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A classical cycle on a manifold is determined in a neighborhood of a point by 
giving a finite number of weightes branches passing through the neighborhood. 
It is natural to generalize this picture by considering a kind of cycle defined locally 
by an infinite family of branches weighted by a non-negative measure on the 
family. 

For example one could take cycles locally defined by measured families of 
leaves in a foliated manifold, or measured families of (local) irreducible complex 
subvarierties passing near a point in a complex manifold. 

Such cycles determine currents (linear functionals on C~-forms) in the sense 
of de Rham [De] and Schwartz [Sc]. These cycles have proved useful in the study 
of foliations [P], [RS], [Sch]. Also one obtains a single geometric notion inter- 
polating between the two extremes-classical cycles and closed differential forms. 
Our original goal here was to characterize such cycles for foliations among all 
the currents. 

The idea is to consider currents which are "directed" by an a-priori given field 
of cones in the spaces of tangent p-vectors. Such a positivity condition leads to a 
compact convex cone of currents with a compact convex subcone of cycles (closed 
currents). 

One has (Part I) transversal intersection theory for these "directed cycles" 
and approximation by diffuse cycles (those given by closed differential forms). 
Moreover, because of the compactness one can apply the basic tools of linear 
analysis such as the theorems of Hahn-Banach and Choquet. 

The former allows one to construct closed C~-forms satisfying positivity 
conditions (on the cone field) because of the duality between forms and currents 
[Sc]. The latter allows one to decompose globally the directed cycles into a mass 
distribution of irreducible cycles-  those determined by extreme rays of the cone 
of cycles. (Work of Ruelle implies such decompositions are unique in the case of 
foliations. The decompositions are not unique in the case of cycles directed by 
"complex" 2p-vectors in a complex manifold.) 

In the case of foliated manifolds, the notion of "directed cycle" provides the 
desired characterization of cycles defined locally by measured families of leaves, 
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(or transverse invariant measures [P] and [RS]). There are many elementary 
applications of this characterization to the dynamical study of foliations (Part II). 

In the case of complex manifolds the complex-directed cycles (called complex 
cycles) include those defined locally by measured families of local complex 
analytic subvarieties. It is unknown to the author if complex cycles are more 
general. 

In a Kaehler manifold the complex cycles yield natural compact convex 
cones [l~p] c H2p(M,R ) and these cones generate the Hodge spaces ~ c H2p(M,R), 
where ~p = real points Hp, v (M, r (Theorem III.17). There are other "elementary" 
new results about compact complex manifolds in Part III. 

Directed cycles are flat currents or flat chains in the sense of [F] and [ W ] -  
thus they are geometric in character. For example, such a non-trivial d-cycle 
cannot be supported on a set whose Hausdorf dimension is less than d. ([F] 
4.1.20). 

The latter works especially [F] contain a wealth of non-trivial local geometric 
information concerning these cycles-  hopefully relevant to future study. 

Before giving a detailed description of the contents I would record my debt to inspiring conversa- 
tions with Rufus Bowen, Boris Moizshezon, Joe Plante, David Ruelle, Harold Rosenberg, Bill Thurston 
and Alan Weinstein as well as the stimulation of very interesting recent theorems of Dan Asimov [As] 
and David Fried [Fr ]  on flows. 

Contents 

Part I 

Part II 

Part III 

w 1. Cone Structures on Manifolds . . . . . . . . . . .  229 
w 2. Local Study of Structure Currents . . . . . . . . .  232 
w 3. Local Study of Foliation Cycles . . . . . . . . . .  235 

w 4. Foliations of Arbitrary Dimension and Codimension . 238 
w 5. Codimension one Foliations . . . . . . . . . . .  242 
w 6. A Homological Proof of Novikov's Theorem . . . . .  244 
w 7. Compact Foliations . . . . . . . . . . . . . . .  245 
w 8. One-Dimensional Foliations . . . . . . . . . . . .  246 

w 9. Lorenz Geometry . . . . . . . . . . . . . . . .  248 
w 10. Symplectic Structures . . . . . . . . . . . . . .  249 
w 11. Complex Structures on Manifolds . . . . . . . . .  251 

Summary 

Part  I :  The Basic Resul ts  

(w 1) A cone structure (I.2) is a continuous field of cones of p-vectors on a manifold. 
One has currents (I.4) and cycles (I.6) tangent to the structure and differential 
forms transverse to (or positive on) directions of the structure (I.3). Theorem 1.7 
expresses a duality between tangential cycles and transversal closed forms. 
1.7 uses Hahn Banach, the duality between forms and currents, and a compactness 
phenomenon of these currents (I.5). 
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(w 2) Currents tangent to cone structures are represented by measures (1.8). 
They can be approximated by diffuse currents (differential forms) tangent to 
slightly larger cone structures (I.9). This yields a picture of structure cycles in di- 
mension one and in codimension one (I.10). It also implies transversal cycles 
behave homologically as expected (I.11). 

(w 3) In case the cone structure is given by an oriented foliation one can analyze 
the cycles-foliation cycles. Locally these are distributions of leaves (I.12). Thus 
they are in one to one correspondance with transversal invariant measures for 
foliations (I.13). 

Part II: Applications to Foliations 

(w 4) i) One either has transversal invariant measures for a foliation or closed 
forms positive on the foliation (II.1), (II.2) gives a more precise statement. In the 
non-degenerate case where one has both foliation cycles and transversal closed 
forms, these objects define compact dual cones in homology and cohomology 
(II.3). Moreover, the cycles in one homology class form a compact convex set 
(II.4). 

ii) A non-compact Riemann manifold is "closed at oo" if the volume form is 
not the differential of a bounded form (II.5). These manifolds include those of 
subexponential growth (11.7) and define foliation cycles if they occur as leaves of 
foliations (II.8). 

iii) The Poincar6 recurrence set is the union of the supports of all foliation 
cycles II.9. It is closed and invariant (II.10) and has somewhat surprising stability 
properties (II.11) and (II.12) when one deforms the foliation. 

iv) A vanishing cycle (II.14) yields a foliation cycle. (II.15) 

(w 5) The property in codimension one "all leaves have exponential growth" 
is stable under perturbation (II.17). 

