

RZ 3771 (# 99781) 03/31/2010
Computer Science 15 pages

Research Report

The Fundamental Limit of Flash Random Write Performance:
Understanding, Analysis and Performance Modelling

X.-Y. Hu, R. Haas

IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

The Fundamental Limit of Flash Random Write Performance:
Understanding, Analysis and Performance Modelling

Xiao-Yu Hu Robert Haas
IBM Research, Zurich

{xhu,rha}@zurich.ibm.com

Abstract
The understanding, analysis and modelling of the fundamen-
tal limit of the sustained random write performance and en-
durance of Flash solid state drives (SSDs) are critical for
Flash SSD vendors and storage system designers and practi-
tioners. This not only helps design high-performance Flash
SSDs, but also dictates how Flash can be integrated into to-
day’s memory and storage hierarchy.

This paper analyzes the fundamental limit of the sus-
tained random write performance of Flash SSDs. An empir-
ical model is developed to compute the write amplification
and performance slowdown factor for the greedy garbage
collection policy under a pure random write workload. Po-
tential causes of the commonly observed performance slow-
down are investigated, and remedies suggested. In particu-
lar, we quantitatively demonstrate the potential for enhanc-
ing the random write performance and endurance by separat-
ing long-lived data from short-lived data inside Flash SSDs.
Moreover, our theoretical results suggest a tiered storage
system in which cold (i.e., infrequently used) data blocks
are moved to a hard disk drive (HDD) to improve cost ef-
fectiveness and to reduce Flash memory utilization, which
improves garbage collection performance.

Categories and Subject Descriptors B.3.3 [Memory struc-
tures]: Performance analysis and design aids—formal mod-
els, simulation; C.3 [Special-purpose and application-based
systems]: Real-time and embedded systems; D.4.2 [Storage
management]: Garbage collection

General Terms Design, Performance, Algorithms

Keywords Solid State Drives (SSDs), Solid State Storage
Systems, Flash Memory, Write Amplification, Garbage Col-
lection

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
NAND Flash memory holds the promise of revolutionizing
the memory and storage hierarchy in computer systems.
Flash memory has been considered to augment DRAM, to
extend persistent storage such as hard-disk drives (HDDs),
and to form a new layer filling the gap between traditional
DRAM memory and HDDs. Whether Flash memory is used
to replace or to complement existing DRAM and HDDs,
design challenges resulting from the unique Flash memory
characteristics have to be addressed.

The read/write/erase behavior of Flash memory is rad-
ically different from that of HDD or DRAM owing to
its unique erase-before-write and wear-out characteristics.
Flash memory that contains data must be erased before it
can store new data, and it can only endure a limited num-
ber of erase-program1 cycles, usually between 100,000 for
single-level cells (SLC) and 10,000 for multiple-level cells
(MLC). Flash memory is organized in units of pages and
blocks. Typically, a Flash page is 4 KiB in size and a Flash
block has 64 Flash pages (thus 256 KiB).

Reads and writes are performed on a page basis, whereas
erases operate on a block basis. Reading a page from Flash
cells to a data buffer inside a Flash die takes 25 µs, writing
a page to Flash cells takes about 200 µs, and erasing a Flash
block normally takes 2 ms. Although the read and write
operations take on the order of tens of microseconds, the
erase operations take milliseconds. Therefore, using Flash
naively, such as for write-in-place, would not yield a high
performance.

To address the erase-before-write characteristics, Flash
memory together with a microprocessor (controller), collec-
tively called a Flash solid-state drive (SSD), requires a set
of Flash management functions, such as the Flash transla-
tion layer (FTL), garbage collection, wear levelling and bad-
block management (BBM), to perform out-of-place update,
analogous to the write process in the log-structured file sys-
tems.

In particular, random writes in SSDs cause write amplifi-
cation in which a single user write can cause more than one
actual write, owing to background activities in SSDs. Write

1 Writing data onto Flash is conventionally called programming.

1 2010/3/25

amplification occurs mainly because SSDs write data in an
appending mode, which requires garbage collection similar
to a log-structured file system.

It has been reported [3, 6, 8, 14, 41, 50] that existing Flash
SSDs exhibit good sequential/random read performance and
sequential write performance, but suffer from poor random
write performance. Moreover, it is claimed that almost all
SSDs slow down with use over time, incurring a significant
performance degradation. Although it might be tempting to
investigate the root cause of the poor random write perfor-
mance for a particular Flash SSD, it is of more importance to
understand whether this common behavior is a fundamental
limit or merely an implementation artifact.

Contributions: In this paper, we analyze the fundamen-
tal limit of the sustained random write performance of Flash
SSDs. We focus on key contributing factors limiting the ran-
dom write performance, and quantify their impact. We stress
practical implications of the analytical results, reflecting on
the causes of and possible remedies for the performance
slowdown widely observed in existing SSDs. We extend our
results to quantitatively evaluate the potential performance
and endurance improvement by separating inactive from ac-
tive data inside Flash SSDs or by migrating inactive data out
of Flash SSDs. More specifically, this paper makes the fol-
lowing main contributions:

• An empirical model to analyze the random write per-
formance as a function of utilization is developed and
evaluated against simulation results. The performance
model accurately approximates the write amplification
of a given garbage collection strategy and helps deter-
mine the sustained random write performance and thus
the slowdown from the peak random write performance.
Although the model is limited to the pure random write
workload, it is, to our knowledge, the first of its kind to
model random write performance of Flash SSDs, and its
relevance/usefulness is demonstrated by using it to quan-
tify the potential of data placement and data migration
schemes.

• A widely-known greedy garbage collection model is de-
fined in detail and proved to be the optimal algorithm for
the random write workload. It is further shown that no
static wear levelling is needed for this workload. This is
the first theoretical work on the analysis of Flash garbage
collection policies.

• Using the proposed empirical model and the Flash SSD
simulator, the potential for enhancing the random write
performance and endurance by separating long-lived
from short-lived data inside Flash SSDs is investigated
in a qualitative manner. The idea of separation long-lived
from short-lived data initially appeared in the treatment
of log-structured file systems, but its impact and advan-
tage in terms of write amplification are quantified here
for the first time.

• Using the proposed empirical model, the advantage of
integrating Flash into a tiered storage system is quan-
titatively demonstrated, wherein cold (i.e., infrequently
used) data blocks are moved to an HDD to improve
cost effectiveness and to reduce Flash memory utiliza-
tion, which improves garbage collection performance.
The concept has recently received much attention, and
our work provides scientific evidence in support of the
concept.

Methodology: The key obstacle to analyzing the funda-
mental limit of random write performance of Flash SSDs is
the lack of a sensible model for hardware/firmware archi-
tecture as well as Flash management functions. There are a
variety of Flash SSD designs from various vendors, featur-
ing a broad range of hardware architectures, and each Flash
SSD vendor keep its core Flash management functions, such
as FTL, garbage collection and wear levelling, proprietary,
making a generic performance analysis extremely difficult.

Therefore we take the following methodology: Instead of
focusing on a particular Flash SSD design, we identify a
common Flash SSD architecture that is sufficiently typical,
and embodies the state-of-the-art of Flash SSD designs, from
which we built an event-driven, Java-based Flash SSD sim-
ulator [23]. The simulator has two functional parts: a low-
level and a high-level part. The low-level part is devoted to
the emulation of physical Flash channels and the high-level
part is responsible for firmware, such as data structures and
algorithms for managing Flash memory.

