Swiss Re

III

sigma

No 1/2008
Natural catastrophes and man-made disasters in 2007:
high losses in Europe

3 Summary
5 Overview of catastrophes in 2007
9 Increasing flood losses
16 Indices for the transfer of insurance risks

20 Tables for reporting year 2007
40 Tables on the major losses 1970-2007

42 Terms and selection criteria

Published by:
Swiss Reinsurance Company
Economic Research \& Consulting
P.O. Box

8022 Zurich
Switzerland
Telephone +41432852551
Fax +41 432854749
E-mail: sigma@swissre.com
New York Office:
55 East 52nd Street
40th Floor
New York, NY 10055

Telephone +1 2123175135
Fax +1 2123175455

Hong Kong Office:
18 Harbour Road, Wanchai
Central Plaza, 61st Floor
Hong Kong, SAR
Telephone +852 25825691
Fax +852 25116603

Authors:
Rudolf Enz
Telephone +41 432852239

Kurt Karl (Chapter on indices)
Telephone +41 2123175564
Jens Mehlhorn (Chapter on floods)
Telephone +41432854304

Susanna Schwarz
Telephone +41432855406
sigma co-editor:
Brian Rogers
Telephone +41 432852733

Managing editor:
Thomas Hess, Head of Economic Research \& Consulting, is responsible for the sigma series.

The editorial deadline for this study was 22 January 2008
sigma is available in German (original language), English, French, Italian, Spanish, Chinese and Japanese.
sigma is available on Swiss Re's website: www.swissre.com/sigma

The internet version may contain slightly updated information.

Translations:
CLS Communication

Graphic design and production: Swiss Re Logistics/Media Production
© 2008
Swiss Reinsurance Company
All rights reserved.
The entire content of this sigma edition is subject to copyright with all rights reserved. The information may be used for private or internal purposes, provided that any copyright or other proprietary notices are not removed. Electronic reuse of the data published in sigma is prohibited.

Reproduction in whole or in part or use for any public purpose is permitted only with the prior written approval of Swiss Re Economic Research \& Consulting and if the source reference "Swiss Re, sigma No $1 / 2008$ " is indicated. Courtesy copies are appreciated.

Although all the information used in this study was taken from reliable sources, Swiss Reinsurance Company does not ac cept any responsibility for the accuracy or comprehensiveness of the information given. The information provided is for informational purposes only and in no way constitutes Swiss Re's position. In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information.

14600 lives claimed by natural catastrophes, and 6900 by man-made disasters

Catastrophes in 2007: more than 20000 fatalities, losses of roughly USD 70bn, insurers bear USD 28bn of the losses

Although 2007 was not an exceptional year in terms of either fatalities or losses, statistics confirm a trend towards an increase in the number - and cost - of natural catastrophes and man-made disasters. Natural catastrophe losses are rapidly on the rise, especially those related to storms and flooding.

Catastrophes claimed the most lives in Bangladesh, India, China and Pakistan in 2007. In terms of property and insured losses, Europe was the worst hit last year. However, losses in the US, which are usually at the top of the loss tables, were minor in comparison.

A total of 21500 people fell victim to catastrophes in 2007.

- 14600 died as a result of natural catastrophes, though most of them 12500 - perished because of storms and flooding. In Bangladesh and India alone, 6700 people lost their lives, while in China, Pakistan and Europe, the death toll was 1300, 700 and 80 , respectively.
- Man-made disasters claimed 6900 lives; including over 2000 lives that were lost due to passenger ship accidents.

Property losses from catastrophes in 2007 were estimated at approximately USD 70bn. Most of the losses were uninsured, leaving private individuals, companies or the state to bear the costs. Nevertheless, insurers covered USD 27.6bn of the losses in 2007, which was USD 10.7bn more than in 2006.

Of the USD 27.6bn in insured losses, USD 23.3bn could be attributed to natural catastrophes, while the remaining USD 4.3bn were due to major man-made disasters.

Storms and floods were the most prevalent natural catastrophes in 2007:

- In January, winter storm Kyrill caused losses of USD 10bn in Germany, the UK, Belgium and the Netherlands (the insured loss was USD 6.1 bn).
- The UK was hit several times by heavy rainfall and flooding during the summer. The losses were estimated at USD 7.2bn (the insured loss was USD 4.8bn).
- At the end of October, floods in the Tabasco region of Mexico led to losses of USD 4.5bn (the insured loss was USD 0.5bn).
- At the beginning of June, Cyclone Gonu caused losses of USD 3.9bn in the Gulf of Oman (the insured loss was USD 0.6bn).
- The most expensive event in the US occurred in April: a storm with high winds, hail and floods, which resulted in losses of USD 2bn (the insured loss was USD 1.6bn).
- October's forest fires in California caused losses in excess of USD 2bn (the insured loss was USD 1.1 bn).

With regard to man-made catastrophes, several industrial fires and accidents in the energy and space sectors each contributed insured losses of USD 100 m .

Insured flood losses have increased by 7\% annually in real terms since 1970.

Loss figures indicate that the hazard potential of flood losses is not sufficiently accounted for in flood coverage in Europe.

Indices play a key role in the transfer of insurance risks to the capital markets.

Due to premium underpricing, US state insurers have gained significant ground, leaving taxpayers and other policyholders to cover the gaps.

Better pricing of flood losses, increased capital market protection and more state participation in response to the rising trend in losses

Long-term figures indicate a steep upward trend, particularly in flood losses. Since 1970, losses have risen annually by an average of 12% (or 7% when adjusted for inflation). This translates into a doubling of the nominal burden in just over six years. The developments of recent years have prompted insurers and politicians to take action.

Over the past few years, insurers have been working to adapt their models to the new data and findings, especially since their flood loss models are still flawed. Most flood models rely heavily on data from the 1960s to the 1980s, when the incidence of flooding in Europe was below the norm. As a result, the probability of flood events is under-weighted in most flood models.

The insurers' other focus is on the transfer of catastrophe risks to the capital markets. An important aspect of this is the development of transparent indices outside the US. Under the guidance of the CRO Forum (Chief Risk Officer Forum of the Geneva Association), the insurance industry in Europe has launched an initiative aimed at developing loss-based indices for Europe.

Politicians are taking a variety of approaches to dealing with catastrophe losses, though some observers have criticised the tendency of the state to react to catastrophes by stepping up intervention. Experience has shown that this often has a counterproductive effect from an economic perspective.

- In continental Europe and the UK, the state restricts itself mainly to shaping conditions in such a way as to ensure that policyholders are covered. One further important element is prevention.
- In the US, however, the state intervenes more directly. For example, with the primary insurer, Citizens Property Insurance Corporation, and a reinsurer, the Florida Hurricane Catastrophe Fund, the state has a direct influence on the Florida insurance market. The sale of catastrophe covers at below-market prices and the financing of them - with either indirect subsidies from other insurance lines or taxpayers' money - create problems for private commercial insurers. Other concerns about the approach adopted in Florida include the non-sustainable nature of the financing and the indiscriminate levels of compensation, which, in some cases, are extended to affluent homeowners, but not necessarily to those most in need of financial assistance. Moreover, the non-risk-adjusted insurance prices often wrongly incentivise people to continue investing in highly exposed regions.
- In Germany, the state provided generous assistance after the floods of 2002, which led to consequences similar to those in Florida.

More than three hundred catastrophes in 2007

In 2007, 142 natural catastrophes and 193 man-made disasters were recorded. As in previous years, the reporting threshold was raised in line with US inflation. Even if the number of natural catastrophes is somewhat lower than in previous years, we assume that the long-term trend towards more loss events will continue in the areas of natural catastrophes and man-made disasters.

More than 21500 catastrophe victims across the globe

In 2007, natural catastrophes claimed 14600 lives, including those reported missing. This is lower than the long-term average of 55000 fatalities dating back to 1970. The worst catastrophes hit developing and threshold countries in 2007.

Asia, the most densely populated continent, registered the most deaths. Storms, floods and landslides in Asia claimed more than 11000 lives, with Cyclone Sidr alone causing 3363 fatalities in Bangladesh in November; 871 people are still reported as missing. Latin America also had its share of catastrophes in 2007. A severe earthquake with a magnitude of 8 on the Richter scale hit Peru on 15 August. The quake was followed by several serious aftershocks that mostly affected the Ica-Lima-Pisco region. More than 52200 houses were destroyed and roughly 140000 people were left homeless; over 500 people died and 1000 were injured.

Man-made disasters claimed more than 6900 lives.

Figure 2
Number of victims 1970-2007

Total financial losses from natural catastrophes were USD 63.7bn from man-made disasters, USD 6.9bn

Of the 6900 deaths from man-made disasters in 2007, shipping disasters claimed 2200 lives, which was higher than the long-term average. Numerous accidents, involving mostly unseaworthy boats overflowing with illegal immigrants, took place in the Gulf of Aden, claiming more than 800 lives. Bombings social unrest and riots also claimed more than 1300 lives across the globe, with more than 500 deaths in Pakistan alone.

1000000

* The scale is logarithmic - the number of victims increases tenfold per band

Total financial losses estimated at USD 70bn

Catastrophes led to financial losses ${ }^{1}$ of USD 70.6bn in 2007; USD 63.7bn of these losses were caused by natural catastrophes, while man-made disasters accounted for USD 6.9bn. Winter storm Kyrill in Europe contributed significantly to the losses - USD 10bn - followed by the summer flood catastrophes in the UK with USD 7.2bn. The severe flooding at the end of October and the beginning of November in Mexico's Tabasco region caused a total loss of roughly USD 4.5bn. Meanwhile, Cyclone Gonu in the Gulf of Oman was responsible for a loss of USD 3.9bn.

Insured losses of USD 23.3bn from natural catastrophes

Insured losses of USD 4.3bn from man-made disasters

Figure 3
Insured losses 1970-2007
(Property and business interruption losses)

Insured catastrophe losses: in excess of USD 27bn

Individuals, companies or state institutions absorbed most of the USD 70.6bn in catastrophe losses in 2007. Only 40\% of the total losses, or USD 27.6bn, were insured. Moreover, USD 23.3bn of the insured losses were the result of natural catastrophes.

Overall, statistics reveal that five natural catastrophe losses each exceeded the billion dollar mark. Taken together, they make up just under half of the catastrophe losses registered in 2007. Europe was particularly affected by natural catastrophes. Substantial losses occurred in Germany, the UK, Belgium and the Netherlands due to winter storm Kyrill in January. At USD 6.1 bn, it was the third most expensive storm in Europe after Daria in January 1999 (USD 7.4bn) and Lothar in December 1999 (USD 7.2bn). ${ }^{2}$ The UK was also hit in summer by torrential rainfall and flooding, which caused insured losses of USD 4.8bn. The US was less affected by natural catastrophes. A winter storm in April cost USD 1.6bn. The Witch forest fires that swept through California at the end of October caused extensive property damage of USD 1.1 bn.

Man-made disasters gave rise to property losses of USD 4.3bn in 2007, with major industrial fires, explosions and losses in the aviation, space and energy sectors making up the majority, each contributing USD 1.2bn.

120 in USD bn, indexed to 2007

[^0]Catastrophes in 2007 led to 64\% of fatalities in Asia, and 45\% of insured losses in Europe.

Table 1
Catastrophes in 2007 by region

The last 20 years show a marked increase in the catastrophe loss trend. Most of this increase can be traced back to weather-related natural catastrophes, such as storms and floods. From just under USD 4bn during the 1970-1988 period, the average loss has since climbed to more than USD 23bn. However, losses fluctuate considerably from one year to the next. 2005 continues to be the year of record losses, when more than USD 100bn of losses occurred mostly due to hurricanes in the US and the Caribbean. Alongside obvious causes, such as the increase in insured values and loss vulnerability, the global increase in temperature is likely to also play a key role (see the chapter "Increasing flood losses").

High catastrophe losses in Europe

Europe reported the highest insured catastrophe losses in 2007, contributing 45% to the world total. This was noteworthy because Europe has, on average, accounted for only 19\% of the world's losses since 1970. These high values reflect the expensive winter storm Kyrill and the devastating floods in the UK that followed on the heels of torrential rainfalls. North America, which usually accounts for two-thirds of the world's insured catastrophe losses, contributed just under a third of the world total in 2007, largely due to lower hurricane losses. In terms of fatalities, Asia continued to dominate in 2007.

