
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

IMPLEMENTATION OF LEAP AHEAD FUNCTION FOR LINEAR

CONGRUENTIAL AND LAGGED FIBONACCI GENERATORS

By

NIRAJ PANDEY

A Project submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Summer Semester, 2008

The members of the Committee approve the Project of Niraj Pandey defended on August

6, 2008.

Dr. Michael Mascagni
Professor Directing Project

Dr. Ashok Srinivasan
Committee Member

Dr. Piyush Kumar
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

ii

iii

ACKNOWLEDGEMENTS

I would like to express my deep-felt gratitude to my advisor, Dr. Michael Mascagni

of the Computer Science Department at The Florida State University, FL, for his advice,

encouragement, enduring patience and constant support. Finally, I would like to thank my

other comittee members, Dr. Ashok Srinivasan and Dr. Piyush Kumar for their help and

support.

iv

TABLE OF CONTENTS

List of Figures . vii

Abstract . viii

1. INTRODUCTION . 1
1.1 Summary . 3

2. Background . 5
2.1 Introduction to Pseudorandom Numbers 5
2.2 Introduction to the Types of PRNGs . 5
2.3 Parallel Random Number Generation . 8
2.4 TestU01 . 10
2.5 Random Number Testing . 10
2.6 Parallel Random Number Testing . 14

3. Design and Implementation of Leap Ahead Functions 16
3.1 Motivation . 16
3.2 Leap Ahead For Linear Congruential Generator (LCG) 17
3.3 Leap Ahead for Additive Lagged Fibonacci Generator (ALFG) 18
3.4 Leap ahead for Multiplicative Lagged Fibonacci Generator(MLFG) . . . 29
3.5 Square and Multiplication Algorithm . 30

4. Parallel Random Number Testing . 32
4.1 PRNG Tests . 32
4.2 Design of Parallel RNT . 33
4.3 Performance and Result . 35

5. Concluding Remarks . 37
5.1 Conclusion . 37
5.2 Future Work . 38

A. Appendix A . 39
A.1 Introduction to TestU01 . 39
A.2 PRNG tests in modified crush . 40
A.3 Introduction to MPI . 46

v

B. Appendix B . 48
B.1 LCG Leap Ahead . 48

C. Appendix C . 52
C.1 Matrix Based ALFG Leap Ahead . 52
C.2 Polynomial Based ALFG Leap Ahead . 62

REFERENCES . 75

vi

LIST OF FIGURES

3.1 The output of the matrix based ALFG algorithm 22

3.2 The output of the TestU01 ALFG generator 23

3.3 The output of the polynomial based ALFG algorithm 28

vii

ABSTRACT

This report presents leap ahead functions that can be used to jump ahead an arbitrary

amount in the period of linear congruential generators (LCGs), additive lagged-fibonacci

generators (ALFGs) and multiplicative lagged-fibonacci generators (MLFGs). Leap ahead

functionality of these pseudorandom number generators (PRNGs) is desirable in many

situations. One application of the leap ahead functions is to test PRNGs in parallel on

a cluster environment. Besides this, the leap ahead functions can be used independently for

other purposes as well as mentioned in [1].

Leap ahead functions for ALFGs and MLFGs are implemented using the both polynomial

and matrix method [1]. The Leap ahead functions thus implemented were later used to test

above mentioned PRNGs in parallel against different random number test (RNT) routines

implemented in TestU01. Testing PRNGs is a computationally intensive task. Leap ahead

functions can be useful to speed up the process of RNT by splitting the random number

stream obtained from the sequential PRNGs into several substream and then testing each

of these substreams independently against RNT routines in separate cluster node. This use

of leap ahead function to test sequential PRNGs in a parallel manner was conducted as part

of this project to verify the correctness and demonstrate the use of leap ahead functions.

viii

CHAPTER 1

INTRODUCTION

Random number generators are widely used in many computational science and engineer-

ing fields. For example: simulation, sampling, numerical analysis, computer programming,

decision making and so on. True random number generators are normally implemented

through a physical device that plugs into computer and produces genuine random numbers as

opposed to the pseudorandom numbers that are produced by a computer program. Random

number sequence generated by computer programs are called pseudorandom. Pseudorandom

numbers generated by deterministic algorithms are very close to a true random number, but

never can be considered truly random. There are various applications whose outcome is

hugely dependent on the quality of random number generated. Therefore, before using

pseudorandom numbers, each PRNG should be fully tested to verify that their statistical

properties resembles that of true random numbers. Depending upon the requirement of

an application, random numbers are generated either in a sequential or parallel fashion.

Sequential random number generators produce all the random numbers in a single node.

whereas parallel random number generators produce streams of random numbers on a

different nodes. Normally, parallel random number generation is a complicated process.

Caution should be taken to avoid inter-stream correlations.

Ideally sequential PRNG would produce a stream of numbers that have following

properties:

• uniformly distributed.

• uncorrelated.

• never repeats itself.

1

• satisfy any statistical test for randomness.

• reproduceable.

• portable.

• can be changed by adjusting an initial ‘seed’ value.

• can be easily be split into many independent subsequences.

• can be generated rapidly using limited computer memory.

Practically, it is impossible to satisfy all these properties. For practical purpose, the

period of repetition of the sequence must be much larger than the number of pseudo random

number that might be used in any application and that the correlations be small enough so

that they do not noticeably affect the outcome of a computation.

Often the speed of random number generators has been the cause for the low quality of

random number produced. Users who want super-fast random number generator (RNG)

usually have applications that spend most of their time generating random numbers, and

require a huge number of them. These types of applications are often the ones that are most

sensitive to the quality of the generator, in which case it would seem prudent to sacrifice a

little speed for much better randomness properties. There are various ways of speeding up

the random number generation, one of which is to utilize the leap ahead function to generate

random numbers in parallel. Ideally parallel PRNGs would produce a stream of numbers

that have following properties:

• should work for any number of processors.

• each processor should satisfy all the requirements of a good sequential generator, e.g.

they should be uniformly distributed, uncorrelated, and have a large enough period.

• no correlations between the sequences on different processors.

• same sequence of random numbers should be produced for different numbers of

processors and for the special case of a single processor.

2

• algorithm should be efficient, i.e. after the generator is initialized, each processor

should generate its sequence independently of the other processors.

All these requirements should be met by a good parallel random number generator.

To determine the quality of a given random number generator, random number tests are

used. An obvious requirement for a good parallel random number generator is that the

sequential generator on which it is based should have acceptable randomness properties.

The many standard statistical tests for checking the randomness properties of sequential

generators can be applied to parallel generators, by testing the random number streams on

each processor, and from all processors combined. This is the usual approach in testing

parallel generators. Since the parallel random number generator should also be a good

sequential random number generator. The idea of testing a parallel random number generator

on each node of a cluster can be used to parallelize the testing procedure for sequential

random number generator; However, for testing sequential random number generator in a

parallel manner, it requires leap ahead function. This was the motivation for this project.

In this project, we have implemented leap ahead function for LCG and lagged Fibonacci

generators. Leap ahead functions can jump an arbitrary amount in the period of PRNGs.

This property of the leap ahead function can be used to test their respective sequential

PRNGs in a parallel manner. Ability to Leap ahead in the period of a PRNG is a very

important feature because the parallel RNT requires each node on a cluster to test random

numbers from certain range within the period of the PRNGs. This implies that the RNT

routine running on each node has to first jump ahead an amount that is equal to the lower

bound of its range and secondly start testing numbers with in its range.

1.1 Summary

The rest of this report is organized as follows. Chapter 2 serves as a background for

understanding the underlying concept of this project. Chapter 3 describes the detail design

and implementation of this project as well as the motivation for the implementation of leap

ahead functions. Chapter 4 describes one of the many uses of leap ahead functions. As part

of verifying the correctness of leap ahead functions, this chapter describes the procedure

and result of testing sequential LCG and ALFG using RNT routines available in TestU01.

3

Chapter 5 provides some concluding thoughts and mentions some future works. Finally,

appendix A lists some of the tools and concept used in this project and appendix B and C

lists source code for the leap ahead functions.

4

CHAPTER 2

Background

2.1 Introduction to Pseudorandom Numbers

Random numbers are used everywhere from casino machines to scientific applications such

as statistical sampling, Monte Carlo methods, and computer security. There are basically

two types of sources for the generation of random numbers, one is the physical source

whereas the other is the computer algorithm. Random numbers generated from the physical

sources are also called true random numbers. Physical sources can be thermal noise or the

photoelectric effect or other quantum phenomena. A special hardware device that plugs into

computer is required to interface between the computer software and the physical source

of random numbers. Random numbers generated from the computer algorithms are also

called pseudorandom numbers. Random numbers are produced from each of these sources

using completely different approaches. A computer can only generate true random numbers

through some physical sources. Unfortunately, hardware random number generators are

seldom used because they are expensive, slow, not reproducible, and often not as random

as simple PRNGs. Pseudorandom number generation is another way of producing random

numbers in which random numbers are generated by a deterministic algorithm based on

some mathematical reccurence relation. When a PRNG is carefully designed, it can produce

random numbers with many desirable properties.

2.2 Introduction to the Types of PRNGs

In this project we are interested in the implementation of the leap ahead function for

LCGs, ALFGs and MLFGs. We use these leap ahead functions to test the respective PRNGs

in parallel against some RNT routines implemented in TestU01. A good random number

5

generators should generate streams of numbers that are random, uniformly distributed,

portable, reproducible, homogeneous, and have long periods. In addition, these generators

should also be able to produce random numbers quickly and efficiently. These attractive

properties allow PRNGs to be considered the most suitable type of random number generator

in many applications. The random and uniformly distributed properties suggest that while

we should not be able detect any patterns in a set of random numbers, these numbers should

also be spread out evenly. Portable means that a random number generator should produce

the same results on different computer platforms. For example, a generator should produce

the same set of numbers on any 32-bit machine and on any 64-bit machine. Reproducibility

suggests that we can get the same sets of random numbers no matter how many times we

use the same random number generator, if desired. Homogeneous implies that all bits of a

number are equally likely to change and hence are all equally random. Finally, the period of a

generator is the length of a stream of random numbers before these numbers start repeating.

This length should be as long as possible and at least several times larger or the square of

the total of the random numbers that are required.

There are many different types of random number generators. In this project we are

interested in only three types of random number generators namely LCG, ALFG and MLFG.

1. Linear Congruential Generator :

Probably the most commonly-used random number generators are LCGs. LCGs

produce a sequence of Xi of random number using the relation

Xi = (a ∗Xi−1 + c) (mod M), (2.1)

where a is the multiplier, M is the modulus, and c is an additive constant. The

parameters (a,c,M) must be chosen carefully to ensure a large period, good uniformity

and randomness properties. The maximum period of M is possible if c is relatively

prime to M , a - 1 is a multiple of p, for every prime p dividing M and a - 1 is a multiple

of 4, if M is a multiple of 4 [2].

• Combined Linear Congruential Generator : Different streams of random numbers

generated by using LCGs as (X
(j)
n)n≥0, 1 ≤ j ≥ r, can be combined into a new

6

stream (Xn)n≥0 , Xn ≡ X
(1)
n +...+X

(r)
n (mod 1), that yields an easy way to achieve

long periods while keeping the computational cost of generating the number low

by choosing suitable parameters for each underlying generators.

This project provides an interface to combine number of LCGs and use leap ahead

function to compute jth (j > 0) element in the period of such PRNGs. LCGs

are combined using the following relation:

X1,i = (a1 ×X1,i−1) (mod m1)

X2,i = (a2 ×X2,i−1) (mod m2)

X3,i = (a3 ×X3,i−1) (mod m3)

X4,i = (a4 ×X4,i−1) (mod m4)

Ui = (
X1,i

m1

+
X2,i

m2

+
X3,i

m3

+
X4,i

m4

) (mod 1.0) (2.2)

Where aj, mj are the multiplier and the modulus for the LCG Xj, 1 ≤ j ≤ 4.

This generates the pseudorandom number Ui, which is uniformly distributed over

the interval [0, 1).