The low-level part emulates the basic Flash commands,
such as reading/writing a page and erasing a block, on mul-
tiple parallel Flash channels, each of which has multiple dies
attached. As the rudimentary read/write/erase behavior of
Flash commands is well defined by Flash memory manu-
factures, the low-level part turns out to be straightforward
and relatively easy to develop; it captures every phase of
Flash commands to a precision level of the clock. In a sister
project, we developed a hardware prototype of Flash con-
troller using the Xilinx FPGA evaluation board ML405, and
by a cross-check, found that our simulator faithfully matches
the read/write/erase behavior of Flash commands on the real
Flash memory.

The high-level part is responsible for Flash management
functions, such as FTL, garbage collection, wear levelling
and bad block management. The simulator is made in a
flexible way (using Java interface facility) such that various
algorithms can easily be switched on and off for the purpose
of testing. The simulator has been used to develop and test
new algorithms for advanced Flash management functions,
as well as to simulate a storage system integrating Flash
memory as cache. In this work, it is used to validate the
performance model we describe later.

Our key goal in this paper is not to develop a sophisticated
garbage collection algorithm, but to identify and analyze
the fundamental limit of Flash SSDs due to Flash’s erase-

2 2010/3/25

before-write characteristic. To this purpose we describe a
version of greedy garbage collection algorithms in detail,
and our analysis will largely be based on it for tractability
reason. Although this algorithm looks simplistic and lacks
features of a realistic garbage collection algorithm, almost
all existing garbage collection algorithms in Flash SSDs and
log-structured file systems root deeply in it.

The rest of the paper is organized as follows. Section 2
discusses related work and Section 3 gives an overview
of Flash SSDs from both the architecture, hardware and
firmware points of view. Section 4 presents a qualitative and
quantitative analysis of the random write performance, fo-
cusing on the fundamental limit resulting from write ampli-
fication due to Flash’s erase-before-write characteristic. Sec-
tion 5 discusses potential causes of the commonly observed
performance slowdown, and suggested remedies. Section 6
concludes the paper.

2. Related work
The performance and cost-per-GiB gaps between DRAM
and HDDs are constantly growing over the past two decades,
with no sign that this trend is abating. Flash memory fills the
gap in the middle, which can potentially form a new tier in
the current memory and storage hierarchy. Moreover, Flash
memory has the potential to augment DRAM as memory
expansion or HDDs as storage extension, thanks to its low
power consumption. It is widely anticipated that within a
few years Flash memory will likely be ubiquitously used in
notebooks, servers, database systems, and storage systems.

The research on the optimal memory and storage ar-
chitecture to integrate Flash memory is still in its infancy.
Leventhal [37] explored the options of “Flash as a log de-
vice” and “Flash as a cache” based on Sun’s ZFS file sys-
tem. Graefe [20] investigated two software architectures for
exploiting Flash memory: “extended buffer pool” and “ex-
tended disk”. Narayanan et al. [39] analyzed a number of
workload traces of data-center servers to decide whether and
how SSDs should be used from storage-provisioning point
of view. Wu and Zwaenepoel [52] developed eNVy as an ar-
chitecture of a large non-volatile main memory system built
primarily with Flash memory. Gordon [9] has recently been
proposed as a system architecture for data-centric applica-
tions that combines low-power processors, Flash memory,
and data centric programming systems to improve perfor-
mance while reducing power consumption.

Flash-Aware File Systems: One way to use Flash mem-
ory is to put it under the control of Flash-aware file sys-
tems. Most Flash-aware files systems are inspired by the log-
structured file system, which performs out-of-place write on
HDDs [44]. Examples are FFS [26], JFFS for Linux [51],
TFFS [19], and YAFFS [38]. A survey on Flash-aware file
systems and various sophisticated data structures and algo-
rithms to manage Flash memory can be found in [18].

Flash As Cache: In the context of hybrid HDDs, Flash
memory is used as a nonvolatile cache to improve I/O per-
formance and reduce power consumption [7, 13, 22]. Flash
as cache for servers has been investigated in [27, 28], sug-
gesting that the overall performance and reliability can be
improved by splitting Flash-based disk caches into read and
write regions.

Flash in Database Applications: The performance of
Flash SSDs for database applications has been studied in
[35, 36]. To cope with the poor random write performance of
Flash SSDs, an IPL (in-page logging) scheme is proposed:
changes made to a data page are not written directly, but
records associated with the page are logged [34]. Koltsidas
and Viglas [31] proposed a technique to dynamically place
pages with read-intensive workloads on the Flash disk and
pages with write-intensive workloads on a HDD. A Flash-
aware data layout – append and pack – has been developed
to stabilize and repair Flash SSD’s performance by eliminat-
ing random writes [50]. USB Flash drives are considered to
replace HDDs to perform synchronous transactional logging
[15]. TxFlash, Flash memory as a SSD exporting a trans-
actional interface to the higher-level software has been pro-
posed [42]. Recently, FAWN, a new cluster architecture for
low-power data-intensive computing centered around log-
structured key-value data store using Flash memory, was
proposed in [4].

Flash SSDs: Flash SSDs emulate a block-device inter-
face similar to HDDs. Although the design and implemen-
tation of Flash SSDs are often kept as proprietary by SSD
vendors, there are published research works, for example
[2, 6, 17, 41] on SSD organization and hardware architec-
ture, [21, 25, 30, 32, 33] on FTL, [2, 5, 10–12, 18, 45, 47, 49]
on garbage collection and wear-levelling. Experimental re-
sults on testing the performance of Flash SSDs have been
extensively studied [3, 6, 8, 14, 41, 50], highlighting the ob-
served poor random write performance and the performance
slowdown. FAB [24], CFLRU [40], BPLRU [29], and LB-
CLOCK [16] are examples for using DRAM buffers to im-
prove the random write performance of Flash SSDs.

3. SSD: A Primer
Figure 1 shows a schematic diagram of the generic architec-
ture of Flash SSDs, which consist of multiple Flash packages
connected to a controller that uses an embedded micropro-
cessor with some DRAM for maintaining internal data struc-
tures and possibly buffering I/O requests.

Hardware: A NAND Flash memory die/chip generally
uses a compact Flash interface with fewer that 30 pins, e.g.
Micron products have only 24 pins, featuring a multiplexed
command, address, and data bus, which typically operates at
40 MHz. The multiplexed interface is called channel when
shared by multiple dies in the form of packages. This chan-
nel over which Flash packages or dies receive commands
and transmit data from/to the controller is the main bottle-

3 2010/3/25

Figure 1. Schematic of the Flash SSD architecture.

neck of I/O performance per channel. For reads, it takes
roughly 100 µs to transfer a 4 KiB page from the Flash data
buffer to the controller in addition to the 25 µs Flash needs
to upload data from Flash cells to the data buffer. For writes,
it requires the same 100 µs serial transfer time per page as
reads, and about 200 µs programming time. Therefore the
performance suffers from the following two drawbacks: 1)
I/O throughput per channel is low and 2) writes are much
slower than reads.

From a hardware perspective, parallelism is a main theme
of modern Flash SSDs to alleviate the bottleneck of such
multiplexed Flash interfaces [17]. Multiple levels of paral-
lelism can be used to improve the bandwidth and to reduce
latency. Inside a Flash package, multiple reads and writes
may proceed in parallel within different planes 2 and dies,
using their own data buffers, thus allowing reads and writes
to progress in parallel. Multiple group of Flash packages are
channelled to the controller in parallel, with each group hav-
ing its own dedicated Flash interface to receive commands
and transmit data in and out. The bandwidth is proportional
to the number of channels between the controller and Flash
packages.

