
A NonStop Kernel

Joel F. Bartlett

Technical Report 81.4
June 1981
PN87603

A NonStop Kernel

Joel F. Bartlett

June 1981

Tandem Teclmical Report 81.4

Tandem TR 81.4

A NonStopTM Kernel

Joel F. Bartlett
Tandem. Computers Incorporated

19333 Vallco Parkway, Cupertino. CA. 95014

June 1981

ABSTRACT: The Tandem NonStop System is a fault-tolerant [1~ expandable. and distributed com­
puter system designed expressly for oDliDe transaction processing. This paper desc:ribes the key
primitives of the kernel of the operating system. The first section describes the buic hardware
building blocks and introduces their software analogs: processes and messages. Using these
primitives. a mechanism that allows fault-tolerant resource access. the process-pair. is described.
The paper concludes with some observations on this type of system structure and on actual use of
the system.

Copyright © 1981. 1982 by Association of Computing Machinery. Originally appeared in the Pro­
ceedings of the Eighth Symposium on Operating Systems Principles. ACM Operating Systems
Review. Volume 15. Number 5. Republished with the kind permission of the ACM.

1'KTandem. NonStop. and NonStop II are trademarks of Tandem Computers Incorporated.

TABLE OF CONTENTS

ffiTRODUCTION 1

HARDWARE ORGANIZATION .. 1
Hardware Fault Model 1

SOF'I'WARE STRUCTURE .. 3
Processes .. 3
Messages 3

Message primitives 4
Message properties 5
Message system resource control .. 5
Interproeessor bus protocol 6
Message system performance .. 7

PROCESS-PAIRS 8
Error RecoVer)" Uainsr Process-Pairs , 8
Process-Pair Maint~nanee 9

OBSERVATIONS 10

ACKlIJOWLEDGMENTS 11

REFERENCES 12-

INTRODUCTION

Fault-tolerant computing systems have been built over the last two decades in a number of places to
satisfy a variety of goals. The results of these differing approaches have been summarized in
references 1. 3. and 11 (see page 12). In the past. many of these systems have been designed for
specific tasks, such as telephone switching, where the costs of failure are significant. In addition.
the designers of most of the systems did not intend to provide general purpose hardware and soft­
ware modules which the end user would customize to form a reliable SJlStem.

An increasing number of online applications in commercial data processing has created a demand
for fault-tolerant general purpose computing. These applications are also characterized by their
high rate of growth. which requires that the computing system be significantly expanded over its
lifetime. The Tandem system is intended to fit these requirements.

HARDWARE ORGANIZATION

A network consists of up to 255 nodes. Each node is composed of multiple processor and i/o con­
troller modules interconnected by redundant buses [2.3] as shown in PMS [3] notation in Figure 1. A
node consists of two to sixteen processors. where each processor (Peentral) has its own power sup­
ply, memory, backup battery, and i/o channel (Sio). All proe:essors are interconnected by redundant
interprocessor buses (Sipb). Each i/o controller (Kdisc. Ksyne, etc.) is connected to two i/o channels
and is powered from two different power supplies using a diode ORing scheme. Finally, dual-ported
i/o devices such as discs (Tdisc) may be connected to a second i/o controller. The contents of a disc
may be "mirrored" on a second volume, but this function is supported primarily by software rather
than by hardware. I/o devices other thaD discs are normally single ported and are connected to one
i/o controller. .

The processors are 16 bits wide with up to 2mb of memory per processor. The internal clock speed
of the proeessor is lOOns, resulting in a register-to-register add in .6 microseconds and a load of a
word from memory in 1.1 microseconds.

The two interproeessor buses (Sipbl provide each processor with two point-to-point paths to each
other processor and to itself. Data transfers to and from the buses are buffered in high speed
l6-word packet buffers in each processor, allowing data. transfers at a rate of 13.5 megabytes/see.
This is more than three times faster thaD the processor's memory, which assures that interproc­
esaor messages are not delayed by the bus bandwidth.

Hardware Fault ModeJ

The system design goal is to provide continuous operation in the presence of a single fault. This re­
quires that all single faults be detectable. diagnosable. and repairable online. In addition. the soft­
ware must allow reintegration of the repaired module into the system.