2. Lagged Fibonacci Generators

Lagged fibonacci-generators are the generalization of the Fibonacci sequence. These

generators can produce astonishingly long period of random numbers. Each element

in a sequence is defined as follows:

Xi = Xi−p �Xi−q (mod M), p > q (2.3)

where p is called the register length, q is called the lag, M is the modulus and �
can be any binary arithmatic operations (+,−,×). In this project we are interested

in the implementation of leap ahead function for additive (+) and multiplicative (×)

lagged-fibonacci generators.

• Additive Lagged-Fibonacci Generators (ALFG)

7

Xi = Xi−p +Xi−q (mod M), p > q (2.4)

When M is prime, period is as large as Mp − 1. However, it is more common

to consider lagged-fibonacci generators with M = 2m, for some m > 0. In later

case, the maximum possible period is (2p − 1)2m−1 [3, 4]. ALFGs with power-

of-two moduli are considerably easier to implement than general prime moduli;

however, their periods are much smaller than in the prime-modulus case[3, 4].

This maximal period of the ALFG is reached if and only if the characteristic

polynomial f(x) = xp − xp−q − 1 is a primitive polynomial modulo 2 [2].

• Multiplicative Lagged Fibonacci Generators (MLFG)

Xi = Xi−p ×Xi−q (mod M), p > q (2.5)

This generator is defined by the modulus, M the register length, p, and the lag, q

[5, 4]. It is more common to consider lagged-fibonacci generators with M = 2m,

for some m > 0. The maximum possible period is (2m−3(2p−1)). This maximal

period is reached if and only if the characteristic polynomial f(x) = xp−xp−q− 1

is a primitive polynomial modulo 2 [2].

2.3 Parallel Random Number Generation

Monte Carlo simulations have always been one of the main tasks for the most advanced

computers of the age. In these days, the advent of highly parallel machines with supreme

performance urges efforts to develop various techniques of handling Monte Carlo Simulations

in parallel environments. Correlations in the pseudorandom number sequence can lead to

errors in the results of MC computations. In parallel Monte Carlo applications, each process

generates a distinct stream of pseudorandom numbers. This might cause not only intra-

stream correlations but also inter-stream correlations. In view of these problems with parallel

random number generations, there are various ways to parallely generate random numbers.

1. Parallelization Through Random Seed

8

In this parallelization scheme, each processor chooses a start state randomly and

hope that the seeds will take them to widely separated portions of the sequence, so

that there will be no overlap between the sub-sequence used by different processors [5].

2. Parallelization Through Blocking

In this parallelization scheme, the user determines a block size, B. if the PRNG

sequence is given by x0, x1, ..., then the parallel PRNG sequence on processor i is given

by XiB, XiB+1, ...The danger here is that if the user happens to consume more random

numbers than expected, then the stream on different processors could overlap[5].

3. Parallelization Through Leap-Frog

In the leap frog scheme, processor i gets the sequence xi, xi+p, xi+2p, ..., where P is

the total number of processors. Long range correlations in the PRNG become short-

range intra-stream correlations in parallel PRNG, which can be worse than inter-stream

correlations[5].

4. Parallelization Through Parameterization

In this parallelization scheme, each processor gets independent, full-period sequence.

This scheme makes reproducibility of random numbers easy when it is desired.

Parameterization of PRNGs is based on the fact that given a sequence number i,

there is an easy way of generating the ith sequence. This type of parameterization

can be done in two ways. Seed parameterization is used with certain generators where

the set of possible initial states of the PRNG naturally divides itself into a number of

smaller cycles, where each seed from different cycle can be given to different processors.

In iteration function parameterization, a different iteration function is used for each

stream. In order to achieve this, we need a way of parameterizing the iteration function

so that given i, the ith iteration function can be produced easily.PRNGs is based on the

fact that given a sequence number i, there is an easy way of generating the ith sequence.

This type of parameterization can be done in two ways. Seed parameterization is used

with certain generators where the set of possible initial states of a PRNG naturally

9

divides itself into a number of smaller cycles, where each seed from a different cycle

can be given to different processors. In iteration function parameterization, a different

iteration function is used for each stream. In order to achieve this, we need a way of

parameterizing the iteration function so that given i, the ith iteration function can be

produced easily. [5]

2.4 TestU01

TestU01 is a software library implemented in the ANSI C language. It provides different

utilities for the empirical statistical testing of PRNGs. It provides general implementation

for the most of the classical statistical tests for PRNGs along with other proposed in the

literature. Three predefined batteries of tests namely small crush, crush and big crush for

the sequence of random numbers over the interval (0,1) and for bit sequences are available.

Various tools to perform systematic studies of the interaction between a specific test and the

structure of the point sets produced by a given family of PRNGs are also offered. For e.g.

given a kind of test and class of PRNGs, there are tools implemented in TestU01, that can

be used to determine how large should be the sample size of the test, as a function of the

generator’s period length, before the generator starts to fail the test systematically. Besides

these, the library also provides the generic implementation for various types of PRNGs along

with specific PRNGs that are found in widely used software or read literature [6]. Various

statistical tests available in TestU01 can be applied to the generators already implemented

in the library or to the user-defined generators.

2.5 Random Number Testing

Before using the PRNG on any application, thorough testing is required to ensure that

the generator possess all the required properties of a good PRNG. Two types of random

number tests are popular: empirical tests, for which the computer program manipulates

groups of number of the sequence and evaluates certain statistics and theoretical tests, for

which we establish characteristics of the sequence by using number-theoretic methods based

on the recurrence rule used to form the sequence [2]. Stastical tests of a PRNG typically

compute some statistic from a portion of a random stream. This statistic is compared against

the expected value from an uniformly distributed truly random sample. If the results from

10

the PRNGs are consistent with those from a random sample, then the test is said to have

been ”passed” by the random number generator. Passing a test does not imply that the

generator is producing a truly random sequence. It just means that the particular test could

not differentiate between a truly random stream and the stream generated by the generator

under consideration. However, if several different tests are passed, then our confidence in

the random number generator increases [2].

In this project we have implemented leap ahead functions that can be used to test PRNGs

in parallel. There are many tests which are designed to test particular statistical property of

a random number sequence generated by a PRNG. For instance, sequential PRNGs should

be tested for intra-stream correlations. This project uses some of the most popular empirical

tests from Knuth and emphMarsaglia implemented in TestU01 to test LCG, ALFG and

MLFG using the respective leap ahead functions.

Here are the descriptions of those tests from TestU01, that are used in this project to

demonstrate the use of leap ahead functions to test sequential PRNGs in parallel.

1. Frequency Test

Numbers in random number sequence should be uniformly distributed over the range

(0, d− 1). In Frequency Test, either we use:

• KS test with F (x) = x for 0 ≤ x ≤ 1.

• let d be a convenient number, such as 64 or 128 and use this sequence instead of

above. For each integer r, 0 ≤ r < d, count the number of times that Yj = r,

where Yj is an integer, that is independently and uniformly distributed between

0 and d− 1, for 0 ≤ j < n and then apply the chi-square test [2].

2. Serial Test

Serial test tests whether pair of successive numbers are uniformly distributed in an

independent manner. To carry out the serial test, we count the number of times that

the pair (Y2j, Y2j+1) = (q, r) occurs, for 0 ≤ j < n. These counts are made for each

pair of integers (q, r) with 0 ≤ q, r < d, and the χ2 test is applied to these k = d2

categories with probability 1/d2 in each category [2].

11

3. Gap Test

This test examines the length of “gaps” between occurrences of random numbers.

For e.g., if [a, b] =[0.4, 0.7]and the sequence is 0.1,0.5,0.6,0.9...,then the length of the

first gap (between number 0.5 and 0.6) is 2. In this test, n such gaps are recorded and

lump gap lengths greater than t (t is the gap length) is analyzed [2].

4. Poker test (Partition test)

We Generate k integers in [0, d − 1] and count the number of distinct integers

obtained. For e.g., if k = 3 and d = 3 and the sequence is : 0,1,1,...,then the number

of distinct integers obtained in the first 3-tuple is 2. We repeat this process for n times

and compare with the expected distribution for random samples from the uniform

distribution. [2]

5. Coupon Collector’s test

Suppose we have a set of random number in the range [0, 232−1]. We linearly search

through the set and produce n numbers, where each n is the length of the smallest

subset containing all 232 − 1 possible random numbers. We compare the observed n

which the corresponding expected value [2].

6. Permutation test

Suppose the n subsequences with t random numbers in each subsequence constitute

the entire random number sequence. Each subsequence should have t! possible

permutations. We count the frequency of each permutation and then apply the Chi

Square test. [2]

7. Run Test

We take a random number sequence and count the lengths that consecutive random

numbers are monotonically increasing to get n lengths. Then we test these actual

lengths with the expected lengths. [2]

12

8. Maximum-of-t test

Maximum of t tests for the biggest numbers in n random real number sequences in

the range [0, 1). This number should have the distribution xt, where t is length of each

sequence [2].

9. Collision test

The Collisions test involves first generating a series of new integers, and then test the

series based on collisions. The log d most significant bits from logmd random integers

can be used to concatenate into a new integer. We use n logmd random integers to

form n concatenated numbers, where n should be significantly smaller than m. Next,

we count the frequencies for numbers that appear more than once in the set of new

numbers. Finally, we compare the observed frequencies and expected frequencies of

these numbers. [2]

10. Birthday spacing test

This test was introduced by George Marsaglia. Suppose the birthdays are (Y1, ...Yn),

where 0 ≤ Yk < m (where we can think of m as “days of year” and n as “birthdays”).

Sort them into nondecreasing order Y(1) ≤ ... ≤ Y(n), then define n ”spacings”

S1 = Y(2) − Y(1), ...Sn−1 = Y(n) − Y(n−1), Sn = Y(1) + m− Y(n); finally sort the spacings

into order, S(1) ≤ ... ≤ S(n). Let R be the number of equal spacings. We repeat the

test with certain m and n values for x times and do a χ2 test to compare the empirical

R′s with the correct distribution. [6]

11. Marsaglia Serial Over Test

Implements the overlapping t-tuple test. It is similar to the Knuth’s serial test,

except that the n vectors are generated with overlap, as follows. A sequence of uniforms

u0, ..., un−1 is generated, and the n points are defined as (u0, ..., ut−1), (u1, ..., ut), . . .

, (un−1, un, u0, ..., ut−3), (un, u0, ..., ut−2). [6]

12. Marsaglia Collision Over Test

13

This is similar to collision test, except that the vectors are generated with overlap.

If n (the number of points) and dt (the number of cells) are very large and have

the same order of magnitude, then the number of collisions C is a random variable

which is approximately normally distributed with mean µ ≈ dr(λ − 1 + e−λ) where

λ = (n− t+ 1)/dt and variance σ2 ≈ dte−λ(1− 3e−λ). [6]

2.6 Parallel Random Number Testing

With the growing use of random numbers on various fields, new random number generators

are frequently developed and implemented. Before using any of these PRNGs, one needs

to test these generators thoroughly to verify that the quality of random number produced

by these generators are genuine. Often, these generators need to be tested for very large

sequence of random numbers. With the advent of parallel computing and the availability of

more memory and processing power, hardware constraint that existed in past is no more.

Only issue remaining is the development of an efficient algorithm that could harness the

parallel computing capability provided by the hardware. In recent days, there has been

significant progress in the design and development of parallel PRNGs and RNTs. One such

example is a SPRNG library [7].

In this project we are also interested to use the leap ahead functions to test the PRNGs

in parallel. Our approach is to split the long sequence of the random numbers generated

by a sequential PRNG into various sub-streams and test each of these sub-streams on a

node in a cluster environment . To split the long stream of random numbers, we use leap

ahead function. Leap ahead functions can jump ahead an arbitrary amount in the period

of a PRNG without ever producing the intermediate random numbers. This feature can be

utilized to seed the PRNG from any value of our interest within the period of the PRNG.