Firmware: To hide the erase-before-write characteristics
of Flash memory and the excessive latency of block erases,
modern Flash SSDs implement a software layer, called FTL,
that performs logical-to-physical address translation, i.e.,
translating a logical block address (LBA) in the upper soft-
ware layer to a physical address in Flash memory.

To perform out-of-place writes, the controller of the SSD
maintains a data structure for the pool of free Flash blocks in

2 One die may contain multiple planes that can perform read, write and erase
operations independently.

which data can be written. How the data pages of free Flash
blocks are allocated to service user write requests is dictated
by the data placement function. The controller maintains a
data structure for the pool of occupied Flash blocks in which
valid and invalid pages may co-exist in the same Flash block.
A complete sequence of an out-of-place write is as follows:
(i) choose a free Flash page, (ii) write new data to it, (iii)
invalidate the previous version (if any) of the page involved,
and (iv) update the logical-to-physical address map to reflect
the address change.

The out-of-place write necessitates a background routine
called garbage collection (GC) to reclaim invalid pages dis-
persed in Flash blocks. GC selects an occupied Flash block
as its victim, copies valid pages out of the block, erases it,
and if successful, adds it to the pool of free blocks for sub-
sequent use.

In addition, wear levelling may be triggered to balance
the wear among blocks, and bad block management keeps
track of bad Flash blocks and prevents their reuse. The con-
troller may optionally use some DRAM as a write buffer to
absorb repeated write requests and possibly to increase se-
quentiality of the workload.

Modern Flash SSDs exhibit impressive performance for
random/sequential read and sequential write workloads.
Their performance, under these three types of workloads,
is essentially proportional to the number of parallel channels
and also depends on the parallelism level within each chan-
nel. There is no GC need for a sequential write workload as
an entire Flash block is made invalid during the write pro-
cess, and it can be erased and reclaimed without any data
movement. Although the erase operation takes about 2 ms
and “locks” its associated plane for that time, the overall
performance impact is negligible because all other planes
attached to the same channel can still proceed with opera-
tions.

The interface between the upper layer software, such as
operating, file and database systems, and the firmware of
SSDs consists of three operations: read, write, and trim.
This interface captures a broad spectrum of potential Flash
usages, ranging from Flash as complementary main memory
or virtual memory, to Flash as a cache, Flash as write buffer
or write-ahead logging, and Flash as a disk. Although the
third interface operation is not yet widely supported, our
analysis shows that the use of trim can dramatically improve
the efficiency of garbage collection and endurance lifetime
of Flash SSDs.

4. The Fundamental Limit of Random Write
Performance

Compared with their impressive sequential/random read and
sequential write performance, Flash SSDs suffer from poor
random write performance [3, 6, 14, 41]. Moreover, it is
observed that a variety of SSDs slow down over time, and

4 2010/3/25

some even with significant performance degradation [8, 14,
50] under random-write dominated workloads.

In this section we first qualitatively analyze factors con-
tributing to the poor random write performance, and argue
that write amplification due to garbage collection is the fun-
damental culprit, which cannot be completely eliminated by
advances in controller architecture and algorithm design. We
prove that the greedy garbage collection policy is the optimal
one under a specific workload model. An empirical perfor-
mance model to evaluate the write amplification and perfor-
mance slowdown factor is presented. We give both analyti-
cal and simulation results that illustrate the exponential-like
performance slowdown as the utilization increases.

4.1 Qualitative Analysis
At the initial stage of SSD usage, a single user write results
in only a single actual write, as there are still a lot of free
Flash space for serving write requests without triggering
GC. The peak random write performance of Flash SSDs is
defined as the performance during which there are plenty
of free Flash blocks ready to be written and without need
for garbage collection. The peak random write performance
depends on the number of parallel channels, the parallelism
level within each channel, and the speed with which a Flash
page can be written.

After depleting most free Flash space, GC has to be trig-
gered to reclaim free Flash blocks to accommodate new
writes. To sustain the write process, the reclaimed free Flash
blocks has to match the Flash blocks being written on aver-
age. The sustained random write performance of Flash SSDs
is the performance during which the number of free pages
drops to the threshold that triggers garbage collection, so
that on average the number of user page writes is equiva-
lent to the number of reclaimed free pages by background
garbage collection. The garbage collection process involves
copying valid data pages and write these pages to another
location. The phenomenon that a single user write can cause
more than one actual write in Flash SSDs is called write
amplification, which measures the efficiency of garbage col-
lection. Obviously write amplification negatively affects the
sustained random write performance.

The performance gap between the peak and the sustained
random write performance is due to write amplification.
Write amplification is a critical factor limiting the random
write performance and endurance of Flash SSDs. Write am-
plification is commonly defined as the average of the actual
number of page writes per user page write in the long term,
capturing the impact of the relocation of valid pages due to
the controller’s housekeeping activities.

For a sequential write workload, write amplification is
equal to 1, i.e., there is no write amplification. For random
write workloads, there are three potential causes for write
amplification: the granularity of FTL, garbage collection,
and wear levelling.

4.1.1 Granularity of FTL
The granularity of logical-to-physical address mapping of an
FTL scheme may adversely impact write amplification. FTL
schemes can be categorized as block-level, hybrid, or page-
level according to the granularity of the address map.

In the block-level FTL scheme, a group of contiguous
LBAs is translated into a physical Flash block with their
offset within the block being fixed, to minimize the memory
requirement for storing the address map. The block-level
FTL scheme, mostly seen in Smart Media cards [1], is not
efficient for small random writes because a page update may
require several page reads and a whole block update (termed
as full merge in hybrid FTL schemes), leading to severe
write amplification.

Hybrid FTL schemes, a hybrid between page-level and
block-level schemes, logically partition blocks into groups:
data blocks and log/update blocks, such as BAST [30], FAST
[32], SuperBlock FTL [25], and LAST [33]. Data blocks
form the majority and are mapped using the block-level
mapping; log/update blocks are mapped using a page-level
mapping. A hybrid FTL scheme has to merge log blocks
with data blocks, which invokes extra pages reads and page
writes, whenever no free log blocks are available. The merge
operations can be classified into switch merge, partial merge,
and full merge, in increasing order of write amplification
overhead. Random writes inherently cause expensive full
merges for hybrid FTL, inducing excessive write amplifica-
tion [21].

The third type of FTL schemes is the page-level mapping
scheme which eliminates the need for merge operations of
the hybrid FTL, thus does not cause any write amplification
in managing the address map. The page-level FTL scheme
requires managing an in-memory mapping table, the size of
which is essentially proportional to the raw Flash capacity.
A recent improvement, the demand-based page-level FTL
scheme [21], can reduce the memory requirement signifi-
cantly by selectively caching page-level address mappings.

As the merge overhead is not universal to all FTL schemes,
its impact on write amplification can be considered as a de-
sign and implementation artifact rather than a fundamental
limit to random write performance. Although the poor ran-
dom write performance of some of existing SSDs is partially
attributed to the FTL merge overhead [3], we expect this
situation will change as the design and implementation of
SSDs mature. Hereafter, we assume that a page-level FTL
scheme is used and thus there is no FTL merge overhead.

