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Introduction

Today, real-time 3d rendering applications are visually more impressive than before. Thanks to the 
hardware evolution which allows developers and artists to produce incredible effects.

High Dynamic Range Rendering is a set of techniques that emerge two years ago in some video 
games like  Half-Life 2: Lost Coast or  Oblivion.  It  was not possible to use real HDR rendering 
before due to GPU limitations.

In this document, we will expose what is HDR and how can it be used in real time rendering. The 
OpenGL project associated with this article will demonstrate the use of various HDR effects.
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1. High Dynamic Range
1.1. Definition

Usual digital images are created in order to be displayed on monitors. Due to the limited human 
visual system, these monitors support up to 16.7 million colors (24bits). Thus, it's logical to store 
numeric image to match the color range of the display. By example, famous file formats like bmp or 
jpeg traditionally use 16, 24 or 32 bits for each pixel.

Each pixel is composed of 3 primary colors : red, green and blue (and eventually alpha). So if a 
pixel is stored as 24 bits, each component value can range from 0 to 255. This is sufficient in most 
cases but this image can only represent a 256:1 contrast ratio whereas a natural scene exposed in 
sunlight can expose a contrast of 50,000:1. Most computer monitors have a specified contrast ratio 
between 500:1 and 1000:1.

High Dynamic Range (HDR) involves the use of a wider dynamic range than usual. That means that 
every pixel can represent a larger contrast and a larger dynamic range. Usual range is called Low 
Dynamic Range (LDR).

HDR is typically employed in two applications : imaging and rendering.

● High Dynamic Range Imaging is used by photographers or by movie maker. It's focused on 
static images where you can have full control and unlimited processing time.

● On the contrary, High Dynamic Range Rendering focus on real-time applications like video 
games or simulations.
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Illustration 2: Farcry with HDRIllustration 1: Farcry without HDR



1.2. Exposure

When you take a photograph of a scene, you can control how long the sensor will be exposed to 
light and thus how much light hit  the sensor. By controlling exposure time, photographers can 
create different effects.

An HDR image possess all necessary informations to simulate the exposure time. So a photograph 
can take a HDR photograph and re-work it on his computer by adjusting exposure after taking it. A 
few cameras are able to take HDR photographs. But you can create HDR image by composing 
images with different exposure time. Paul Debevec (http://www.debevec.org) made a great work on 
this field. One of his famous papers explain how to create HDR light probes from photographs.
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Illustration 3: by Dean S. Pemberton, 6 exposures illustrating the Steps to take an HDR 
Image

Illustration 4: by Dean S. Pemberton, Tone Mapped High dynamic range image example

http://www.debevec.org/


1.3. Tone mapping

Traditional display devices are limited and cannot render HDR colors. That's why tone-mapping 
exists. Tone-mapping allow an HDR color to be mapped to Low Dynamic Range in order to be 
displayed.

Various tone-mapping operators have been developed and give different visual results. They can be 
simple and efficient to be used in real time or very complex and customizable for image editing.

An easy tone-mapping operators is L= Y
Y1 .

This operator will map value from [0; inf) to [0;1).

Some tone-mapping operators use exposure or gamma as a parameter to control the final image. 
You can find various operators on this page: http://www.mpii.mpg.de/resources/tmo

The scene (or image) is rendered in HDR format and the tone-mapping operator is applied on the 
resultant image to convert it to Low Dynamic Range in order to be displayed on the monitor.
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2. Real Time HDR Rendering

2.1. File format

HDR images contain HDR values contrary to classical digital images which store Low Dynamic 
Range values. There are mainly two popular formats to manipulate HDR images:

● Radiance:
In 1985, Greg Ward created the Radiance file format. It's still being used today. These 
files used the RGBE format, 32bits per pixel. The concept is to use a share exponent for 
red, green and blue. It can handle very bright pixels without loss of precision for darker 
ones. Simple code is available to load .hdr files quickly.

● OpenEXR:
OpenEXR was released in 2003 by Industrial Light and Magic (ILM) as an open standard 
under a free license. This HDR file format is robust and efficient and mainly used in 
movies production. OpenEXR support various color formats and is packaged with a set of 
tools (library, viewer, ...) to manipulate the HDR images.