In this way, we can generate multiple sub-streams of random numbers and use RNT to test

each of these sub-streams on a node. For e.g. if we want to test 100 random numbers and 10

nodes are available, we could split the main stream of random numbers into 10 sub-streams

using the leap ahead function. Leap ahead function running in nodes 0, 1, 2, ..., 8, 9 will jump

ahead 0, 10, 20, ..., 80, 90 amount respectively in the period of the PRNG of our interest. The

PRNG’s state value obtained from the leap ahead function in each node will be used to seed

the copy of PRNG running in that node. Once the process of testing random numbers in

14

each node is completed, its result will be sent to the main node. Main node will gather the

results from all the nodes and computes the test statistics. This way of using leap ahead

function to test the sequential PRNG in parallel can greatly reduce the computation time

when the sequence of random numbers being tested is very large.

For certain classes of PRNGs, it is very difficult to devise leap ahead function. Normally,

it is easier to formulate a leap ahead function for PRNGs based on linear recurrence rather

than PRNGs based on non-linear recurrence relation.

15

CHAPTER 3

Design and Implementation of Leap Ahead Functions

3.1 Motivation

Linear recurrence sequences with very large periods are widely used as the basic building

block for the PRNGs. In many simulation applications, multiple streams of the random

numbers are needed. There are various uses of the multiple streams of random numbers

provided that each of these sub-streams are independent and identically distributed (IID). In

this project, we consider the use of leap ahead function to split the stream of random numbers

generated from the sequential PRNG to obtain the multiple sub-streams as described in

section 2.6. There are several situations where the ability to leap ahead an arbitrary amount

in the period of a pseudorandom number generator is desirable [8]. A simple situation occurs

when the same computation using a PRNG is required to be performed multiple times with

different set of random numbers [1]. Normally, a user can provide a different seed for each of

the sub-streams and this seed situates the user’s computation on a different starting value

in the period of a PRNG [1]. This method only guarantees that the new starting values

are different from the old one. However, there might be a huge overlap between the first

and second set of random numbers. One obvious solution to this problem is to use leap

ahead function that takes an offset in the PRNG’s period as an argument and starts the new

stream at an offset away from the old starting value [1]. This concept can be applied to test

PRNGs in parallel, that involves splitting a long stream of random numbers into multiple

sub-streams. This basic idea of being able to produce multiple sub-streams of random

numbers by splitting a contiguous sequence of random numbers is the main motivation for

this project. In this project we have not only implemented the leap ahead functions but are

also used these leap ahead functions to test sequential PRNGs in parallel.

While testing a sequential PRNG with RNTs that consume billions of random numbers,

16

it takes hours of computation time. This time can be significantly reduced by splitting the

main stream of PRNGs into several sub-streams and testing each of these sub-streams of

random numbers on a separate node. This process of splitting a long stream of random

numbers into several sub-streams requires an efficient and fast leap ahead function for the

particular PRNG of interest. A fast leap ahead function enables one to jump ahead an

arbitrary amount ”j” in the period of PRNG in O(log2j) ”‘operations”’ [1]. Each nodes in

a cluster has to test its own range of random numbers. To start the generation of random

numbers beginning at its range (say n - n + j) requires jumping ahead n in the period of

PRNG. While the subsequent node is required to jump n+ j.

This project implements an efficient and fast leap ahead function for LCG, ALFG and

MLFG. An algorithm for a fast leap ahead function for LCG is based on the generalised

LCG formula outlined by Knuth [2]. Similarly, an algorithm for a fast leap ahed function

for ALFG and MLFG is based on the method described by Mascagni in his famous paper

[1]. These leap ahead functions are later used to test PRNGs based on LCG, ALFG and

MLFG, that are implemented in TestU01 using the RNT routines available in TestU01. Leap

ahead functions for the ALFG and MLFG is implemented using two methods based on the

matrix and the polynomial representation. MLFG uses the leap ahead functions of ALFG

to implement its leap ahead function.

3.2 Leap Ahead For Linear Congruential Generator
(LCG)

The LCG is the most commonly used generator for pseudorandom numbers. It was

introduced by D. H. Lehmer in 1949 [2] and is based on the following recursion:

Xn+1 = a ∗Xn + c (mod M), (3.1)

where a is the multiplier, M is the modulus, and c is an additive constant. The parameters

(a,c,M) must be chosen carefully to ensure a large period, good uniformity and randomness

properties. The maximum period of M is possible if c is relatively prime to M , a - 1 is a

multiple of p, for every prime p dividing M and a - 1 is a multiple of 4, if M is a multiple of

4 [2].

17

Xn+k = (akXn + (ak − 1)× c/b) (mod M), k ≥ 0, n ≥ 0, b = a− 1 (3.2)

This expresses the (n + k)th term directly in terms of the nth term. When n = 0, X0

is the starting seed. It follows that the sequence consisting of every kth term of < Xn >

is another linear congruential sequence, having the multiplier ak mod M and the increment

((ak − 1)c/b mod M [2].

3.2.1 LCG Leap Ahead Implementation

The leap ahead function for LCG is based on the equation (3.2) [2]. This involves the

calculation of of ak using the square and multiplication (SQM) algorithm outlined in section

3.5 [1] . The SQM algorithm reduces the number of modular multiplication to compute ak

from k to O(log2k). The naive approach for computing ak involves k modular multiplication

of a.

Following is the C interface provided in this project for the LCG leap ahead function:

typedef unsigned long Long ;
Long mod mul (Long base , Long exp , Long mod) ;

This function returns baseexp (mod mod) using SQM algorithm 3.5.

Long l c g l e a p a h e a d (Long x0 , Long a , Long c , Long mod, Long n) ;

This function returns the nth period value from the LCG as defined by equation (3.1), where

x0 is the starting seed, a is the multiplier, mod is the modulus, c is an additive constant and

n is the leap ahead number passed as the parameter to the function.

3.3 Leap Ahead for Additive Lagged Fibonacci
Generator (ALFG)

The recurrence relation for the ALFG is defined by the equation (2.4). Since it is a linear

recurrence relation, a leap ahead function can be easily devised. This project implements the

leap ahead function for the ALFG based on the matrix and the polynomial representation

as outlined in [1].

3.3.1 Matrix Method

Given an initial vector xn =
[
x0, x−1, ..., x−p−1

]T
as the starting seed values for the ALFG,

the recursion can be defined by using the vector as follows:

18

xn = Axn−1 (mod M) (3.3)

where M is 2m. Matrix A is given by the following template:

A =

q p
0 0 0 ... 0 1 0 ... 0 0 1
1 0 0 ... 0 0 0 ... 0 0 0
0 1 0 ... 0 0 0 ... 0 0 0
0 0 1 ... 0 0 0 ... 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 ... 1 0 0 ... 0 0 0
0 0 0 ... 0 1 0 ... 0 0 0
0 0 0 ... 0 0 1 ... 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 ... 0 0 0 ... 1 0 0
0 0 0 ... 0 0 0 ... 0 1 0

This is a p × p matrix with elements defined modulo M = 2m. Given the initial seed

vector x0, we can compute jth vector in the sequence defined by the equation (3.3) as

xj = Ajx0 (mod M) (3.4)

Algorithm For Matrix Based Leap Ahead

Input: the initial state vector s = s0

Output: the jth state vector sj
Setup the initial matrix A as shown in section 3.3.1
Compute the matrix Aj by the multiplication of initial matrix A into j times. Use
SQM algorithm as outlined in section 3.5 [1] for the multiplication.
Compute the product of Aj × s0 to get the jth vector sj
Return sj

Algorithm 1: Matrix based leap ahead for ALFG

Efficiency of The Algorithm Computation of Aj can be accomplished with O(log2j)

matrix-matrix multiplication with the well-known SQM algorithm [1]. Computation of Aj×
x0 requires a single matrix-vector multiplication. The cost for matrix-vector multiplication

for the matrix of size p × p and the vector of size p is p2 multiplications and p additions.

Matrix-matrix multiplication for the matrices of size p× p with no special structure requires

19

p3 multiplications and p3 − p2 additions. The overall complexity of the matrix based leap

ahead is p3log2j. The storage requirement is 3p2 i.e. 3 matrices are required, one to store the

current iterate, second to store the matrix A and third to store the temporary result. This

memory requirement imposes a constraint on leap ahead for larger lags (p) like 1279× 1279.

In such a scenario, the polynomial based leap ahead function defined in section 3.3.2 is more

effective. Note that multiplication and the addition arithmatic operations discussed above

are modulo M .

Interface for the matrix based leap ahead Following are the list of important functions

that are implemented for the matrix based leap ahead function. Complete list of source code

is available in appendix.

int i n i t m a t r i x (int p , int q , unsigned long ∗∗∗ template , unsigned
long ∗∗∗ ident , unsigned long ∗∗∗temp) ;

This function initializes 3 matrices that are required for the function, which implements the

SQM algorithm 3.5.

void sqm(unsigned long leap , unsigned long M, unsigned long ∗∗
template matr ix , unsigned long ∗∗ ident matr ix , unsigned long ∗∗
temp matrix) ;

This function multiplies the template matrix (template matrix) as defined by the equation

(3.3) into leap times using the SQM algorithm outlined in section 3.5. Variables M is the

modulus, ident matrix is the identity matrix to begin the multiplication process. During

the SQM process, it keeps on storing the intermediate results too. The Other variable

temp matrix is used as a temporary storage during the multiplication process.

void vector mul t (unsigned long M, unsigned long ∗ seed , unsigned
long ∗∗ ident matr ix , unsigned long ∗∗ temp matrix) ;

This function computes the product of matrix and vector modulo multiplication. Variables

M is the modulus, seed is the initial seed vector, identmatrix is the one that is multiplied

with seed vector and the temp matrix is a temporary storage used during the multiplication

process.

void r u n p l f g (unsigned long leap , unsigned long M, int lag , int k ,
unsigned long ∗∗ template matr ix , unsigned long ∗∗ ident matr ix ,
unsigned long ∗∗ temp matrix , unsigned long ∗∗ seed) ;

20

This is a wrapper function, that calls all the necessary functions to compute the vector after

leaping ahead certain amount in the period of the ALFG. Parameter leap is the leap ahead

number, M is the modulus value, lag is the larger lag value, k is the smaller lag value,

template matrix is used to store the matrix A of the equation (3.3) and ident matrix and

temp matrix are used by the function sqm as explained in the paragraph 3.3.1.

Correctness of The Algorithm The implementation of the matrix based leap ahead

algorithm was tested in two ways. First method is called as the unit testing. Using the

concept of unit testing, each function was tested independently of the other functions. For

instance, the major component of this algorithm was SQM. It was tested with matrices of

various sizes.

Second method was used to test the overall output of the algorithm with some standard

ALFG generator. We used the TestU01 library’s ALFG generator to compare the state of

the generator given by the output of the matrix based leap ahead algorithm. The output

of the matrix based leap ahead algorithm after leaping n number ahead was compared with

the state of the TestU01 ALFG generator after generating n number of random numbers.

We found the indentical output for extensive number of inputs. Here is an instance of the

various tests conducted to verify the correctness of the algorithm. The parameters for the

ALFG generator as defined in the equation (2.4) were p = 5, k = 3, M = 213 and the leap

ahead number as defined in the equation (3.4) was j = 3278456. Following is a snippet of

code to call matrix leap ahead implementation.

#include ” p l f g u t i l s . h”

int main () {
Long ∗∗ template matr ix , ∗∗ ident matr ix , ∗∗ temp matrix , ∗

seed ;
Long M = 13 , j = 3278456;
int p = 5 , q = 3 ;

M = 1 << M;
r u n p l f g (j ,M, p , q , template matr ix , ident matr ix ,

temp matrix , seed) ;

return 0 ;
}

}

21

Here is the screenshot of the output of the above program.

Figure 3.1: The output of the matrix based ALFG algorithm

Similary, the following snippet of code can be executed to run the ALFG generator

implemented in the TestU01 library. Note that TestU01 library should be installed before

running this code. For further instructions on how to install and use TestU01 library, refer

the document [6].