A totally recurrent foliation can be approximated by one defined by a closed 
one form (II.18). To be so approximated is characterized by homological properties 
of transversal one-cycles (II.19). 

A codimension one foliation with all leaves non-compact is transversal to a 
volume preserving flow (II.20). 

(w 6) Novikov's theorem that every foliation of S 3 has a compact leaf is proved 
using "Haefliger's argument", (II.15) and (II.16). 

(w 7) In a foliation with all leaves compact the obvious necessary homological 
condition on the leaves to have a closed form positive on the foliation is also 
sufficient (II.23). A basic theorem [EMS] on bounds on volumes is reproven. 

(w 8) Invariant measures for flows correspond to foliation cycles (II.24) which 
can be approximated by circles nearly tangent to the flow (II.25) using the ergodic 
theorem. 



228 D. Sullivan 

A compact set either contains recurrence or there is a gradient function (II.26). 
We prove Schwartzman's homological criterion for a flow to have a global cross 
section (II.27). 

A totally recurrent flow can be approximated by a volume preserving flow 
(II.28). 

(II.29) gives the condition that there is a volume preserving flow transverse 
to a given ( n -  i) plane field. 

(II.30) characterizes flows which may be approximated by volume preserving 
flows. 

Part III:  Applications to Other Structures 

(w 9) (III.1) gives a dichotomy (for the dynamical structure determined by a field 
of light cones) between recurrence defined by one-cycles and global functions in- 
creasing along cone directions. (This is closely related to a theorem of Hawking.) 

(w 10) (Ill.2) describes a geometrical cone structure Poincar6 dual to a sympletic 
structure. Examples: 4 manifolds and complex structures. 

(w 11) Compact complex manifolds have natural cone structures defined by the 
complex directions. (Example following 1II.2). 

These are always complex cycles in C-dimension one (III.10). 
The complex cycles form natural compact convex cones (1II.13). 
A Kaehler metric determines a diffuse complex cycle of dimension n - 1  

(III.15). The cone in homology [IEf,]cH2p(M,R) determined by the complex 
cycles ofa Kaehler manifold generates the Hodge space ~p = real points Hp, p(M, I~) 
(III.17). 

III.18, III.19, III.20, III.21, III.22 are corollaries of the latter. 

{algebraic cycles} = {complex cycles} c~ {rectifiable currents} (III.23) 

Preliminary Remarks 

We will always work in a compact region of a smooth n-manifold of class C ~. 
We use C ~ forms ~p and their dual functionals the currents ~'p [De] and [So]. 
We make use of the beautiful formal properties: 

i) ~p and ~ are strong duals of one another [Sc]. 

ii) ~p and ~ are locally convex and Montel (bounded sets are precompact) 
[Sc]. 

iii) If p +q  = n, there are natural inclusions ~q-~ ~ defined by an orientation 
of M (assumed closed) and the wedge product of forms. The image of @q in @'p 
are called the diffuse p-currents. They are dense [De]. 

iv) There are natural intersection pairings p + q = n + r, 

(diffuse p-currents) x (q-currents)-* (r-currents). 

We denote all the natural pairings involving currents, forms, p-vectors, and 
q-covectors by ~ A " 
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The inclusion iii) is a precise form of Poincar6 duality. At each point where a 
q-form e) is non-zero (the interior support of m) there is a well-defined ray of p- 
v e c t o r s -  the direction of ~o. The current defined by co has a closed support, (the 
closure of the interior support). 

Although we work in the general setting above to use the compactness and 
Hahn-Banach theorem, the currents we construct are usually currents of degree 0. 
They define functionals on continuous forms and can be represented in terms of 
non-negative measures (measures are always non-negative here) and measurable 
functions into p-vectors (Part I). 

The structures we consider such as foliations need not be C ~. For most of the 
work on foliations it is sufficient to have smoothness of class C 1' o (leaves are C 1 
and tangent planes vary continuously.) Everything works for foliations with 
local charts of class C ~. 

Part I: Cone Structures, Cycles, and Closed Forms 

,~ 1. Cone Structures on Manifolds 

Definition 1.1. A compact convex cone C in a (locally convex topological) vector 
space over R is a convex cone which for some (continuous) linear functional L 
satisfies L(x )>0  for x + 0  in C and L - l (1 )n  C is compact.  The latter set is called 
a base for the cone. We will often identify a base with the set of rays in the cone, 
denoted C. The kernel of L is called a strictly supporting hyperplane of the cone C. 

Definition 1.2. A cone structure on a closed subset X of a smooth manifold M is 
a continuous field of compact  convex cones {Cx} in the vector spaces Ap(x) of 
tangent p-vectors on M, x ~ X .  Continuity of cones is defined by the Hausdorf  
metric on the compact subsets of the rays in Ap. Namely the bases of the cones move 
continuously relative to the metric h(C, C ' )=  max(sup p(c, C'), sup p(c', C)) where 

CE~ C'E~' 

p is a convenient metric on rays defined in some local trivialization of Ap. 

Definition 1.3. A differential p-form co (of class C ~) on M is transversal to the cone 
structure C if co(v)>0 for each v + 0  in CxcAp(x) ,  x ~ X .  

Proposition 1.4. A cone structure C admits transversal p-forms. 

Proof A strictly supporting hyperplane for Cx in Ap(x) can be extended easily 
to a p-form satisfying (~>0 on C with strict inequality holding for non zero 
p-vectors on a neighborhood of x. Now one takes convex combinations of these 
forms using a partition of unity to find a transversal form. 

Remark. If X is compact  then clearly any transversal p-form has a positive lower 
bound on the p-vectors of unit length in the cones C~ (relative to any convenient 
Riemann metric). 

Definition 1.4. A Dirac current is one determined by the evaluation of p-forms on a 
single p-vector at one point. The cone of structure currents cg associated to the 
cone structure C is the closed convex cone of currents generated by the Dirac 
currents associated to elements of C~, x e X. 
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Proposition 1.5. I f  X is compact the cone of structure currents c~ associated to a cone 
structure C on X is a compact convex cone. 