Region	Number	in \%	Victims	in \%	Insured loss (in USD m)	in \%
North America	47	14.0%	983	4.6%	8767	31.8%
Europe	35	10.4%	1088	5.0%	12431	45.1%
Asia	146	43.6%	13748	63.8%	3533	12.8%
South America	19	5.7%	1216	5.6%	228	0.8%
Oceania/Australia	7	2.1%	303	1.4%	1283	4.7%
Africa	32	9.6%	2215	10.3%	46	0.2%
Oceans/Space	49	14.6%	2000	9.3%	1276	4.6%
World total	$\mathbf{3 3 5}$	$\mathbf{1 0 0 . 0} \%$	$\mathbf{2 1 5 5 3}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{2 7 5 6 4}$	$\mathbf{1 0 0 . 0} \%$

Flood losses have been rising by 7\% annually in real terms since 1970.

Figure 4
Global insured flood losses 1970-2007

The increase in temperature associated with climate change is leading to an increase in the number of large flood events.

The higher temperature is speeding up the water cycle in the atmosphere.

Insured flood losses rise worldwide

In addition to the UK, other regions such as Central Europe, Mexico, Australia and Africa were hit by extreme floods in 2007. Since 1970, insured flood losses worldwide (see Figure 4) have risen in USD by 12% annually (or 7% when adjusted for inflation).

7 in USD bn, indexed to 2007
6

There are obvious explanations for the rise in the loss trend, such as the increase in insured values and vulnerability (eg subterranean garages, IT in cellars, underground electricity supply networks).

Global warming is also contributing to losses. It is believed that higher temperatures are speeding up the hydrologic cycle, which in turn is triggering heavier rainfall and increasing the number and severity of flood events. ${ }^{3}$

According to the research, warm air can store more water vapour than cold air. It then produces more water as it evaporates, which returns to the earth's surface in the form of precipitation. The link between the air temperature and absolute air humidity is exponential: a 10% rise in temperature from $10^{\circ} \mathrm{C}$ increases the maximum storable amount of vapour by 6% per volume unit of air; at $20^{\circ} \mathrm{C}$ the storage capacity rises by 12%. More humidity also means that more energy is available to push up air masses: the air masses therefore rise higher and cool down faster. This results in an increase in the number and extremity of precipitation events and increased hail. At higher temperatures, winter precipitation falls more often in the form of rain than snow. As plants give off almost no evaporation in winter, the earth is therefore faster saturated. The rain runs off immediately, resulting in more floods.

[^1]Climate change is changing the general weather pattern

In 2007, insured flood losses in the UK reached their highest level ever.

Two waves of extreme precipitation in June ...

Climate models show that climate change can also alter general weather patterns.

- In 2007, the jet stream over Europe was located more to the south than normal. This shift explains the floods in the UK and Central Europe.
- Another phenomenon, which is also cited in connection with global warming, is the increase in the Genoa low pressure system over the past 10 years (Vb-weather regime) during the summer. This weather system was responsible for the floods in 1997 (ie Czech Republic, Poland and Germany), in 2002 (ie summer floods in Europe) and in 2005 (ie Switzerland, Germany and Austria).
- Warmer weather conditions may also be intensifying summer monsoons in Europe. A warmer spring and early summer, such as in 2007, increase the difference in temperature between the land and (colder) water, which in turn increases the amount of water vapour transported from the sea to the mainland. This in turn triggers more rainfall (eg similar to the monsoon rains in Asia).

Very high flood losses in the UK

The floods that swept across the UK during the summer of 2007, causing 165000 claims and a total loss amount of USD 4.8bn, will go down in the annals of British insurance history as the year of the highest-ever flood losses.

Unstable general weather conditions over the British Isles, which boosted the passage of several waves of low pressure from the Atlantic in June and July, was the reason for the heavy rainfall. 360 mm of rain fell in the UK, which was the highest level of precipitation since 1914, when records of precipitation were first kept. In addition to the high total amount of rainfall, a number of new 24-hour precipitation records were set.

The first rainfall records were broken on 15 June in North Yorkshire. The second wave of extreme rainfall took place on 25 June - again in the northeast of England. Within 24 hours, the rainfall in some areas exceeded the average rainfall for the entire month of June. The heavy rains, which had already saturated the ground, led to a number of flash floods and rivers began to overflow their banks. The cities of Sheffield, Doncaster and Hull were hit the hardest, along with other regions across Yorkshire. The high water levels rapidly receded in most areas. The floods eventually led to thousands of claims totalling USD 2.8bn.
... and a third substantial rainfall in July
robabilistic flood loss models are still relatively new.

Below-average flooding from the 1960s to the 1980s

On 20 July, another active front passed over the UK, this time hitting the south of England, and unleashing an unprecedented amount of rainfall. Some measurement stations in Oxfordshire recorded a sixth of their average annual rainfall within the space of 24 hours. This rain once again fell on saturated ground, with most of it running off directly. Due to the generally wet spring and summer, river levels were already elevated and had almost reached the limit of their harmless discharge capacity. The extreme rainfall resulted in record river levels (eg the Avon at Evesham reached its highest level since 1848; the confluence of the Avon and Severn rivers at Tewkesbury reached its highest level in 247 years). The most affected areas were Gloucester, Tewkesbury and Cheltenham as well as the West Oxfordshire region along the Thames. Total losses arising from the July event reached almost USD 2bn.

Flood cover underpriced

Over the course of the last few years, insurance associations, reinsurers and risk consultants have developed a whole series of probabilistic ${ }^{4}$ flood models targeting the European market. The development of probabilistic models always follows the same approach: the historic observation period is extended using statistical procedures.

However, historical horizons that are too long offer no advantages if the measurement series are cyclical and/or are subject to trends. From the 1960s to the 1980s, Europe reported a below-average incidence of floods. Therefore, most flood models attribute too much weight to this period. Only the last third of the historic time series (ie 1990 until today) adequately reflects present conditions. The high number of loss events with large modelled return periods within the past 10 years (see Table 2) leads us to conclude that the current models underestimate event frequency. In the UK, for example, three events in the past 10 years clearly exceeded the 10-year return period. Although this is possible from the statistical point of view, it clearly indicates an above-average frequency of floods that is not adequately factored into today's model.

[^2]Table 2
Modelled return periods of large flood losses from the last 10 years

Flood events often occur in a series.

Flood losses are heavily influenced by climate change, though it is possible to protect against floods.

Country	Date	Insured loss USD m (indexed to 2007)	Expected return period (years)
	April 1998	317	5
	October 20005	1260	20
	June 20076	2488	35
Czech Republic	July 2007	July 1997	1991
	July/August 2002	571	25
Germany	July/August 2002	1451	30
Italy/Switzerland	October 2000	1900	80
France	September 2002	542	45
	December 2003	846	25
Indonesia (Jakarta)	January 1996	952	5
	January 2002	168	15
	January 2007	230	8
Switzerland	August 2005	400	20

As sigma converts the losses to USD at the exchange rates valid in the event year, there may be some distortion in the proportions between the individual losses. The British pound, for example, increased in value by 33% against the USD during the 2000-2007 period, rising from 1.49 to 1.99 , which makes the losses sustained in 2000, expressed in USD, seem (too) low when compared with the losses sustained in 2007 (see page 43 on indexation methodology).

Source: Swiss Re

Another critical point in risk assessment is that most models implicitly assume that the individual events occur independently of each other. The models make insufficient allowance for the fact that floods often occur in clusters. This means that the expected losses are additionally undervalued, especially in stop-loss and second event covers, if this is not explicitly corrected. The fact that the events are correlated in time plays a key role in the series of floods that occurred in 2000 and 2007 in the UK and in the flood events that occurred in Europe during the summer of 2002

If we analyse the data, we can see that, just like windstorms, heavy rainfall is brought on by certain weather conditions. As soon as such weather conditions persist, a series of rainfall events occurs, which results in subsequent flooding. During such periods, as mentioned earlier, flood events are likely because the ground is already saturated with rain water.

It is to be expected that climate change will have a bigger influence on flood losses than on those related to wind. The ground's limited capacity to absorb water is reduced further by the increase in built-up areas, the sealing of land, intensive agriculture, deforestation etc, which increases the amount of water flowing into rivers.

[^3]On the other hand, there are ways of reducing losses: unlike windstorms, human beings can influence floods by means of intelligent, integrated flood protection measures (eg opening up water meadows, increasing natural floodplains, constructing flood control reservoirs and improving the quality of building structures). The most efficient way of protecting against floods is to take action where the rain falls, as the losses accumulate downstream. Flood protection is, however, limited in scope: once the discharge rates that the protection measure has been designed to withstand are exceeded, losses rise very sharply.

Natural catastrophes and politics

Although each country adopts its own approach, private insurers in the UK automatically cover flood risks under a fire policy. However, it is left to the discretion of the insurer to reflect the risk in the premium price. Exceptions include highly exposed areas, which insurers have been able to exclude from flood coverage since 2000. State intervention is thus relatively modest.

Flood risk is automatically covered in UK fire policies.

Insurers provide cover only if the state invests in prevention.

Flood insurance in the UK

Since 1961, UK insurers have been obliged to include flood and other natural perils in fire policies. Building insurance policies for private individuals and small companies carry a small deductible of GBP 50, and there are no special loss limits. There are also no tariffs, and risk-appropriate premiums are charged. Combining flood and fire cover combats the problem of anti-selection and permits the formation of a large risk community. This gives rise to relatively moderate premium rates compared, to other countries, where flood cover is only offered as an option.

However, British insurers seek to provide natural perils cover automatically only if the state invests in the appropriate prevention measures. The flood events of 2000 resulted in a high loss burden because the flood protection in many towns failed. This uncovered weaknesses in the UK's flood protection measures. The Association of British Insurers (ABI) have since called on the government to invest more money in flood protection. The government did partially comply with this request in the wake of the events of 2007.

Since 2000, the fire-flood insurance link has been relaxed. Insurers are now permitted to exclude flood cover in new policies if the insured property is located in a high-risk zone (ie a flood within 75 years).

Surge in the number of state catastrophe insurance programmes in the US

In some US states, government intervention is of a more direct nature. Some raised concerns when, after last year's developments in Florida, the state increased its sales of catastrophe covers. The state's sale of catastrophe covers at below-market prices and the financing of them - with either indirect subsidies from other insurance lines or taxpayers' money - create problems for private commercial insurers. Other concerns about the approach adopted in Florida include the non-sustainable nature of the financing and the indiscriminate levels of compensation, which, in some cases, are extended to affluent homeowners, but not necessarily to those most in need of financial assistance. Moreover, non-risk-appropriate insurance prices also wrongly incentivise people to continue investing in highly-exposed areas.

Increase in state insurance programmes in the US

In 2007, the Florida legislature passed a law that massively expanded the scope of the Citizens Property Insurance Corporation (CPIC), a primary insurer, and the Florida Hurricane Catastrophe Fund (FHCF), a reinsurer. Thanks to this new law, prices were reduced and the CPIC could offer cover at prices that did not reflect the level of risk involved. The criteria for entitlement were adjusted so as to widen access to the services offered and to supplement the product range with corporate insurance and multi-peril cover. At the end of September 2007, the total sum insured by CPIC was USD 506bn, thereby making it the biggest insurer in Florida. CPIC insured more than 1.4 m people and provided predominately storm risk cover. As CPIC's premiums for risks located near the coast are below risk-based market prices, policies with high risks are subsidised by other policyholders. Currently, all holders of property policies in Florida are subjected to a loading to finance CPIC's deficit from 20057. A recently published report ${ }^{8}$ indicates that although owners of houses worth USD 1 m and more make up only 2% of policyholders, they represent approximately 10% of CPIC's loss potential.

At the same time, the reinsurance cover provided by FHCF has been increased substantially from USD 16bn to USD 28bn. As in the case of CPIC, the premiums are below risk-based market premiums and - in the absence of an appropriate capital base - the potential shortfall is being financed by levying additional premiums (assessments) after the loss event.

The fact that Florida's finance director is currently considering reducing state capacity again indicates the possible start of a reversal in this trend.

The Florida Hurricane Catastrophe Fund (FHCF) provides USD 28bn in reinsurance coverage.

The Citizens Property Insurance Corporation (CPIC) is Florida's biggest insurer.

[^4]Catastrophe aid in Germany

Germany sets up EUR 7.1bn fund to rebuild flooded areas.

Widespread criticism of payouts

Germany has neither mandatory coverage nor state insurers, and often generous aid is provided to victims of flood damage. Despite being highly desirable for sociopolitical reasons, this approach could have negative consequences, such as those in Florida.

Catastrophe aid following the 2002 summer floods in Germany

To cope with the losses from the flood events of summer 2002, the German government set up an emergency aid fund for flood victims to supplement the immediate aid of EUR 0.5 bn already provided. The fund earmarked EUR 7.1 bn to finance the reconstruction of the areas affected by the floods. The government pledged additional funds of EUR 1.2 bn for the reconstruction of infrastructure.