#include<s t d i o . h>
#include ” un i f 01 . h”
#include ”umrg . h”
int main () {

int p = 5 , k = 3 , r ;
unsigned long seed [p] , z , M = 13 , j = 3278456 , i ;

22

unif01 Gen ∗gen ;

r = 2018 ;
M = 1 << 13 ;
for (i = 0 ; i < p ; i ++, r += 3)

seed [i] = r ;
gen = umrg CreateLagFib (M, p , q , ’+ ’ , 0 , seed) ;
p r i n t f (”\%s\n” , gen−>name) ;
unif01 WrLongStateFlag = 1 ;
un i f 01 Wr i t eSta te (gen) ;

for (i = 0 ; i < j ; i++)
gen−>GetBits (gen−>param , gen−>s t a t e) ;

un i f 01 Wr i t eSta te (gen) ;

return 0 ;
}

Here is the screenshot of the output of the above program.

Figure 3.2: The output of the TestU01 ALFG generator

The output produced by the matrix based leap ahead function and the ALFG generator

implemented in TestU01 library were exactly the same as shown above. This proves the

23

correctness of the algorithm.

3.3.2 Polynomial Method

Another common method for computing the jth state in the period of the ALFG is based

on the polynomial algebra instead of the matrix algebra [1]. In this method xpth element in

the sequence of the ALFG can be represented by the function r(x) = xp (mod M). Since

xp (mod M) is the pthe element in the sequence and xp = xp−q + x0 (mod M) we have that

xp = xp−q + 1 and r(x) = xp−q + 1 (mod M). It can be written as r(x) = xp (mod f(x))

with f(x) = xp − xp−q − 1 (mod M). The notion s(x) (mod f(x)) means that we replace

the higher powers in s(x) by the identity f(x) = 0 (mod M) until the resulting polynomial

has degree less than the degree of f(x). In this case, we replace xp by xp−q + 1 (mod M)

until the resulting degree in s(x) is less than p [1]. Instead of pth element, if we want to

comput jth element in the ALFG’s period then,

r(x) = xj (mod f(x))

=

p−1∑
i=0

cix
i

With initial seed s0 =
[
xp−1, xp−2, ..., x0

]
, xjth element can be evaluated as:

xj =

p−1∑
i=0

ci × xi (3.5)

Algorithm For Polynomial Based Leap Ahead

Input: the initial state vector s = s0

Output: jth state vector sj of ALFG
Compute r(x) = xjmod(f(x)) using the SQM algorithm explained in section 3.5.
Compute the polynomial modulus operation using the polynomial division algorithm.
Compute xjth element using equation 3.5. This involves two vector multiplication
and addition. One vector is the initial seed and the other is the coefficient vector
returned by SQM function as shown in the equation (3.5).
Compute the rest of the element xj+1, xj+2, ..., xj+p−2, xj+p−1 by the successive p− 1
polynomial multiplication of the r(x) by x (mod f(x)). Replace the r(x) by the
product of polynomial multiplication each time.
Return the xjthe vector

Algorithm 2: Polynomial based leap ahead

24

Efficiency of Algorithm Computation of xj can be accomplished with O(log2j) polyno-

mial - polynomial modular multiplication with the use of well-known SQM algorithm [1].

The cost of polynomial - polynomial modular multiplication with the polynomial of degree

p−1 is p2 modular multiplications and p2 modular additions. This computes a polynomial of

degree 2p−2 and must be further reduced to a polynomial of degree p−1 by using the identity

f(x) ≡ 0 (mod M). This will require at most p − 1 reductions with p − 1 additions. This

makes the overall cost at most p2 modular multiplications and p2−2p+1 modular additions.

Overall complexity of the polynomial based leap ahead is p2 log2 j. Storage requirement for

this method is 2× p.

Interface for polynomial based leap ahead Implementation of polynomial based leap

ahead involves definition of data structure required for representing polynomials.

typedef struct{
long value ;

} p o l y c o e f f ;

typedef struct{
Long degree ;
p o l y c o e f f c o e f f [MAX+1] ;

}polynom ;

The MAX is set as 2× the largest lag possible.

Following are the interfaces for the polynomial based leap ahead function.

int i n i t s e e d (int ∗ seed , int l ag) ;

This function initializes the seed vector. The size of a seed vector is the value of the largest

lag.

int s e t u p d i v i s o r (polynom ∗p , int lag , int k) ;

This function setup the divisor. Divisor is a polynomial p(x) = xlag − xlag−k − 1. This

function initializes the polynomial p with coefficient for xlag, xlag−k and x0.

int Sqm(Long leap , int lag , Long mod, polynom ∗q , polynom ∗ r) ;

This function computes xj (mod xp−xp−q−1 (mod M)) by using the SQM algorithm. This

involves the modular polynomial multiplication and division operations. Variables leap is a

leap ahead number (j), mod is a modulus (M), q is a polynomial (xp − xp−q − 1) and r is a

polynomial returned by the function as a result of the SQM.

25

int mult polynom (polynom ∗p , polynom ∗q , polynom ∗ r) ;

This function multiplies the polynomial p with q and returns the product in the polynomial

r.

int div polynom (polynom ∗p , polynom ∗q , polynom ∗ r) ;

This function divides the polynomial q by polynomial p and returns the remainder in the

polynomial r.

Long ∗ g e t s t a t e (Long ∗s , polynom ∗q , polynom ∗r , int lag ,
unsigned long M) ;

This function returns an array of lag number of values after the xjth element. Each of the

xj+1, xj+2, ..., xj+lag−1 elements is computed by the modular multiplication of polynomial

r(x) by the polynomial x1 where the polynomial r(x) is represented by the variable r.

Long ∗ run po ly (Long j , int l , int k , Long mod, polynom ∗Q, polynom
∗R) ;

This is a wrapper function to call the polynomial leap ahead functions.

Correctness of The Algorithm The implementation of the polynomial based leap ahead

algorithm was tested in two ways. First method is called as the unit testing. Using the

concept of unit testing, each function was tested independently of the other functions.

For instance, the major component of this algorithm was SQM, polynomial division and

multiplication. These functions were tested alone with various inputs before they are

integrated with other functions.

Second method was used to test the overall output of the algorithm with some standard

ALFG generator. We used the TestU01 library’s ALFG generator to compare the state

of the generator given by the output of the polynomial based leap ahead algorithm. The

output of the polynomial based leap ahead algorithm after leaping n numbers ahead was

compared with the state of the TestU01 ALFG generator after generating n numbers of

random numbers. We found the indentical output for extensive number of inputs. Here is

an instance of the various tests conducted to verify the correctness of the algorithm. The

parameters for the ALFG generator as defined in the equation (2.4) were p = 5, k = 3, M =

213 and the leap ahead number as defined in the equation (3.4) was j = 3278456. Following

is a snippet of code to call polynomial leap ahead implementation.

26

#include ”polynoms . h”

polynom ∗Q, ∗R;
int main () {

Long ∗S ;
int i , l , k ;
Long mod, j ;

//dynamic memory a l l o c a t i o n o f po lynomia l s
Q = (polynom ∗) c a l l o c (1 , s izeof (polynom)) ;
R = (polynom ∗) c a l l o c (1 , s izeof (polynom)) ;
l = 5 ; k = 3 ; j = 3278456; mod = 13 ;
S = run po ly (j , l , k , mod , Q,R) ;
p r i n t f (”\nFinal State \n”) ;
for (i = 0 ; i < l ; i++)

p r i n t f (”\%u\ t ” ,S [i]) ;
p r i n t f (”\n”) ;
f r e e (S) ;
return 0 ;

}

27

Here is the screenshot of the output of the above program.

Figure 3.3: The output of the polynomial based ALFG algorithm

Similary, refer the code and the figure 3.3.1 to run the ALFG generator implemented in

the TestU01 library. Note that TestU01 library should be installed before running this code.

For further instructions on how to install and use TestU01 library, refer the document [6].

The output produced by the polynomial based leap ahead function and the ALFG

generator implemented in TestU01 library were exactly the same. This proves the correctness

of the algorithm.

28

3.4 Leap ahead for Multiplicative Lagged Fibonacci
Generator(MLFG)

The recurrence relation for the MLFG is given by the equation (2.5). It’s maximal period is

P = 2m−3(2p− 1) [5]. The MLFG can be parallelized based on the observation of Marsaglia.

Since the product of an even number and another number is an even number, if the seed

of a MLFG has a single even number in it, the MLFG sequence eventually becomes all

even. However, if all the integers in the MLFG seed start out odd, then they remain

odd. It eliminates the approach of being uniformly add as there is an approach of being

uniformly even. Therefore, it is necessary to seed MLFGs with only odd integers. Given

that only odd numbers are used as seed, we know that any odd integer x modulo 2b can be

uniquely represented as x = (−1)y3z (mod 2)b, where y ∈ 0, 1 and z ∈ 0, 1, ..., 2b−2 − 1 [5].

Substituting these relationships into equation (2.5), we get the following equations for the

MLFG based on ALFG:

xn = (−1)yn3zn (mod 2)b, (3.6)

where yn is given by the recurrence

yn = yn−q + yn−p (mod 2), (3.7)

and z by the recurrence

zn = zn−q + zn−p (mod 2b−2). (3.8)

Equations (3.7) and (3.8) are recurrences for ALFG with periods 2p − 1 and 2b−3(2l − 1)

respectively. If p initial values for the yn and zn are given such that zn sequence has its

maximal period then the corresponding p initial values for the sequence xn can be obtained

as shown in equation (3.6).

Parallelization This project’s implementation of MLFG leap ahead function follows

Makino’s parallelization scheme [9]. Makino parallelizes via cycle division and blocking

by choosing the seeds so that the ith random number stream will produce the sequence

xBi, xBi+1, ..., where B is the block-size. It is not feasible for the processor i to generate the

entire subsequence x0, ..., xBi, ..., xBi+p−1 to start its sequence; therefore a leap ahead facility

29

is required provided that it enables fast computation of xBi, ..., xBi+p−1, given x0, ..., xp−1.

Makino’s scheme consists of, equivalently, choosing seed y0, ..., yp−1 and maximal period seed

z0, ..., zp−1. Once the state values of the yn and zn sequences from each stream are computed,

the value for the xn sequences can be obtained by using the equation (3.6).

Algorithm for the matrix/polynomial based Leap ahead function of the MLFG

Input: the state y = y0, the state z = z0

Output: jth state xj of MLFG
Compute yjth element using algorithm 1 for matrix based leap ahead and algorithm
2 for polynomial based leap ahead
Compute zjth element using algorithm 1 for matrix based leap ahead and algorithm
2 for polynomial based leap ahead
Compute xj using equation (3.8)
Return xj

Algorithm 3: Leap ahead for MLFG

Implementation of the leap ahead function for the MLFG The equations (3.6), (3.7)

and (3.8) shows that the MLFG generator is a combination of the two ALFG generators.

The implementation of the MLFG leap ahead function can be done by reusing the ALFG’s

leap ahead function’s sub-routines. Once the values of yn and zn of the equation (3.6) are

obtained, these values are combined as shown in the equation (3.6) to get the values for

xn. The implementation of MLFG leap ahead function involves the implementation of seed

initialization function for the equation (3.7) and (3.8). The leap ahead values for each of these

equations (3.7) and (3.8) are obtained by using the leap ahead function that is implemented

for the ALFG. Since taking a MLFG seed and finding the corresponding ALFG seed requires

solving the discrete logarithm problem, we left this part as a future work. Due to this we

couldn’t verify the correctness of the algorithm.

3.5 Square and Multiplication Algorithm

Square and multiply algorithm is used in all of the leap ahead functions that are implemented

in this project. So, is is felt necessary to list the algorithm for the better understanding of

its working. The square and multiply algorithm for computing z = aj (mod M) with n bit

integer is as follows:

z = a ;
for (i = n − 1 ; i >= 0 ; i−−){

30

i f (j >> i == 0)
z = z ∗ z (mod M) ;

else
z = z ∗ a (mod M) ;

}

31

CHAPTER 4

Parallel Random Number Testing

Leap ahead functions for PRNGs can be used to split the stream of random numbers into

various substreams. This chapter describes the test routines provided in TestU01 and its

usage to test the LCG, ALFG and MLFG parallely using leap ahead functions described in

chapter 3.