Proof. Let 09 be a p-form positive on C and let 2 be a positive lower bound for the 
values of ~ on the unit p-vectors of  C x (relative to a convenient metric). Let 
~=C~c~r where r denotes the linear functional c-+Sog. ~ is closed by 

c 

definition. To show that ~ is compact  we need only show that the values (@, r/) 
are bounded for any fixed form r/[Sc, p. 74]. If m denotes the maximum value of r/ 
on any unit p-vector along X then clearly (c~,r/)c I - a ,  a] where a=m/2 .  For 
ISnl<<_lm/,~So~l<_<_m/Z, when ce~. Note by density it is enough to take c to be a 
C C 

finite sum of Dirac currents in the above calculations. This proves the proposition. 

Remarks. Structure currents are currents of integration or currents of degree zero. 
Namely, the values are small on forms whose coefficients are small. This implies 
they can be described in terms of measures (Proposition 1.8 below). Then the 
proposition above follows from the well known fact that probabili ty measures 
on a compact space comprise a compact  convex set in the dual space of continuous 
functions [Ph].  

Definition 1.6. If C is a cone structure, the structure cycles of C are the structure 
currents which are closed as currents. 

Remark. We will try to develope the idea that structure cycles with compact 
support  are like global recurrent solutions of the dynamical structure associated 
to C. 

Now we give one of the main technical results of the paper which follows readily 
from the Hahn-Banach theorem, the duality between forms and currents, and the 
compactness. 

First we note that in the space of p-currents there are two natural subspaces, 
the boundaries ~ and the cycles ~ .  Thus cone structures C are partitioned into 

Type I Type II Type III 

Fig. 1 

cg 
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three groups according to the position of W the cone of currents determined by C 
relative to ~ and Y'. 

Suppose C is a cone structure of p-vectors defined on a compact subspace X 
in the interior of M which is also compact (with or without boundary). 

Theorem 1.7. i) There are always non-trivial structure cycles in X or closed p- 
forms on M transversal to the cone structure (i.e. positive on the cones Cx). 

ii) I f  no closed transverse form exists some non-trivial structure cycle in X is 
homologous to zero in M (type I) .  

iii) I f  no non-trivial structure cycle exists some transversal closed form is 
cohomologous to zero (Type I I I ). 

iv) I f  there are both structures cycles and transversal closed forms (type I I )  
then 

a) the natural map 

(structure cycles on X--~ homology classes in M) 

is proper and the image is a compact cone C ~ Hp(M, R) 

b) the interior of  the dual cone C ' c  HP(M, R) 1 consists precisely of  the classes 
of closed forms transverse to C. 

Proof. First we note that the closed currents ~ forms a closed subspace of the p- 
currents on M (• is continuous). Second the boundaries form a closed subspace of 
the cycles 2 ~ (being defined by the vanishing of periods ~ ~oi=O where co i ranges 
over of HP(M, R)). Third by the Hahn Banach theorem any closed subspace of 
currents which does not intersect a compact set 2 can be extended to a closed sub- 
space of codimension one not intersecting that set. Fourth, a closed hyperplane 
of currents determines (up to a non-zero constant) a C ~ form on M which vanishes 
only on that hyperplane because currents and forms are dual spaces [Sc]. 

To prove the statements of the theorem let ~ be any compact  base of the cone 
(I.5) and we obtain a compact  set not intersecting zero to which the above remarks 
may be applied. 

To prove iii) extend the cycles to a closed hyperplane not intersecting c~. 
Choosing the direction determined by ~ gives an exact form (up to a positive 
constant) which is positive on @. 

To prove ii) extend the boundaries to a hyperplane not intersecting ~ if no 
structure cycle bounds. Then one has a closed p-form transversal to the structure. 
This is a contradiction so ii) must be true. 

Note the extension just made could have begun with any hyperplane in ~f 
containing ~ which does not intersect ~ .  This proves iv)b). 

Now iv) a) is clear because the fibres (up to scaling) are the intersection of %~ 
with translates of ~ .  

Statement i) is a consequence of ii) and iii) and the theorem is proved. 

1 c '  is defined by (C', ~)>0 
2 Of course convex 
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w 2. Local Study of Structure Currents 

We begin the local analysis of the structure currents of C. First note if # is a prob- 
ability measure on M and v is a continuous field of p-vectors satisfying v(x)~ C x 
for each x then the pair (v, #) defines a structure current for C denoted ~ vdl~. 
Namely (S vdp)(eJ)=~ (o~ ^ v)d# any continuous p-form ~o. Actually, v need only 
be/~-integrable in order that ~ vdl~ defines a structure current, and we have 

Proposition 1.8. Any structure current c may be represented c= ~ vd# where I~ is a 
x 

non-negative measure on X (assumed compact) and v is a p-integrable function into 
p-vectors satisfying v(x)e C x. 

Proof The question is local and we can work on a small neighborhood U where 
the bundle Ap is trivialized U x Ap(xo) and the cones Cx vary only a little. By the 
Riesz representation theorem c may be represented by a measure v with values 
in Ap(xo). On a Borel set A we will have v(A)~ C a = @ C a. 

a E A  

It is easy to construct a non-negative measure # on X (from the components 
of v) so that v is absolutely continuous with respect to/~. The Radon-Nikodym 

dv v(A) 
derivative duu=# a-,a~--~)lim is defined /t almost everywhere and we have the re- 

dv 
presentation c =  j vd# where v =~-p .  Note that v(a)~ C a follows from v(A)E C a. 

Remark. i) One may think of c = j v d/~ as a linear combination of dirac currents 
v(x) (in the structure) with the weighting provided by #. For example Oc= 

I 
ii) The representation is not unique because we can take any positive contin- 

uous function p on X and replace (v, #) by (v/p, p #). The representation in terms 
of the Ap-valued measure v (of the proof) is unique. 

iii) Note the special case X = M,/a is a smooth measure determined by an n- 
form ~ (and an orientation of M), and v is a smooth field of p-vectors. Then ~ vd# 
is the diffuse current determined by the q-form ~2 ^ v (via the same orientation of M). 

Now we consider approximating currents by diffuse currents. These considera- 
tions are well known except possibly the geometric property iii) below. 