4.1.2 Garbage Collection
Garbage collection is universal to all Flash SSDs that per-
form out-of-place writes, wherein a user data page is always
written to a free page instead of updating its previous version
in place. Upon writing, the logical-physical address mapping
of the FTL is updated to reflect the new location, and its
previous location is marked as invalid. Under an indepen-

5 2010/3/25

dently, uniformly-addressed workload with aligned 4 KiB
random write requests (hereafter simply called random write
workload), invalid pages will inevitably be spread through
Flash blocks. Prior to free pages complete depletion, a back-
ground process, called garbage collection, has to reclaim
these invalid pages by selecting a victim block, relocating
its valid pages into a different block, and then erasing the
victim block. The overhead of relocating valid pages leads
to write amplification, a fundamental phenomenon in Flash
SSDs performing out-of-place writes.

The impact of garbage collection on write amplification
is influenced by the following factors: the level of over-
provisioning, the choice of reclaiming policy, and the types
of workloads. For convenience of analysis, we assume a
pathological workload, i.e., the random write workload with
aligned 4 KiB write requests, for which an optimal garbage
collection policy can easily be defined.

Over-provisioning refers to a common practice that the
user address space can only take a fraction of the raw Flash
memory capacity. Because of out-of-place writes, over-
provisioning exists in practically all Flash SSDs, either in
an explicit or an implicit way. For instance, Texas Mem-
ory Systems and STEC explicitly state that their SSDs have
more raw Flash memory than the maximum logical address
space that the user can use, whereas other SSD vendors,
such as Intel and Micron, let the user choose the size of user
address space up to the maximum of the raw Flash memory
capacity. In this case, over-provisioning exists implicitly and
generally decreases with usage.

For both explicit and implicit over-provisioning, the
user may adjust the Flash memory utilization (µ), the ra-
tio of the number of current in-use LBA addresses (i.e.
for which the SSD holds valid data) over the total physi-
cal Flash memory capacity. With implicit over-provisioning,
utilization can reach up to 1.0, whereas with explicit over-
provisioning, the utilization is upper-bounded by the ven-
dor’s over-provisioning specification.

The utilization is closely tied to write amplification due to
garbage collection. The larger the utilization, the more likely
a victim selected to be reclaimed has many valid pages that
have to be relocated, and the worse the write amplification.

Given a fixed utilization and workload, write amplifica-
tion depends solely on the efficiency of the garbage collec-
tion policy. In general, a garbage collection policy involves
issues such as when to trigger garbage collection, which
block to select as victim, and where to write the relocated
valid data.

4.1.3 Wear levelling
Flash blocks can sustain a limited number of program-erase
cycles, thus it is desirable to write and erase Flash blocks
evenly. Wear levelling, in a broad sense, refers to an algo-
rithm by which the controller in a Flash SSD moves data
around by re-mapping logical addresses to different physi-
cal addresses of Flash memory. The frequency of this data

movement, the algorithm to find the “the least worn” area to
which to write, and any data swapping capabilities are gen-
erally proprietary techniques of Flash SSD vendors.

There are two types of wear levelling: dynamic and static.
Dynamic wear levelling relies on the out-of-place writes to
even out the wear of Flash blocks. If a Flash block holds
inactive data that are less frequently, or never, updated, the
block tends to be less worn than others. Static wear levelling
refers to the activities that identify and move the inactive
data out of less worn blocks and reclaim them. It therefore
induces extra write amplification and is only beneficial for
workloads that have a biased update frequency within the
user address space. Under the random write workload, the
out-of-place write, governed by a page-level FTL and the
greedy garbage collection, will eventually wear out all Flash
blocks evenly, so there is no need for static wear levelling.

4.2 Greedy Garbage Collection Policy
We now describe a greedy garbage collection policy and
prove that it is the optimal garbage collection policy in the
sense of minimizing write amplification under the random
write workload.

Figure 2. Block diagram of garbage collection.

Figure 2 shows a schematic diagram of greedy garbage
collection. Incoming write requests and relocation write re-
quests are both serviced by writing to free pages/blocks su-
pervised by the data placement function. Once a free block
has been filled up, it is removed from the free block pool
and moves to the end of the occupied block queue. Each
time garbage collection is triggered, a single occupied block
is selected as victim, and all its valid data pages are read
and written to another location by issuing relocation write
requests. Upon completion of relocation, the victim block
is erased and joins the free block pool again. Denoting the
number of free blocks by r and the total number of physical

6 2010/3/25

Flash blocks by t, there are t − r occupied blocks that can
potentially be victims of garbage collection.

Consider the following greedy garbage collection policy:

• Delay garbage collection as long as possible until the
number of free blocks drops below a pre-defined thresh-
old.

• Select the block with the lowest number of valid pages
among all occupied blocks.

Now we prove that the greedy garbage collection strategy
is optimal in the sense of minimizing write amplification
under the random write workload with aligned page writes.

The optimality of delaying garbage collection as long as
possible is straightforward. In principle, garbage collection
can be triggered even if there are still many free blocks,
and there are practical arguments for doing that, such as,
to lengthen the duration of sporadic write workloads dur-
ing which garbage collection can be turned off for perfor-
mance reasons. This, however, compares unfavorably with
the greedy garbage collection policy in terms of garbage col-
lection efficiency. The more incoming write requests are ser-
viced before garbage collection occurs, the less likely it will
be that a given page in an occupied block is valid, and the
fewer the valid pages in the victim block to be relocated,
which ultimately leads to less write amplification. In other
words, the greedy usage of free blocks through delaying
garbage collection as long as possible maximizes the ben-
efit of over-provisioning.

The greedy policy to select a block from the occupied
blocks that has the lowest number of valid pages as the vic-
tim is a natural choice, and its optimality is tied to the as-
sumption of the random write workload. We prove the opti-
mality by contradiction. Suppose that at time t1 block a is
selected as victim according to the greedy garbage collec-
tion policy because it has the least valid pages on it, say va.
Suppose there is an imaginary optimal garbage collection
policy, other than the greedy one, that would instead select
another block b as the victim, which has vb valid pages at
t1, where vb > va. Now suppose this imaginary garbage
collection would select block a as victim at a later time t2.
The necessary (but not sufficient) condition for the imag-
inary optimal garbage collection policy to outperform the
greedy one is that the number of pages turning from valid
to invalid in block a, in the time period t1 to t2, should out-
pace that in block b. Under the random write workload with
aligned page writes, every valid page has the same probabil-
ity of turning invalid, and thus the condition contradicts the
probability law as block a has fewer valid pages than block
b at time t1, meaning that an imaginary optimal garbage col-
lection policy outperforming the greedy one for the random
write workload does not exist.

The greedy garbage collection policy requires finding an
occupied block with the least valid pages among a possi-
bly large number of Flash blocks, incurring potentially sig-

nificant computational overhead. A window-based garbage
collection policy can reduce the computational overhead by
restricting the search for the block with the least valid pages
to a window of occupied Flash blocks [23]. Once that block
has been erased, the next block in the queue enters the win-
dow. A special case of the window-based garbage collection
is the FIFO (or cyclic) garbage collection policy, which sets
the window size to 1, i.e. it always picks the oldest Flash
block written as the victim, or in other words, it reclaims
Flash blocks according to their physical address sequentially
and cyclically. If the window covers all occupied blocks, it
corresponds to the greedy garbage collection policy.

Remarks: Note that the greedy garbage collection policy
described above is just a simple abstraction for performance
analysis and should not considered as a practical algorithm.
A realistic SSD might trigger garbage collection process
proactively, for instance, whenever a sufficient idle time is
found, instead of relying on free block threshold alone, for
the benefit of maximizing burst write performance. The real-
time issue of garbage collection should also be carefully
considered in practice to avoid unpleasant side-effects, for
example, if garbage collection is triggered too rarely or too
late, but takes longer to complete, the write could suffer
overly large delays freezing a process or even the SSD.