4.1 PRNG Tests

Random numbers are used in various applications ranging from simulations to sampling

procedures. The difficulty associated with using true random numbers generated by the

combination of hardware and software led to the development of PRNGs, which are basically

a computer program that generates a sequence of random numbers. In the course of this

development, testing procedures were designed to ensure that the necessary deterministic

sequence of numbers produced by these PRNGs had analytical and statistical properties

which compared well with those of a true random stream.

Before concluding a particular PRNG is a good one, one needs to fully test the generators

against various RNT available to make sure that PRNG has all the necessary properties that

satisfies the requirement of an application. This test generally involves the consumption of

huge number of random numbers. Testing billions of random number against number of

RNTs takes a lot of computation time. If we could test these PRNGs in parallel then

computation time can be greatly reduced. For parallel RNT, PRNGs should have the

property of leap ahead. Normally, a leap ahead function can be easily implemented for

PRNGs based on linear recurrence. For non-linear recurrences it becomes harder to get

leap ahead function that are fast and efficient in-terms of memory. In this project we have

implemented fast leap ahead function for LCG, ALFG and MLFG as described in chapter

32

3. We will use these leap ahead functions to test LCG, ALFG and MLFG in parallel using

the RNT routines implemented in TestU01. TestU01 has predefined batteries of tests that

included standard statistical test, with fixed parameters. List of different types of tests that

are included in the batteries of tests available in TestU01 are listed in the reference [6].

Following are the predefined batteries of tests that are available in TestU01.

1. SmallCrush It is a small and fast battery of RNTs. The function

bbattery SmallCrush(unif01 Gen *gen) calls the smallcrush for a particular generator

gen. This battery of test applies each tests on one unbroken stream of successive

numbers. There are 10 tests defined in smallcrush [6].

2. Crush It is a suite of stringent statistical tests. The function

bbattery Crush(unif01 Gen *gen) calls a collection of 96 RNTs that includes the

classical tests described in Knuth [2] as well as many other tests. Most of these tests

are described in chapter 2. On a PC with an AMD Athlon 64 Processor 4000+ of

clock speed 2400 MHz runnign with Red Hat Linux, Crush will require around 1 hour

of CPU time. Crush uses approximately 235 random numbers. Crush uses 96 RNT out

of 31 different tests. [6]

3. Big Crush It is a suite of very stringent statistical tests. On a PC with an AMD Athlon

64 Processor 4000+ of clock speed 2400 MHz running with Linux, BigCrush will take

around 8 hours of CPU time. BigCrush uses close to 238 random numbers. It uses 106

RNT out of 31 different tests. [6].

4.2 Design of Parallel RNT

This project implements the modified Crush routine to test PRNGs in parallel using the

leap ahead functions as explained in chapter 2. It uses the Message-Passing Interface (MPI)

library in C programming language to parallelize the RNT routines.

Using Message Passing Interface (MPI) to Parallelize

MPI library is used to parallelize RNT. The idea of parallelization is to run individual tests

on each node of a cluster. The totla number of nodes on a cluster and the current node on

which a process is running can be known by using the follwing MPI functions.

33

MPI Comm size (MPI COMM WORLD, &s i z e) ;

Total number of nodes in a cluster that the user is interested to use is returned into size

variable.

MPI Comm rank(MPI COMM WORLD, &rank) ;

Current node number is returned by rank variable.

These above functions are the building blocks of our parallelization scheme. Following

are the project’s requirement to run RNT in parallel:

1. Run each RNT in a node. This is enabled by knowing the rank of a node. Once the

rank and size are known, we can cycle through all the nodes to run multiple tests in a

node if required.

2. Call leap ahead function for a PRNG from each of the nodes. This is required because

each node consumes the random number in its range. The range is the sub-stream of

random numbers split by leap ahead function. In other word, each node gets a non-

overlapping range of random numbers from the period of the PRNGs. Let’s say if B

is the block of random number to be tested by each node then x0, xB, x2B, ..., x(n−1)B

are the starting state of the PRNG for the nodes 0, 1, 2, ..., n− 1 respectively. In other

word x0, xB, x2B, ..., x(n−1)B are the number jumped ahead in the period of a PRNG by

the nodes 0, 1, 2, ..., n − 1 respectively. This strategy is also called blocking [9] where

B number of random numbers are tested by test routine running in each of the nodes.

List of TestU01 RNTs used in modified Crush

Crush battery of RNTs available in TestU01 is modified in-order to test leap ahead functions

that are implemented in this project. Following are the list of RNT tests that are used in

modified crush.

1. Serial Over (Marsaglia) Number of RN tested: n×N

2. Collision Over (Marsaglia) Number of RN tested: n×N

3. Birthday Spacing (Marsaglia) Number of RN tested: n×N

4. Sim Poker(Knuth) Number of RN tested: n× k

34

5. Coupon Collector (knuth) Number of RN tested: ≈ n× d

6. Gap Test (knuth) Number of RN tested: n
(beta−alpha)

7. Run Test (knuth) Number of RN tested: n

8. Permutation (knuth) Number of RN tested: n× t

9. CollisionPermut(knuth) Number of RN tested: N × n× t

10. Maximum-of-t(knuth) Number of RN tested: N × n× t

11. Smarsa Matrix Rank if k <> s, select max(k, s). x =
⌈
k
s

⌉
Number of RN tested: rows of max(k, s)× x× n

12. Svaria SampleProd Number of RN tested: n× t

13. Svaria SampleMean Number of RN tested: N × n

14. Svaria SampleCorr Number of RN tested: N × n

15. Svaria AppearanceSpacings x = L%S; y = L
S

Number of RN tested: (Q× y + z) + (K × y + z)

16. Svaria WeightDistrib Number of RN tested: N × n× k

17. Svaria SumCollector Number of RN tested: random

18. Smarsa Savir2 Number of RN tested: N × n× t

Refer Appendix A A.2 for interface details of above tests included in modified crush.

4.3 Performance and Result

As the motivation for the implementation of the leap ahead function as explained in chapter

3 was to use these functions to test PRNGs in parallel, we ran 44 combinations of 18 different

tests from TestU01 listed in 4.2 on a cluster of 31 nodes using MPI to parallelize the process

of RNT, where each of these 44 tests were ran on a separate node in a round robin fashion.

We call this list of tests as shown in 4.2, A.2 as modified crush, because it is a subset of

crush [6] battery of RNT available in TestU01.

35

4.3.1 Experiment Design

The experiment is to run the modified crush for the LCG and ALFG both in parallel and

sequential and compare the performance results with their sequential counterparts. The

correctness of each leap ahead function is already shown in chapter 3. This experiment is

designed to show that these leap ahead functions can be used to parallelize RNTs.

For LCG, we use linear congruential generator implemented in TestU01 under ulcg

module with parameters a = 397204094, m = 2147483647, c = 0 and s = 12345. Following

is the interface for LCG implemented in TestU01 [6].

uni f01 Gen ∗ ulcg CreateLCG (long m, long a , long c , long s) ;

For ALFG, we use the standard implementation of ALFG available in TestU01 with

l = 17, k = 5 and seeds were taken ranomly. Following is the interface for ALFG implemented

in TestU01 [6].

uni f01 Gen ∗ umrg CreateLagFibFloat (int k , int r ,
char Op, int Lux , unsigned long S []) ;

4.3.2 Result

The experiment was done on an AMD Opteron Core Duo Processor (2.0 GHz) with 2 Gbytes

of Memory. Each experiment was done 3 times and its average value was taken. Following

is the result of the experiment.
Generator LeapAheadFunction Sequential Parallel

CPU(sec) CPU(sec)
LCG LCG 35.09 6.86

ALFG Polynomial 36.28 9.48
ALFG Matrix 35.84 9.62

36

CHAPTER 5

Concluding Remarks

5.1 Conclusion

Leap ahead functions for the LCG and the lagged Fibonacci generators have been

implemented in this project. Leap ahead function for the LCG is an implementation of

a relatively simple recurrence relation as shown in equation (3.2). Implementation of this

function mainly involves computation of aj, where j is the leap ahead amount. Using the

SQM algorithm as shown in section 3.5, aj can be computed in log2j modular multiplication.

Implementation of the leap ahead function for the ALFG is more complicated than LCG’s.

The matrix and the polynomial based leap ahead functions are implementated for the ALFG.

Since matrix based implementation uses 3× p2 memory space, it is infeasible in a situation

where the lag values are larger like p = 1279. The polynomial based implementation is handy

in such a situation, as its memory requirement is 2 × p + 1. The matrix based leap ahead

implementation generates the jth state by using O(p2log2j) number of operations, where as

the polynomial based implementation generates the jth state by using O(p2log2j) number

of operations.

The motivation for the implementation of the leap ahead function was to use these

functions to test PRNGs. Therefore, another part of this project was to use these leap

ahead functions to test PRNGs in parallel. To use any leap ahead function to test PRNGs,

the PRNG should allow RNT routines to set its internal state so that the RNT routine

can generate random numbers after certain amount of jump ahead in the period of the

PRNG. This project tests LCG, ALFG and MLFG implemented in TestU01 in parallel

using the leap ahead function implemented in this project. The RNT routines are used from

the TestU01 itself. Crush battery of tests implemented in TestU01 is modified to have 44

37

different combinations of 18 different tests to fit our requirements. We found parallel version

of modified crush explained in appendex A.2 is around 3.5 times faster than the sequential

version. This result was obtained while running the modified crush for LCG and ALFG

using the leap ahead functions implemented in this project on a cluster of 31 nodes, where

each of the 44 RNTs were given to each node on a cluster in a round robin fashion.

5.2 Future Work

The purpose of this project was to implement the leap ahead function for LCG, ALFG and

MLFG and use them to test respective PRNGs in parallel. So far we have implemented and

proved the correctness of the implementation as described in chapter 3. Most of the PRNGs

that we came across during the implementation of this project don’t have any interface to

change their internal state (seed values). So, the obvious future work in this project is to

further explore and implement routines that use these leap ahead functions to test various

sequential PRNGs available in the market. MLFG leap ahead function uses the property of

ALFG to leap ahead. But taking a MLFG seed and finding the corresponding ALFG seed

requires solving the discrete logarithm problem. It is left as the future work. Finally, during

the conception of this project, we planned to implement the leap ahead functions and use

them to parallelize crush and big crush batteries of tests available in TestU01. However, due

to time limitation, we have implemented a modified subset version of the crush as explained

in chapter 4. Further extension of the current implementation to include all the RNTs

available in crush and big crush batteries of tests is left as the future work.

38

APPENDIX A

Appendix A

A.1 Introduction to TestU01

TestU01 is a software library implemented in the ANSI C language. It provides different

utilities for the empirical statistical testing of PRNGs. It provides general implementation

for the most of the classical statistical tests for PRNGs along with other proposed in the

literature. Three predefined batteries of tests namely small crush, crush and big crush for

the sequence of random numbers over the interval (0,1) and for bit sequences are available.

Various tools to perform systematic studies of the interaction between a specific test and the

structure of the point sets produced by a given family of PRNGs are also offered. For e.g.

given a kind of test and class of PRNGs, there are tools implemented in TestU01, that can

be used to determine how large should be the sample size of the test, as a function of the

generator’s period length, before the generator starts to fail the test systematically. Besides

these, the library also provides the generic implementation for various types of PRNGs along

with specific PRNGs that are found in widely used software or read literature [6]. Various

statistical tests available in TestU01 can be applied to the generators already implemented

in the library or to the user-defined generators.

Organization of TestU01 library The software tools of TestU01 are organized in four

classes of modules: those implementing RNGs, those implementing statistical tests, those

implementing pre-defined batteries of tests, and those implementing tools for applying tests

to entire families of generators. The names of the modules in those four classes start with

the letters u, s, b, and f, respectively. The name of every public identifier is prefixed by the

name of the module to which it belongs. Further details on TestU01 can be found in the

referencec [6].