Error rec:overy analysis needs some assumptions to be made about the types of faults that the
system can tolerate. First, a fault in either a proeessor. its memory, or its power supply must be
contained in and therefore at most disable that processor. Second. a fault in either an interproc­
essor bus or an i/o channel will at most disable that bus. Third. a fault in an i/o controller will at most
disable that i/o controller.. With these assumptions, it can be seen that a single fault will at most
make i/o devices attached only to one controller unavailable.

1

Physical events affecting the system's hardware can be divided into three classes [1]. The first class.
permanent hardware failures. will be detected either on the initial instance of the failure or shortly
thereafter by background tests. These give rise to two kinds of problems: error in recovery
algorithms and contamination of data bases that takes place before failure detection.

h h h
Sipb

Sipb

Pcentral Pcentral Pcentral
I I I

Sio Sio Sio
I--Kdisc Ksync I

CTdi==l t=TmOdem (to another node)

Tdis Tmodem (to another node)

Kdisc_

Ktape

I
Ktape

Kasync

I
Ttenninal's

Figure 1. PMS Diagram of a Node.

Intermittent component failures shan the previously mentioned problem areas. In addition. unless
there is immediate deteetion. there is a far higher probability of data base corruption as the
background tests are much less likely to see the problem.

A final souree of problems. and perhaps the most serious in actual operation. is that caused by ex­
ternal interference with the system. This class includes such items as air conditioning failures. but
is primarily composed of operational errors by either the computer operator or service personneL

Sometimes these oceur during normal operations. but often their actions are in response to another
fault at which point a single mi3step mayeause the entire system to fail.

2

SOFTWARE STRUCTURE

The operating system [4] provides many of the user services usually associated with medium-size
systems: multiprograIrming, access to a gigabyte of virtual memory per processor, a file system.
and extensive communications facilities. However. it offers these services in a fault-tolerant man­
ner 'On a modular, expandable computer system. To do this. its structure has been designed as an
analogue of the hardware structure. As the hardware consists of. multiple processors and iJo eon­
trollers. the operating system functions are distributed over multiple processes; and as the hard­
ware modules are interconnected via redundant buses. the operating system processes com­
municate via fault-tolerant messages.

At the time this structure was proposed and development started. December 1974. there were few
precedents for it. Our main inspiration was found in the work of Dijkstra [5] and Brinch Hansen [6].
whose ideas and examples provided the key kernel primitives and structure for the system design.

Processes

Each processor supports up to 256 concurrent processes. Each process has a private data space. but
may share code with other processes in the same processor. A major portion of the cost of a process
switch is ehargeable to memory mapping which is required to designate the new process's code and
data spaces. This results in a cost of approximately .5 milliseconds to switch processes.

All processors contain both a monitor process and a memory manager process. The Monitor's func­
tions include process management within its processor (e.g.. process creation and deletion). infor­
mation I'f;turn. message system control. and fault recovery. When a process is created. it is given. a
unique "proeessid" composed of two parts. The first is ita location (node number. processor number.
and proeess number) and the second is either a unique timestamp or a symbolic name.

Process synchronization primitives include counting semaphores and proeess-Iocal event flags.
Semaphores are used within the kernel to control such things as access to shared Vo controllers.
Event flags are used to signal a process that events such as device interrupt. message arrival. and
message completion have oecurred. These primitives were chosen using the author's experience at
the time rather than following an exhaustive survey of available methods. They have been more
thaD adequate for the resource control involved in iJo operations and in the implementation of the
mesaage system. More complex resource control is handled by requesters sending messages to the
proeess which "owns" the resource.

Messages

Almost all information now. even within a single processor. is carried in messages rather than
through shared storage. Each process has a message queue where all messages sent to it by other
processes are placed. Messages are queued in either a FIFO manner or according to the sender's
priority. at the receiver process's option. The message system is designed to provide a process-to­
process communication mecllanism which is independent of the location of the processes and
transparent to interprocessor bus transmission errors.

A message consists of a request for a service and a reply by the server. For example. if a process
wishes to create another process. it calls the procedure NEWPROCESS which in turn sends a message
to the Monitor process in the processor where the process is to be created. The sender will then
wait for the message reply. When the Monitor retrieves the request from its message queue. it
creates the process. and then replies to the message (which awakes the senderl with either the new
proeessid or an error indication.