4.3 Empirical Performance Model
Given the random write workload with aligned page writes,
the qualitative analysis above indicates that the fundamental
cause of the slowdown of the sustained random write perfor-
mance is the increased utilization. Now we develop an em-
pirical performance model to capture the performance im-
pact of the utilization. The greedy garbage collection policy,
shown to be optimal under the random write workload, is
assumed, to preclude possible artifacts arising from a subop-
timal garbage collection policy.

Let np, denote the number of pages in a Flash block, np =
64, and p∗0, p∗1, . . ., p∗np

be the probabilities that the victim
selected by the greedy garbage collection policy has 0, 1, . . .,
np valid pages, respectively. The write amplification wa, by
definition, is computed by

wa =
np

np −
np∑

k=1

kp∗k

, (1)

and

p∗0 = 1− p(∀jV
j > 0) (2a)

p∗k = p(∀jV
j > k − 1)− p(∀jV

j > k)

for k = 1, · · · , np − 1 (2b)

p∗np
= p(∀jV

j > np − 1), (2c)

in which p(∀V j > k) is defined as the probability that the
number of valid pages in every block of the garbage collec-
tion window is larger than k, which can be approximated by

7 2010/3/25

the product of s (the window size) and the marginal proba-
bilities p(V j > k) that the j-th block has more than k valid
pages, namely,

p(∀jV
j > k) ≈

s−1∏

j=0

p(V j > k). (3)

Denote the probability that the j-th block has m valid
pages by pj(m), then

p(V j > k) = 1−
k∑

m=0

pj(m), (4)

and by assuming that each page on the j-th block has the
same probability pj to be valid at the moment of garbage
collection, pj(m) is computed by

pj(m) =
(

np

m

)
pm

j (1− pj)np−m. (5)

Two models, the fixed model and the coupon collec-
tor model, have been proposed to approximate pj , which
yielded analytical write amplification results in good agree-
ment with simulation results, except at high utilization and
for very small window sizes [23]. However, for the FIFO
garbage collection, both models failed to predict the write
amplification accurately, particularly in the case of high uti-
lization.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization (µ)

P
er

ce
nt

ag
es

 o
f v

al
id

 p
ag

es
 in

 th
e

fir
st

 b
lo

ck

Empirical
Fitting curve

Figure 3. Empirical and fitting percentages of valid pages
in the first block as a function of utilization.

To remedy this drawback, we present an empirical model
to evaluate pj . Figure 3 shows empirical percentages of valid
pages of the first occupied block as a function of utilization
obtained by our Flash simulator [23], and the curve can be
well fitted by

p0 = e−α(1
µ−1), (6)

where α is a constant of value 1.9 and µ is the utilization.
Empirically we also find that pj can be recursively evaluated
by

pj = βpj−1/(1− 1
up

)np , (7)

where β is a constant of value 1.1, up is the number of pages
of the user space, and np is the number of pages per Flash
block.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

W
rit

e
A

m
pl

ifi
ca

tio
n

(w a)

Utilization (µ)

Greedy GC policy, Coupon collector model
Greedy GC policy, empirical model
Greedy GC policy, simulation

Figure 4. Write amplification as a function of utilization
using the greedy GC policy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

W
rit

e
A

m
pl

ifi
ca

tio
n

(w a)

Utilization (µ)

FIFO GC policy, Coupon collector model
FIFO GC policy, empirical model
FIFO GC policy, simulation

Figure 5. Write amplification as a function of utilization
using the FIFO GC policy.

Figures 4 and 5 compare the write amplification under
the random write workload with the greedy and the FIFO
garbage collection policy, using the empirical model as well
as the coupon collector model, with simulation results. Sim-
ulation parameters are given in [23]. We expect actual pa-
rameters values not to affect write amplification substantially
given t À r. It can be seen that, for the greedy GC policy,
both the coupon collector model and the empirical model
yield fairly accurate evaluation of the write amplification for
the entire utilization range, as compared with the simulation
results. The coupon collector model, however, fails to yield
a good approximation for the FIFO garbage collection pol-
icy, whereas the empirical model faithfully predicts the write

8 2010/3/25

amplification also in this scenario. Another interesting ob-
servation is that, under the random write workload, the write
amplification of the FIFO garbage collection policy is just
slightly worse than that of the greedy one for the entire uti-
lization range, suggesting that the window size does not play
a significant role for the random write workload. This phe-
nomenon can be attributed to the speciality of the random
write workload.

The fundamental performance slowdown of the sustained
random write performance relative to the peak random write
performance is caused by the write amplification due to
garbage collection. With the help of the empirical model
for computing the write amplification, we now measure the
slowdown factor sf , defined as the ratio of the peak random
write performance in terms of IOPS to the sustained random
write performance,

sf
4
=

IOPSPeakRandomWrite

IOPSSustainedRandomWrite
. (8)

After depleting free blocks, each page write translates
into wa − 1 page reads and wa page writes on average
to sustain continuous writes. Recall that each page read or
write requires the same time, approximately 100 µs, for data
transfer to/from the controller, whereas each page read takes
about 25 µs and each page write takes about 200 µs. Thus
the equivalent performance overhead of a page read can be
cast into a fraction γ of a page write,

γ
4
=

100 + 25
100 + 200

=
5
12

. (9)

This is to say, each page write from the user in the sustain-
able mode has an overhead of (wa− 1)γ + wa of equivalent
page writes, therefore

IOPSSustainedRandomWrite

=
12

17wa − 5
IOPSPeakRandomWrite, (10)

and sf can be computed by

sf =
17wa − 5

12
. (11)

Figure 6 shows the performance slowdown behavior of
the sustained random write performance relative to the peak
random write performance with increasing utilization, using
simulation results on write amplification. It is shown that
the performance deteriorates rather quickly (almost expo-
nentially) as the utilization increases.

4.4 Fundamental Limit on Endurance
Write amplification is the fundamental cause not only to the
performance slowdown, but also for the endurance lifetime.
Endurance is a critical reliability issue in Flash SSDs.

Given a fixed amount of raw Flash memory, a Flash SSD
can sustain a total number of page writes (product of the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

Utilization (µ)

S
lo

w
do

w
n

fa
ct

or
 (

s f)

Figure 6. Slowdown factor as a function of utilization as-
suming the random write workload and the greedy GC pol-
icy.

number of raw Flash pages and the nominal program-erase
cycle count of Flash pages), of which only a fraction is
available for user writes. To capture this fact, long-term data
endurance (LDE) is defined as the total number of actual
user page writes (alternatively measured as GiB) to measure
an SSD’s nominal endurance lifetime [45]. In general, LDE
depends on the types of workload, efficiency of garbage
collection and wear levelling, and utilization. In particular,
under the random write workload and the optimal garbage
collection policy, LDE is inversely proportional to the write
amplification, which grows exponentially with utilization. It
is thus crucial to minimize write amplification as much as
possible in a Flash SSD in order to increase its performance
and reliability.

5. Taming the Write Amplification
5.1 Utilization Control
The most straightforward way to improve the performance
slowdown and endurance of Flash SSDs is to limit the uti-
lization. There are two ways to do this: Explicit or implicit
over-provisioning.