Although the emergency aid was intended to be a rapid and unbureaucratic solution for the flood victims, it was not well-received by the public. Many people complained that the amount of aid paid out bore no relation to the actual damage sustained. For example, companies received maximum emergency aid of EUR 15000 , which, in many cases, only covered a small portion of their total loss. In other cases, people with little damage received large payouts.

Many private households and companies also received support from the emergency fund for flood victims after receiving immediate relief. Even though this aid was paid out shortly after the catastrophe and funds were also approved in 2002, many victims were only compensated months later in 2003.

To finance the reconstruction relief, Germany had to postpone its long-awaited tax reforms and increase some direct taxes (eg corporation tax from 25\% to 26.5\%).

Indices for the transfer of insurance risks

Insurance-linked securities have become extremely popular.

To cope financially with the cost of catastrophe losses, insurers are increasingly making use of financial market instruments such as insurance-linked securities (ILS) - eg cat bonds. They are also offering industry loss warranties (ILW) and cat swaps.

The outstanding volume of non-life ILS bonds rose from USD 0.7bn in 1997 to approximately USD 15bn by the end of 2007, which translates into an annual growth rate of more than 35%. The market issuance for non-life ILS bonds was nearly USD 8bn in 2007. An estimated USD 7bn to 12 bn of additional insurance protection was sold in 2007 in the form of ILWs and cat swaps. Exchangetraded derivatives are still in their infancy, but are gaining in popularity.

ILWs, cat bonds and cat swaps are triggered by specific indices.

Instruments for the transfer of insurance risks to the capital market

Industry loss warranties (ILW) offer reinsurance protection. They feature two triggers - an insurance-loss trigger based on the actual loss incurred by the buyer, and an industry-loss trigger based, for example, on data provided by Property Claim Services (PCS). Individual ILW transactions provide cover ranging from USD 1m to 250m.

Cat bonds are a form of securitisation used to transfer natural catastrophe risks to the capital markets. To make the transaction worthwhile, the volume of a single issue is normally at least USD 100 m .

Cat swaps are made-to-measure derivatives traded over-the-counter; they require less documentation and are triggered at a lower level of payouts than bonds. Cat swaps have been issued for storms, earthquakes, aviation losses and terrorism, as well as for mortality, longevity and multi-peril covers. Cat swaps do not necessarily provide reinsurance coverage.

Characteristic features of these financial market instruments are conditional payment obligations - in return for a fee or premium paid by the insurer - that are linked to specific events or triggers. For the risk to be transferred to the capital markets, it is important that the investors accept the index.

A loss index must be clearly defined and capable of being quantified quickly and objectively when an insured event occurs.

What criteria must an index fulfil for it to be deemed a suitable vehicle for transferring insurance risks to the financial market?

An index is an objectively defined parameter that is capable of being quantified within an appropriate period of time, in this case, following the occurrence of an insurable event. Indices are provided by both the public and the private sector.

In order for it to be accepted by the relevant financial market players, an index needs to satisfy different requirements:

- The index must be transparent, ie it has to be observable, quantifiable and clearly defined.
- The values of the index should be published without significant delay so that financial transactions can be processed speedily.
- The index should be accurate and reliable, and be subjected to as little revision as possible.
- The more independent and credible the index provider, the greater the benefit of the index, as this will help diminish the inherent subjective risk (moral hazard) and increase the reliability of the index.
- Moreover, an index's usefulness increases with length of history. Long-term historic values enable the correlation between the index and past loss events to be analysed and calculated precisely. ${ }^{9}$
- In addition, the more often an index is updated, the greater its benefit will be. An index that is updated frequently (in real time, daily, or monthly) can be correlated to specific events quicker and more precisely.

There are five basic types of payment triggers:

- An indemnity trigger is based on the actual recorded losses of the cover buyer (the sponsor).
- An industry index trigger is based on an industry-wide loss index. In the USA, Property Claim Services (PCS), a division of ISO Properties, Inc, carries out a survey of all participating insurers in the wake of a catastrophe event with the aim of estimating insured losses. PCS then makes this data available to market participants for a fee.
- A pure parametric trigger is based on physical indicators actually recorded for the event in question (eg the magnitude of an earthquake, or windspeeds).
- A parametric index trigger is an optimised version of the purely parametric trigger and is based on more complex formulas and numerous detailed recorded indicators.
- A modelled loss trigger is one where estimated losses are determined by feeding given physical parameters into a model which then calculates the overall loss.

[^5]
Initiative to create a loss index in Europe

Although Europe does not have a recognised loss index, help is on the way.

A recent European initiative aims to develop indices capable of measuring the scale of natural catastrophes in Europe. The initiative was launched through the Chief Risk Officer Forum and is supported by numerous major (re)insurance companies. The aim of the initiative is to develop a data service capable of promptly providing estimates of insured European natural catastrophe losses. The information could be used to develop industry loss indices for use with insurance-related financial instruments such as ILWs, cat bonds and cat swaps.

Source: Swiss Re Capital Markets

The triggers feature varying levels of basis risk and degrees of transparency.

The triggers used to transfer insurance risks feature varying degrees of transparency and basis risk (see Figure 5). The basis risk is the risk of the index or trigger failing to correlate with the paid loss - ie the lower the correlation, the greater the basis risk. Even if parametric and industry-index triggers still dominate when it comes to cat bonds and ILW transactions, claims or indemnity-related indices are once again coming to the fore.

Special exchanges have now been set up for trading in insurance-linked derivatives.

Indices are set to play a key role in the transfer of insurance risks to the capital markets.

Though insurance were first traded on the stock markets as early as the 1990s, trading was discontinued due to lack of interest. In recent times, special exchanges have been set up once again to support trading in index-based insurance risks.

- In collaboration with Gallagher Re, New York Mercantile Exchange (NYMEX) has founded an exchange based on an index of total losses in the US insurance sector as estimated by PCS; earthquake and terrorism losses are excluded.
- In conjunction with Carvill, Chicago Mercantile Exchange (CME) has established an exchange for trading in derivative instruments that are geared to an index which records the windspeed and radius of hurricanes at landfall.
- Insurance Futures Exchange Services Ltd (IFEX) has started trading in catastrophe event-linked futures (ELFs) on the Chicago Climate Futures Exchange (CCFE). The IFEX derivatives are based on an index of PCS losses - the trigger must be a named hurricane. Each of these markets offers derivatives for some or all regions of the US - eg the whole of the US, Florida, North Atlantic Coast, etc.

The use of indices is becoming ever more widespread in the context of insur-ance-related financial instruments. It is expected that indices will play a key role in the development of insurance-related financial instruments and in simplifying trade in insurance risks, as well as the transfer of these risks to the capital markets.

Tables for reporting year 2007

Table 3
List of major losses in 2007 according to loss category

	Number	in \%	Victims ${ }^{11}$	in \%	Insured loss ${ }^{10}$ (in USD m)	in \%
Natural catastrophes	142	42.4\%	14630	67.9\%	23269	84.4\%
Floods	53		5798		6022	
Storms	57		6729		14318	
Earthquakes	9		636		437	
Droughts, bush fires, heat waves	7		745		1310	
Cold, frost	10		487		940	
Hail	3		7		242	
Tsunami	1		152			
Other natural catastrophes	2		76			
Man-Made disasters	193	57.6\%	6923	32.1\%	4295	15.6\%
Major fires, explosions	34	10.1\%	611	2.8\%	2145	7.8\%
Industry, warehouses	15		163		1170	
Oil, gas	9		195		975	
Department stores	2		32			
Other buildings	8		221			
Aviation disasters	19	5.7\%	732	3.4\%	1239	4.5\%
Crashes	10		710		100	
Damage on ground	4		22		296	
Space	5				843	
Shipping disasters	52	15.5\%	2180	10.1\%	582	2.1\%
Freighters	3		46		35	
Passenger ships	38		2096		50	
Tankers	4				86	
Drilling platforms	2		26		68	
Other shipping accidents	5		12		343	
Rail disasters (incl. cableways)	14	4.2\%	220	1.0\%		0.0\%
Mining accidents	19	5.7\%	909	4.2\%	62	0.2\%
Collapse of buildings/bridges	11	3.3\%	393	1.8\%		0.0\%
Miscellaneous	44	13.1\%	1878	8.8\%	267	1.0\%
Social unrest	5		793			
Terrorism	14		513		12	
Other miscellaneous losses	25		572		255	
Total	335	100.0\%	21553	100.0\%	27564	100.0\%

[^6]Table 4
The 20 most costly insurance losses 2007

Insured loss 12 (in USD m)	Victims ${ }^{13}$	Date (start)	Event			
6097	54	18.01 .2007	Winter storm Kyrill with winds up to $190 \mathrm{~km} / \mathrm{h} ;$ floods	Country	\quad	Germany, UK, NL, Belgium et al
:---						
2488						

[^7]Table 5
The 20 worst catastrophes in terms of victims 2007

Victims ${ }^{15}$	$\begin{array}{r} \text { Insured } \\ \text { loss } \\ \left(\text { in USD m) }{ }^{16}\right. \\ \hline \end{array}$	Date (start)	Event	Country
4234	-	15.11.2007	Cyclone Sidr with winds up to $240 \mathrm{~km} / \mathrm{h}$; floods	Bangladesh, India
1500	-	16.07.2007	Floods caused by heavy rain	India, Bangladesh
678	-	02.08.2007	Floods and landslides caused by monsoon rains	Bangladesh
600	-	07.08.2007	Floods caused by heavy rain	North Korea
600	-	30.12.2007	Riots, arson after disputed election results	Kenya
550	-	19.06.2007	Heat wave in Southern Europe	Hungary, Romania, Greece et al
519	100	15.08.2007	Earthquake ($\mathrm{M}_{\mathrm{w}} 8$), more than 300 aftershocks	Peru
340	-	26.06.2007	Cyclone Yemyin; heavy rain, floods	Pakistan
280	-	01.01.2007	Cold wave with temperatures falling to near freezing	Bangladesh, India, Nepal et al
232	150	02.09.2007	Hurricane Felix with winds up to $260 \mathrm{~km} / \mathrm{h}$; floods	Nicaragua, Honduras et al
228	-	23.06.2007	Thunderstorms with heavy rain, flooding	Pakistan
215	-	27.06.2007	Floods and landslides caused by heavy rain	China
213	-	29.10.2007	Hurricane Noel with winds up to $128 \mathrm{~km} / \mathrm{h}$; floods	Dominican. Rep., Haiti, Cuba et al
199	na ${ }^{17}$	17.07.2007	TAM Airbus 320 overruns wet runway, catches fire	Brazil
172	-	17.08.2007	Coal mine flooded after torrential rain	China
170	-	08.07.2007	Floods caused by heavy rain	China
158	-	18.07.2007	Floods and mudslide caused by heavy rain	China
152	-	02.04.2007	Earthquake ($\mathrm{M}_{\mathrm{w}} 8.1$) triggers tsunami	Salomon Islands
150	-	03.08.2007	Overloaded boat capsizes in stormy weather	North Atlantic, Sierra Leone
146	-	10.07.2007	Floods and landslides caused by heavy rain	Nepal