We chose the Radiance file format in this project because it's easy to use and there are wonderful 
HDR environment map available made by Paul Debevec (http://www.debevec.org/Probes) in this 
format.

2.2. Principle
In order to render a scene with High Dynamic Range, you need to compute every calculations using 
HDR capable variables and buffers. All your GPU rendering pipeline must support HDR : lighting, 
textures, post processing effects, etc.

The normal rendering process deals with 32 bits colors and each component range in [0;1]. In HDR, 
values can be greater than 1. If your GPU doesn't support float textures and float render textures, all 
values will be clamped to [0;1].

HDR effects are more easily developed with vertex and fragment programs.

2.3. HDR in OpenGL 

HDR rendering is supported in OpenGL 2.0 but some extensions are needed.

2.3.1. FrameBuffer Object
FBO is an extension (GL_EXT_framebuffer_object) to allow rendering to special framebuffers that 
can be used as texture. It's a render texture. You can use it as input or as output. You must specify 
the format of this buffer (like  RGBA: 32 bits, RGBA16F: float 64 bits or RGBA32F: float 128 
bits).
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The idea is to render the scene in a float texture using HDR. This texture will contain HDR values. 
We then must render this texture on the whole screen to the normal 32bits framebuffer using tone-
mapping to convert HDR to LDR.

FBO replace the deprecated pBuffer (pixel buffer) extension. FBO are way more easy and powerful 
than pBuffer !

2.3.2. GLSL

All lighting effects, blur and tone-mapping are performed in vertex and fragment programs using 
GL Shading Language. GLSL manipulate float vectors, and consequently is HDR capable.

2.3.3. Buffer formats and limitations

The FBO extension is available on latest GPUs but is not consistent on all cards. The two major 
vendors, ATI and NVIDIA, released GPUs with some limitations while using render textures.

First, the FBO format GL_RGBA32F (128 bits per color) is supported but is actually so slow than it 
can't be used for real time applications. If you want to use HDR in your program, you must then 
consider the GL_RGBA16F format which provided 16 bits floating value per component (called 
half-float).

Second, some cards don't support bilinear filtering while using render textures. Thus, if you want to 
realize good blur effect with these GPUs, you must filter the textures by yourself or use some tricks 
like storing render textures as 32 bits RGBE and custom shaders (more informations on the ATI 
sdk: HDR Texturing).

And third, OpenGL 2.0 supports non-power-of-two textures which are very useful to manage render 
textures of every size but some cards don't conform to the norm and don't allow NPOT textures. In 
this case, you can still use the texture rectangle extension (ARB_texture_rectangle).

You must be aware of these current limitations to implement HDR rendering.
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3. The demo

3.1. Libraries

The demo project is a multi platform application (tested on Windows XP and Linux) based on 
OpenGL.

● SDL : We use SDL (Simple DirectMedia Layer) to manage the rendering window, mouse 
and key inputs.

● GLee  : GLee (GL  Easy  Extension  library)  performs  automatic  loading  of  OpenGL 
extensions.

● Boost : In order to make asynchronous loading of resources, we implement threading with 
boost::thread.

● MS3D : Milkshape 3D is a simple modeling software which provide an easy to use file 
format : .ms3d. So all mesh files are stored as milkshake file and read during loading.

● RGBE : We use .hdr format for the cube map textures. Greg Ward release the code to easily 
load these files. The cube map image is then decomposed to extract each face. With these 6 
images,  we can upload them to OpenGL to create  the cube map texture in  the  desired 
format.

Simple code to read .hdr images:
// Read header
RGBE_ReadHeader(hdrfile, &sizeX, &sizeY, NULL);

// Read data
data = new float[3*sizeX*sizeY];
RGBE_ReadPixels_RLE(hdrfile, data, sizeX, sizeY);

● Glintercept : GLintercept is a must-have for every OpenGL developers. It allows you to 
intercept all OpenGL calls and gives visual debugging informations. By example you can 
catch your current frame: it will create images of all textures and of your framebuffer with 
the different rendering phases. You can also debug your shaders while your application is 
running and correct them in real-time.