Explicit over-provisioning refers to the practice that only
a fraction of the raw (physical) Flash memory space is ex-
posed to the user as the logical address space, although the
entire physical Flash memory space is actually used. This
practice is often seen in enterprise-class Flash SSDs. In
this way, the utilization is upper-bounded by a pre-specified
threshold and thus the sustained random write performance
and endurance are guaranteed at a certain level over the
lifetime thanks to the tamed write amplification. The main
disadvantage is the extra cost due to over-provisioning that
causes the loss of space available to users.

9 2010/3/25

Implicit over-provisioning leaves the responsibility of
controlling the utilization over the lifetime to the user. This
gives the user more flexibility for adjusting the utilization
according to access patterns, and is popular with SSD ven-
dors targeting personal computing applications. The ratio-
nale behind this practice is that if a workload with mostly
read requests and only a light random write workload is ex-
pected, the user may use the Flash SSD more cost-effective
at a higher utilization.

One may expect that, with implicit over-provisioning, the
sustained random write performance would stabilize with-
out slowdown over usage, once the utilization remains fixed.
Contrary to conventional wisdom and current practice, ex-
periments in [41] reported that even with only 10% utiliza-
tion of the address space, after having written the entire ad-
dress space once, there was still a substantial performance
slowdown with two modern Flash SSDs when implicit over-
provisioning is used.

The reason is that current file systems are designed as-
suming a simple abstraction of a linear block-level, update-
in-place interface to the underlying storage and optimized
under “unwritten contract” for HDDs [43, 46]. For various
reasons, file systems maintain a table map between the meta
data or data blocks of files/directories and the logical ad-
dress space of the underlying storage to support file creation,
modification and deletion. Because the default storage is as-
sumed to be HDDs, which support in-place updates, current
file systems do not inform the storage device when deleting
files/directories.

This practice is particularly problematic when the under-
lying storage is Flash SSDs. Because Flash SSDs are not
aware of those data blocks that have been deleted by the
file systems, Flash SSDs have to handle an inflated, larger
logical space than file systems actually use. A lot of data
pages containing no useful data have to be relocated during
garbage collection because of the lack of deletion informa-
tion, leading to excessive write amplification and a severe
performance slowdown.

This problem is particularly pronounced for implicit
over-provisioning, as frequent file/directory deletions and
creations by file systems quickly eat up the implicit over-
provisioning by inflating the logical address space seen by
the controller with useless data. Referring to Fig 6, the sus-
tained write performance can be slowed down more than
six times if the inflated utilization amounts to 0.9. In the
worst case, the SSD may even die much earlier because of
excessive write amplification.

To overcome this problem, the best way is to let file
systems inform Flash SSDs by means of a trim command
when certain data blocks have been deleted [41, 43, 45].
Notifying Flash SSDs of data blocks that are no longer valid
saves the SSDs from having to relocate those data during
garbage collection, reducing the write amplification and thus

also improving the sustained random write performance and
endurance.

The actual use of trim commands is virtually nonexistent
so far, but is expected to appear with newer releases of oper-
ating systems in the near future. For example, the trim com-
mand has been proposed, although not yet finalized, to add
block delete notifications to the ATA interface [48], and both
Windows c© 7 and Linux c© ext4 announced to support it. To-
day there are only few SSD vendors that have trim support,
but we expect that trim support will become universal in the
future.

Remarks: It can be concluded that the current practice of
some SSD vendors to pass the responsibility of controlling
the utilization of the SSD device to the end user(s), namely
implicit over-provisioning, can potentially cause substantial
performance slowdown or even incur the risk of losing data.
Explicit over-provisioning is shown to be the only effective
way to tame the utilization currently (at the time of writing)
before the trim command is supported by both file systems
and SSD vendors, but comes at additional cost due to the
loss of space available to users. One intermediate remedy
for implicit over-provisioning is to create multiple partitions
on a Flash SSD, and leave one partition unused to enable
explicit over-provisioning.

5.2 Sequentiality Shaping
Arguably the random write workload is an unusual or even
pathological workload. Most random write workloads ex-
hibit a certain level of sequentiality, which can be approx-
imately modelled by a random write workload with an av-
erage size larger than one single page. It is expected that
sequentiality has a positive impact on the random write per-
formance by reducing the write amplification.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

Utilization (µ)

S
lo

w
do

w
n

fa
ct

or
 (

s f)

Avg. size 8 KiB
Avg. size 16 KiB
Avg. size 32 KiB

Figure 7. Slowdown factor with varying average request
sizes.

One form of sequentiality shaping is to use a DRAM-
based buffer cache to increase sequentiality of the under-

10 2010/3/25

lying workload [29, 50]. To characterize the effect of the
increased sequentiality on performance, we investigate the
slowdown factors for a range of random write workloads of
average sizes via simulation, shown in Figure 7. To avoid the
complexity of handling unaligned pages, the workloads are
assumed to be aligned on the page boundary, and with sizes
of multiple pages. Compared with long sequential work-
loads, the sequentiality modelled in these workloads is local
and sporadic. It can be seen from Figure 7 that the local and
sporadic sequentiality has a rather small positive impact on
reducing the slowdown factor. For the average request sizes
of 8, 16, and 32 KiB, there is no significant advantage in
term of performance slowdown compared with the random
write workload with aligned 4 KiB write requests.

This result seems counterintuitive to the general belief
that sequentiality can effectively decrease the write amplifi-
cation. It reveals that there is a significant difference between
long sequentiality and local sporadic sequentiality. The rea-
son is that, under long sequential workloads, the data layout
on Flash is most likely sequential, and when updating se-
quentially, there are large chunk of invalid pages, leading
to reduced write amplification and slowdown factor; In con-
trast, under local sporadic sequential workload, the data lay-
out on Flash is much less likely sequential, and then there is
less possibility for the existence of large chunks of invalid
pages. This suggests that workload shaping schemes that ex-
ploit local sporadic sequentiality of the workload may not be
effective in terms of reducing write amplification.

Remarks: Note that the above results are obtained based
on a page-level FTL that incurs no FTL garbage collection
overhead. When a hybrid or block FTL is used, it is likely
that increasing the level sequentiality of the workloads, e.g.,
by using buffer management schemes, can have a positive
impact on reducing write amplification due to FTL garbage
collection.

Some file systems use a large page size such as 8, 16 or
even 32 KiB. It is conjectured that large page sizes would
be beneficial for reducing write amplification because of the
inherent sequentiality of a single access. Figure 8 shows
the simulated slowdown factors as a function of utilization
for page sizes of 8, 16 and 32 KiB, in which every write
is assumed to be aligned on the boundary of pages, the
workload is again IUP and the greedy GC is used. It is
confirmed that increasing page size has a positive impact
on combatting performance slowdown at high utilization —
the larger the page size, the better improvement in terms of
performance slowdown.

5.3 Data Placement
It is unlikely that an application writes randomly to the
entire logical address space of the Flash SSD. Instead, most
practical write workloads exhibit spatial skewness, namely,
some data is updated more frequently, whereas other data is
updated less frequently. In terms of the frequency of being
updated, data can be classified as active (or short-lived)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

Utilization(µ)

S
lo

w
do

w
n

fa
ct

or
 (

s f)

Page size 8 KiB
Page size 16 KiB
Page size 32 KiB

Figure 8. Slowdown factors under varying page sizes.

and inactive (or long-lived). The read-only data naturally
belongs to inactive data.