[^8]Table 6
Chronological list of all natural catastrophes 2007

Floods

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
1.1.-17.1.	Burundi	Floods caused by heavy rain	4 dead
	Bubanza, Cibitoke, Karuzi		23000 homeless
2.1.-17.1.	Indonesia, Philippines	Floods and landslides caused by heavy rain	47 dead, 9 missing
	North Sulawesi		9 injured
3.1.-14.2.	Mozambique, Malawi	Floods caused by heavy rain; 5000 houses and 450000 hectares of crops destroyed	40 dead
	Zambezia, Sofala, Manica,		68000 homeless
	Tete, Shire, Karonga		USD 71m total damage
4.1.-22.1.	Brazil	Floods and landslides caused by heavy rain, landslides	48 dead
	Rio de Janeiro, Minas Gerais,		11000 homeless
	São Paulo		USD 125m total damage
10.1.-24.1.	Angola, Zambia	Floods caused by heavy rain;	114 dead
	Luanda, Cacuaco	Zambezi River Basin flooded	28000 homeless
10.1.-28.2.	Bolivia	Floods and landslides caused by heavy rain; 80000 hectares of crops destroyed	35 dead
	Chuquisaca, Santa Cruz,		70000 homeless
	Cochabamba, La Paz, Beni		USD 90m total damage
12.1.-17.1.	Malaysia	Floods caused by torrential rain; damage to Endau-Rompin Forest Reserve	15 dead
	Johor, Batu Pahat, Kota Tinggi		30000 homeless
			MYR 2bn (USD 605m) total damage
23.1.-10.2.	Peru	Flood and landslides caused by heavy rain	20 dead, 80 missing
	Junin, Chanchamayo		200 injured
31.1.-18.2.	Indonesia	Floods caused by torrential rain; 70\% of Jakarta flooded, damage to infrastructure, industry, agriculture	80 dead
	Bogor, Depok, Bekasi,		200000 homeless
	Tangerang		USD 450m insured loss
			USD 971m total damage
11.2.-16.2.	India	Floods caused by heavy rain, hail and storm	40 dead
	Rajasthan, Uttar Pradesh		8 injured
4.3.-6.3.	Indonesia	Floods and landslides caused by heavy rain	34 dead, 40 missing
	Flores Island, East Nusa		21 injured
6.3.-11.6.	Colombia	Floods and landslides caused by heavy rain	48 dead, at least 17 missing
	Córdoba, Chocó, Bolívar		
10.3.-3.4	Afghanistan, Tajikistan	Heavy rain, snowmelt caused avalanches and landslides; losses to agriculture and livestock	114 dead
	Faryab, Badakhshan		49 injured
25.3.-30.3.	Yemen	Floods caused by heavy rain	36 dead
	Hadhramout		18 injured
14.4.	Thailand	Flash floods at waterfalls Sai Rung and Prai Sawan caused floods in low-lying areas	38 dead
	Yan Ta Khao, Trang		
26.4.-2.5.	Colombia	Mudslides caused by heavy rain	24 dead
	Tolima, Ibague		35 injured
			2000 homeless
2.5.-7.5.	Sri Lanka	Floods caused by heavy rain; parts of main Galle Road washed away	16 dead
	Colombo		2000 homeless
4.5.	Afghanistan	Flash floods caused by heavy rain	24 dead
	Badakshan		
20.5.-26.5.	China	Heavy rain, lightning, floods, land- and mudslides	7 dead
	Chongqing, Sichuan		50 injured
			CNY 573m (USD 78m) total damage

6.6.-14.6.	China Guangdong, Hunan, Guangxi, Guizhou, Jiangxi, Fujian	Floods, mudslides caused by storms with heavy rain; 69000 houses, 136000 hectares of crops destroyed	21 dead, 3 missing 279 injured 158000 homeless CNY 1.47bn (USD 201m) total damage
7.6.-8.6.	Switzerland Canton of Berne, Emmental	Floods caused by heavy rain, thunderstorms with hail	3 dead CHF 50m (USD 44m) insured loss
10.6.-18.6.	Bangladesh Chittagong	Floods, landslides caused by heavy rain; homes buried under mud, inundation of garment factories	130 dead 100 injured 1000 homeless BDT 1bn (USD 14m) total damage
15.6.-22.6.	United Kingdom North Yorkshire, Leeds, Wakefield	Floods caused by heavy rain	GBP 150m (USD 299m) insured loss GBP 225m (USD 448m) total damage
21.6.-3.7.	India Andhra Pradesh, Kerala, Karnataka, Maharashtra	Floods, landslides caused by heavy monsoon rains	144 dead
25.6.-28.6.	United Kingdom Yorkshire, Hull, Sheffield, Doncaster, Humberside, East Riding, Rotherham, Barnsley	Floods caused by heavy rain; commercial and domestic properties, roads, railway tracks, and agricultural land flooded	4 dead 1500 homeless GBP 1.25bn (USD 2.49bn) insured loss GBP 1.88bn (USD 3.73bn) total damage
27.6.-17.8.	China Anhui, Hubei, Shaanxi, Henan, Jiangsu, Shandong	Heavy rainfall, floods and landslides; 50000 homes, 100000 hectares of crops destroyed	154 dead, 61 missing 4000 injured 346500 homeless CNY 2.56bn (USD 350m) total damage
1.7.-20.9.	Uganda, Ethiopia, Kenya, Rwanda	Floods and landslides in East Africa caused by heavy rain; roads and bridges destroyed	62 dead 90000 homeless
1.7.-13.7.	India Gujarat, Madhya Pradesh, Orissa	Floods caused by heavy rain	42 dead, 10 missing
4.7.-17.9.	Ghana, Togo, Burkina Faso, Niger, Mali, Mauritania, Nigeria, Benin	Floods in West Africa caused by heavy rain; buildings, farmland, roads and bridges destroyed	140 dead 280000 homeless
8.7.-18.7.	China Sichuan, Chongqing	Floods and landslides caused by heavy rain	136 dead, 34 missing 3000 injured
8.7.-30.8.	Sudan Khartoum, Uniti, North Kordofan, Sennar, Kassala	Floods caused by heavy rain; Nile River bursts its banks	113 dead 335 injured 200000 homeless USD 300m total damage
10.7.-23.8.	Nepal Terai	Floods and landslides caused by heavy rain; damage to infrastructure, roads, bridges, buildings	146 dead 330000 homeless NPR 2m total damage
16.7.-25.8.	India, Bangladesh West Bengal, Bihar, Uttar Pradesh, Assam, Kolkata, Dhaka	Floods caused by monsoon rain; Brahmaputra River bursts its banks; homes, industry, 825000 hectares of farmland flooded	1500 dead 3500000 homeless USD 320 m total damage
18.7.-22.7.	China Yunnan, Tengchong	Floods caused by heavy rain; mud slide at Xiaojiangping dam	150 dead, 8 missing CNY 132m (USD 18m) total damage
20.7.-31.7.	United Kingdom Gloucestershire, West Oxfordshire, Tewkesbury, Cheltenham, Gloucester, Midlands	Floods caused by heavy rain; parts of the Severn, Avon and Thames rivers burst their banks, damage to infrastructure, agriculture	3 dead GBP 1bn (USD 1.99bn) insured loss GBP 1.5bn (USD 2.99bn) total damage

22.7.-27.7.	Indonesia Sulawesi, Morowali	Floods and landslides caused by heavy rain	74 dead 30 injured
29.7.-3.8.	China Henan	Floods and landslides caused by heavy rain	78 dead, 18 missing
2.8.-24.8.	Bangladesh	Floods and landslides caused by monsoon rains; roads, 700000 hectares of land flooded	678 dead 10800 homeless USD 84m total damage
6.8.-11.8.	China Shaanxi, Ankang	Floods and landslides caused by heavy rain; 15000 houses, 6000 hectares of farmland destroyed	20 dead, at least 37 missing CNY 280m (USD 38m) total damage
7.8.-15.8.	North Korea North Hwanghae, South Hamgyong, Kangwon	Floods caused by heavy rain; over 40000 homes, 800 public buildings, 540 bridges, and 200000 hectares of farmland destroyed	at least 450 dead, at least 150 missing 4350 injured 100000 homeless
8.8.-10.8.	Switzerland, Italy, Germany Cantons of Jura, Solothurn, Baselland, Aargau, Vaud	Floods and landslides caused by rain; river banks burst; houses, roads, and railway tracks flooded; losses to agriculture	1 dead 8 injured CHF 340m (USD 300m) insured loss
9.9.-20.9.	India Andhra Pradesh, Karnataka	Floods caused by heavy rain; National Highway flooded	60 dead
18.9.-21.9.	Slovenia Zelezniki, Skofja, Loka, Cerkno	Floods and mudslides caused by heavy rain, storm; damage to residential houses, infrastructure, Franja partisan clinic destroyed	6 dead EUR 200m (USD 292m) total damage
1.10.-17.11.	Colombia Magdalena, Sucre, Bolívar	Floods caused by heavy rain	29 dead 52 injured 23000 homeless
2.10.-16.10.	Haiti Cabaret	Floods caused by heavy rain; damage to infrastructure, buildings, cars	33 dead 3000 homeless
10.10.-23.10.	Costa Rica, Nicaragua, Honduras, Guatemala	Floods and landslides caused by heavy rain in Central America	37 dead, 2 missing USD 11 m total damage
$25.10 .-26.10$	Congo, Democratic Republic of (DRC) Kinshasa	Floods and landslides caused by heavy rain; damage to roads, bridges, crops	30 dead 100 injured
27.10.-2.11	Vietnam Quang Nam, Thua Thien-Hue, Quang Binh, Quang	Floods caused by heavy rain	77 dead, 6 missing 42 injured USD 300m total damaged
$27.10 .-29.10$	Philippines Bicol	Floods and landslides caused by heavy rain	20 dead
$28.10 .-10.11$	Mexico Tabasco, Chiapas, San Juan Grijalva	Floods, landslides caused by heavy rain, storms; more than 90% of municipal Villahermosa flooded	8 dead, 17 missing 500000 homeless USD 450m insured loss USD 4.5bn total damage
7.12.-18.12.	Malaysia Johor, Pahang, Kelantan, Terengganu	Floods caused by heavy rain; roads, palm oil producing areas submerged	26 dead 24000 homeless MYR 1.2bn (USD 363m) total damage
19.12.-5.1.	Zambia, Zimbabwe, Mozambique Mazabuka	Floods caused by heavy rain; several bridges washed away	27 dead 3000 homeless
24.12.-28.12.	Indonesia Java, Karanganyar, Wonogiri	Floods and landslides caused by heavy rain	120 dead

Storms

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
18.1.-20.1.	Germany, United Kingdom, Netherlands, Belgium, Austria, France, Czech Republic, Poland	Winter storm Kyrill with winds up to 190 km/h, floods; losses to infrastructure, agriculture, forestry, marine: MSC Napoli stranded	47 dead, 7 missing EUR 4.17bn (USD 6.1bn) insured loss USD 10bn total damage
2.2.	United States FL	Tornadoes with winds up to $265 \mathrm{~km} / \mathrm{h}$, thunderstorms, hail; damage to 2200 houses	20 dead USD 100-300m insured loss*
20.2.-23.2.	Mozambique, Reunion, Mauritius Bazaruto, Vilanculos	Cyclone Favio with winds up to $204 \mathrm{~km} / \mathrm{h}$; floods, damage to buildings, infrastructure	10 dead 70 injured 40000 homeless
1.3.-2.3.	United States AL, GA	Storms, tornadoes, hail; high school building, hospital destroyed	20 dead USD 300-600m insured loss USD 600 m total damage
15.3.-18.3.	Madagascar Antalaha, Ambanitelo, Andranofosty, Anfofa, Anlanazana, Antakotako	Cyclone Indlala with winds up to $166 \mathrm{~km} / \mathrm{h}$, heavy rain; vanilla farms, rice fields flooded	80 dead 5 injured 16000 homeless USD 240m total damage
22.3.-23.3.	Bangladesh Bhola, Lalmohon	Tropical storm	10 dead 100 injured
23.3.-24.3.	United States NM, OK, TX	Tornadoes, hail, floods	16 injured USD 25-100m insured loss USD 80m total damage
13.4.-17.4.	United States TX, DE, CT, GA, LA, MA, ME, MD, MS, NH, NJ, NY NC, PA, RI, SC, VT, VA	Storm with winds up to $130 \mathrm{~km} / \mathrm{h}$, heavy rain, hail, floods; power outages	23 dead USD 1.57bn insured loss USD 2bn total damage
25.4.-26.4.	United States, Mexico TX, Rio Grande	Storms and tornadoes with winds up to 240 km/h	10 dead 80 injured 200 homeless
2.5.-3.5.	United States TX, Dallas - Fort Worth	Thunderstorms with winds up to $160 \mathrm{~km} / \mathrm{h}$	60 homeless USD 100-300m insured loss USD 140m total damage
4.5.-8.5.	United States KS, IA, MN, MO, SD	Tornadoes, thunderstorms, hail; town of Greensburg almost completely destroyed by tornado	12 dead 40 injured USD 100-300m insured loss USD 350m total damage
11.5.-12.5.	India Uttar Pradesh, Sultanpur	Thunderstorm with heavy rain	27 dead 24 injured
14.5.-15.5.	Bangladesh, Myanmar (Burma), Cox's Bazar	Tropical cyclone Akash with winds up to 120 km/h; floods	at least 3 dead, 50 missing
21.5.-24.5.	United States MN, IA, KS, TX, WI	Thunderstorms, hail, tornadoes with winds up to $128 \mathrm{~km} / \mathrm{h}$	USD 100-300m insured loss USD 300m total damage
5.6.	Canada Alberta, Calgary, Edmonton, St. Albert	Storms and floods	CAD 48m (USD 49m) insured loss CAD 88m (USD 89m) total damage
6.6.-8.6.	Oman, Iran Gulf of Oman, Hormuzgan, Kerman, Sistan-Baluchestan, Muscat, Bandar Abbas	Cyclone Gonu with winds up to $170 \mathrm{~km} / \mathrm{h}$, heavy rain; roads flooded, damage to shipping, disruption to oil exports	61 dead, 27 missing 9 injured OMR 250m (USD 649m) insured loss USD 3.9bn total damage