. 3

This model is similar to that discussed by Cheriton in reference 7 and has the desirable property
that it is an analog of an operating system procedure that is called by the application program to
perform a specific service and return a result. Inherent in it is a positive ac.knowledgement for each
logical request. which is the first key to providing fault tolerance in this system.

In addition. the application program is not allowed direct access to the message system. This is done
by providing a conventional user/privileged mode in the processor. Use~ programs may only enter
the operating system (and privileged mode) at certain defined entry points. e.g.• NEWPROCESS in the
previous example. This restriction provides obvious protection and information hiding benefits and
allows the operating system to control error recovery on message failures. a second key to the
system's fault tolerance.

Message primitives

Before the error recovery strategies can be shown. the kernel's message primitives must be in­
troduced. A message exchange using these primitives takes the following form:

A process "R", the requestor, sends a message to process "S", the server. by calling the procedure
LINIt. The caller supplies a processid. six message parameter words. and an optional resident buffer
which may contain additional data related to the message or may be used to return a result. If the
message can be sent. then the address of the sender's Link Control Block (LCBI is returned to R. a
matching LCB (which contains the six message parameter words. R's processid. S's processid. and
the addNss of R's LCB) is queued on S's message queue, and S is awakened on the event LREQ (re­
quest pending).

When S is ready to process a request, it ealls the procedure LISTEN, which dequeues the first LCB

from its message queue. The returned LCB contains the six message parameters and the size of the
data buffer that the caller supplied to. LINK. If there is any data that must be retrieved from R
before the operation is performed, S ealls the procedure READLINK with the addresses of its data
buffer and LCB. READLINK copies the data fromR's buffer to S's buffer.

S then performs the appropriate operation and returns the results to R by calling the procedure
WRlTEI.JNX. with the appropriate LCB and. optionally, a buffer whose contents are to be returned.
Prior to this call. S may' alter the message parameter words in its LCB to return status to R.
WRlTELIN1t causes S's buffer and message parameter words to be copied into R's buffer and LCB. A
"done" Bag is set in R's LCB. and then R is awakened on the event LOONE (request complete).

At t~ point. S is finished with the message and may go on to other things. R can examine the
results of the request and then return its LCB and buffer (if any) to the system by calling
BREAXLINK.

4

Message propertje~

The previous example illustrates several key aspects of the message system. First. all messages are
sent by value. By having no shared data structures. the message system looks the same irrespective
of the relative locations of the processes R and S.

Since information transfer between R and S· only oCCU1'3 via message system primitives. which in
turn only work when the supplied LCB's match (processid's for R and Sand R's LCB address are iden­
tiea1 in both LCB's). the message is always abortable by either R or S. The requestor, R. can ter­
minate the message by calling BREAXLINK. II the message has not been completed. a cancel flag will
be set in S'S LCB and S will be awakened on the event LCAN (request cancellation). The server. S.
may also terminate the message by setting the cancel flag in its LCB and calling~ without
specifying a buffer. This will result in the requestor being awakened on LDONE with both the com­
pletion and the cancel flag set in its LCBo

Completion of a message with the cancel flag set provides a uniform mechanism for signaling
failures. It allows outstanding messages to be cleaned up on a process or processor failure by set­
ting the cancel flag, mimicking cancellation by the failed end of the message.

Certain system status messages that need no reply, such as processor failure or reload, are sent by
system processes to application processes. It is important that the system process not be blocked if
the application process does not pick up the message. Hence the sender calls BREAKLINK immediate­
ly after calling LINK. terminating its end of the message. This technique can only be used when the
in!.,rmation can fit in the six message parameter words.

A server process is free to pick up multiple requests through LISTEN, queue them internally, and
not READLINlt or W1UTELIN'K the request until it is ready to process the request or reply to it. For ex­
ample. a process controlling a disc may need to block certain requests that need to access a locked
record UDtil the reeord is unlocked.

Conversely, a process may have multiple LINK's outstanding at any time. This allows an application
process to keep a read request posted for each terminal that it manages. processing the input data
as requests complete.

M....g. system resource control

In a message-based system. allocation of control bloeb and buffers is a potential source of resource
contention and deadlock. No formal limits on process interaction via messages have been defined.
This approaeh allows flexible application design. but at some risk. The resource allocation
strategies that have been devised are not "correct" in a formal sense, but they do minimize this
risk.