The diffusion of currents can be accomplished by the linear operation 

z - - ~ , ( ( M x z )  AU~)=D~z (Fig. 2) 

where ~z is the projection on the first factor in M x M and U~ is a closed n-form 
Poincar6 dual to the diagonal in M x M. 

We will choose U, so that as e-*OU~ approaches the diagonal current in the 
following senses 

i) in the topology of n-currents on M x M, 

ii) the support of U~ is contained in the e neighborhood of the diagonal, 

iii) the rays of n-vectors determined by the non-zero values of U~ approach 
those determined by the oriented tangent planes of the diagonal. 

Given such a system of n-forms U~ we have the 
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Support U e ~  
Support z/\ ~ S @ p p o r t  M• 

J ~ J 
Support Dez 

Fig. 2 
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Proposition 1.9. D e defines a linear operation on currents which commutes with 0 
and preserves homology classes. For structure currents z relative to C,D~z is a diffuse 
current (a q-form, p+q=n)  relative to a slightly larger cone structure C (Cxc  
interior Cx). Finally interior support (O~z) contains support (z). 

Proof The first statement follows directly from the definition. For the second 
represent z by ~vd# (I.8). By linearity D~z=~ D~v(x)dl~, and it suffices to analyze 
D~v where v is a dirac current at x. 

Now D~v is by direct calculation a q-form. Properties ii) and iii) insure the 
existence of (~ so that D~v is a structure current for C. The result follows for z 
by linearity (we integrate the function D~v(x) with values in q-forms against the 
measure #, D~ z = ~ D~ (v(x))d#). 

Because the local currents produced are structure currents for C there is no 
cancellation of support when we take linear combinations and the last statement 
holds. (We are reduced to the corresponding statement about the interior support 
of a diffused non-negative measure.) 

Now we will construct the form U~. We will do this for the integration current 
defined by any compact submanifold V v contained in W. Then we restrict to the 
special case of the diagonal in M x M. 

Proposition [De]. If(V) is the current of integration defined by a compact submani- 
fold V of W then there is a system of closedPoincarO dual forms v~ satisfying as e-+O, 

i) v~ converges to (V) in the space of currents on W, 

ii) support v~ is contained in the e-neighborhood of V, 

iii) the rays of v-vectors determined by the non-zero values of v~ approach those 
determined by the oriented tangent planes of V. 

Proof For the proof we first diffuse the diagonal in W x W(over V) by a stepwise 
operation. Cover a neighborhood of V by a finite number of parallelized regions 
of W1, W z . . . .  ,141,. Over W/in W x W consider the d-current (d = dimension W) 
made out of parallel copies of the diagonal (Figure 2) (defined by the paraUelization 
and an a-priori identification of a tubular neighborhood of the diagonal and the 
tangent bundle). These translates are forced to become tangent to the diagonal 
at O W~ and are weighted with a smooth transverse measure which becomes the 
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dirac measure at OW~. (We present the current U~ as a measured family (Bi, #i) of 
smooth manifolds which are each small partial displacements of the diagonal. 
Where the submanifolds all agree the measure on the family becomes the Dirac 
transversal measure in the manifold.) 

1 

W, 

Fig. 3 

This construction yields a closed d-current U~ which is a (decomposable) form over 
W~ and agrees with the diagonal current outside W~. Now one can apply the diffusion 
operators Diz=n. ( (Wxz) /x  U~) successively to the current (V), namely DI(V), 
0 2 D1 (V), ..., Dr. . .  D I(V) to construct the desired diffusion v~ of V. 

One actually defines D~ V, D 2 D~ V, etc. by intersecting families of transversal 
manifolds (and projecting). Thus D 1 V is presented as a (B 1 , #1) family, DED 1V 
as a (B 1 x B2, Px x ]A2) family, etc. 

One knows [De] that these currents obtained by intersection agree with 
~,((W x V) ̂  U 0, ~ , ( (W x D 1 V)/x U2) , etc. when either factor is diffuse (equal to 
a form). This proves the proposition. (An analogous procedure is described 
analytically in [De].) 

Now we give an approximation corollary. 

Corollary 1.10. i) Any structure cycle in dimension one is approximated by a volume 
preserving flow. 

ii) Any structure cycle in codimension one is approximated by a volume preserving 
codimension one foliation. 

Proof i) A structure cycle z in dimension one can be diffused to a closed ( n -  1)) 
form co. Where co is non-zero we have the flow lines determined by ker co which 
nearly point in the cone directions of the cone structure associated to z. 

ii) A structure cycle z in dimension ( n -  1) can be diffused to a closed one form 
~/. Where q is r /non-zero we have a foliation of codimension one defined by ker ~/ 
whose leaves (with orientation induced by ~/ and the orientation of M) nearly 
point in cone directions associated to z. 

Note these submanifolds (the flow lines and the leaves) are measured by the 
corresponding forms (in the transverse direction) to give currents approximating 
the original cylces (see w 3). 

Now we prove the plausible theorem that two (positively transverse) structure 
cycles in complementary dimensions (p + q = n) which intersect have a positive 
self-intersection number. 
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Assume C and C' are two cone structures of dimension p and q respectively 
on X and X', two compact subsets of M. At each point x of the intersection X c~ X' 
suppose (Cx)/x (C'x)>0 in A,(x). 

Let z and z' be two structure cycles for C and C' so that support z c~ support z' 
: ~ .  Then 

Theorem 1.11. The intersection number (z, z') is positive. 

Proof Diffuse z to a closed q-form Z using the D E of (I.9). For e sufficiently small 
Z is positive on C'x for x in support Z. Since interior support Z contains support 
z (1.9) it must intersect support z'. Consequently, (z, z ')= ~ Z >0. 

z, 

Note. i) It would have been easy in the Proposition (above) to achieve such a v~ if 
the normal bundle to V were trivial. We average parallel copies of V. 

ii) More generally if the normal bundle admitted a flat orthogonal connection, 
v~ could be represented as a diffuse foliation cycle (w 3) made out of 1eaves of integral 
solutions of the connection. 

iii) In general, the intersection of the submanifolds of the diffusion v~, could 
provide a picture of the real characteristic classes of the normal bundle of V. 