[^9]| 7.6.-10.6. | Australia | Storm with winds up to $125 \mathrm{~km} / \mathrm{h}$, heavy rain | |
| :--- | :--- | :--- | :--- |
| | NSW, Hunter Region, | 9 dead | |
| | Newcastle, Singleton, | Bulker runs aground | AUD 1.09bn (USD 957m) |
| | Maitland | | insured loss |

16.8.-23.8.	Jamaica, Mexico, Martinique, Guadeloupe, Saint Lucia, Cayman Islands, Haiti, Dominica, Dominican Republic, Belize	Hurricane Dean with winds up to $230 \mathrm{~km} / \mathrm{h}$; severe damage to fruit plantations	36 dead USD 450m insured loss USD 2.25bn total damage
16.8.-19.8.	United States TX, OK, MO	Tropical storm Erin with winds up to $132 \mathrm{~km} / \mathrm{h}$, flooding	26 dead
23.8.-24.8.	United States IL, CO, MI, MN, WI, OH, Chicago	Thunderstorms with winds up to $110 \mathrm{~km} / \mathrm{h}$, hail; flooding	26 dead 40 injured USD 300-600m insured loss USD 700m total damage
28.8.-30.8.	China Yunnan, Sichuan, Yibin	Storms with heavy rain, floods and landslides	31 dead, 9 missing
29.8.-8.9.	Japan Honshu, Hokkaido, Nagano, Tokyo	Typhoon Fitow/No 9 with winds up to $140 \mathrm{~km} / \mathrm{h}$; heavy rains, flooding	2 dead, 1 missing 59 injured USD 350m insured loss USD 525 m total damage
2.9.-12.9.	Nicaragua, Honduras, Guatemala, Grenada, Belize, Aruba	Hurricane Felix with winds up to 260 km/h; floods, landslides: 19000 homes, over 500000 hectares of forest destroyed	102 dead, 130 missing 220000 homeless USD 150m insured loss USD 900m total damage
13.9.-17.9.	South Korea Jeju Island, South Jeolla	Typhoon Nari/No 11, heavy rain; 10000 hectares of crops flooded	20 dead 2 injured 600 homeless KRW 65.2bn (USD 70m) total damage
16.9.-19.9.	China, Taiwan, North Korea, Japan Zhejiang, Fujian, Jiangsu, Anhui, Pjongjang	Typhoon Wipha/No 12 with winds up to 240 km/h, heavy rain, flooding; 23600 homes, 8000 public buildings, 109000 hectares of crops destroyed	7 dead, 4 missing USD 200m insured loss USD 963m total damage
20.9.-21.9.	United States MN, ND	Storms, hail and floods	USD 100-300m insured loss USD 230m total damage
30.9.-18.10.	Vietnam, Philippines, Thailand, China, Laos, People's Democratic Republic, Nghe An	Typhoon Lekima/No 14 with winds up to 130 km/h, heavy rain, landslides; 9500 houses destroyed, 30000 hectares of rice, 115000 hectares of crops flooded	110 dead, 9 missing 90 injured 125000 homeless VND 2000bn (USD 125m) total damage
2.10.-8.10.	Taiwan, China, Nantou, Tainan, Hualien, Zhejiang, Fujian	Typhoon Krosa/No 15 with winds up to 240 km/h, heavy rain; 3500 homes, fish farms, farmland destroyed	5 dead, 3 missing 67 injured USD 200m insured loss USD 1.13bn total damage
15.10.-17.10.	Bangladesh Chittagong, Cox's Bazar	Storms, heavy rain, landslides; 18 trawlers missing in Bay of Bengal	at least 10 dead, 100 missing 150 injured BDT 137m (USD 2m) total damage
21.10.-23.10	United States CA	Santa Ana winds	USD 100-300m insured loss USD 300m total damage
29.10.-4.11	Dominican Republic, Haiti, Cuba, Bahamas, Jamaica Hispaniola, Port-au-Prince	Hurricane Noel with winds up to $128 \mathrm{~km} / \mathrm{h}$; heavy rain, floods, landslides: damage to rice, cocoa plantations	148 dead, 65 missing 14 injured 62000 homeless USD 30m total damage
$5.11 .-15.11$	Vietnam, Philippines, Binh Dinh, Quang Ngai, Quang Nam, Khanh Hoa	Typhoon Peipah/No 21, heavy rain, floods	50 dead, at least 8 missing 70 injured USD 350m total damage
12.11.-20.11.	Papua New Guinea, Australia, Coral Sea Oro, Milne Bay	Tropical cyclone Guba, heavy rain, floods	71 dead, 50 missing
15.11.-23.11.	Bangladesh, India Bay of Bengal, Bagerhat, Barguna, Patuakhali, Pirojpur, Barisal, Jhalokati, Dhaka	Cyclone Sidr, winds up to $240 \mathrm{~km} / \mathrm{h}$, floods; 500000 homes, 647500 hectares of crops destroyed, over 1.5 m livestock lost	3363 dead, 871 missing 34500 injured 2000000 homeless USD 2.31bn total damage

20.11.-27.11. Philippines Luzon, Bicol	Typhoon Mitag/No 23 with winds up to 148 km/h; floods	11 dead, 18 missing 6 injured PHP 203m (USD 5m) total damage
20.11.-28.11. Philippines, South China Sea Luzon, Mindanao	Typhoon Hagibis/No 24 with winds up to 129 km/h	22 dead 10 injured PHP 30m (USD 1m) total damage
$\begin{array}{ll} \hline 2.12 .-4.12 . & \text { United States } \\ & \text { OR, WA } \end{array}$	Storm with winds up to $160 \mathrm{~km} / \mathrm{h}$, rain, mud- and snow slides	17 dead 28 injured USD 100-300m insured loss
11.12.-14.12. Dominican Republic, Puerto Rico, Haiti	Tropical storm Olga with winds up to $80 \mathrm{~km} / \mathrm{h}$; floods and landslides caused by heavy rain	25 dead

Earthquake

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
6.3.	Indonesia, Malaysia, Singapore West Sumatra, Solok, Tanah Datar, Padang	Earthquake ($\mathrm{M}_{\mathrm{L}} 6.3$), aftershock ($\mathrm{M}_{\llcorner } 6.1$); damage to infrastructure, over 4000 houses destroyed	72 dead 632 injured USD 5m insured loss USD 200m total damage
25.3 .	Japan Ishikawa, Toyama, Niigata, Wajima	Earthquake Noto Hanto ($\mathrm{M}_{\mathrm{w}} 6.9$); several aftershocks: 300 buildings destroyed	1 dead 200 injured 1657 homeless JPY 2.5bn (USD 22m) insured loss USD 250m total damage
3.6.	China Yunnan, Puer	Earthquake ($\mathrm{M}_{\mathrm{S}} 6.4$); over 300 aftershocks	3 dead 313 injured USD 10m insured loss CNY 2.5bn (USD 342m) total damage
16.7.	Japan Niigata, Nagano, Toyama, Honshu	Niigata earthquake ($\mathrm{M}_{\mathrm{w}} 6.6$); houses, roads, bridges destroyed, damage to KashiwazakiKariwa nuclear power plant	11 dead 1000 injured USD 300m insured loss USD 3bn total damage
2.8.	Russia Yuzhno-Sakhalinsk, Nevelsk	Earthquake ($\mathrm{M}_{\mathrm{s}} 6.2$) causes mudslide; 220 apartment houses, 29 social and cultural facilities destroyed	2 dead 12 injured 7500 homeless USD 420 m total damage
15.8 .	Peru Ica, Lima, Pisco, Chincha, Paracas, San Vicente de Cañete	Earthquake (M_{w} 8), more than 300 aftershocks; 52200 houses destroyed, damage to public buildings	519 dead 1291 injured 139521 homeless USD 100m insured loss USD 2bn total damage
12.9 .	Indonesia Sumatra, Bengkulu, Padung	Earthquake ($\mathrm{M}_{\mathrm{w}} 8.4$); several aftershocks	23 dead 88 injured USD 500m total damage
14.11.	Chile Tocopilla, Mejillones, Maria Elena	Earthquake ($\mathrm{M}_{\mathrm{w}} 7.7$), aftershocks; over 1200 homes destroyed	2 dead 115 injured 15000 homeless USD 100 m total damage
25.11 .	Indonesia Sumbawa Island, Raba, Bima, Dompu	Earthquake ($\mathrm{M}_{\mathrm{w}} 6.5$), several aftershocks	3 dead 55 injured

Drought, bush fires, heat waves

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
8.1.	United States	Forest fire spreads to Malibu beachside:	USD 60m insured loss
	CA	6 mansions destroyed	
8.6.-13.6.	India, Pakistan	Heat wave with temperatures of over	120 dead
	Rajasthan, Uttar Pradesh	50 degrees Celsius	
19.6.-25.7.	Hungary, Romania,	Heat wave in southern Europe	550 dead
	Greece, Austria		
24.6.-2.7.	United States	Angora bush fire; 1250 hectares of land, 256 homes destroyed	USD 150m insured loss
	CA, Sierra Nevada,		
	South Lake Tahoe		
23.8.-30.8.	Greece	Huge forest fires; over $1600 \mathrm{~km}^{2}$ forest, olive groves, farmland, over 1500 homes destroyed	67 dead
	Peloponnese Peninsula,		4000 homeless
	Ilia, Euboea Island, Olympia		EUR 1.2bn (USD 1.75bn) total damage
21.10.-24.10.	United States	Witch urban forest fires; over 2800 properties destroyed, 2480 hectares of land burnt	8 dead
	CA, San Diego, Los Angeles,		64 injured
	Malibu, Tijuana		USD 1-3bn insured loss
			USD 2bn total damage
24.11.-27.11.	United States	Corral bush fire; 2000 hectares of land,	USD 315m total damage
	CA, Malibu	53 homes destroyed	

Cold, frost

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
1.1.-28.1.	Bangladesh, India, Nepal, Pakistan	Cold wave with temperatures close to freezing	280 dead
12.1.-17.1.	United States IL, KS, MO, OK, TX, IA	Winter storm, freezing rain; power outages	55 dead USD 100-300m insured loss USD 500m total damage
13.1.-15.1.	United States AZ, CA, NV	Winter storm, cold temperatures; damage to citrus plantations	USD 25-100m insured loss USD 1bn total damage
13.2.-15.2.	United States NJ, NY, OH, PA	Winter storm, heavy snow, ice cause power outages	USD 100-300m insured loss USD 140m total damage
23.2.-25.2.	United States AR, IA, TX	Winter storm with winds up to $180 \mathrm{~km} / \mathrm{h}$, tornadoes, cold, snow	4 dead 27 injured USD 100-300m insured loss USD 300m total damage
3.3.-5.3.	China Liaoning	Heavy storm and snow; 10000 hectares of indoor grain, vegetables, fruit destroyed	14 dead CNY 3bn (USD 411m) total damage
11.3.-14.3.	India Jammu and Kashmir	Cold wave; snow, thunderstorms with heavy rain, lightning	66 dead 25 injured
21.5.-23.5.	South Africa Eastern Cap, Gauteng	Cold weather with temperatures below zero degrees, snow, ice; fatalities due to exposure or in fires	22 dead
9.12.-11.12.	United States IA, IL, KS, MO, NE, OK	Winter storm, freezing rain, snow; power outages	24 dead 2 injured USD 300-600m insured loss
23.12.-26.12.	United States IA, NE, CO, MI, WI, WY	Winter storm with winds up to $109 \mathrm{~km} / \mathrm{h}$, snow, ice	22 dead

Hail

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
22.4.-26.4.	China	Hailstorms; severe damage to agriculture	3 dead
	Guizhou		200 injured
			USD 60 m total damage
25.5.-29.5.	Germany	Hail and storms; damage to buildings	3 dead
	Berlin		EUR 45m (USD 66m) insured loss
9.12.	Australia	Hail and storm; flooding, damage to cars, buildings	1 dead
	NSW, Sydney		30 injured
			AUD 201m (USD 176m)
			insured loss

Tsunami

	Country	Event	No of victims/amount of damage Date original currency and (USD)
2.4.	Place	Solomon Islands,	Earthquake $\left(M_{\mathrm{W}} 8.1\right)$ triggers tsunami; government, business buildings, hospital destroyed

Other natural catastrophes

| | Country | Elace | Event |
| :--- | :--- | :--- | :--- | | No of victims/amount of damage |
| :--- |
| Date original currency and (USD) |

Table 7
Chronological list of all man-made disasters 2007

Major fires, explosions

	Country		No of victims/amount of damage in original currency and (USD)
Date	Place	Event	insured loss na