39

Uniform Generator The module unif01 contains the basic utilities for defining, manip-

ulating, filtering, combining, and timing generators. Each generator must be implemented

as an object of type unif01 Gen.

typedef struct {
void ∗ s t a t e ;
void ∗param ;
char ∗name ;
double (∗GetU01) (void ∗param , void ∗ s t a t e) ;
unsigned long (∗GetBits) (void ∗param , void ∗ s t a t e) ;
void (∗Write) (void ∗ s t a t e) ;

} unif01 Gen ;

The function GetU01 returns a floating-point number in [0, 1) while GetBits returns a

block of 32 bits. The function Write will write the current state of the generator. The string

name describes the current generator, its parameters, and its initial state.

Here is the list of interface for the PRNGs LCG, ALFG and MLFG that are implemented

in TestU01.

• Linear Congruential Generator (LCG)

unif01 Gen ∗ ulcg CreateLCG (long m, long a , long c , long s) ;

The initial state is x0 = s and the output at step i is xi/m. The actual implementation

depends on the values of (m, a, c). Restrictions: a, c and s must be non-negative and

less than m.

• Lagged Fibonacci Generator (ALFG)

unif01 Gen ∗ umrg CreateLagFib (int t , int k , int r ,
char Op, int Lux , unsigned long S []) ;

The parameter Op may take one of the values ∗ , + , − , x, which stands for multipli-

cation, addition, subtraction, and exclusive-or respectively.

A.2 PRNG tests in modified crush

1. Serial Over (Marsaglia) Number of RN tested: n×N
void smarsa Ser ia lOver (unif01 Gen ∗gen , s r e s B a s i c ∗ res ,
long N, long n , int r , long d , int t) ;

40

Implements the overlapping t-tuple test. It is similar to sknuth Serial described in [2] ,

except that the n vectors are generated with overlap, as follows. A sequence of uniforms

u0, ..., un−1 is generated, and the n points are defined as (u0, ..., ut−1), (u1, ..., ut), . . .

, (un−1, un, u0, ..., ut−3), (un, u0, ..., ut−2).

2. Collision Over (Marsaglia) Number of RN tested: n×N
void smarsa Co l l i s i onOver (unif01 Gen ∗gen , smarsa Res ∗ res ,
long N, long n , int r , long d , int t) ;

Similar to the collision test, except that the vectors are generated with overlap, exactly

as in smarsa SerialOver. This test corresponds to the test overlapping pairs sparse

occupancy (OPSO) test described in [6] and studied by Marsaglia and Zaman. Let

λ = (n− t+ 1)/dt, called the density. If n (the number of points) and dt (the number

of cells) are very large and have the same order of magnitude then, the number of

collisions C is a random variable which is approximately normally distributed with

mean µ ≈ dt(λ− 1 + eλ) and variance σ2 ≈ dte−λ(1− 3e−λ).

3. Birthday Spacing (Marsaglia) Number of RN tested: n×N
void smarsa BirthdaySpac ings (uni f01 Gen ∗gen , s r e s P o i s s o n ∗

res ,
long N, long n , int r , long d , int t , int p) ;

This is a variation of the collision test, in which n points are thrown into k = dt

cells in t dimensions as in smultin Multinomial. The cells are numbered from 0 to

k − 1. To generate a point, t integers y0, ..., yt−1 in 0, ..., d − 1 are generated from t

successive uniforms. The parameter p decides in which order these t integers are used

to determine the cell number: The cell number is c = y0d
t−1 + + yt−2d+ yt−1 if p = 1

and c = yt−1d
t−1 + + y1d+ y0 if p = 2.

4. Sim Poker(Knuth) Number of RN tested: n× k
void sknuth SimpPoker (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , int d , int k) ;

Applies the simplified poker test described by Knuth [2]. It generates n groups of k

integers from 0 to d − 1, by making nk calls to the generator, and for each group it

computes the number s of distinct integers in the group. It then applies a chi-square

41

test to compare the expected and observed number of observations for the different

values of s. Restrictions: d < 128 and k < 128.

5. Coupon Collector (knuth) Number of RN tested: ≈ n× d

void sknuth CouponCol lector (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , int d) ;

Applies the coupon collector test described in [2]. The test generates a sequence of

random integers in 0, ..., d− 1, and counts how many must be generated before each of

the d possible values appears at least once. This is repeated n times. The test counts

how many times exactly s integers were needed, for each s, and compares these counts

with the expected values via a chi-square test. Restriction: 1 < d < 62. If d is too

large for a given n, there will be only 1 class for the chi-square and the test will not

be done.

6. Gap Test (knuth) Number of RN tested: n
(β−α)

void sknuth Gap (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , double Alpha , double Beta) ;

Applies the gap test described by Knuth [2]. Let α = Alpha, β = Beta, and p = β−α.

The test generates n values in [0, 1) and, for s = 0, 1, 2, ..., counts the number of times

that a sequence of exactly s successive values fall outside the interval [α, β] (this is the

number of gaps of length s between visits to [α, β). It then applies a chi-square test to

compare the expected and observed number of observations for the different values of

s. Restrictions: 0 ≤ α < β ≤ 1.

7. Run Test (knuth) Number of RN tested: n

void sknuth Run (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , boolean Up) ;

Applies the test of increasing or decreasing subsequences (runs up or runs down) [2].

It measures the lengths of subsequences of successive values in [0, 1) that are generated

in increasing (or decreasing) order. If Up = TRUE, it considers runs up, otherwise

it considers runs down. These subsequences are the runs. The test thus generates n

random numbers, counts how many runs of each length there are after merging all run

42

lengths larger or equal to 6, and computes the statistic V . For large n, this V should

follow approximately the chi-square distribution with 6 degrees of freedom.

8. Permutation (knuth) Number of RN tested: n× t
void sknuth Permutation (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , int t) ;

Applies the permutation test [2]. It generates n non-overlapping vectors of t values,

each vector using t successive values obtained from the generator, and determines to

which permutation each vector corresponds (the permutation that would place the

values in increasing order). The test counts the number of times each permutation has

appeared and compares these counts with the expected values (n/t!) via a chi-square

test.

9. CollisionPermut(knuth) Number of RN tested: N × n× t
void sknuth Col l i s ionPermut (unif01 Gen ∗gen , sknuth Res2 ∗ res

,
long N, long n , int r , int t) ;

Similar to sknuth Collisions, except that instead of generating vectors as in sknuth Serial,

it generates permutations as in sknuth Permutation. It then computes the number of

collisions between these permutations. Restriction 2 ≤ t ≤ 18 and t!/n < 231.

10. Maximum-of-t(knuth) Number of RN tested: N × n× t
void sknuth MaxOft (unif01 Gen ∗gen , sknuth Res1 ∗ res ,
long N, long n , int r , int d , int t) ;

Applies the maximum-of-t test [2]. This test generates n groups of t values in [0, 1),

computes the maximumX for each group, and then compares the empirical distribution

function of these n values of X with the theoretical distribution function of the

maximum, F (x) = xt, via a chi-square test and an Anderson-Darling (AD) test. To

apply the chi-square test, the values of X are partitioned into d categories in a way

that the expected number in each category. For N > 1, the empirical distribution of

the p-values of the AD test is compared with the AD distribution.

11. Smarsa Matrix Rank if k <> s, select max(k, s). x =
⌈
k
s

⌉
Number of RN tested: rows of max(k, s)× x× n

43

void smarsa MatrixRank (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , int s , int L , int k) ;

Applies the test based on the rank of a random binary matrix. It fills a L× k matrix

with random bits as follows. A sequence of uniforms are generated and s bits are taken

from each. The matrix is filled one row at a time, using dk/se uniforms per row. The

test then computes the rank of the matrix (the number of linearly independent rows).

It thus generates n matrices and counts how many there are of each rank. Finally it

compares this empirical distribution with the theoretical distribution of the rank of a

random matrix, via a chi-square test, after merging classes if neeeded (as usual).

12. Svaria SampleProd Number of RN tested: n× t
void svar ia SampleProd (unif01 Gen ∗gen , s r e s B a s i c ∗ res ,
long N, long n , int r , int t) ;

This test generates tn uniforms u1, ..., utn and computes the empirical distribution of

the products of n nonoverlapping successive groups of t values,

u(j−1)t+1, u(j−1)t+2, ..., ujt : j = 1, ..., n. This distribution is compared with the theoret-

ical distribution of the product of t independent U(0, 1) random variables.

13. Svaria SampleMean Number of RN tested: N × n
void svaria SampleMean (unif01 Gen ∗gen , s r e s B a s i c ∗ res ,
long N, long n , int r) ;

This test generates n uniforms u1, ..., un and computes their average.

14. Svaria SampleCorr Number of RN tested: N × n
void svar ia SampleCorr (unif01 Gen ∗gen , s r e s B a s i c ∗ res ,
long N, long n , int r , int k) ;

This test generates n uniforms u1, ..., un and computes the empirical autocorrelation

of lag k.

15. Svaria AppearanceSpacings x = L%S; y = L
S

Number of RN tested: (Q× y + z) + (K × y + z)

void svar ia AppearanceSpac ings (unif01 Gen ∗gen , s r e s B a s i c ∗
res ,

long N, long Q, long K, int r , int s , int L) ;

44

The goal of this test is to measure the entropy of a sequence of random bits. The test

takes the s most significant bits (after dropping the first r) from each uniform, and

concatenates these s-bit blocks to construct Q+K blocks of L bits. The first Q blocks

are used for the initialization, and the K following blocks serve for the test proper.

For each of these K blocks, the function finds the number of blocks generated since

the most recent occurrence of the same block in the sequence.

16. Svaria WeightDistrib Number of RN tested: N × n× k

void sva r i a We ightD i s t r ib (uni f01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n ,

int r , long k , double alpha , double beta) ;

This test generates k uniforms, u1, ..., uk, and computes the number of uj s falling in

the interval [α, β).

17. Svaria SumCollector Number of RN tested: random

void svar ia SumCol l e c to r (uni f01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , double g) ;

It generates a sequence of uniforms u0, u1, ... adds them up until their sum exceeds g.

It then defines J = min` ≥ 0 : u0 + + u` > g. This is repeated n times, to obtain n

copies of J , say J1, ..., Jn, whose empirical distribution is compared to the theoretical

distribution by a chi-square test.

18. Smarsa Savir2 Number of RN tested: N × n× t

void smarsa Sav i r2 (unif01 Gen ∗gen , s r e s Ch i2 ∗ res ,
long N, long n , int r , long m, int t) ;

Applies a modified version of the Savir test, as proposed by Marsaglia. The test

generates a random integer I1 uniformly in 1, ...,m, then a random integer I2 uniformly

in 1, ..., I1, then a random integer I3 uniformly in 1, ..., I2, and so on until It. It thus

generates n values of It and compares their empirical distribution with the theoretical

one, via a chi-square test.

Complete description of these tests can be found at [6].

45

A.3 Introduction to MPI

The MPI (Message Passing Interface) standard defines a software library used to turn serial

applications into parallel ones that can be run on distributed memory systems. Typically

these systems are clusters of servers or networks of workstations. The MPI library is used

to distribute processes to the nodes on a cluster and provide a way for the processes to

communicate with each other [10]. The standard was created by the MPI Forum (www.mpi-

forum.org) in 1994 and is now the de facto standard for parallel programming.

MPI has an extensive list of 125 functions. Out of which using only 6 functions most of

the parallel programs can be written.

MPI INIT
MPI FINALIZE
MPI COMM SIZE
MPI COMM RANK
MPI SEND
MPI RECV

One need not master all parts of MPI to use it. To use mpi functions ”mpi.h” header

file should be included. This header file provides the basic MPI definitions and types. MPI

programs must start with

int MPI Init (int ∗argc , char ∗∗∗ argv)

function and exit with

int MPI Final ize ()

function. MPI functions are just library routines that can be used on top of the regular

programming languages like C, C++, Fortran e.t.c. Following are some of the common MPI

functions.

• int MPI Comm size (MPI Comm comm, int ∗ s i z e)

Determines the number of processes within a communicator.

• int MPI Comm rank(MPI Comm comm, int ∗ rank)

Determine the processor rank within a communicator.Rank is determined with respect

to a communicator (context of the communication). MPI COM WORLD is a

predefined communicator that includes all processes (already mapped to processors).

