presses of the
same key (Multitap), or presses of the NEXT key
(LetterWise). In many cases tA was zero as no
adjustment was necessary.

Timeout kill time, tK , is simply the time from the
keystroke that produced the correct character to correctly
pressing the timeout kill key, if needed. tK is only
required in Multitap mode.

The separate effects of tA and tK are shown in Figure 8 for

LetterWise (bottom line) and Multitap (top two lines). It
is seen that tA for LetterWise (bottom line) decreases with
practice, starting initially at about 250 ms and dropping
steadily to 100 ms by session 20. Improvement continues
to the end of the experiment. The values are small
throughout, and this is because the figure is an average
over all characters entered. With LetterWise 86% of
characters are entered without an adjustment; i.e., tA = 0
86% of the time.

For Multitap (top two lines), the situation is different.
Time to adjust, tA , starts off at about 340 ms, improves to
260 ms by session 5, and then remains the same
thereafter. Thus, participants quickly learn the requisite
behaviour for “multi-tapping”, but the motor component
remains and is fixed following this initial period of
learning — about 2.5 hours in our experiment. The
multi-tapping behaviour is required at least once for
about 56% of all characters. Figure 8 suggests that
multi-tapping adds on average 260 ms to character entry
time.

Timeout kill time, tK , with Multitap is shown as an
additive component of character entry time in Figure 8.
It adds about 150 ms to the character entry time initially,
but drops to about 60 ms by session 7. Only slight
improvement appears thereafter. Again, the value is
small because it is an average over all characters entered.
Timeout kill is only needed about 8% of the time with
Multitap.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

T
im

e
(m

s)

Multitap: tA + tK

Multitap: tA

LetterWise: tA

Figure 8. Time to adjust (tA) and timeout kill (tK) processes as a function of practice for Multitap
 (top two lines) and LetterWise (bottom line) (Note: Timeout kill is only required for Multitap)

A timeout kill in Multitap is in some sense similar to a
press of the NEXT key in LetterWise. Both are required
infrequently, and, in these experiments, both are
accomplished using the same key — the # key on the
standard telephone keypad.

Components of Character Entry Time for T9
To include dictionary-based entry methods in our
analyses, we need to identify the components of character
entry time, as just done for Multitap and LetterWise.
Importantly, the behaviour for ambiguous words and
non-dictionary words must be included. Our
observations with several T9-equipped mobile phones
suggest the following components:

Find - locate the key for the desired letter and press it;
continue for each letter in the word.

Adjust - at the end of the word, if the intended word does
not appear, then

(a) press the NEXT key until the intended word appears,
or the originally displayed word re-appears, then

(b) if the intended word failed to appear, enter the word
using Multitap.

For T9, the Adjust phase is complex and the strategy to
adjust depends on many factors. For one, note that the
adjustment occurs at the end of a word, rather than after
each letter. Indeed, a “leap of faith” is expected during
word entry because the display is unstable and often
fluctuates unpredictably. As an example, consider the
word “golf ”, as entered in T9-mode on a Nokia 3210
mobile phone. Figure 9, reading top to bottom,
illustrates the required keystrokes and the displayed
output at each keystroke.

Keystroke Display Comment

4 i wrong first letter

6 in still wrong

5 ink still wrong

3 hold wrong word appears

* hole adjust - wrong word

* gold adjust - wrong word

* golf adjust - correct word

0 golf accept word

Figure 9. Entering “golf ” in T9-mode on a
Nokia 3210 mobile phone (‘0’ is the SPACE key)

The interaction illustrated in Figure 9 is more complex
than suggested by a simple keystroke count. Perceptual
and cognitive processes are clearly at work as the user

considers the system’s response to each keystroke. At
each keystroke where a response is considered, about
190-260 ms is added to visually perceive and process the
choice [7]. If the intended word ultimately does not
appear, then the interaction is even more complex.

To examine the performance cost of interaction in the
presence of non-dictionary words, we undertook a
parametric analysis based on our data. We first obtained
the observed entry time for each word in our phrase set at
each stage of learning. Recall that our phrase set had
2711 words, of which 1163 were unique (see Figure 3).
We extracted the entry time for each word considering
only the time to find each letter in the word, tF . Time to
adjust or timeout kill time was ignored; thus, the time
should be a reasonable approximation of the T9 entry
time because it is based on only one keystroke per letter.

To accurately model typing and spelling errors, we took
the typing and spelling errors from the Multitap user
study, and mimicked the behaviour of the T9
implementation in the Nokia 3210. This T9
implementation attempts to notify the user when a typing
or spelling error occurs by beeping when the input does
not match any prefix in the dictionary. The beep
generally occurs near the end of the word, regardless of
where in the word the error occurred. Hearing the beep,
the simulated user backspaced to the error (at expert
speeds — again favorable to T9), corrected the error, and
continued.

Our next assumption was that the underlying dictionary
contained the vocabulary of our phrase set. Thus, we
obtained novice-to-expert predictions under the
“all words in dictionary” assumption.

We then removed words from the dictionary in stages,
leaving .95, .90, .85, then .80 of the words in the
dictionary. Then, we modeled user input with T9 with
the removed words entered as non-dictionary words. The
time to enter these words was approximated as the T9
time plus the Multitap time. This is reasonable, since
users of T9-equipped phones do not have a priori
knowledge of whether or not words are in the phone’s
dictionary. They must enter a word first, then,
discovering that it is not in the dictionary, they must re-
enter the word in Multitap mode.