Patodi's work shows an analogous statement is true analytically when one 
considers the diagonal in M • M and heat diffusion. The characteristic classes 
appear as derivatives of the diffusion near t--0. 

iv) In a similar vein the invariant of Godbillon-Vey is the second derivative 
(at t--0) of an intersection constructed by deforming a foliation transverse to 
itself. If co defines a foliation f f  of codimension 1 on M 3 and X is a vector field so 
that co(X)= 1, then 

gv(W)=l im 1/t 2 ~q)tcoAdco, (p t=exp tX .  
t - ,  0 M 

w 3. Local Study of Foliation Cycles 

In case the cone structure is determined by an oriented foliation there is a precise 
local description of the structure cycles. 

We assume the foliation is of class C 1 and choose a closed neighborhood B 
foliated by closed disks Ly on leaves. Let D denote the quotient of B by the leaves 
L , ,  D = {y}. 

Let (Ly) denote the current of integration on Ly (oriented by ~) .  Suppose Z 
is any foliation cycle whose support intersects B. 

Theorem 1.12. There is a non-negative measure # on D so that on interior B the 
current Z may be represented ~ (Ly) dlA. tA is unique in the interior of D. 

D 

Proof Step 1: Let v denote a continuous field of pure p-vectors providing the 
leaves of ~ with volumes (generating A; (tangent spaces to ~)) .  Then a direct 
application of Riez representation yields a non-negative measure v on M so that 
Z (or any other foliation current) is represented on M by Z(co)= j co(v)d#. 
(Compare 1.8) M 
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Step 2: Let ~ denote the measure v restricted to B and denote by n the natural 
projection B ~ D. We disintegrate the measure V over n. Namely if/~' = n ,  ~ there 
is family of probability measures r/r on B satisfying 

i) for each continuous function h on B, the function y ~  ~hdrlr is Borel 
measurable, B 

ii) the support of t/r is contained in Lr, 
iii) for each continuous function h on B, 

h d~ = ~ ( ~ h d~/y) dp' [Bo, p. 58]. 
B D Ly 

We write the last equation V = ~ r/y d/~'. Let [Lr] denote the current co --~ ~ co(v) d~/r. 
D Ly 

Then iii) becomes Z = ~ [Ly] d#'. 
D 

Step 3: The support of 8[Lr] does not intersect interior B for/t '  almost all y 
in / ) - - in te r ior  D. 

Proof. Since Z = ~ [Lr] dff on B and Z is a cycle we have in/3 = interior B 

a I d e  = a d e  = o. 
D D 

Consider a C~ - 1) form co whose support lies in/~ and a C 1 function on 
D, h(y) whose support lies in / ) .  Let q~(y) denote the Borel measurable function 
of y, y --~ a[Lr] (co). 

The form h(y).co can be C 1 approximated by C ~ forms on /3, so that 
8Z(h(y). co) must be zero by continuity (8Z is defined and continuous on C 1 forms 
and by hypothesis vanishes on C ~ forms inside B.)a 

Since 8[Lr] (h(y) . co) = h(y) . q~(y) we conclude ~ h(y) q~(y) d# '= O. Since this is 
true for all such h it follows that q~(y)=0 for #' almost all points in b (the measure 
q)(y). #' annihilates all C 1 functions supported in b so must be zero there). 

Thus we remove a set of #' measure zero from b and conclude (in /3) 
8 [Lr ] (o ) )=0  for the rest. Doing this for an appropriate countable set of co's we 
conclude support 8[Ly] does not intersect interior B for #' almost all y in D. 

Step 4: By step 3 we may write [Ly] =d(y) (Ly) on interior Lr for #' almost 
all y in interior D. (The only closed p-currents on a connected p-manifold are 
constant multiples of the integration current.) But then if # = d(y)iz' we have 
Z = j" [Lr] d # ' =  ~ d(y)(Ly) d#'=~ (Lr)fl# on /3  and we're done with the first part. 

Step 5: The uniqueness of # on D is similar to step iii) only simpler. Q.E.D. 

Now we can easily relate foliation cycles and transversal invariant measures 
for a foliation ([P], [RS]). Let us first define a presentation of the foliation and 
the transversal measure. 

Denote by T a finite union of closed disks transverse to the foliation whose 
interiors meet every leaf. If a path on one leaf connects two points x and y in T 
with y in the interior the foliation determines a homeomorphism germ, embedding 
a neighborhood of x in D into one of y in D. The foliation is essentially determined 
by this data. 

3 This is the point where the Cl-hypotheses is used. Otherwise the computation works for locally 
rectifiable leaves with continuously varying plane field 
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Definition. A transversal invariant measure for the foliation is a non-negative 
measure of finite mass on T which is compatible with all the germs of homeo- 
morphisms determined by the foliation. 

Remark. i) Any other transversal disk inherits a measure by sliding it piecemeal 
into T. In this way different presentations of the measure can be compared and 
we can pass to the equivalence class of presentations which we also call a trans- 
versal invariant measure. 

ii) This intrinsic transversal measure of a foliation of dimension p together 
with an orientation determine a closed p-current I-RS]. One merely integrates 
local forms over the leaves and averages the result in the transverse direction 
with the measure. The invariance property of the measure makes the procedure 
independant of the way a global form is broken into local forms by a partition 
of unity [RS], I-EMS]. The current just described is clearly a foliation cycle. 

Theorem 1.13. I f  ,~  is an oriented p-dimensional foliation of  a compact manifold, 
invariant transversal measures and foliation cycles are in a canonical one to one 
correspondance. 

Proof. Theorem I. 12 tells us how to construct an invariant measure from a foliation 
cycle Z. Cover the manifold by flow boxes (whose interiors cover) B~, B e . . . . .  B n. 
Express Z locally in B i as ~ (Ly) d#i. The/~i determine the measure on the trans- 
versal T =  w D i. o, 

The invariance of {#i} can be reduced to the question of compatibility for 
the case of one small flow box contained inside a larger one. This case is clear 
from the statement of 1.12. 

We have described above (and in [RS]) the procedure in the other direction. 
The two compositions are each the identity. 