46

• int MPI Send (void ∗buf , int count , MPI Datatype
datatype , int dest , int tag , MPI Comm comm)

This function is used to sends a message. The message buffer is described by

(buf, count, datatype). The target process is specified by dest, which is the rank of

the target process in the communicator comm. When this function returns, the data

has been delivered to the system and the buffer can be reused. The message may not

have been received by the target process.

• int MPI Recv (void ∗buf , int count , MPI Datatype
datatype , int source , int tag , MPI Comm comm, MPI Status ∗

s t a t u s)

This function is used to receive a message. Waits until a matching (both source and

tag) message is received from the system, and the buffer can be used. source is rank in

communicator specified by comm, or MPI ANY SOURCE (a message from anyone)

tag is a tag to be matched on or MPI ANY TAG. Receiving fewer than count

occurrences of datatype is ok, but receiving more is an error (result undefined). status

contains further information (e.g. size of message, rank of the source).

Compiling, Linking and Running MPI programs in C To compile a program

mpicc < cprogramfile >

To run a program

mpirun−machinefile < hostmap > −np < n >< compiledobjectcode >

hostmap specifies the mapping.

47

APPENDIX B

Appendix B

B.1 LCG Leap Ahead

lcg leap.h

#ifndef _LCG_LEAP_

#define _LCG_LEAP_

#include<stdio.h>

typedef unsigned long Long;

Long mul(Long base, Long exp, Long mod);

Long lcg_leap(Long x0, Long a, Long c, Long m, Long n);

#endif

48

lcg leap.c

#include "lcg_leap.h"

Long mod_mul(Long base, Long exp, Long mod){

Long result;

result = base;

result %= mod;

while(exp){

if(exp & 1){

//multiply

result = result * base;

result %= mod;

exp = exp - 1;

}

//square

base = base * base;

base %= mod;

exp = exp/2;

}

return result;

}

Long mul(Long base, Long exp, Long mod){

Long i, temp;

temp = base;

temp %= mod;

base %= mod;

for (i = 1; i < exp ; i++){

base *= temp;

base %= mod;

49

}

return base;

}

Long lcg_leap(Long x0, Long a, Long c, Long m, Long n){

Long temp;

Long p, prod, val1,val2;

if(a <= 1){

fprintf(stderr, "invalid parameter a = %d", a);

return 0;

}

//initial seed 1

if(x0 == 1){

//multiplicative cong. generator

if(c == 0){

return mod_mul(a, n, m);

}

//mixed cong. generator

if(c > 0){

p = mod_mul(a,n,m);

val1 = p - 1;

prod = (val1 * c)%m;

temp = prod/(a-1);

return ((p + temp)%m);

}

}

//initial seed 0

if(x0 == 0){

if(c == 0)

return 0;

if(c > 0){

p = mod_mul(a, n, m);

50

val1 = p - 1;

prod = (val1 * c)%m;

temp = prod/(a-1);

return temp % m;

}

}

//initial seed greater than 1

if(x0 > 1){

//multiplicative cong. generator

if(c == 0){

p = mod_mul(a,n-1,m);

return (p*x0)%m;

}

//mixed cong. generator

if(c > 0){

p = mod_mul(a,n,m);

prod = (p * x0)%m;

val1 = p -1;

val2 = val1 * c;

temp = val2/(a-1);

return ((prod + temp)%m);

}

}

}

51

APPENDIX C

Appendix C

C.1 Matrix Based ALFG Leap Ahead

plfg leap.h

#ifndef PLFG_UTIL_H

#define PLFG_UTIL_H

#include<stdio.h>

#include<stdlib.h>

#define VALID_LEN 12

typedef unsigned long Long;

struct vstruct{

int L;

int K;

int LSBS;

int first;

};

/* Holds the current matrix size */

int mat_size;

52

const struct vstruct valid[] = {{1279,861,1,233},{17,5,1,10}, {5,2,1,1},

{31,6,1,2}, {55,24,1,11},{63,31,1,14},{127,97,1,21},{521,353,1,100},

{521,168,1,83},{607,334,1,166},{3,1,1,1},{2,1,1,1}};

/* Allocate memory according to the size of matrix */

int init_matrix(int, int, Long***,Long***, Long***);

/* returns the second smaller lag */

int get_second_lag(int);

void display_matrix(Long **);

/* Takes Jump ahead and M as argument */

void sqm(Long, Long, Long **, Long **, Long **);

/* set matrix elements to zero */

int fill_zero(Long **, int);

/* initializes initial seed */

void init_seed(int, Long, Long **);

/* matrix - vector multiplication */

void vector_mult(Long, Long *, Long **, Long **);

/* wrapper function to call all functions to leap ahead */

void run_plfg(Long, Long, int,int, Long **, Long **, Long **, Long *);

/* frees allocated memory */

int mat_rel(int, Long **, Long **, Long **, Long *);

#endif /* PLFG_UTIL_H */

53

plfg leap.c

#include "plfg_util.h"

int init_matrix(int size, int k, Long ***template, Long ***ident, Long ***temp){

int i,j;

Long **template_matrix, **ident_matrix, **temp_matrix;

mat_size = size;

/* create template matrix*/

if((template_matrix = (Long **)malloc(sizeof(Long *)*size))== NULL){

printf("Cannot allocate memory\n");

return 0;

}

for(i = 0; i<size; i++)

*(template_matrix+i)=(Long *)malloc(sizeof(Long)*size);

*template = template_matrix;

/* create ident matrix */

ident_matrix = (Long **)malloc(sizeof(Long *)*size);

for(i = 0; i < size; i++)

*(ident_matrix+i) = (Long *)malloc(sizeof(Long)*size);

*ident = ident_matrix;

/* create temp matrix */

temp_matrix = (Long **)malloc(sizeof(Long *)*size);

for(i = 0; i < size; i++)

*(temp_matrix+i) = (Long *)malloc(sizeof(Long)*size);

*temp = temp_matrix;

54

/* set the values for template matrix */

for(i = 0; i < size; i++){

for(j = 0; j < size; j++){

if(i == 0){

if(j == k-1 || j==size-1)

template_matrix[i][j] = 1;

else

template_matrix[i][j] = 0;

}else{

if(j == i-1)

template_matrix[i][j] = 1;

else

template_matrix[i][j] = 0;

}

}

}

/* set the values for identity matrix */

for(i = 0; i < mat_size; i++){

for(j = 0; j < mat_size; j++){

if(i ==j){

ident_matrix[i][j] = 1;

}

else{

ident_matrix[i][j] = 0;

}

}

}

return 0;

}

int fill_zero(Long **arr, int size){

55

int i, j;

for(i = 0; i < size; i++)

for(j = 0; j < size; j++)

arr[i][j] = 0;

}

int get_second_lag(int size){

int i;

for(i = 0; i < VALID_LEN; i++){

if(size == valid[i].L)

return valid[i].K;

}

}

void display_matrix(Long **arr){

int i,j;

for(i = 0; i < mat_size; i++){

for(j = 0; j < mat_size; j++){

printf("%d\t", arr[i][j]);

}

printf("\n");

}

}

void sqm(Long leap, Long M, Long **template_matrix, Long **ident_matrix, Long **temp_matrix){

int i, j, k;

int cnt;

cnt = 0;

while(leap){

56

if(leap & 1){

for(i = 0; i < mat_size ; i++){

for(j = 0; j < mat_size; j++){

for(k = 0; k < mat_size; k++){

temp_matrix[i][j] += ident_matrix[k][j] * template_matrix[i][k] ;

temp_matrix[i][j] = temp_matrix[i][j] % M;

}

}

}

for(i = 0; i < mat_size; i++){

for(j = 0; j < mat_size; j++){

ident_matrix[i][j] = temp_matrix[i][j];

}

}

fill_zero(temp_matrix, mat_size);

leap--;

}

for(i = 0; i < mat_size ; i++){

for(j = 0; j < mat_size; j++){

for(k = 0; k < mat_size; k++){

temp_matrix[i][j] += template_matrix[i][k] * template_matrix[k][j] ;

temp_matrix[i][j] = temp_matrix[i][j] % M;

}

}

}

for(i = 0; i < mat_size; i++){

for(j = 0; j < mat_size; j++){

template_matrix[i][j] = temp_matrix[i][j];

}

}

fill_zero(temp_matrix, mat_size);

57

leap /= 2;

cnt++;

}

}

void init_seed(int lag, Long M, Long **s){

/* this function gets seed from sprng or other sources later on */

int i;

Long r;

Long *seed;

printf("Initial Seed\n");

seed = (Long *) malloc(sizeof(Long)*lag);

for(i = lag-1,r = 1; i >= 0; i--, r+=1){

seed[i] = r % M;

printf("%u\t", seed[i]);

}

printf("\n");

*s = seed;

}

void vector_mult(Long M, Long *seed, Long **ident_matrix, Long **temp_matrix){

int i, j, k;

Long sum = 0;

/* set the elements of temp matrix to zero */

fill_zero(temp_matrix, mat_size);

for(i = 0; i < mat_size ; i++){

sum = 0;

for(j = 0; j < mat_size; j++){

sum += ident_matrix[i][j]*seed[j];

58

sum = sum % M;

temp_matrix[i][0] = sum;

}

}

/* move the content into seed vector */

for(i = 0; i < mat_size; i++)

seed[i] = temp_matrix[i][0];

}

int mat_rel(int lag, Long **template_matrix, Long **ident_matrix, Long **temp_matrix, Long *seed){

/* release template matrix */

Long i;

for(i = 0; i < lag; i++)

free(template_matrix[i]);

free(template_matrix);

/* release ident matrix */

for(i = 0; i < lag; i++)

free(ident_matrix[i]);

free(ident_matrix);

/* free temp matrix */

for(i = 0; i < lag; i++)

free(temp_matrix[i]);

free(temp_matrix);

/* free seed vector */

free(seed);

}

59

void run_plfg(Long leap, Long M, int lag, int k, Long **template_matrix, Long **ident_matrix, Long **temp_matrix, Long *seed){

int i;

printf("Matrix Based Leap Ahead Function\n");

printf("L = %d\tK = %d\tM = %u\tLeap = %u\n", lag, k, M, leap);

//initialize all matrices

init_matrix(lag, k, &template_matrix, &ident_matrix, &temp_matrix);

//display template matrix

printf("Initial Template Matrix\n");

display_matrix(template_matrix);

//square and multiplies template_matrix, ident_matrix. Puts result into ident matrix

sqm(leap, M, template_matrix, ident_matrix, temp_matrix);

printf("Matrix after SQM\n");

display_matrix(ident_matrix);

init_seed(lag, M, &seed);

//matrix-vector multiplication

vector_mult(M, seed, ident_matrix, temp_matrix);

//display final state

printf("Final state after %d leap ahead\n", leap);

for(i = lag - 1; i >= 0; i--)

printf("%d\t", seed[i]);

printf("\n");

//free memory

mat_rel(lag, template_matrix, ident_matrix, temp_matrix, seed);

60

}

int main(int argc, char *argv[]){

Long M = 13 , leap_ahead = 3278456;

int lag = 5 , k = 3;

Long **template_matrix; //template matrix

Long **ident_matrix; //identity matrix

Long **temp_matrix; //temporary matrix

Long *seed; //initial seed vector

M = 1 << M;

run_plfg(leap_ahead, M, lag, k, template_matrix, ident_matrix, temp_matrix, seed);

return 0;

}

61

C.2 Polynomial Based ALFG Leap Ahead

polynoms.h

#ifndef _POLY_H_

#define _POLY_H_

#define MAX 2559 // max degree of a polynomial

#define MAXLONG 214748364 // max long integer

#define SMALL 1e-12 // small real number

#define FALSE 0

#define TRUE 1

typedef unsigned long Long;

typedef struct {

long value; // coefficient values

} poly_coeff;

typedef struct {

Long degree; // degree of polynomial

poly_coeff coeff[MAX + 1]; // coefficients of polynomial

} polynom;

int add_number(poly_coeff, poly_coeff, poly_coeff *);

int mult_number(poly_coeff, poly_coeff, poly_coeff *);

int div_number(poly_coeff, poly_coeff, poly_coeff *);

int setup_divisor(polynom *, int , int);

int setup_dividend(polynom *, Long);