[^10]| 21.10. | China | Fire at shoe factory | 37 dead |
| :---: | :---: | :---: | :---: |
| | Fujian, Hushi | | 19 injured |
| 22.10. | India | Fire in Margie Village destroys more than | 100 injured |
| | Jammu and Kashmir | 160 houses | |
| 26.10. | Switzerland | Fire at mail sorting centre | insured loss na |
| | Härkingen | | |
| 4.11. | Russia | Fire at retirement home | 32 dead |
| | Tula, Velye Nikolskoye | | |
| 18.11. | Saudi Arabia | Explosion of Haradh-Uthmaniyah gas pipeline | 40 dead |
| | Haradh-Uthmaniyah | | 10 injured |
| 12.12. | China | Fire at 28-storey department store | 21 dead |
| | Zhejiang, Wenzhou | Wenfu Mansion | 2 injured |
| 21.12. | Japan | Fire at petrochemical plant | 4 dead |
| | Kamisu-city | | insured loss na |
| 25.12. | Nigeria | Explosion of oil pipeline | 45 dead |
| | Lagos, Abagbo, Iru | | |

Aviation disasters

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
1.1.	Indonesia South Sulawesi, Makassar Strait	Adam Air Boeing 737-400 crashes into sea during storm	102 missing
9.1.	Iraq Balads	Aeriantur Antonov 26B-100 crashes in heavy fog on landing approach	34 dead 1 injured
30.1 .	Pacific Ocean CA, Long Beach	Explosion on launch platform destroying SeaLaunch rocket and on-board NSS-8 satellite	insured loss na
4.3.	Space	Failure of imaging system due to electronics malfunction	insured loss na
7.3.	Indonesia Java, Yogyakarta-Adisutjipto Airport	Garuda Indonesia Airways Boeing 737-400 overruns runway on landing, catches fire	22 dead 50 injured insured loss na
19.4.	United Arab Emirates Abu Dhabi, Gamco	3 aircraft destroyed in hangar fire	insured loss na
5.5.	Cameroon Douala	Kenya Airways Boeing 737 crashes in mangrove swamp	114 dead insured loss na
3.6.	Sierra Leone Lungi, International Airport	Paramount Airlines Mi-8 helicopter explodes and crashes on landing	22 dead
25.6 .	Cambodia Phnom Damrey	PMT Air Antonov 24 crashes into mountain	22 dead
17.7.	Brazil São Paulo, Congonhas Airport	TAM Airbus 320 overruns wet runway, runs onto an adjacent road, hits petrol station and cargo terminal; catches fire	199 dead insured loss na
9.8.	French Polynesia	Air Moorea DHC-6 Twin Otter 300 crashes into the sea shortly after take-off	20 dead
20.8 .	Japan Okinawa-Naha Airport	China Airways Boeing 737 catches fire after landing; explosion in centre of aircraft	2 injured insured loss na
5.9.	Kazakhstan Baikonur	Proton launch failure of Japanese satellite JCSAT II	insured loss na
16.9.	Thailand Phuket, International Airport	One-Two-Go Airlines MD-82 crashes while landing; catches fire	90 dead 40 injured insured loss na
4.10.	Congo, Democratic Republic of (DRC) Kinshasa	Malift Air Antonov 26 crashes into residential area	50 dead 25 injured
15.11.	France Toulouse-Blagnac Airport	Airbus A340-600 rolls forward during engine run-ups	9 injured insured loss na

21.11.	Space	Attitude control problem on Express AM-22 satellite	insured loss na
30.11.	Turkey Isparta	Atlasjet Airlines MD-83 crashes in mountainous terrain	57 dead insured loss na
$21.12 .-24.12 . ~ S p a c e ~$	Loss of helium pressure on Rascom-QAF1 satellite	insured loss na	

Shipping disasters

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
14.1 .	Mediterranean Sea, Italy Sicily, Strait of Messina	Collision of hydrofoil Segesta Jet and container ship Susan Borchard	4 dead 99 injured insured loss na
18.1.	India Mahabubnagar	Overloaded passenger boat capsizes on Krishna River	43 dead, 21 missing
3.2.	North Atlantic, Cameroon Mabeta	Overloaded boat carrying immigrants capsizes	63 dead, 20 missing
13.2.	Arabian Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants capsizes	112 dead
17.2.	Mediterranean Sea Samos	Boat carrying illegal immigrants sinks	at least 5 dead, 20 missing
20.2.	India Kerala	Boat capsizes on Periyar River	22 dead, 16 missing 10 injured
22.2.	Indian Ocean, Indonesia North Jakarta, Tanjung Priok	Fire on board ferry Levina I	54 dead, 23 missing
1.3.	Caribbean Sea, Haiti	Boat carrying illegal immigrants catches fire and capsizes	5 dead, 49 missing 2 injured
8.3.	Belgium Antwerp	Container ship Repubblica di Genova capsizes in Verrebroek dock	insured loss na
8.3.	East China Sea, China Tianjin Port	Collision between dredger WD Fairway and container ship MSC Joanna	insured loss na
24.3 .	Myanmar (Burma) Yangon	Boat capsizes on river	16 dead, 12 missing
29.3 .	North Atlantic Gulf of Guinea, Conakry	Overloaded boat capsizes in rough weather	46 dead
5.4.-6.4.	Mediterranean Sea, Greece Bay of Santorini	Cruise liner Sea Diamond hits reef and sinks	2 missing insured loss na USD 1.3bn total damage
8.4.	East China Sea, China Taizhou Bay, Zhejiang	Collision between cargo ships Harvest and Jin Hai Kun	20 missing
12.4.	North Sea Shetlands	Supply vessel Bourbon Dolphin capsizes and sinks in bad weather	3 dead, 5 missing insured loss na
14.4.	Arabian Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants capsizes and sinks	62 missing
4.5.	Caribbean Sea, Turks and Caicos Islands	Boat carrying illegal immigrants capsizes in rough weather	61 dead, 15 missing
10.5 .	South Atlantic, Congo, Democratic Republic of (DRC)	Fire on oil platform	3 dead 1 injured insured loss na
1.6.	Uganda Kyatu Island	Overloaded boat capsizes on Lake Victoria	30 dead
25.6.	East China Sea, Taiwan Kaohsiung	Vessel - under construction - sinks when moved from shipyard to dry dock	insured loss na
5.7.	Congo, Democratic Republic of (DRC) Idjwi Island	Collision of two boats on Lake Kivu	9 dead, 22 missing
10.7.	Indian Ocean, Indonesia Manipa, Maluku	Passenger ship Wahai Star sinks in stormy weather	at least 14 dead, 36 missing

18.7.	North Atlantic Canary Islands	Boat carrying illegal immigrants capsizes in rough seas	50 missing
3.8.	North Atlantic Sierra Leone	Overloaded boat capsizes in stormy weather	50 dead, 100 missing
6.8.	India Bihar, Samastipur	Overloaded boat capsizes on Ganges	13 dead, 50 missing
5.9.	Nepal Banke, Kanchanpur	Boat capsizes on Rapti River	13 dead, 18 missing
3.10.	Nigeria Kebbi, Dandi	Collision of two boats on Dole-Kaina River	38 dead, 48 missing 8 injured
13.10.	North Atlantic, Gambia Tanji	Boat capsizes in rough weather	32 dead
15.10.-21.10.	North Pacific Ocean, Mexico	Boat carrying illegal immigrants capsizes during tropical storm Kiko	15 dead, 9 missing
16.10.-5.11.	North Atlantic, Mauritania Nouadhibou	Boat carrying illegal immigrants runs aground; passengers die of cold, thirst, hunger	56 dead
18.10.	South Pacific Ocean, Sulawesi, Buton Island	Overloaded ferry Acita 03 capsizes	31 dead, 29 missing 20 injured
18.10.-24.10.	North Atlantic, Cape Verde	Boat carrying illegal immigrants capsizes	7 dead, 50 missing 1 injured
23.10.	North Pacific Ocean, Gulf of Mexico, Mexico Tabasco, Campeche	Collision of oil rig and drilling platform in stormy weather	21 dead, 2 missing
25.10.	South Pacific Ocean Sulawesi, Roksi Asikin	Sailboat sinks	30 missing
7.11.	North Pacific Ocean, United States CA, San Francisco Bay	Freighter Cosco Busan hits Bay Bridge; over 260000 litres of oil spilled	insured loss na USD 100 m total damage
11.11.	Black Sea Sea of Azov, Kerch Strait	Tanker Volgoneft 139 capsizes during storm; over 3000 tons of oil spilled, up to 15000 birds die	USD 251m total damage
13.11.	Myanmar (Burma)	Overloaded boat capsizes on Chindwin River	23 missing
21.11 .	Red Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants capsizes	64 dead
28.11.	East China Sea, Taiwan	Bulk carrier MV Mezzanine sinks in rough seas	26 missing 1 injured
30.11.	Red Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants capsizes	30 dead, 69 missing
7.12.-8.12.	Gulf of Aden, Yemen Bab el-Mandeb Strait	Collision between oil tanker Samco Europe and freighter MSC Prestige	insured loss na
7.12.-12.12.	East China Sea, South Korea Yellow Sea, South Chungcheong, Taean	Collision between crane barge ship and oil tanker Hebei Spirit; 10000 tons of crude oil spilled, 212 marine farms, 15 bathing beaches polluted	insured loss na USD 330m total damage
8.12.	North Atlantic, Morocco Ad Dakhla	Boat carrying illegal immigrants capsizes	50 missing
8.12.	North Atlantic, Senegal Dakar	Boat carrying illegal immigrants runs aground	40 dead 20 injured
9.12.	Congo, Democratic Republic of (DRC)	M/B Lipamboli capsizes on Congo River	40 dead
10.12.	Mediterranean Sea, Aegean Sea, Izmir	Overloaded boat carrying illegal immigrants capsizes in rough weather	50 dead, at least 29 missing 6 injured
15.12.	Red Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants capsizes	58 dead, 37 missing
16.12.	Red Sea, Gulf of Aden, Yemen	Boat carrying illegal immigrants hits rock and sinks	97 missing
19.12.	Congo, Democratic Republic of (DRC)	Overloaded boat capsizes on Tshuapa River	45 dead

19.12.	Arabian Sea, Persian Gulf, United Arab Emirates	Fire in engine room of dredger Vasco da Gama	insured loss na
21.12.	North Atlantic, Cuba Straits of Florida, Havana	Boat carrying illegal immigrants hits reef and capsizes	8 dead, 17 missing
21.12.	Andaman Sea, Thailand Ranong	Overloaded boat carrying illegal immigrants capsizes	22 dead

Rail disasters (incl. cableways)

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
14.1.	Thailand	Head-on collision of two trains	3 dead
	Thonburi, Hua Hin		93 injured
15.1.	Indonesia	One coach of passenger train derails; plunges off bridge into dry riverbed	5 dead
	Central Java, Banyumas		100 injured
14.2.	Congo, Democratic	Freight train derails	22 dead
	Republic of (DRC)		9 injured
	Katanga, Mokambo		
5.4.	France	Commuter train hits rail buffer	58 injured
	Paris, Gare de l'Est		
21.4.	Indonesia	Passenger train derails; three coaches fall into ravine	70 injured
	West Java, Garut		
12.7.	Greece	Collision between commuter train and freight train	53 injured
	Athens, Sepolia		
17.7.	Ukraine	Freight train derails; leakage of phosphorus gas	80 injured
	Lviv		
2.8.	Congo, Democratic	Seven coaches of freight train derail	100 dead
	Republic of (DRC)		102 injured
	Kasai Occidental, Kananga		
9.8.	Zimbabwe	Collision between commuter and goods train	1 dead
	Harare		50 injured
30.8 .	Brazil	Passenger train crashes into a slow-moving empty train	8 dead
	Rio de Janeiro		60 injured
6.10 .	Cuba	Passenger train crashes into bus on level crossing	29 dead
	Granma, Yara		75 injured
9.10.	Pakistan	Express train crashes into bus on level crossing	12 dead
	Lahore, Narang Mandi		50 injured
30.11 .	United States	Passenger train hits a stationary freight train	71 injured
	Chicago		
19.12.	Pakistan	15 coaches of passenger train derail	40 dead
	Mehrabpur		250 injured

Mining accidents

	Country Place	Event	No of victims/amount of damage in original currency and (USD)
7.1.	Congo, Democratic Republic of (DRC) Kasai Oriental, Tshikapa	Diamond mine collapses after heavy rain	13 dead, 30 missing
	China Inner Mongolia	Flooding of Haolaigou iron ore mine	
17.1.	Colombia	Gas explosion at La Preciosa coal mine	29 dead
4.2.	China	Fire at coal mine	32 dead
10.2.	Cenan, Tianchi	Explosion at El Tabia coal mine	24 dead
3.3.	Sardinata		4 injured