Examples. i) (Flows). For one-dimensional foliations there are many examples of 
foliation cycles. The basic reason is that a long piece of one orbit normalized by 
dividing by its length is essentially a cycle [Sch]. 

a) The irrational flow on the torus provides an interesting example. Here the 
current is equal to that given by the one form whose kernel defines the foliation 
and whose transverse measure comes from the natural metric on the torus (Fig. 4). 

b) If we split open the torus along one irrational flow line and insert a doubly 
tapering s t r i p - t h e  Denjoy e x a m p l e - t h e  foliation cycle from a) concentrates 
on a closed invariant set locally homeomorphic to a line product the Cantor set 
(Fig. 5). This cycle is strictly between classical cycles and differential forms. 

Fig. 4 Fig. 5 
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ii) (2-dimensional leaves). Now foliation cycles may or may not exist. The 
irrational plane foliation of T 3 = S 1 x S 1 x S 1 is like a) above and one leaf may be 
split as in b). The Anosov foliations of the unit tangent bundle of a negative 
curved surface do not have transverse measures. (Note Theorem II.2 is clear in 
this case. One pulls up the volume form on the base to get the positive form. 
This form is exact because the Euler characteristic is non-zero.) 

iii) (Discrete groups). If F is a group of measure preserving diffeomorphisms 
of a compact  manifold F used to construct a bundle over a manifold B, there is a 
natural foliation of the total space transverse to the fibres. The invariant measure 
on F determines a foliation cycle. There are numerous recent and classical theorems 
related to this cycle. 

iv) (Geometry of leaves). Plante [P] generalized i) by observing a leaf of 
subexponential growth (of volume of balls of radius R) leads to asymptotic 
homology classes. We consider a more general geometric condition "closed at oe" 
in part II that leads to foliation cycles. The most general intrinsic geometric con- 
dition on a abstract leaf so that its closure in a foliation always carries a cycle is 
not known (see Part II). 

Part II: Applications to Foliations (w 4-w 8) 

w 4. Foliations of  Arbitrary Dimension and Codimension 

We consider now the case when the cone structure (Part I) is determined by an 
oriented foliation. For this discussion it is enough to assume that the ambient 
manifold M is of class C ~ and foliation is of class C 1. (Many of our statements 
are true under weaker hypothesis.) We say one foliation approximates another 
if their tangent planes are close. We say a differential form is bounded (on a 
non-compact  Riemann manifold) if the coefficients in an or thonormal  base are 
bounded. Forms are of class C ~ unless otherwise stated. 

In w 3 we have shown how foliation cycles correspond to transversal invariant 
measures and we refer to the two notions interchangeably (fixing the orientation 
of o~ (Theorem 1.13). 

Then we have 

Theorem ILl.  Suppose M is compact and ~ is an orientable p-dimensional foliation 
of  M. Then one either has 

i) a non-trivial foliation cycle (equivalently a non-trivial transversal invariant 
measure)  or 

ii) a closed p-form transverse to the foliation (namely, a closed p-form positive 
on the foliation). 

In fact we have the more precise statement, 

Theorem II.2. i) I f  there is no transversal invariant measure for ~ there is an exact 
p-form positive on the leaves of ~ .  

ii) I f  there is no closed form positive on the leaves of  ~ then some transversal 
invariant measure determines a foliation cycle in the trivial homology class. 
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Suppose there are both transversal invariant measures for ~ and closed 
p-forms positive on the leaves of ~ .  We say ~ is non-degenerate in this case. 
Consider the closed cone ~ in Hp(M, R) determined by the foliation cycles and 
the open cone cg in HP(M, R) determined by closed forms positive on ~ .  Let 
~'  c HP(M, R) denote the dual cone of ~. 

Theorem II.3. I f  ~, ~ is a non-degenerate foliation the cone ~ is a compact convex 
cone. The cone cg is the interior of  the dual cone flY. 

Theorem II.4. I f  ~ is a non-degenerate foliation, the natural map from the cone of 
invariant transversal measures to �9 ~ H p(M, R) is p roper -  the convex set of measures 
determining one homology class is compact. 

Theorems ILl,  II.2, II.3, II.4 are reinterpretations of (I.7) in the context of 
foliations possible because of (I.13). They are also true in the relative case. Namely 
if K is a compact subset of M one considers foliation cycles with support in K 
and closed forms positive on the tangent directions of ~ along K. Then the 
theorems are true on and near K (Theorem 1.7). 

Geometry of Leaves and Foliation Cycles 

Here we generalize the theorem of Plante [P] that a leaf of subex-ponential 
growth determines a transversal measure. 

Definition 11.5. A non-compact complete Riemannian manifold L is "not  closed 
at ~ "  if it is possible to solve the equation d~/= ~o where ~o is a bounded volume 
form (co =)~(x) �9 (unit volume form) where 0 < c < 2(x) < C < ~ )  and q is a bounded 
form (see [SW]). Otherwise we say L is "closed at ~ " .  

Note that this notion is independent of the quasi-isometry (diffeomorphisms 
with bounded distortion) class of the metric. Also note that leaves in foliations 
of compact manifolds inherit a natural quasi-isometry class of metrics (see [PS]). 

The standard line and the Euclidean plane are "closed at ~ " .  The hyperbolic 
plane (constant negative curvature) is "not  closed at ~,,4.  

Proposition 11.6. I f  L is "not closed at oo " there is a constant ~ so that for all compact 
regions R on L there is an isoperimetric inequality volume R <= 7 (area OR). 

Proof Apply Stokes and the relation dr/= 8.  

Corollary 11.7. [-SW]. I f  L is "not closed at ~ " then L has exponential growth of  
volume. 

Proof Apply the above proposition to the regions on L 

B(x, r)= {y~L~: distance (x, y)_-< r)} 
1 

to see that vol (B(x, r))= V(x, r) satisfies lim sup ~ log V(x, r)> 0 (the definition o f  

"L has exponential growth of volume"). 
! 

Note. If L is "not  closed at ~ " ,  then L satisfies a rather uniform exponential 
growth condition (e.g. Proposition II.6.) 