First. LCB allocation is controlled by providing ·both "reserved" and "pool" LCB's. A process may
reserve some number of LCB's to queue incoming messages and some number of LCB's to send
messages. If a process has all of its reserved (possibly none) LCB's in use. then pool LCB's will be
allocated if they are available. If an LCB cannot be obtained within 10 S8e0nds. then the call to LINK
will fail. System server processes reserve one or more LCB's for incoming messages and a sufficient
number (dependent solely on the servers' needs during request processing) for outgoing messages
to assure that they can complete any request made of them.

5

Message buHer allocation is managed by several techniques. First. data buHers for incoming
messages are not allocated until the server process is ready to request the data via READLlNK. Sec·
ond. allocation is made from diHerent storage pools on the basis of the type of request. For example.
buHers for reads from terminals are separated from buffers for disc requests since these two buffer
types are usually held for significantly different periods of time. In addition. certain types of system
server processes have permanently allocated buffers so that they may always service requests.

Interprocessor bus protocol

While messages between two processes in the same processor can be sent using standard mutual
exclusion primitives and moves. messages between processes in diHerent processors must flow
over the interprocessor buses.

In order to make messages useful as an abstraction. it is important that the message primitives
reeover from bus errors and fail only if the other process does not exist. the other processor is
down. or there are no free LCB's. In addition. localized error detection and correction is required for
fault isolation and repair. These arguments for local robustness should not be interpreted as
arguments against end-to-end checking as encouraged by Saltzer in [7]. On the contrary, the author
believes that they are both necessary in fault-tolerant systems. .

From an implementation and confidence viewpoint. it is desirable that the error recovery scheme
be as simple as possible yet still detect misrouted. inserted. or lost packets. In addition. the two
physical buses must support an arbitrary number of logical connections between processes so that
transmissions can be multiplexed.

With these requirements in mind. a bus protocol. similar in spirit to HOLC [8]. was designed which
uses sequenced packets and positive acknowledgements. When the sender processor sends data. it
is divided into 16-word packets consisting of the sender and recei:\'er processor numbers. a sequence
number. 13 information words. and a checksum. Following transmission. the request waits on the
wait aclmowledge (WACKllist. If the request is still on the WACK list after 'one second. it is resent on
the other bus. This cycle repeats until either the transm.ission is acknowledged or the receiving
processor is declared dowu. Repeated failures to acknowledge transmission over a bus to another
processor cause that path to be marked as dowu. The sender processor may send up to three logical
transfers ahead of the last acknowledged logical transfer. Additional transfers will be queued until
the previous transfers are acknowledged.

Each processor maintains a Bus Receive Table (BRTI entry for incoming data from each processor.
which includes a buffer address. a transfer count. and the next expected sequence number. When a
packet arrives on either bus. it is cheeked for correct routing. moved into memory as its checksum
is compqted. and the checksum and the sequence number verified. A good packet causes the BRT en·
try to be updated. When the transfer count becomes zero or a packet error occurs. an interrupt is
posted. On detecting a bus receive error. the processor need only note the type of error and flush
the packet; error recovery is the responsibility of the sending processor.

An area of concern in this error recovery meehanism is the time lost to timeouts or packet flushing.
This time is minimal. as the bus error rate is very low: errors are only observed when a hardware
fault has occurred. For example. a month's error log for the system that this paper was prepared on
contained no bus error messages. Given this error rate. the correctness of the error recovery
scheme is far more important than its efficiency.

An example of the low-level protocol is the action taken when a server. S. WRITELlNKs data to its re­
questor. R. First. the request is queued on the Send Data List (SDLl. and a sequence number assigned
to it. Then S is suspended. the request is added to the WACK ~t. and a here's data back (PHDBI con­
trol packet and the data block packet(s) are sent to R's processor.

6

R's processor sees a bus receive interrupt for the PHDB packet. sets the BRT buffer address to R's
buffer, sees a data completion interrupt after the data block packet(s) have been received. and then
queues an acknowledgement for S's processor. The acknowledgement is either sent as an uose­
quenced control packet or piggy-backed on some control packet that is part of another request.
When the packet holding the acknowledgement arrives. S's processor completes the request and ac-
tivates S. .