10.3.	China Liaoning, Fushun	Flooding and gas leakage at coal mine	22 dead, 7 missing
18.3.	China Shanxi, Chengqu	Gas explosion at Miaojiang coal mine	21 dead
19.3.	Russia Kemerowo, Novokuznetsk	Gas explosion at Ulyanovskaya mine	108 dead, 2 missing
28.3 .	China Shanxi, Yipingyuan, Linfen	Explosion at Yujialing coal mine	26 dead 1 injured
5.5.	China Shanxi, Puxian, Linfen	Gas explosion at Pudeng coal mine	28 dead, 2 missing 23 injured
24.5 .	Russia Kemerovo, Kusbass	Explosion at Yubileynaya coal mine	39 dead 6 injured
17.8	China Shandong, Xintai	Flooding of Huayuan coal mine; dyke burst due to torrential rain	172 missing
2.10 .	South Africa Welkom	Fire in St Helena mine	23 dead
13.10.	Colombia Cauca, Suárez	Gold mine collapses due to landslide	22 dead 24 injured
8.11 .	China Guizhou, Nayong	Methane gas leak at coal mine	35 dead 7 injured
14.11.	Australia Victoria, Yallourn	Torrential rain, Latrobe River bursts its banks; wall of coal mine collapses due to water pressure	insured loss na
18.11.	Ukraine Donetsk	Methane gas explosion at Zasiadko coal mine	88 dead, 12 missing 31 injured
26.11.	Ecuador Azuay	Explosion of dynamite store at Liga de Ore mine	7 dead, 30 missing 40 injured
5.12 .	China Shanxi, Linfen	Gas explosion at Xinyao coal mine	105 dead 18 injured

Collapse of buildings/bridges

Date	Country		
Place		\quad Event	No of victims/amount of damage
:---			
in original currency and (USD)			

Miscellaneous

Date	Country Place	Event	No of victims/amount of damage in original currency and (USD)
30.1 .	China	Poisoning due to toxic chemical leakage from a tanker	1 dead
	Hubei, Xiaogan		127 injured
18.2.	India	Two bombs explode on Samjhauta Express train	68 dead
	Panipat, Dewana		34 injured
18.2.-26.2.	Uganda	Alcohol poisoning due to locally-brewed gin	37 dead
	Koome Islands, Mukono		
18.2.	Thailand	28 near-simultaneous bomb explosions at public areas	7 dead
	Yala, Narathiwat,		54 injured
	Songkhla, Pattani		insured loss na
12.3 .	China	Chlorine gas leakage at Shanghai's World Expo construction site	59 injured
	Shanghai		
22.3 .	Arabian Sea, Gulf of Aden,	Smugglers force illegal immigrants to jump overboard	31 dead, 90 missing
	Yemen		
6.4.	Arabian Sea, Gulf of Aden,	Smugglers force illegal immigrants to jump overboard	34 dead
11.4.	Algeria	Explosion of two car bombs in front of government building and police station	33 dead
	Algiers, Bab Ezzouar		57 injured
16.4.	China	Leakage of sulphur dioxide at chemical fertilizer plant	300 injured
	Guizhou, Xifeng		
16.4.	United States	Shooting on campus of Virginia Tech University	33 dead
	VA		15 injured
18.4 .	China	Ladle filled with molten metal falls on ground, engulfing adjacent room	32 dead
	Liaoning, Tieling		6 injured
24.4.	China	Poisoning due to benzene-laden paint used for school furniture	400 injured
	Liaoning, Shalingzhen		
28.4.	Pakistan	Suicide bomb attack at public rally	28 dead
	North West Frontier, Charsadda		52 injured
6.5.	Israel	Stampede at soccer game	50 injured
	Jerusalem		
12.5.-13.5.	Pakistan	Clashes between opposition political parties	41 dead
	Karachi		
15.5.	Pakistan	Suicide bombing at Marhaba hotel	24 dead
	North West Frontier, Peshawar		30 injured
16.5.	Mexico	Gunfight between suspected members of drug gang and police	22 dead
	Sonora, Cananea		
22.5 .	Turkey	Suicide bombing in front of shopping mall	6 dead
	Ankara		100 injured
11.6.	United States	Blowout at gas well	insured loss na
	LA		
25.6.-28.6.	Nepal	Poisoning due to anti-elephantiasis medicine	500 injured
	Palpa		
10.7.-11.7.	Pakistan Islamabad	Military forces storm the Red Mosque complex following a week-long siege	105 dead
19.7.	Pakistan	Suicide car bomb attack on bus passing through main bazaar	30 dead
	Balochistan, Hub		30 injured
23.7.	Spain	Power blackout; 350000 business and residential customers affected	insured loss na
	Barcelona		EUR 100m (USD 146m) total damage
23.7.	Brazil	Riots in prison	25 dead
	Ponte Nova		
4.8.	Japan	Power outage at a semiconductor production plant	insured loss na
	Hitachi Naka		
13.8.	Russia	Bomb explosion; passenger train derails	60 injured
	Veliky Novgorod		RUB 215m (USD 9m) total damage

20.8.	China	Molten aluminium spill in foundry	16 dead
	Shandong		59 injured
25.8.	India	Bombs explode at leisure park and restaurant	43 dead
	Hyderabad		50 injured
4.9.	Pakistan	2 suicide bombing attacks on military bus and	25 dead
	Rawalpindi	market area	60 injured
15.9.-18.9.	Peru	Powerful fumes emanate from crater caused by	200 injured
	Desaguadero, Carancas	a meteorite	
20.9.-22.9.	Pakistan	Poisoning due to alcohol laced with methanol	41 dead
	Karachi		27 injured
26.9.-27.9.	Myanmar (Burma)	Clashes between police and demonstrators	9 dead
	Rangoon		100 injured
2.10.	China	Arson attack on crowded bus	27 dead
	Chongqing, Qijiang		11 injured
18.10.	Pakistan	Suicide bombing as former prime minister	139 dead
	Karachi	Benazir Bhutto travels through streets packed with supporters	240 injured
21.10.	Arabian Sea, Gulf of Aden, Yemen	Smugglers force illegal immigrants to jump overboard	66 dead, 38 missing
30.10.	Peru	Electrical failure at copper-zinc mine	insured loss na
	Ancash		
1.11.	North Sea, Norway	Ship's anchor damages gas pipeline	insured loss na
1.11.	Red Sea, Gulf of Aden, Yemen	Smugglers force illegal immigrants to jump overboard	40 dead 78 injured
4.11.	Argentina	Riots and subsequent arson in prison	34 dead
	Santiago del Estero		9 injured
17.11.	Brazil	Prison uprising after failed escape attempt	5 dead
	Alagoas, Maceio		70 injured
11.12.	Algeria	Two suicide car bombings at UN offices and	34 dead
	Algiers	court building	170 injured
21.12.	Pakistan	Suicide bombing at mosque	56 dead
	North West Frontier, Sherpao		100 injured
27.12 .	Pakistan	Suicide bombing kills former prime minister	20 dead
	Rawalpindi	Benazir Bhutto after campaign rally	40 injured
28.12.	Pakistan	Riots after death of Benazir Bhutto; 800 shops,	38 dead
	Sindh	27 railway stations, 13 polling stations burned	89 injured
			USD 10m total damage
30.12.-3.1.08	Kenya	Clashes across the country over	600 dead
	Nairobi, Mombasa,	disputed election results	1000 injured
	Eldoret, Kisumu		250000 homeless
			USD 1bn total damage

Tables on the major losses 1970-2007

Table 8
The 40 most costly insurance losses 1970-2007

Insured loss ${ }^{18}$ (in USD m, indexed to 2007)	Victims ${ }^{19}$	$\begin{array}{r} \text { Date } \\ \text { (start) } \end{array}$	Event	Country
68515	1836	25.08.2005	Hurricane Katrina; floods, dams burst, damage to oil rigs	US, Gulf of Mexico, Bahamas, North Atlantic
23654	43	23.08.1992	Hurricane Andrew; floods	US, Bahamas
21999	2982	11.09.2001	Terror attack on WTC, Pentagon and other buildings	US
19593	61	17.01.1994	Northridge earthquake (M 6.6)	US
14115	124	02.09.2004	Hurricane Ivan; damage to oil rigs	US, Carribean: Barbados et al
13339	35	19.10.2005	Hurricane Wilma; torrential rain, floods	US, Mexico, Jamaica, Haiti et al
10704	34	20.09.2005	Hurricane Rita; floods, damage to oil rigs	US, Gulf of Mexico, Cuba
8840	24	11.08.2004	Hurricane Charley	US, Cuba, Jamaica et al
8599	51	27.09.1991	Typhoon Mireille/No 19	Japan
7650	71	15.09.1989	Hurricane Hugo	US, Puerto Rico et al
7413	95	25.01.1990	Winter storm Daria	France, UK, Belgium et al
7223	110	25.12.1999	Winter storm Lothar	Switzerland, UK, France et al
6097	54	18.01.2007	Winter storm Kyrill; floods	Germany, UK, NL, Belgium et al
5659	22	15.10.1987	Storm and floods in Europe	France, UK, Netherlands et al
5650	38	26.08.2004	Hurricane Frances	US, Bahamas
5066	64	25.02.1990	Winter storm Vivian	Europe
5031	26	22.09.1999	Typhoon Bart/No 18	Japan
4492	600	20.09.1998	Hurricane Georges; floods	US, Carribean
4220	41	05.06.2001	Tropical storm Allison; heavy rain, floods	US
4174	3034	13.09.2004	Hurricane Jeanne; floods, landslides	US, Carribean: Haiti et al
3937	45	06.09.2004	Typhoon Songda/No 18	Japan, South Korea
3614	45	02.05.2003	Thunderstorms, tornadoes, hail	US
3515	70	10.09.1999	Hurricane Floyd; heavy rain, floods	US, Bahamas, Columbia
3508	167	06.07.1988	Explosion on platform Piper Alpha	UK
3411	59	01.10 .1995	Hurricane Opal; floods	US, Mexico, Gulf of Mexico
3365	6425	17.01.1995	Great Hanshin earthquake (M 7.2) in Kobe	Japan
2989	45	27.12.1999	Winter storm Martin	Spain, France, Switzerland
2818	246	10.03.1993	Blizzard, tornadoes, floods	US, Canada, Mexico, Cuba
2662	38	06.08.2002	Severe floods	UK, Spain, Germany, Austria et al
2589	26	20.10.1991	Forest fires which spread to urban areas, drought	US
2577	-	06.04.2001	Hail, floods and tornadoes	US
2488	4	25.06.2007	Heavy rainfall, floods	UK
2443	30	18.09.2003	Hurricane Isabel	US, Canada
2404	39	05.09.1996	Hurricane Fran	US
2372	20	03.12.1999	Winter storm Anatol	Denmark, Sweden, UK et al
2365	4	11.09.1992	Hurricane Iniki	US, North Pacific Ocean
2282	-	29.08.1979	Hurricane Frederic	US
2255	49	19.08.2005	Heavy rainfall, floods and landslides	Switzerland, Germany et al
2217	23	23.10.1989	Explosion in petrochemical plant	US
2196	220000	26.12.2004	Earthquake ($\mathrm{M}_{\mathrm{W}} 9$), tsunami in Indian Ocean	Indonesia, Thailand et al

