# Safety Design of CHAdeMO Quick Charger and its impact on Power Grid

December 1, 2010
TEPCO
Takafumi Anegawa

- 1. How safe is safe enough design?
- 2. Does quick charger degrade battery?
- 3. Is there negative impact on power grid?

## Potential risk of high power



#### Off-board Quick Charger vs. Motor Drive Inverter





#### Safety elements in off-board quick charger

| Element                  | Objectives                                                         |
|--------------------------|--------------------------------------------------------------------|
| AC Filter                | Remove higher harmonics distortion to protect distribution grid.   |
| Power Fraction Corrector | Improve conversion efficiency.                                     |
| Isolation Transformer    | Separate battery circuit from grid for operator protection.        |
| LC filter                | Reduce ripple noise from output current to protect battery system. |
| Ground Fault Interrupter | Rapid response GFI to protect operator from electric shock.        |



#### Size of off-board quick charger and motor drive inverter

Off-board quick charger



**Motor drive inverter** 



Ground Fault Interrupter

**LC Filter** 

**AC Filter** 

Isolation transformer

#### **Charging sequence flowchart**



#### **Connector interface**



#### AC/DC and DC/DC converter isolation

- •RCD(1) monitors between grid and ELB of charger.
- •ELB(2) of charger monitors between ELB of charger and primary side of transformer.
- •Earth fault detector(③) of charger monitors between secondary side of transformer and vehicle.



## **Summary**

- Analog communication makes fail safe design.
- EV and charger redundantly watch charging condition.
- Isolation test prevents inadvertent short circuit.
- Connector is well designed to meet above functions.
- Isolation transformer prevents electrical shock.
- AC filter eliminates higher harmonic distortions.

- 1. How safe is safe enough design?
- 2. Does quick charger degrade battery?
- 3. Is there negative impact on power grid?

# Optimal charging speed is different in each batteries

- Battery degradation is caused by over voltage and high temperature.
- Limit voltage and temperature depend on battery characteristics.
- On-board battery management system is watching the voltage and the temperature in real time.



#### Observing parameters

- Battery total voltage
- Cell voltage
- Battery temperature
- Input Current etc.

# Charging process is controlled by EV in CHAdeMO

#### **Problems:**

- Battery improvement is so fast that it's difficult to catch up every batteries' data.
- Standardization to meet lowest speed battery disturbs battery improvement.

#### **How CHAdeMO charger works:**

- EV computer unit decides charging speed based on BMS observation.
- Charging current signal is sent to charger using CAN bus.
- Charger supplies DC current following the request from EV.



# Does quick charger degrade battery?

- CHAdeMO quick charger can change charging speed to meet each batteries characteristics and condition.
- There is no negative impact on battery system by quick charging if charging speed is well controlled.
- Advanced battery which can absorb higher current can get higher power.

- 1. How safe is safe enough design?
- 2. Does quick charger degrade battery?
- 3. Is there negative impact on power grid?

# Location of quick chargers on power grid



#### Impact on distribution grid (20% dissemination rate)

### 16kVA X 1250 dwellings



16kVA for each house

44kVA on-board charger

## Impact on distribution grid (20% dissemination rate)

4kVA X 5000 dwellings



10% load increase



#### Slow AC and fast DC combination

Charging Speed



Private/Office

Cost is most important since number of equipments is large.



Charging speed is most important.

Location

**Public** 





People cannot wait for hours.

# Is there negative impact on power grid?

- (Ultra) high voltage power grid can supply electricity to quick charger easily.
- Frequency to use quick charger is not often then impact on power grid is small.
- In order to minimize impact on distribution gird in residential area, on-board charger kW should be small.
- If there are moderate number of quick chargers in public area, drivers satisfy with small size on-board chargers.