4 See Note Added in Proof. Solvable Lie groups (in natural metric) are "closed at oe" if and only 
if they are unimodular. Covering spaces of compact manifolds with amerable covering group are 
"closed at oe" (in lifted metric). 
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Theorem II.8. I f  M is compact and ~ does not have an invariant transversal measure 
then every leaf is "not closed at ~ "  (and satisfies the uniform exponential growth 
described above). Furthermore, if some leaf L is "closed at oo" there must be an 
invariant transversal measure whose support is contained in the closure of  L. 

Proof The first part follows immediately from II.2 and the definition. The second 
part is the relative form. 

Conclusion. One may ask conversely whether the isoperimetric inequality of 
Proposition II.6 implies M is "not  closed at oo". If this is true then effectively 
the second part of Theorem II.8 is equivalent to Plante's discussion [P] and not 
more general. For  in fact Plante considers a sequence of regions R i on leaves so 
that the ratio area ORi/volume R i --~ 0 to define homology classes. 

Such a "Plante sequence" may be viewed in our terms as determining a 
specific sequence of foliation currents C i = (1/volume Ri). ( ~ (.)) which 

Ri 

i) have mass 1 and thus form a precompact family of currents { C~}, 
ii) can only accumulate to foliation cycles because the (volume-area) con- 

dition insures mass (~Ci) ~ O. 

The accumulation points of a "Plante sequence" determine non-trivial folia- 
tion cycles and thus non trivial transversal invariant measures. 

Leaves which are "closed at oo" provide a method at least as general. In fact 
the adjective "closed at oo" could really be reserved for that geometric condition 
on a quasi-isometry class of non-compact Riemannian manifolds W so that any 

immersion W J C ~ M  determines non-trivial closed currents (M compact, f of 
bounded distortion) carried by the closure of the image o f f  

Recurrence and Foliation Cycles 

Definition 11.9. The union of the supports of all foliation cycles (or invariant 
transverse measures) of a foliation ~ is called the PoincarO recurrence set of  ~ ,  
and denoted P(~) .  

For  one-dimensional foliations the Poincar6 recurrence theorem establishes 
a recurrence property for this set. 

For  general foliations P ( ~ )  contains all compact leaves and intersects the 
closure of those non-compact leaves which are "closed at ~ "  (II.8). 

Proposition II.10. P ( 9 )  is a closed invariant set when M is compact. 

Proof If C a, C 2 . . . .  is a sequence of foliations cycles of uniformly bounded mass, 

S = ~  ~-r Ci is also a foliation cycle. If {Ci} is dense in the cycles of mass 1 then 
4 

the support of S will be all of P(~-). 

Now we prove a stability property of P(o~), again M is compact. 

Theorem II.11. Suppose ~ has no invariant transversal measure. Then any foliation 
~ '  whose tangent planes are sufficiently near to ~ also has this property. (Namely, 
P(o~) vacuous is a stable property of  ~ . )  
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Proof By Theorem II.2 there is an exact form ~o positive on ~ .  If ~ '  is near to 
co is positive on ~ ' .  Then ~ '  has no foliation cycle z because ~ co would be 

both zero and positive, z 

More generally let 0g(,~-) denote the open complement of the Poincar6 recur- 
rence set P(Y)  and K c ~ ( ~ )  be the complement of a small open neighborhood 
~/of P(~).  Then there is an ~ > 0 depending on q and ~ with the following pro- 
perty. 

Theorem II.12. If Y '  is any foliation whose tangent planes are e-close to those of 
~ ,  the support of any foliation cycle of ~ '  intersects the neighborhood q of P(~).  
In particular the compact leaves of ~ '  and even the non-compact leaves of ~ '  
which are "closed at ~ " pass through q. 

Proof By Theorem II.2 (relative case) there is an exact form on M positive on the 
foliation g near K. This form determines the e. and the above proof(II.11) applies. 

Vanishing Cycles and Foliation Cycles 

In this paragraph we work with finite chains and cycles which can be realized by 
mapping complexes into the manifold. 

Definition II.13. A cycle C in a leaf L of the foliation o ~ is ~-homologous to zero 
if C bounds a simply connected homology mapping to L. 

Note if C=~W in this sense the induced germ of foliation around W is iso- 
morphic to W x (small transverse disk). 

Definition 11.14. A vanishing cycle C is one which may be embedded in a one 
parameter family C t (homotopy of cycles) so that 

i) each C t lies on one leaf L t, 0 < t < 1, and C o = C. 
ii) C o is not o~-homologous to zero. 

iii) C 1 is ~ -homologous  to zero. 

The following is motivated by Novikov's theorem that any codimension one 
foliation of S 3 has a compact leaf. 

Theorem II.15. If a foliation ~ has a vanishing cycle of dimension one less than 
the leaf dimension, then ~ has a non-trivial foliation cycle. 

Proof First note an elementary property of k-chains Won an oriented k-manifold. 
One may write W = P + N  where the oriented k-simplices of P agree with the 
orientation and those of N do not. Then observe that support 0W=suppor t  
~P u support ~N, i.e. there is no cancellation between c~P and ~N. 

Thus in the argument to follow we may assume C 1 = 0W where W is a simply 
connected singular homology and W is positive. 

Now by hypothesis C1 may be moved through cycles on leaves back to C 0. 
We cannot extend this motion to one of a neighborhood of the homology W 
because C o is not o~-homologous to zero. On the other hand because there is no 
holonomy near W we can extend the isotopy of OW part of the way to Wt, t > t 0. 
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The amount we can push a given W t further depends on the number of flow 
boxes it takes to cover W t (taken with repetitions from a given finite collection 
covering M). As we approach the critical value of t the number of flow boxes 
required must become unbounded (or we could go further). See Figure 6. 

We find then a sequence of chains Wg on leaves whose volumes become un- 
bounded but whose boundaries have bounded mass. Then (1/vol ~ ( ~ ) accu- 
mulates to a foliation cycle, w, 

Fig. 6 

if5. Codimension one Foliations 

In codimension one special results are possible because of the abundance of 
closed transversal curves. For  example, a leaf which cuts at least two times through 
a flow box is intersected by a closed transversal curve (Fig. 7). 

Proposition 11.16. A foliation cycle in codimension one is either non-zero in homology 
or supported on compact leaves. 