[^11]Table 9
The 40 worst catastrophes in terms of victims 1970-2007

Victims ${ }^{20}$	$\begin{array}{r} \text { Insured loss } \\ \text { (in USD m, } \\ \text { indexed to 2007) }{ }^{21} \\ \hline \end{array}$	$\begin{array}{r} \text { Date } \\ \text { (start) } \end{array}$	Event	Country
300000	-	14.11.1970	Storm and flood catastrophe	Bangladesh
255000	-	28.07.1976	Earthquake (M 7.5)	China
220000	2196	26.12.2004	Earthquake ($\mathrm{M}_{\mathrm{w}} 9$), tsunami in Indian Ocean	Indonesia, Thailand et al
138000	3	29.04.1991	Tropical cyclone Gorky	Bangladesh
73300	-	08.10.2005	Earthquake ($\mathrm{M}_{\mathrm{w}} 7.6$); aftershocks, landslides	Pakistan, India, Afghanistan
66000	-	31.05.1970	Earthquake (M 7.7); landslides	Peru
40000	183	21.06.1990	Earthquake (M 7.7); landslides	Iran
35000	-	01.06.2003	Heat wave and drought in Europe	France, Italy, Germany et al
26271	-	26.12.2003	Earthquake (M 6.5) destroys 85\% of Bam	Iran
25000	-	07.12.1988	Earthquake (M 6.9)	Armenia, ex-USSR
25000	-	16.09.1978	Earthquake (M 7.7) in Tabas	Iran
23000	-	13.11.1985	Volcanic eruption on Nevado del Ruiz	Colombia
22084	273	04.02.1976	Earthquake (M 7.5)	Guatemala
19737	117	26.01.2001	Earthquake ($\mathrm{M}_{\mathrm{w}} 7.6$) in Gujarat	India, Pakistan, Nepal et al
19118	1210	17.08.1999	Earthquake ($\mathrm{M}_{\mathrm{L}} 7$) in Izmit	Turkey
15000	-	11.08.1979	Macchu dam burst in Morvi	India
15000	-	01.09.1978	Floods following monsoon rains	India, Bangladesh
15000	125	29.10.1999	Cyclone 05B devastates Orissa state	India, Bangladesh
11069	-	25.05.1985	Tropical cyclone in Bay of Bengal	Bangladesh
10800	-	31.10.1971	Floods in Bay of Bengal and Orissa state	India
10000	274	12.12.1999	Floods, mudflows and landslides	Venezuela, Colombia
10000	-	20.11.1977	Tropical cyclone in Andrah Pradesh	India, Bay of Bengal
9500	621	19.09.1985	Earthquake (M 8.1)	Mexico
9475	-	30.09.1993	Earthquake (M 6.4) in Maharashtra	India
9000	636	22.10.1998	Hurricane Mitch in Central America	Honduras, Nicaragua et al
6425	3365	17.01.1995	Great Hanshin earthquake (M 7.2) in Kobe	Japan
6304	-	05.11.1991	Typhoons Thelma and Uring	Philippines
6000	-	02.12 .1984	Accident in chemical plant in Bhopal	India
6000	-	01.06.1976	Heat wave, drought	France
5778	41	27.05.2006	Earthquake ($\mathrm{M}_{\mathrm{L}} 6.3$); Bantul almost completely destroyed	Indonesia
5422	-	26.06.1976	Earthquake (M 7.1)	Papua New Guinea et al
5374	-	10.04.1972	Earthquake (M 6.9) in Fars	Iran
5300	-	28.12.1974	Earthquake (M 6.3)	Pakistan
5112	-	15.11.2001	Floods and landslides caused by heavy rain	Brazil
5000	1223	05.03.1987	Earthquake; oil pipeline damaged	Ecuador
5000	645	23.12.1972	Earthquake (M 6.3) in Managua	Nicaragua
5000	-	30.06.1976	Earthquake in West Irian	Indonesia
4500	-	10.10.1980	Earthquake in El Asnam	Algeria
4375	-	21.12.1987	Ferry Dona Paz collides with oil tanker Victor	Philippines
4234	-	15.11.2007	Cyclone Sidr in Gulf of Bengal; floods	Bangladesh, India

[^12]Property damage and business interruptions directly attributable to a catastrophe

The amount of the total losses is a general indication only.

Insured losses

NFIP flood damage in the US

Natural catastrophes

The term "natural catastrophe" is taken to mean an event caused by natural forces. Such an event generally results in a large number of individual losses involving many insurance policies. The scale of the losses resulting from a catastrophe depends not only on the severity of the natural forces concerned, but also on man-made factors such as building design or the efficiency of disaster control in the afflicted region. In this sigma study, natural catastrophes are subdivided into the following categories: floods, storms, earthquakes, droughts/ forest fires/heat waves, cold waves/frost, hail, tsunami and other natural catastrophes.

Man-made disasters

This study categorises as "man-made" or "technical" disasters major events associated with human activities. Generally, a large object in a very limited space is affected which is covered by a small number of insurance policies. War, civil war and war-like events are excluded. sigma subdivides man-made disasters into the following categories: major fires and explosions, aviation and space disasters, shipping disasters, rail disasters, mining accidents, collapse of buildings/bridges and miscellaneous (including terrorism). Tables 6 and 7 on pages 23 and 32 list all major natural catastrophes and man-made disasters and the associated losses.

Total losses

For the purposes of the present sigma study, total losses are all the financial losses directly attributable to a major event, that is to say damage to buildings, infrastructure, vehicles, etc. The term also includes losses due to business interruption as a direct consequence of the property damage. A figure identified as "total damage" or "economic loss" includes all damage, whether insured or not. Total loss figures do not include indirect financial detriments such as loss of earnings suffered by suppliers to disabled businesses, nor any estimated shortfall in gross domestic product, nor non-economic losses such as loss of reputation or impaired quality of life.

Generally, total (or economic) losses are estimated and communicated in very different ways. As a result, they are not directly comparable and should be seen only as an indication of the general order of magnitude.

Insured losses

"Losses" in the sense of sigma comprise all insured losses except liability. Leaving aside the liability losses on the one hand allows a relatively swift assessment of the insurance year but, on the other, tends to understate the cost of manmade disasters. Life insurance losses are likewise not included.

NFIP flood damage in the US

The sigma catastrophe database also includes flood damage covered by the National Flood Insurance Program (NFIP) in the US, provided that it fulfils the sigma selection criteria.

US consumer price index used to adjust for inflation

Figure 6

Alternative method of adjusting for inflation, by comparison

Selection criteria

sigma has been publishing tables listing major losses since 1970. Thresholds with respect to casualties - the number of dead, missing, severely injured, homeless - also make it possible to tabulate events in regions where the insurance penetration is below average.

For the 2007 reporting year, the lower loss thresholds were set as follows:

Insured losses:	
\quad Shipping	USD 16.6 m
Aviation	USD 33.1 m
Other losses	USD 41.1 m
or Total losses:	USD 82.2 m
or Casualties:	
\quad Dead or missing	20
Injured	50
Homeless	2000

Adjustment for inflation, changes to published data, information sigma converts all losses for the occurrence year not given in USD into USD using the end-of-year rate. To take account of inflation, these USD values are extrapolated using the US consumer price index to give current (2007) values. This can be illustrated by examining the insured property losses arising from the floods which occurred in the UK between 29 October and 10 November 2000: Insured loss at 2000 prices: USD 1045.7 m Insured loss at 2007 prices: USD 1259.7m

Alternatively, were one to adjust the losses in the original currency (GBP) for inflation and then convert them to USD using the current exchange rate, one would end up with an insured loss at 2007 prices of USD $1567.9 \mathrm{~m}, 24 \%$ more than with the standard sigma method. The reason for the difference is that the value of the GBP rose by 33\% against the USD in the period 2000-2007, ie more than the difference in inflation between the US (20.5\%) and the UK (12.5\%) over the same period.

Floods UK

29 October - 10 November 2000

	Exchange rate USD/GBP			USDm	US inflation
GBPm	USDm				

sigma editors do not provide information on individual events

Table 10
Exchange rates used when converting insured losses

If changes to the loss amounts of previously published events become known, sigma takes these into account in its database. However, these changes only become evident where an event appears in the table of the 40 most costly insured losses or of the 40 disasters with the most fatalities since 1970 (Tables 8 and 9, pages 40/41).

In the chronological lists of all man-made disasters, the insured losses are given by sigma as "not available" (na) for data protection reasons. However the total of these insured losses is included in the list of major losses in 2007 according to loss category. sigma editors do not provide further information on individual insured losses or about updates made to published data.

Sources

Information is collected from newspapers, direct insurance and reinsurance periodicals, specialist publications (in printed or electronic form) and reports from insurers and reinsurers. ${ }^{22}$ In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information (see the copyright information on page 2).

Exchange rate used ${ }^{23}$, National currency per USD

Country	Currency	Exchange rate, end 2007
Australia	AUD	1.1389
Canada	CAD	0.9869
China	CNY	7.3041
Denmark	DKK	5.1001
Euroland	EUR	0.6840
Japan	JPY	111.72
Norway	NOK	5.4298
Oman	OMR	0.3850
Switzerland	CHF	1.1322
UK	GBP	0.5024
United Arab Emirates	AED	3.6727
US	USD	1.0000

[^13]
Recent sigma publications

No 1/2008 Natural catastrophes and man-made disasters in 2007: high losses in Europe

No 6/2007 To your health: diagnosing the state of healthcare and the global private medical insurance industry
No 5/2007 Bancassurance: emerging trends, opportunities and challenges
No 4/2007 World insurance in 2006: Premiums came back to "life"
No 3/2007 Annuities: a private solution to longevity risk
No 2/2007 Natural catastrophes and man-made disasters in 2006: low insured losses
No 1/2007 Insurance in emerging markets: sound development; greenfield for agricultural insurance

No 7/2006 Securitization - new opportunities for insurers and investors
No 6/2006 Credit and surety: solidifying commitments
No 5/2006 World insurance in 2005: moderate premium growth, attractive profitability
No 4/2006 Solvency II: an integrated risk approach for European insurers
No 3/2006 Measuring underwriting profitability of the non-life insurance industry
No 2/2006 Natural catastrophes and man-made disasters 2005: high earthquake casualties, new dimension in windstorm losses
No 1/2006 Getting together: globals take the lead in life insurance M\&A

No 5/2005 Insurance in emerging markets: focus on liability developments
No 4/2005 Innovating to insure the uninsurable
No 3/2005 Insurers' cost of capital and economic value creation: principles and practical implications
No 2/2005 World insurance 2004: growing premiums and stronger balance sheets
No 1/2005 Natural catastrophes and man-made disasters in 2004:
more than 300000 fatalities, record insured losses

No 7/2004 The impact of IFRS on the insurance industry
No 6/2004 The economics of liability losses - insuring a moving target
No 5/2004 Exploiting the growth potential of emerging insurance markets - China and India in the spotlight
No 4/2004 Mortality protection: the core of life
No 3/2004 World insurance 2003: insurance industry on the road to recovery
No 2/2004 Commercial insurance and reinsurance brokerage - love thy middleman
No 1/2004 Natural catastrophes and man-made disasters in 2003: many fatalities, comparatively moderate insured losses

Swiss Reinsurance Company
Economic Research \& Consulting
Mythenquai 50/60
P.O. Box

8022 Zurich
Switzerland

Telephone +41 432852551
Fax +41432854749
sigma@swissre.com

[^0]: 2 All losses from previous years at 2007 prices.

[^1]: 3 See IPCC Synthesis Report Topic 3 pages 8/9 of the Fourth Assessment Report "Climate Change 2007".

[^2]: 4 Probabilistic models make it possible to quantify the cumulative effects across regions and countries and to simulate the impact of changes in insurance conditions. Insurance conditions often change after major events, which is why probabilistic simulations are preferable to as-if analyses.

[^3]: 5 Only the event of 29 October to 10 November 2000. There was another smaller event in the UK between 10 October and 14 October 2000
 6 Only the event of 25-28 June 2007 (according to Swiss Re's event definition, there were two flood events in the UK in June 2007: from 15-22 June and from 25-28 June).

[^4]: 7 The state National Flood Insurance Program (NFIP) also needed USD 21 bn to finance losses in 2005 that were not covered by premiums or reserves.
 ${ }^{8}$ The Brookings Institution Policy Brief \#150 (March 2006).

[^5]: 9 This does not apply to parametric triggers, as historic events can normally be replicated

[^6]: ${ }^{10}$ Property and business interruption, excluding liability and life insurance losses
 ${ }^{11}$ Dead and missing

[^7]: 12 Property and business interruption, excluding liability and life insurance losses
 US natural catastrophe figures: with the permission of Property Claim Services (PCS)/incl. NFIP flood losses (see page 42 "Terms and selection criteria")
 ${ }^{13}$ Dead and missing
 14 na: not available

[^8]: 15 Dead and missing
 ${ }^{16}$ Property and business interruption, excluding liability and life insurance losses
 17 na: not available

[^9]: * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^10]: ** na: not available

[^11]: 18 Property and business interruption, excluding liability and life insurance losses
 US natural catastrophe figures: with the permission of Property Claim Services (PCS)/incl. NFIP flood losses (see page 42 "Terms and selection criteria")
 19 Dead and missing

[^12]: ${ }^{20}$ Dead and missing
 21 Property and business interruption, excluding liability and life insurance losses

[^13]: ${ }^{22}$ Natural catastrophes in the USA: Those sigma figures which are based exclusively on estimates of Property Claim Services (PCS), a unit of the Insurance Services Office, Inc (ISO), are given for each individual event in ranges defined by PCS. The estimates are the property of ISO and may not be reprinted or used for any purpose, including use as a component in any financial instruments, without the express consent of ISO.
 ${ }^{23}$ The insured losses for 2007 were converted to USD using these exchange rates. No losses in any other currencies were reported.