3.2. Environment mapping and associated shaders

3.2.1. Presentation
Environment mapping simulates an object reflecting or refracting its surroundings. This technique 
is efficient and give very convincing visual results. The idea is to project the 3D environment on a 
shape and use it to calculate reflection or refraction.

The most famous environment mapping methods are sphere mapping and cube mapping. A sphere 
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map represent the environment from a fixed point. Sphere mapping has been gradually replaced by 
cube mapping which produce far better results.

A cube map is composed of 6 textures : one for each face of the cube. These 6 images form an 
omnidirectionnal image and fit together like the faces of a cube.

A cube map is viewpoint independent and can be dynamic. To access a cube map, you need a 3D 
vector and not two texture coordinates like 2D texture. This vector is the ray that originate from the 
center  of  the  cube  and  intersect  with  one  of  the  face.  The  face  is  then  sampled  at  the  right 
coordinates to get the color.
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Illustration 5: Spherical Environment 
Map Shape (source : NVIDIA)

Illustration 6: Light probe from Paul  
Debevec

Illustration 7: Cube Environment Map 
Shape (source : NVIDIA)

Illustration 8: Cross probe from Paul  
Debevec



Next we'll explain in some words some effects that use an environment cube map as source.

3.2.2. Reflection
When a ray of light hit a surface of an object, it can be reflected if the surface is appropriate (metal, 
glass, mirror, ...).

The incident vector (I) goes from the eye to the object's surface. When it hit  the surface,  it  is 
reflected in the direction R based on the surface normal N.

R= I−2⋅N N⋅I 
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Illustration 9: Texture Images for a  
Cube Map (source : NVIDIA)

Illustration 10: Calculating the Reflected 
Ray (source : NVIDIA)



● GLSL reflection fragment program:

// Color of the material
uniform vec4 matColor;
// Cube map
uniform samplerCube env;
// Reflection factor
uniform float reflectionFactor;
// Reflected vector
varying vec3 R;

void main()
{
    gl_FragColor = mix(matColor, textureCube(env, R), reflectionFactor);
}

● GLSL reflection vertex program:

// Position of the view eye in world space
uniform vec3 eyePos;
// Reflected vector
varying vec3 R;

void main()
{

// Create incident vector
vec3 I = normalize(gl_Vertex.xyz - eyePos.xyz);
// Calculate reflected vector
R = reflect(I, gl_Normal);
// Transform vertex
gl_Position = ftransform();

}

3.2.3. Refraction
When a  ray  of  light  goes  through a  boundary  between two materials  of  different  density,  it's 
direction  changes.  This  change  is  quantified  by  the  ratio  of  indices  of  refraction  of  the  two 
materials.
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Illustration 11: HDR and reflection shader Illustration 12: HDR and reflection shader 
with decal texture



Snell's Law: 1⋅sin I =2⋅sin T 

● GLSL refraction fragment program:

// Cube map
uniform samplerCube env;
// Refracted vector
varying vec3 R;

void main()
{

gl_FragColor  = textureCube(env, R);
}

● GLSL refraction vertex program:

// Position of the view eye in world space
uniform vec3 eyePos;

// Ratio of indices of refraction
uniform float etaRatio;

// Refracted vector
varying vec3 R;

void main()
{

// Create incident vector
vec3 I = normalize(gl_Vertex.xyz - eyePos.xyz);

// Calculate refracted vector
R = refract(I, gl_Normal, etaRatio);

// Transform vertex
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}
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Illustration 13: Snell's Law 
(source : NVIDIA)



3.2.4. Fresnel Effect
In real scene, when light hit a boundary between two materials, some light reflects off the surface 
and some refracts through the surface. The Fresnel equation describes this phenomenon precisely.
This equation is complex, so it's common to use a simplified version.