The issue of data placement is trivial under the random
write workload, because each page has the same probability
of being updated, and thus page writes can simply be packed
into free Flash blocks sequentially. Care must be taken, how-
ever, when active and inactive data co-exist. If active and in-
active data are not distinguished and placed into the same
Flash block in a mixed way, active data tends to be updated
quickly (therefore becoming invalid), whereas other data are
inactive and likely remain valid for a relatively long time.
The result is that the garbage collection has to relocate the
inactive data. In contrast, if a block only contains active data
and becomes selected as victim for garbage collection, it is
most likely that all pages in this block will be invalid. Hence
it is desirable to distinguish active data from inactive data
and to place active data and inactive in separate blocks.

To investigate the impact of data placement, we assume
a special workload with active data being updated indepen-
dently and with equal probability and inactive data never be-
ing updated, i.e., read-only data, and we compare two data
placement schemes: mixed and separated. The mixed data
placement scheme assumes no information on data active-
ness, and simply packs data together into free Flash blocks
without awareness of the activeness of a data page. The
separated data placement scheme is assumed to have per-
fect knowledge of the activeness of each data page and thus
places active data and inactive data separately in different
blocks.

Figures 9 and 10 show write amplification of the two data
placement schemes as a function of utilization for workloads
with varying portions of read-only data. The write amplifi-
cation for the mixed data placement is obtained via simu-
lation, using the FIFO garbage collection policy. It can be
seen that the FIFO garbage collection itself can not exploit

11 2010/3/25

the existence of a large percentage of inactive data, although
it performs nearly optimal for the random write workload.
The write amplification for the separated data placement is
computed using the empirical model under the FIFO garbage
collection. It can be seen that, once active data and inactive
data are separated, the write amplification, given a fixed uti-
lization, can be significantly improved.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

Utilization (µ)

W
rit

e
A

m
pl

ifi
ca

tio
n

(w
a)

Inactive data 10%, mixed data placement
Inactive data 30%, mixed data placement
Inactive data 50%, mixed data placement
Inactive data 70%, mixed data placement

Figure 9. Write amplification as a function of utilization
under the mixed data placement scheme.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

W
rit

e
A

m
pl

ifi
ca

tio
n

(w a)

Utilization (µ)

Inactive data 10%, separated data placement
Inactive data 30%, separated data placement
Inactive data 50%, separated data placement
Inactive data 70%, separated data placement

Figure 10. Write amplification as a function of utilization
under the separated data placement scheme.

It is evident that the separated data placement scheme
offers an advantage over the mixed one, and as the portion
of read-only data increases, the improvement becomes more
pronounced. This result provides quantitative/theorectical
evidence that active data and inactive data should not be
placed on the same Flash block, and strongly suggests that
an ideal separation data placement scheme can significantly

reduce write amplification when incorporated into garbage
collection policy for realistic workloads with a lot inactive
data.

The concept and its related techniques of separating ac-
tive data from inactive data have been well studied in the
log-structured file systems in the context of garbage collec-
tion and cleaning policies [44], which is a closely related re-
search area to Flash SSDs. However there is no prior work,
to our knowledge, to address the performance modelling of
write amplification with respect to utilization, and to study
the potential of an ideal data placement scheme.

5.4 Data Migration
Spatial skewness is found ubiquitously also in read work-
loads. In terms of read frequency, data can be classified as
hot, i.e., being frequently read, or cold. As the price of Flash
SSDs per GiB is still at least one order of magnitude higher
that that of HDDs, it would be cost-effective to migrate data
that is cold and inactive out of Flash SSDs and into lower-
cost storage media, such as HDDs. It is expected that such
migration would not degrade the overall performance be-
cause such data is rarely accessed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

W
rit

e
A

m
pl

ifi
ca

tio
n

(w a)

Utilization (µ) before migration

10% being migrated
30% being migrated
50% being migrated
70% being migrated

Figure 11. Write amplification as a function of utilization
(original) with data migration.

We argue that, if the portion of cold and inactive data
is relatively large and is perfectly identified, migrating this
portion of data would actually boost the sustained random
write performance of Flash SSDs by effectively reducing
Flash utilization and thus reducing write amplification. Fig-
ure 11 shows the decreasing behavior of write amplification
as larger portions of data are identified as cold and inac-
tive and are migrated. The underlying reason is that the ef-
fective utilization is reduced by migrating part of the data
out of Flash SSDs, leading to a lower write amplification.
This observation has a profound implication: Cold and inac-
tive data should not be stored forever on Flash memory, not

12 2010/3/25

merely for cost efficiency reasons, but also for improving
Flash SSD performance and endurance. Our findings pro-
vide compelling evidence and strongly suggest that the opti-
mal way to integrate Flash into current memory and storage
hierarchy should be either to use Flash as a cache layer or to
use a tiered storage architecture with Flash dedicated to hot
and active data only.

6. Conclusions
The poor random write performance of Flash SSDs and
their performance slowdown can be caused by either de-
sign/implementation artifacts, which can be eliminated as
technology matures, or by fundamental limits due to unique
Flash characteristics. Identifying and understanding the fun-
damental limit of Flash SSDs are beneficial not only for
building advanced Flash SSDs, but also for integrating Flash
memory into the current memory and storage hierarchy in an
optimal way.

We analyze the fundamental limit of the sustained ran-
dom write performance for Flash SSDs, assuming an in-
dependently, uniformly-addressed random write workload.
We prove that the greedy garbage collection policy is the
optimal garbage collection policy for such a workload and
that no static wear levelling is needed. Furthermore, an em-
pirical model is developed to compute the write amplifica-
tion and performance slowdown factor as a function of uti-
lization. Potential causes of the commonly observed perfor-
mance slowdown are investigated, and remedies suggested.
Moreover, we demonstrate that data placement and data mi-
gration may lead to a significant improvement of the random
write performance and endurance by exploiting the spatial
skewness of workloads. Our results provide compelling evi-
dence that the optimal way to integrate Flash into the current
memory and storage hierarchy would be either to use Flash
as a cache layer or to use a tiered storage architecture with
Flash dedicated to hot and active data only.

The paper leaves several questions to the future research.
First, as the performance analysis model developed in this
work is limited to the greedy garbage collection policy, it
would be interesting (and also challenging) to analyze the
random write performance for a more realistic garbage col-
lection policy under realistic workloads. Second, the paper
highlights the benefits of data placement and data migration
through a theoretical analysis, but provides no concrete so-
lution, and we hope this work could trigger further research,
although there are some preliminary attempts, on how to
efficiently combine data placement/migration with garbage
collection. Last but not least, recent work has shown that
a smart write buffer management algorithm together with
block-level FTL may perform as well as or even better than
page-level mapping schemes, thus, an analysis of garbage
collection for block-level FTL is desirable.

References
[1] SmartMediaTM specification. SSFDC Forum, 1999.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy. Design tradeoffs for SSD perfor-
mance. In Proceedings of the Usenix Annual Technical Con-
ference, June 2008.

[3] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Character-
izing the performance of flash memory storage devices and its
impact on algorithm design. In Proceedings of the Workshop
in Experimental Algorithms, pages 208–219, 2008.

[4] D. G. Andersen, J. Franklin, and M. Kaminsky. FAWN: A fast
array of wimpy nodes. In Proceedings of the ACM Symposium
on Operating Systems Principles SOSP, 2009.

[5] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-
memory algorithms. In Proceedings of 14th Annual European
Symposium on Algorithms (ESA), pages 100–111, Sept. 2006.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. ACM SIGOPS Operating
Systems Review, 41:88–93, 2007.