Every second. each proc:essor sends an unsequeneed acknowledgement packet over each bus to
every proc:essor. This packet has two purposes: to recover from lost acknowledgements and to tell
the other proc:essors that this processor is up. Every two seconds, each processor cheeks whether it
bas received an unsequeneed packet from each other proc:essor. If not. it considers that proc:essor to
be down. and cancels all ~essages from it as described earlier.

Message system performance

Sample program segments and performance data are shown below. Neither process does any proc­
essing on the message. and message buffers are preallocated. The requestor process executes:

while true do
begin
LINK(_);

wait for message completion;
BREAKLINK(_);

end:

and the server proeess executes:

while true do
begin
wait for a message;
LISTEN;
READL.INK(_);
WRITEIJNK(_);

end:

with the results:

READLINK
(bytes)

WRITEIJNK
(bytes)

Elapsed time/msg (ms!
intracpu interepu

o
o

200
2000

o
200

o
2000

2.1
2.3
2.4
4.6

2.6
2.9
4.2
7.0

The asymmetry between the second and the third example occurs because a WRlTELINK must
always be performed to complete the message. but a READLINK is only performed when data must
be moved from R to S.

7

PROCESS·PAIRS

Processes and messages provide a method for hiding processor boundaries and inter-processor bus
errors. Associating a process with a resource provides a method of addressing and accessing it. The
Bert step is to build a protocol that provides fault-tolerant access to the resource, protecting
against information loss due to a processor failure.

A pair of processes and a symbolic name are associated with each i/o device or application server
process. Requests are sent to the "primary" process of the "process-pair", which handles the re­
quest and controls the resource. When the primary receives a request for an operation such as a file
open or close, the p~ process "checkpoints" the request to the "bac:kup" process via the
message system. These checkpoints ensure that the backup process has all information that it will
need to assume control of the device in the event of an i/o ehannel error or a fault of the primary
process's processor. When the primary fails, the bac:kup process "takes over" and becomes the
primary.

The message system directs messages to process-pairs as follows. Each processor maintains a name
table, associating a symbolic name with two processids in the node. When a message is sent to a
named process, the first processid of the pair is used. If that process does not exist or is not current­
ly the primary process. then the message fails; the processids in the table are exchanged. and the
message is resent to the other half of the process-pair.

Error Recovery Using Process·Pairs

Unfortunately, not all requests for service are arbitrarily retryable. For example. writing a record
into a key-sequenced file causes a duplicate key error to be returned if the record already exists.
Hence. it is important that a server process-pair do the actual processing of a non-retryable request
eDctly once (see [7] for a discussion of this problem of "atomicity"). Requests are assigned sequence
numbers and the server is required to track non-retryable requests by saving their sequence
numbers and status. so that it may simply return the status on a duplicated request.

For example. let R and R' be primary and backup requestor processes and S and S' be primary and
backup server processes. A sequence number is kept for each opener of a file by both the requestor
and the server. When the file is opened. the initial state has all sequence numbers equal to zero.
When R wishes to write a record into. a disc file controlled by S, R sends S a message:

(1) R'seq_O RHq_O - Sseq_o S'seq_o

S piela up the message and performs the following check to see if this is a redundant operation:

(2) if requestor seq < my seq then return saved status

The amount of previous status that must be saved here is dependent upon the processes involved.
Here. S is the standard disc process so R would have bad to specify the number of previous results
to save at the time the file was opened.

If the check for a saved result fails, then the operation is performed. S reads the disc block. checks if
the record already exists. and then checkpoints the request and the new block to its backup, S·.

(3) R'seq =0 R:!eq =0 Sseq =0 - S'seq =0

8

The block is written to disds). the completion status is saved and cheekpointed to S', and both Sand
S' increment their sequence number.

(4) R'seq_o Rseq _ O Sseq_1 - S'seq_1

The result is then returned to R. who also increments his sequence number.

Finally, R checkpoints the result to R', who increments his sequence number, returning the system
to a state indicating that there are no requests in progress.

(6) R'seq -1 - Rseq -1 Sseq -1 S'seq_1

Failure recovery during a request takes the following forms:

First. R' or S' may fail during the request without affecting the operation. as it can be carried out
even if the checkpoints fail. .