Approximation of the Fresnel Equation: 
reflectionCoefficient=max 0, min 1, biasscale×1I⋅N power
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Illustration 14: HDR and refraction shader

Illustration 15: HDR and fresnel shader



● GLSL fresnel effect fragment program:

// Cube map
uniform samplerCube env;
// Reflected and refracted vectors
varying vec3 reflectedVector, refractedVector;
// Reflection factor based on fresnel equation
varying float refFactor;

void main()
{

// Read cube map
vec4 reflectedColor = textureCube(env, reflectedVector);
vec4 refractedColor = textureCube(env, refractedVector);
// Mix reflected and refracted colors
gl_FragColor = mix(refractedColor, reflectedColor, refFactor);

}

● GLSL fresnel effect vertex program:

// Position of the view eye in world space
uniform vec3 eyePos;
// Fresnel parameters
uniform float fresnelBias, fresnelScale, fresnelPower;
// Ratio of indices of refraction
uniform float etaRatio;
// Reflected and refracted vectors
varying vec3 reflectedVector, refractedVector;
// Reflection factor based on fresnel equation
varying float refFactor;

void main()
{

// Create incident and normal vectors
vec3 I = normalize(gl_Vertex.xyz - eyePos.xyz);
vec3 N = normalize(gl_Normal);
// Calculate reflected and refracted vectors
reflectedVector = reflect(I, N);
refractedVector = refract(I, N, etaRatio);
// Appoximation of the fresnel equation
refFactor = fresnelBias+fresnelScale*pow(1+dot(I,N), fresnelPower);

// Transform vertex
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}

3.2.5. Chromatic dispersion
In fact, when a ray of light is refracted, it's direction is not only based on the ration of indices of 
refraction but also depends on the wavelength of the incident light. This phenomenon is known as 
chromatic dispersion.
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● GLSL chromatic dispersion fragment program:

// Cube map
uniform samplerCube env;
// Reflected and refracted vectors
varying vec3 R, TRed, TGreen, TBlue;
// Reflection factor based on fresnel equation
varying float refFactor;

void main()
{

// Read cube map for reflected color
vec4 reflectedColor = textureCube(env, R);
// Read cube map for refracted color (3 times)
vec4 refractedColor;
refractedColor.r = textureCube(env, TRed).r;
refractedColor.g = textureCube(env, TGreen).g;
refractedColor.b = textureCube(env, TBlue).b;
// Mix reflected and refracted colors
gl_FragColor = mix(refractedColor, reflectedColor, refFactor);

}

● GLSL chromatic dispersion vertex program:

// Position of the view eye in world space
uniform vec3 eyePos;
// Ratio of indices of refraction for the 3 colors
uniform vec3 etaRatioRGB;
// Fresnel parameters
uniform float fresnelBias, fresnelScale, fresnelPower;
// Reflection vector;
varying vec3 R;
// Separate refraction vectors
varying vec3 TRed, TGreen, TBlue;
// Reflection factor based on fresnel equation
varying float refFactor;
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Illustration 16: Understanding 
Chromatic Dispersion (source :  

NVIDIA)



void main()
{

// Create incident and normal vectors
vec3 I = normalize(gl_Vertex.xyz - eyePos.xyz);
vec3 N = normalize(gl_Normal);
// Reflection vector
R = reflect(I, N);
// Separate refraction vectors
TRed = refract(I, N, etaRatioRGB.r);
TGreen = refract(I, N, etaRatioRGB.g);
TBlue = refract(I, N, etaRatioRGB.b);
// Appoximation of the fresnel equation
refFactor=fresnelBias+fresnelScale*pow(1,0+dot(I,N),fresnelPower);
// Transform vertex
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}

3.3. HDR rendering pipeline

The demo scene is quite simple: a mesh with one of the precedent effect and a skybox representing 
the cube map.

● First we activate a float FBO to render the scene on it. 
 Check source code : OpenGLRenderer, OpenGLFBO, HdrApp.

● Second, the sky box is rendered using the selected cube map. This cube map is read from 
.hdr file and stored in the GL_RGBA16F format so it contains HDR values.

 Check source code : Image, ImageManager, OpenGLTextureCube.
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Illustration 17: HDR and chromatic dispersion  shader



● Third,  we  draw the  mesh  on  the  center  of  the  scene  with  one  effect  on  it  (reflection, 
refraction,  Fresnel  effect  or  chromatic  dispersion).  The  mesh  reflect  and  refract  the 
environment in HDR so the mesh is colored with HDR values. The current framebuffer 
contains an image in HDR.

 Check source code : TriMesh, TriMeshManager, OpenGLShader.