[7] T. Bisson and S. A. Brandt. Reducing hybrid disk write
latency with flash-backed I/O requests. In Proceedings of the
15th IEEE International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2007.

[8] L. Bouganim, B. Jonsson, and P. Bonnet. uFLIP: Understand-
ing flash IO patterns. In Proceedings of the 4th Biennial Con-
ference on Innovative Data Systems Research (CIDR), Jan.
2009.

[9] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: Using
flash memory to build fast, power-efficient clusters for data-
intensive applications. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 217–
228, Feb. 2009.

[10] L.-P. Chang. On efficient wear leveling for large-scale flash-
meory storage systems. In Proceedings of 22nd ACM Sympo-
sium on Applied Computing, May 2007.

[11] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time garbage
collection for flash-memory storage systems of real-time em-
bedded systems. ACM Transactions on Embedded Computing
Systems, 3(4):837–863, Nov. 2004.

[12] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo. Endurance en-
hancement of flash-memory storage systems: An efficient
static wear leveling design. In Proceedings of 44th Design
Automation Conference (DAC), pages 212–217, June 2007.

[13] F. Chen, S. Jiang, and X. Zhang. SmartSaver: Turning flash
drive into a disk energy saver for mobile computers. In
Proceedings of the 11th International Symposium on Low
Power Electronics and Design (ISLPED), 2006.

[14] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrin-
sic characteristics and system implications of flash memory
based solid state drives. In Proceedings of the ACM SIGMET-
RICS/Performance, 2009.

[15] S. Chen. FlashLogging: Exploting flash devices for syn-
chronous logging performance. In Proceedings of the ACM

13 2010/3/25

SIGMOD, 2009.

[16] B. Debnath, S. Subramanya, D. Du, and D. J. Lilja. Large
block CLOCK (LB-CLOCK): A write caching algorithm for
solid state disks. In Proceedings of the 17th IEEE Inter-
national Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS),
2009.

[17] C. Dirik and B. Jacob. The performance of PC solid-state
disks (SSD) as a function of bandwidth, concurrency, device
architecture, and system organization. In Proceedings of the
36th IEEE International Symposium on Computer Architec-
ture (ISCA), 2009.

[18] E. Gal and S. Toledo. Algorithms and data structures for flash
memories. ACM Computing Surveys, 37(2):138–163, June
2005.

[19] E. Gal and S. Toledo. A transactional flash file system for mi-
crocontrollers. In Proceedings of the Usenix Annual Technical
Conference, 2005.

[20] G. Graefe. The five-minute rule twenty years later, and how
flash memory changes the rules. In Proceedings of the Third
International Workshop on Data Management and New Hard-
ware (DaMoN), 2007.

[21] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A flash transla-
tion layer employing demand-based selective caching of page-
level address mappings. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 229–
240, Feb. 2009.

[22] J.-W. Hsieh, T.-W. Kuo, P.-L. Wu, and Y.-C. Huang. Energy-
efficient and performance-enhanced disks using flash-memory
cache. In Proceedings of the 11th International Symposium on
Low Poweer Electronics and Design (ISLPED), 2007.

[23] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka.
Write amplification analysis in flash-based solid-state drives.
In Proceedings of the ACM SysStor: The Israeli Experimental
Systems Conference, May 2009.

[24] H. Jo, J. K. S. Park, J. Kim, and J. Lee. FAB: Flash-aware
buffer management policy for portable media players. IEEE
Trans. Consumer Electronics, 22(2), 2006.

[25] J. Kang, H. Jo, J. Kim, and J. Lee. A superblock-based flash
translation layer for NAND flash memory. In Proceedings
of the International Conference on Embedded Software (EM-
SOFT), pages 161–170, 2006.

[26] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory
based file system. In Proceedings of the Usenix Annual Tech-
nical Conference, Jan. 1995.

[27] T. Kgil and T. Mudge. Flashcache: A NAND flash memory
file cache for low power web servers. In Proceedings of the
CASES’06, 2006.

[28] T. Kgil, D. Roberts, and T. Mudge. Improving NAND flash
based disk caches. In IEEE Proceedings of the 35th IEEE
International Symposium on Computer Architecture (ISCA),
2008.

[29] H. Kim and S. Ahn. BPLRU: A buffer management scheme
for improving random writes in flash storage. In Proceedings

of the 7th USENIX Symposium on File and Storage Technolo-
gies, pages 1–14, Feb. 2008.

[30] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A space-
efficient flash translation layer for compact flash systems.
IEEE Trans. Consumer Electronics, 48:366–375, May 2002.

[31] I. Koltsidas and S. D. Viglas. Flashing up the storage layer. In
Proceedings of the VLDB, 2008.

[32] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song. A log
buffer based flash translation layer using fully associative sec-
tor translation. ACM Trans. Embedded Computing Systems,
6(3), 2007.

[33] S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: Locality-aware
sector translation for NAND flash memory-based storage sys-
tems. In Proceedings of the International Workshop on Stor-
age and I/O Virtualization, Performance, Energy, Evaluation
and Dependability (SPEED), Feb. 2008.

[34] S.-W. Lee and B. Moon. Design of flash-based DBMS: An in-
page logging approach. In Proceedings of the ACM SIGMOD,
2007.

[35] S.-W. Lee, B. Moon, and C. Park. Advances in flash mem-
ory SSD technology for enterprise database applications. In
Proceedings of the ACM SIGMOD, 2009.

[36] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory SSD in enterprise database applica-
tions. In Proceedings of the ACM SIGMOD, 2008.

[37] A. Leventhal. Flash storage memory. Communications of the
ACM, 52:47–51, 2008.

[38] C. Manning. YAFFS: Yet another flash file system, 2004.

[39] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating server storage to SSDs: Analysis of
tradeoffs. In Proceedings of the ACM EuroSys, 2009.

[40] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: A
replacement algorithm for flash memory. In Proceedings of
the CASES’06, 2006.

[41] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid
state disks performance. In Proceedings of the First Workshop
on Integrating Solid-state Memory into the Storage Hierarchy
(WISH), held in conjunction with ASPLOS, 2009.

[42] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transactional
flash. In Proceedings of the USENIX Operating Systems
Design and Implementation OSDI, 2008.

[43] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block man-
agement in solid-state devices. In Proceedings of the USENIX
Annual Technical Conference, June 2009.

[44] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Trans. Com-
puter Systems, 10(1):26–52, Feb. 1992.

[45] SanDisk. Long-term data endurance (LDE) for client SSD,
Oct. 2008. white paper, No 80-11-01654.

[46] S. W. Schlosser and G. R. Ganger. MEMS-based storage
devices and standard disk interfaces: A square peg in a round
hole? In Proceedings of the 3rd USENIX Symposium on File
and Storage Technologies, pages 87–100, 2004.

[47] D. Schmidt. TrueFFS wear-leveling mechanism. Technical
report, M-Systems, May 2002.

14 2010/3/25

[48] F. Shu. Notification of deleted data proposal for ATA8-ACS2,
2007.

[49] Silicon Systems Whitepaper. Preventing storage system wear-
out, 2008.

[50] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki.
Evaluating and repairing write performance on flash devices.
In Proceedings of the 5th International Workshop on Data
Management on New Hardware, 2009.

[51] D. Woodhouse. JFFS: The journaling flash file system. In
Ottawa Linux Symposium, July 2001.

[52] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main
memory storage system. In Proceedings of the International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Feb. 1994.

15 2010/3/25