62

void init_seed(Long *,int, Long);

Long polyleap(Long *, polynom *, int, Long, int);

Long *get_state(Long *, polynom *,polynom *, int, Long);

void Sqm(Long, int, Long, polynom *, polynom *);

int mult_polynom(polynom *, polynom *, polynom *);

int div_polynom(polynom *, polynom *, polynom *);

Long *run_poly(Long, int , int, Long, polynom *, polynom *);

#endif

63

polynoms.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "polynoms.h"

int add_number(poly_coeff x, poly_coeff y, poly_coeff *z) {

z->value = x.value + y.value;

return TRUE;

}

int mult_number(poly_coeff x, poly_coeff y, poly_coeff *z) {

z->value = x.value * y.value;

return TRUE;

}

int div_number(poly_coeff x, poly_coeff y, poly_coeff *z) {

if (y.value==0)

return FALSE;

z->value = x.value/y.value;

return TRUE;

}

int setup_divisor(polynom *P, int l, int k){

int i;

P->degree = l;

for(i = 0; i <= l; i++){

if(i == 0){

P->coeff[i].value = -1;

}

else if(i == l-k){

64

P->coeff[i].value = -1;

}

else if(i == l){

P->coeff[i].value = 1;

}

else{

P->coeff[i].value = 0;

}

}

return true;

}

int setup_dividend(polynom *Q, Long j){

int i;

Q->degree = j;

for(i = 0; i <= j; i++){

if(i == j){

Q->coeff[i].value = 1;

}

else{

Q->coeff[i].value = 0;

}

}

return true;

}

void init_seed(Long *seed, int l, Long m){

int i,r;

for(i = 0,r = 2018; i < l; i++,r+=3){

seed[i] = r % m;

printf("%u\t",seed[i]);

}

65

}

Long polyleap(Long *S, polynom *R, int l, Long mod, int DEBUG = 0){

int i;

Long sum = 0;

if(DEBUG)

printf("\n\nIndex Seed Coeff Sum\n");

for(i = 0; i < l; i++){

if(DEBUG)

printf("%d\t%u\t%u\t",i,S[i],R->coeff[i].value);

sum += S[i] * R->coeff[i].value;

if(DEBUG)

printf("%u\n",sum);

sum = sum % mod;

}

return sum;

}

//mutiply R(x) by x and divide the result by Q(x)

Long *get_state(Long *S, polynom *Q, polynom *R, int l, Long mod){

polynom *div, *temp;

int i;

Long xj,*res;

res = (Long *) malloc(sizeof(Long)*l);

div = (polynom *) calloc(1,sizeof(polynom));

temp = (polynom *) calloc(1,sizeof(polynom));

div->degree = 1;

66

div->coeff[1].value = 1;

for(i = 1; i <= l; i++){

mult_polynom(div, R, temp);

//return the result in R

div_polynom(temp, Q, R);

xj = polyleap(S,R,l, mod);

res[i] = xj;

}

free(temp);

free(div);

return res ;

}

Long *run_poly(Long j, int l, int k, Long mod, polynom *Q, polynom *R){

Long *seed, *S, xj;

seed = (Long *) malloc(sizeof(Long)*l);

S = (Long *) malloc(sizeof(Long)*l);

printf("Polynomial Based Leap Ahead Function\n");

setup_divisor(Q, l, k);

mod = 1 << mod;

printf("L = %u\tK = %u\n", l,k);

printf("M = %u\tLeap = %u\n", mod, j);

R->coeff[0].value = 1;

67

Sqm(j, l, mod, Q, R);

printf("\nInitial seed vector\n");

init_seed(S,l,mod);

printf("\n\nPolynomial coefficient after SQM");

xj = polyleap(S, R, l, mod, 1);

printf("\n %uth element = %u\t",j, xj);

//get rest of the elements

seed = get_state(S,Q,R,l, mod);

seed[0] = xj;

return seed;

}

void Sqm(Long leap, int l, Long mod, polynom *Q, polynom *R){

//Q contains divisor

//R contains remainder

int cnt,i;

cnt = 0;

polynom *result, *x, *temp;

result =(polynom *)calloc(1,sizeof(polynom));

x =(polynom *)calloc(1,sizeof(polynom));

temp =(polynom *)calloc(1,sizeof(polynom));

//set x to x^1

x->degree = l;

x->coeff[1].value = 1;

68

//initialize result with x^0

result->degree = l;

result->coeff[0].value = 1;

while(leap){

if(leap & 1){

//temp contains the result

mult_polynom(x, result, temp);

result->degree = temp->degree;

//put product into result polynomial

for (i = 0; i <= temp->degree; i++){

result->coeff[i].value = temp->coeff[i].value % mod;

}

//compute mod

if(div_polynom(result,Q, R)){

//R contains result

result->degree = R->degree;

for (i=0; i <= R->degree; i++)

result->coeff[i].value = R->coeff[i].value % mod;

}

leap --;

}

//temp contains the result

mult_polynom(x, x, temp);

x->degree = temp->degree;

//put product into x polynomial

for (i = 0; i <= temp->degree; i++)

x->coeff[i].value = temp->coeff[i].value % mod;

//compute mod

if(div_polynom(x , Q , R)){

//R contains result

x->degree = R->degree;

69

for (i=0; i <= R->degree; i++)

x->coeff[i].value = R->coeff[i].value % mod;

}

leap /= 2;

cnt++;

}

R->degree = result->degree;

for (i = 0; i <= result->degree; i++)

R->coeff[i] = result->coeff[i];

}

//P(X) * Q(X) = R(X)

int mult_polynom(polynom *P, polynom *Q, polynom *R) {

int i,j, n;

poly_coeff u;

polynom *rem;

rem = (polynom *) calloc(1,sizeof(polynom));

//verify that P and Q are not void

if (P->degree == 0 && P->coeff[0].value == 0)

return FALSE;

if (Q->degree == 0 && Q->coeff[0].value == 0)

return FALSE;

rem->degree = P->degree + Q->degree;

if (rem->degree > MAX)

return FALSE; // R degree is too big

for (n = 0; n <= rem->degree; n++) {

rem->coeff[n].value = 0;

for (i = 0; i <= P->degree; i++) {

70

j = n - i;

if (j >= 0 && j <= Q->degree) {

if (!mult_number(P->coeff[i], Q->coeff[j], &u))

return FALSE;

if (!add_number(rem->coeff[n], u, &rem->coeff[n]))

return FALSE;

}

}

}

//copy rem in R

R->degree = rem->degree;

for (i = 0; i <= rem->degree; i++)

R->coeff[i] = rem->coeff[i];

free(rem);

return TRUE;

}

int div_polynom(polynom *P, polynom *Q, polynom *R) {

int i,j;

poly_coeff u;

polynom *quo, *rem;

quo = (polynom *) calloc(1,sizeof(polynom));

rem = (polynom *) calloc(1,sizeof(polynom));

//The Q polynomial must be <> zero

if (Q->degree == 0 && Q->coeff[0].value == 0)

return FALSE;

rem->degree = P->degree;

for (i = 0; i <= P->degree; i++)

rem->coeff[i] = P->coeff[i];

71

quo->degree = P->degree - Q->degree;

if (quo->degree < 0) {

quo->degree = 0;

quo->coeff[0].value = 0;

}

else {

for (i = quo->degree; i >= 0; i--) {

if (!div_number(rem->coeff[rem->degree], Q->coeff[Q->degree], &quo->coeff[i]))

return FALSE;

for (j = i; j <= rem->degree; j++) {

if (!mult_number(quo->coeff[i], Q->coeff[j-i], &u))

return FALSE;

u.value = -u.value;

if (!add_number(rem->coeff[j], u, &rem->coeff[j]))

return FALSE;

}

if (rem->degree > 0)

rem->degree--;

}

while (fabs(rem->coeff[rem->degree].value) < SMALL && rem->degree>0)

rem->degree--;

}

R->degree = rem->degree;

for (i = 0; i <= rem->degree; i++)

R->coeff[i] = rem->coeff[i];

free(quo);

free(rem);

return TRUE;

}

72

run polynoms.c

//#include<iostream>

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include "polynoms.h"

//using namespace std;

polynom *Q, *R;

int main() {

Long *S;

int i, l, k;

Long mod,j;

//dynamic memory allocation of polynomials

Q = (polynom *) calloc(1,sizeof(polynom));

R = (polynom *) calloc(1,sizeof(polynom));

l = 5; k = 3; j = 3278456; mod = 13;

S = run_poly(j, l, k, mod, Q,R);

printf("\nFinal State\n");

for(i = 0; i < l; i++)

printf("%u\t",S[i]);

printf("\n");

free(S);

73

//free(P); free(Q); free(H); free(R);

return 0;

}

74

REFERENCES

[1] M. Mascagni. Polynomial versus matrix methods for leap-ahead in shift-register type
pseudorandom number generators. Institute for Mathematics and its Applications
(IMA) Reprint 1469, 1997. (document), 3.1, 3.1, 3.2.1, 3.3, 1, 3.3.1, 3.3.2, 3.3.2

[2] D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Second edition. Addision-Wesley, Massachusetts, second edition, 1981. 1, 2, 2, 2.5, 1, 2,
3, 4, 5, 6, 7, 8, 9, 3.1, 3.2, 3.2, 3.2, 3.2.1, 2, 1, 4, 5, 6, 7, 8, 10

[3] D.V. Pryor M. Mascagni, M.L. Robinson and S.A. Cuccaro. Parallel pseudorandom
number generation using additive lagged fibonacci recursions. 106:253–277, 1995. 2

[4] D.V. Pryor M. Mascagni, S.A. Cuccaro and M.L. Robinson. A fast high quality,
and reproducible parallel lagged-fibonacci pseudorandom number generator. Journal
of Computational Physics, 15:211–219, 1995. 2, 2

[5] A. Srinivasan and M. Mascagni. Parameterizing parallel multiplicative lagged-fibonacci
generators. Parallel Computing, 34:899–916, 2004. 2, 1, 2, 3, 4, 3.4

[6] P. L’Ecuyer and R. Simard. Testu01 a software library in ansi c for empirical testing of
random number generators user’s guide, compact version. 2.4, 10, 11, 12, 3.3.1, 3.3.2,
4.1, 1, 2, 3, 4.3, 4.3.1, 4.3.1, A.1, A.1, 2, A.2

[7] M. Mascagni and A. Srinivasan. Algorithm 806: Sprng: A scalable library for pseudo-
random number generation. ACM transactions on mathematical software, 36:436–461,
2000. 2.6

[8] P. L’Ecuyer and S. Cote. Implementing a random number package with splitting
facilities. ACM transactions on mathematical software, 17:98–111, 1991. 3.1

[9] J. Makino. Lagged-fibonacci random number generators on parallel computers. Parallel
Computing, 20(9):1357–1367, 1994. 3.4, 2

[10] Peter S. Pacheco. A user’s guide to mpi. Technical report, 1998. A.3

75

	List of Figures
	Abstract
	INTRODUCTION
	Summary

	Background
	Introduction to Pseudorandom Numbers
	Introduction to the Types of PRNGs
	Parallel Random Number Generation
	TestU01
	Random Number Testing
	Parallel Random Number Testing

	Design and Implementation of Leap Ahead Functions
	Motivation
	Leap Ahead For Linear Congruential Generator (LCG)
	LCG Leap Ahead Implementation

	Leap Ahead for Additive Lagged Fibonacci Generator (ALFG)
	Matrix Method
	Polynomial Method

	Leap ahead for Multiplicative Lagged Fibonacci Generator(MLFG)
	Square and Multiplication Algorithm

	Parallel Random Number Testing
	PRNG Tests
	Design of Parallel RNT
	Performance and Result
	Experiment Design
	Result

	Concluding Remarks
	Conclusion
	Future Work

	Appendix A
	Introduction to TestU01
	PRNG tests in modified crush
	Introduction to MPI

	Appendix B
	LCG Leap Ahead

	Appendix C
	Matrix Based ALFG Leap Ahead
	Polynomial Based ALFG Leap Ahead

	REFERENCES