Seeond. if R fails following step (1), then S performs the operation. but is unable to return the result.
When R' becomes R. it repeats the request starting at (1); but since its sequence number is still zero,
the test in (2) returns the result that would have been returned had R not failed. and the operation
is not repeated.

FiDally, if S fails during the operation. S' becomes S and either does DOthing or completes the opera­
tion using the checkpointed information. saving the completion status and incrementing its see
quenee number. When R resends the request (1) to the new S. it either does the operation or returns
the saved result.

It should be emphasized that this checkpoint and error recovery process is independent of the loca­
tion of the processes. the number of processors in the system. and the other message traffic in the
system. By coDfiDing the recovery actions to the processes directly involved. the mechanism is both
simple and arbitrarily expandable.

Process-Pair Maintenance

Proeess-pairs for i/o processes are created at system configuration time. A memory image for each
processor is created with all neeessary data structures. At initial load time. a processor is loaded
from the disc. Each configured process will test to see if its oth~ half exists. and observing that it
does not. it will become the primary. An initial command interpreter will be created by the Monitor
process which can then be used to issue RELOAD commands to load the rest of the processors.

When a processor is reloaded at an initial load or following repair. the configured processes will
start execution. Each will observe that the other half of its process-pair is up. and therefore it is the
backup. While this is going on. the process which reloaded the processor will be notifying all in­
terested processes in the system that the processor is now up. The primary of each process-pair will
then checkpoint its current state to the backup. .,

Application process-pairs are created in a more general manner. An initial primary process will be
created in a processor. The process will in turn select some other processor and create its backup
there. If the primary fails. then the backup will take over and it may select another processor to
create a new backup. or. as is usually done. it will wait for the original processor to be repaired and
reloaded before creating a backup. The primary of any process-pair may switch roles with its
backup. This is generally done to balance the load on a system following the repair and reintegra­
tion of a processor.

9

OBSERVATIONS

The system does tolerate faults. they are repaired online and reintegrated into running systems.
More specific reliability and availability statements are best left for our users to make.

System performance is likewise difficult to comment upon. In the example of section 3.1. the process
R might be able to originate ten of these requests per second. However. it must be emphasized that
there ~ no such thing as a "standard transaction" and specific applications must be examined for ae­
eurate measurements. The reader is direeted to [9] for the description and results of an extensive
benchmark involving this and other systems.

A system structured around process-pairs commUnicating via messages has already faced some of
the major problems involved in distributed computing systems: decentralized control. partial
system failure. and reintegration of repaired components. Two logical extensions to the system
have been done to allow distributed systems to be connected into a network: the inclusion of a node
specifier in processids. and the extension of message destinations to include processes in other
nodes with communication provided by more conventional data communications equipment.

The advantages and disadvantages of multiple-processor computer systems have been explored in
some detail in [11] and need not be restated here. However. there is no question that there is some
east associated with the use of a message system rather than shared memories in either a uni- or a
multiprocessor configuration. The additional system resourees consumed by a message system are
processor time and memory. which are beeoming the cheapest part of the system. This "penalty"
W to be offset against the system's fault tolerance. the ease of. system expansion. and the
possibilities for system evolution (as shown by the addition of a network capability) that such a
structure provides.

It is reasonable to ask whether users can write application process-pairs. Many do, and if the design
bas been done carefully, they will recover correctly from single faults. A detailed discussion of the
various techniques for checkpointing is presented in (10). However, the use of higher-level tools for
terminal management functions and transaction bac:kout [12] allows users to write server processes
in COBOL which do not have backup processes, do not issue checkpoints. nor concern themselves
with failure recovery. Thus, the application's fault tolerance need not rely heavily on the user's
ability to design and implement correct error recovery. .

Unfortunately, the hard problem is not the handling of the fault tolerance. but the design of a
reasonable online system. Many user's initial reaction to this design problem is to try to create a
monolithic application program to do all functions. Such a user often is from a batch data processing
shop which ~ attempting to develop its first online application. This approach may get early results.
but the program will be very hard to maintain and it will not scale up as it cannot be split across
multiple processors for higher throughput. Another reaction (which sometimes follows the first) is
to divide the application into countless processes which all must be used to process the simplest ter­
minal inquiry. This ~ often combined with a very ornate key-sequenced data base. The result of this
can be an application which bandles two transactions per minute.