Our analysis is generous to T9 in several ways. First,
words were removed at each stage systematically, starting
with the least-probable entries. As well, we ignored the
time for the user to consider and cycle through the
alternatives in sets of ambiguous words. The results are
shown in Figure 10.

The top line in the figure is the ideal situation where all
words entered are in the dictionary. As a reality check,
note that the figures for session 1 (9.3 wpm) and session
20 (21.7 wpm) are very close to the figures cited by
James and Reischel [6]. They reported 9.09 wpm for

novice T9 users and 20.4 wpm for expert T9 users. In
their study, all words entered were in the dictionary, so
the appropriate comparison is with the top line in Figure
10.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

E
nt

ry
 S

pe
ed

 (
w

pm
)

1.00
0.95
0.90
0.85
0.80

Figure 10. Simulated T9 analysis for non-dictionary words. Lines show

T9 performance with decreasing ratios of words in dictionary

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

E
nt

ry
 S

pe
ed

 (
w

pm
)

LetterWise
T9
Multitap

Figure 11. Comparison of entry rates (wpm) with practice for LetterWise, T9, and Multitap.

(Note: LetterWise and Multitap figure are from Figure 6. Simulated T9 figures are from Figure 10
with 0.85 frequency of words in dictionary)

The other lines in Figure 10 represent various
degradations in performance in the presence of non-
dictionary words. The dashed line labeled “0.85”
represents entry wherein 15% of the user’s words are not
in the dictionary. In this case, the performance with T9
is about the same as for Multitap (see Figure 11).

If the user is predisposed to use an even higher
proportion of non-dictionary words, performance is
further degraded, and is well below that for Multitap. Of
course, at some point users will simply give-up in
frustration, and work exclusively in the alternate entry
mode. This was observed with at least some participants
in Grinter and Eldridge’s study with teenagers [3]. If the
title of their study is any indication — y do tngrs luv 2 txt
msg? — a high frequency of non-dictionary words is
common, a phenomenon of text messaging they call
“evolving language”. As another example, a collection
of text from the 1988 Wall Street Journal containing
20,691,239 words was found to contain not only
8,633,941 ambiguous words, but also 4,007,375 words
which were not in Webster’s seventh dictionary [2].

MULTILINGUAL INPUT
Languages throughout the world are currently supported
in various forms in mobile computing, and this will
continue. While the focus in the present paper is on
English, the discussions apply to other languages,
particularly those based on alphabets. Databases for
LetterWise are presently available for 35 languages, with
databases for other languages under development. See
www.eatoni.com for details.

CONCLUSION
We have demonstrated prefix-based disambiguation to be
an efficient means for text entry on keypad-based devices
such as mobile phones. Keystroke count is reduced by
close to 50% in comparison to Multitap, and entry rate is
higher by about 36% after ten hours of use. Furthermore,
the technique is not limited to the entry of words in a
stored database, as with dictionary-based entry methods.
A simulated comparison with T9 shows that LetterWise
and T9 have similar entry speeds when all words are in
T9's dictionary, but when as few as 15% of the least
common words are missing, T9’s speed is similar to that
of Multitap, and about 30% slower than LetterWise.

REFERENCES
1. Bellman, T., and MacKenzie, I. S. A probabilistic
character layout strategy for mobile text entry,
Proceedings of Graphics Interface '98. Toronto:
Canadian Information Processing Society, 1998, 168-
176.

2. Davis, J. R. Let your fingers do the spelling:

Disambiguating words spelled with the telephone keypad,
Avios Journal 9 (1991), 57-66.

3. Grinter, R. E., and Eldridge, M. A. Y do tngrs luv 2
txt msg? To appear in Proceedings of the European
Conference on Computer Supported Cooperative Work -
ECSCW 2001. Amsterdam: Kluwer Academic Press,
2001.

4. Guernsey, L. Playing taps on the cell phone, New
York Times (2000, October 12), D9.

5. Gutowitz, H. Patent No. 6,219,731, Method and
apparatus for improved multi-tap text input. Eatoni
Ergonomics, Inc. (2001).

6. James, C. L., and Reischel, K. M. Text input for
mobile devices: Comparing model predictions to actual
performance, Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI 2001. New
York: ACM, 2001, 365-371.

7. Keele, S. W., and Posner, M. I. Processing of visual
feedback in rapid movements, Journal of Experimental
Psychology 77 (1968), 155-158.

8. MacKenzie, I. S. KSPC (keystrokes per character) as
a characteristic of text entry techniques, Submitted for
publication. 2001.

9. MacKenzie, I. S., and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard,
Proceedings of the ACM Conference on Human Factors
in Computing Systems - CHI '99. New York: ACM,
1999, 25-31.

10. Mayzner, M. S., and Tresselt, M. E. Table of single-
letter and digram frequency counts for various word-
length and letter-position combinations, Psychonomic
Monograph Supplements 1 (1965), 13-32.

11. Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
Predicting text entry speed on mobile phones,
Proceedings of the ACM Conference on Human Factors
in Computing Systems - CHI 2000. New York: ACM,
2000, 9-16.

12. Soukoreff, W., and MacKenzie, I. S. Theoretical
upper and lower bounds on typing speeds using a stylus
and soft keyboard, Behaviour & Information Technology
14 (1995), 370-379.

13. Zhai, S., Hunter, M., and Smith, B. A. The
Metropolis keyboard: An exploration of quantitative
techniques for graphical keyboard design, Proceedings of

the ACM Symposium on User Interface Software and

Technology - UIST 2000. New York: ACM, 2000, 119-
128.