● Next, we create the bloom effect on the whole scene. To do this, very bright areas of the 
image are extracted in a HDR FBO. This texture is then down-sampled. That means that we 
reduce it's size a desired number of times with bilinear filtering active. The down-sampled 
textures are blurred with a median filter shader.

 Check source code : DownSampler.

● Then, we composed the original image by adding all down-sampled blurred textures with 
additive blending. The resulting effect is called bloom.

● Finally  we get  an  HDR framebuffer  with  the  desired  scene  and effects.  We must  now 
convert HDR image to LDR by applying a tone-mapping operator on the texture. We try a 
lots of operators but only a few give us good results. 

Tone map operator: Y =exposure×
 exposure

maxLuminance
1

exposure1


This operator allow the user to control exposure. With a very small exposure, the scene is 
very dark but some hidden details appear. On the other hand, with a high exposure, the 
scene is very bright.

● GLSL tone-mapping fragment program:

// render texture and bloom map
uniform sampler2D tex, bloom;
// Control exposure with this value
uniform float exposure;
// How much bloom to add
uniform float bloomFactor;
// Max bright
uniform float brightMax;

void main()
{

vec2 st = gl_TexCoord[0].st;
vec4 color = texture2D(tex, st);
vec4 colorBloom = texture2D(bloom, st);

// Add bloom to the image
color += colorBloom * bloomFactor;

// Perform tone-mapping
float Y = dot(vec4(0.30, 0.59, 0.11, 0.0), color);
float YD = exposure * (exposure/brightMax + 1.0) / (exposure + 1.0);
color *= YD;

gl_FragColor = color;
}
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Illustration 18: HDR rendering process



3.4. Manual

The demo offers a high level of customization.
Each press on a key increase the associated value
Each press on key with control key down decrease the associated value.

3.4.1. Basic features
left-click and move  rotate around the mesh.
right-click and move  zoom in or out.
M  change mesh
C  change cube map
H  change shader effect
Space   reset effects

3.4.2. HDR & LDR
The rendering window is cut to show the difference between HDR and LDR rendering. You can 
control the ratio of the screen by pressing LEFT and RIGHT keys.

3.4.3. Advanced features
E  allow the user to control exposure.
O  change the intensity of the bloom effect
T  modify the brightness threshold used to extract 

bright areas of the scene.

3.4.4. Effects parameters
R  change the reflection factor
A  change the  ratio of materials indice
B, S, P  change Fresnel parameters
1, 2, 3  vary the color of the material
5, 6, 7  vary the  ratio for each individual color

3.5. Improvements
This demo was realized in a limited time for a school project and thus doesn't contain all HDR 
effects. For example, HDR rendering can achieve very good results with depth of field (A good 
demo using DirectX can be found here: rthdribl).

We also just implement bloom effect, but you can add some streaks or lens flare effects which are 
very similar (Shaders for game programmers and artits)

Exposure can be controlled by the application to reproduce the same perception as the human eye. 
That means that the eye adapt himself to the current environment luminance. This technique called 
auto-exposure calculate the mean luminance of the scene and determine the correct exposure based 
on transition time and desired luminance.
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3.6. Screenshots

3.6.1. Exposure examples
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Illustration 19: Minimum exposure Illustration 20: Low exposure

Illustration 21: Normal exposure Illustration 22: High exposure



3.6.2. HDR & LDR comparison

3.6.3. Various examples
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Illustration 23: Car with Fresnel effect Illustration 24: Glass with Fresnel effect

Illustration 25: Reflecting car
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Illustration 26: Reflecting spoon

Illustration 27: Reflecting teapot



Conclusion

High Dynamic Range Rendering and Imaging make the virtual scene more real by controlling the 
final image with exposure, bloom or other effects. HDR tends to mimic natural effects because it 
eliminates clamping and can represent wide range of intensity levels as in real scenes.

HDR is still a young technique and consequently was not used often in the industry. Recent video 
cards with shaders and floating point buffer support allow HDR rendering to emerge in commercial 
products like video games.

Even though current  hardware can manage High Dynamic Range image,  our  screens  can only 
render 16 million colors. That's why tone-mapping must be applied in order to map HDR value to 
screen limited value. HDR screens are still being experimented but we can hope to be equipped 
with full HDR hardware in the future.
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