Application design and system sizing are still art rather than science. We have developed tools and
guidelines for application design. for simulation and modelling to aid in system sizing [13], and for
measurement of the resultant system [14]. These are extensively used in developing quotes for
systems and tend to eliminate disappointment upon system delivery.

10

Transaction systems have needs that differ somewhat from those of general purpose computing
systems. The primary function of a processor in a transaction system is to move data between discs
and terminals. with a surprisingly small amount of processing done along the way. The high
demands for message and iJo buHers may force the purchase of additional processors to gain buHer
address space. rather than to increase processor power.

Therefore, extensions to the system architecture to improve memory access can be more useful
than reimplementation of the hardware for greater speed. The former direction has been taken by
our NonStop II system. which is a compatible extension of our 16-bit architecture to provide a 32·bit
logical address space. This additional addressing capability eliminates many processor limitations
that could be traced to small address spaces.

The decision to build a complex system based entirely upon processes interacting via messages has
been the proper one for us. It has allowed us to construct reliable transaction systems diHering in
cost by an order of magnitude which can be constructed with the same modules and run the same
software. It has also provided a flexible base on which to do significant software extensions without
major redesign of existing system software.

ACKNOWLEDGMENTS

This kernel has evolved over a period of time and it reflects the contributions of many people. In
particular, I would like to acknowledge the efforts of Dennis McEvoy, David Hinders. Jerry Held,
Mike Green. Harald Sammar and Wendy Bartlett. I would also like to thank Wendy Bartlet·i;. Jim
Gray and the referees for their 'criticism which improved the presentation of this material.

11

REFERENCES

[1] Avizennis, A•• Architecture of Fault-Tolerant Computing Systems, FTC-5, IEEE and F.N.r~E••
Paris (June 19751, pp 3-16.

[2] Katzman, J. A•• A Fault-Tolerant Comput~7&g System, Eleventh Hawaii International Con­
ference on System Sciences (January 1978), pp 85-102.

[3J Siewiorek. D. P, Bell. C. G.. and Newell. A.. Computer Structures: Readings and Ezamples,
McGraw-Hill, Inc. (1982).

[4] Bartlett, J. F •• A NonStop Operating System, Eleventh Hawaii International Conference on
System Sciences (January 1978), pp 103-117.

[5] Dijkstra, W.• The Structure of the ''The Multiprogramming System," Comm. ACM 11 (May
19681, pp 341-346.

[6] Brinch Hansen, P., The Nucleus of a Mult~programmmg System, Comm. ACM 13 (April 1970),
pp 238-241. 250.

[7] Liskov. B.. Report on the Workshop on Fundamental Issues \1& Distributed Computing,
Operating Systems Review (July 1981), pp 9-38.

[8J CCITT. Recommendatilm L25. Level 2, Geneva, (1976).

[9] GIeser, M. A.. Bayard. J .. and Lang, D. D.. Benchmarking for the Best, Datamation (May 1981).·

[10J Tom. G. F.• Checkpomting Techniques for Fault-Tolerant Process-Pam. BS Thesis at MIT
(June 1981).

[11] Enslow, P. H. Jr.. Multiprocessor Orgmaization-A Survey, Computing Surveys. Vol 9, Number 1
(March 1977). pp 103-129.

[12J Borr, A. J .. Transactilm Monitoring mENCOMPASS: Reliable Distributed Transaction Process­
mg. 7th International Conference on Very Large Data Bases (September 1981).

[13J Blake. R., Tailcw: A Simpk Model T1acJt Works, Proc:. of Coni. on Simulation, Measurement, and
Modelling of Computer Systems. ACM SIGME"I'RICS. Boulder (August 19791.

[14] Blake. R., XRAY:- Instrumentation for Multiple Computers. Proc. Int'!. Symp. on Computer
Performance. Modelling, Measurement. and Evaluation. ACM SIGMETRICS and IFIP WG7.3.
Toronto ('May 1980 I.

12

Distributed by
~TANDEM

Corporate Information Center
10400 N. Tantau Ave., LOC 248-07
Cupertino, CA 95014-0726