Proof A non-compact leaf in the support of the foliation cycle cuts through some 
flow box more than once (since M is compact) and we can draw a closed transversal 
curve (classical argument), 

\ 
\ 

f 
Fig. 7 

J 

/ flow box transversal 

tr~ansversal closed curve 

The intersection number of the foliation cycle and this closed curve is positive 
-being the amount  of mass deposited on the t ransversa l -and  each is essential 
in homology. (See Theorem 1.11, or Theorem 1.1 [P], or Proposition 2 [RS].) 
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Remark. In a beautiful study Plante [P] has shown the Poincar6 set (union of 
supports of cycles) in codimension one is made out of compact leaves and leaves 
of polynomial growth. Moreover, the non-compact leaves correspond to truly 
irrational homology classes with arbitrarily small intersection numbers with 
transversal closed curves. 

We can then reinterpret II.11 in codimension one as follows, 

Theorem 11.17. I f  each leaf of a codimension one foliation o~ has exponential growth, 
then the same is true for any foliation ~ '  whose tangent planes are sufficiently close 
to those of ~ .  

Proof If all leaves have exponential growth in codimension one then by Plante [P] 
there are no foliation cycles. The latter condition is stable under perturbation by 
II. 11. But then the perturbation has leaves which are all "not  closed at ~ "  (11.8), 
in particular they all have exponential growth. 

Note. i) A leaf of a foliation in a compact manifold has at most exponential growth. 
So the theorem may be paraphased: "the p r o p e r t y - a l l  leaves have maximal 
g r o w t h -  is stable under perturbation in codimension one." 

ii) The stability result of Theorem II.11 may also be sharpened in codimension 
one to "any leaf of ~@(~') intersects the neighborhood r /of  ~(Y) .  For  by Plante 
any leaf in the support of ~ (o  ~ ' )  is "closed at infinity". 

Now consider the case when the Poincar6 set ~ ( Y )  is all of M. We say ~ is 
totally recurrent in this case. 

Theorem I1.18. A totally recurrent codimension one foliation ~ can be (tangent 
plane) approximated by foliations defined by C ~ closed one-forms. 

Proof As in Proposition II.10 we can choose a foliation cycle Z whose support 
is all of M. Now apply the regularization procedure described in Proposition 1.8, 
Z~Tr , ( (MxZ)AU~) .  The result is a closed one-form ~ which is nowhere 
zero (the interior support is all of M (I.8)) and whose kernel approximates ~ .  

We can characterize such codimension one foliations. 

Theorem I1.19. A transversely oriented codimension one foliation can be approxi- 
mated by foliations defined by closed one-forms iff no transversal 1-cycle is homo- 
logous to zero. 

Proof By transversal one cycle we mean a closed current in a transverse cone 
structure to J~. Let C~ denote a cone field of 1-directions in the positive sense 
and such that C, approaches the positive half space as e --* 0. 

The hypothesis means we can have by 1.7, a closed 1-form o9~ positive on C,. 
The foliations defined by 09, approximate ~ as e approaches zero. 

Remark. The condition of II.19 can be rephased in terms of closed transversal 
curves and the classes they represent in Hi(M, R). 

The condition i s - " a l l  closed transversal curves making a bounded angle with 
the foliation generate a compact convex cone in HI(M , R)." 
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This condition is sufficient because we may approximate structure cycles in 
a cone of 1-directions by closed curves in a slight larger cone (the proof is the 
same as that of Proposition 11.25). 

The condition is also clearly necessary. 
Finally we have the following 

Theorem 11.20. Suppose each compact leaf in a transversely oriented codimension 
one foliation is cut by a closed transversal curve. Then there is a volune preserving 
f low transverse to the foliation. 

Proof We may assume that each leaf is cut by a closed transversal curve (since 
this is already true for non-compact leaves). Then any foliation cycle is not 
homologous to zero by intersection theory (I.11). Thus there is a closed ( n - 1 )  
form ~o positive on the foliation. The kernel of o9 defines the direction field of the 
desired flow. 

Remark. The necessity of the condition in Theorem II.20 is an easy consequence 
of the Poincar6 recurrence theorem applied to the flow. 

w 6. A Homological Proof of  Novikov's Theorem 

We are in a position to give a rather understandable proof of Novikov's beautiful 
result. [H] 

Theorem I1.21 (Novikov). A codimension one foliation of  the three .sphere has a 
compact leaf 

Proof Step l:  One produces (as usual) a vanishing cycle (II.14) using the simple 
connectivity of the sphere via the argument of Haefliger's thesis (see Remark 
below). 

Step 2: A vanishing cycle leads to a foliation cycle (Theorem II.15, see Remark 
below). 

Step 3: The foliation cycle must be supported on compact leaves because H z 
of the sphere is zero (Proposition II.16). Q.E.D. 

Remarks. Step l: Agrees with Novikov's first step [H]. One constructs a closed 
transversal 7 (using any non-compact leaf}, one spans 7 by a two-disk in general 

/ or 1 

Fig. 8 
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position relative to ~ ,  and one finds the vanishing cycle by considering the 
spiraling into centers of leaves of the induced foliation in the disk (Haefliger's 
use of Poincar6-Bendixson). 

The vanishing cycle need not be embedded on its leaf to apply II.15. 
Step 2: Is also Novikov's second step. The idea of the exploding region in 

Theorem II.15 is at the beginning of Novikov's geometric argument. (I am in- 
debted to Harold Rosenberg for explaining this part of Novikov's argument to 
me.) 

Step 3: Replaces Novikov's longer and more delicate geometric a rgument -  
which in fact gives the technically stronger result that the leaf containing the 
critical cycle is the boundary of a Reeb component (and doesn't use H 2=0). 
Note the foliation cycle also "finds the compact leaf". 

w 7. Compact Foliations 

There has been recent progress in the study of compact foliations-compact 
manifolds foliated by compact leaves. There are examples where the volume of 
leaves is unbounded [S] and surprisingly delicate theorems about the non- 
existence of this phenomenon [M], [El, [EMS]. 

Here we recast one of the theorems of [-EMS] in terms of foliation cycles. 
(M, ~-) is heretofore a compact foliation. 

Proposition II.22. The extreme rays of the cone of foliation cycles in a compact 
jbliation are the multiples of individual leaves. 

Proof. This is essentially done in [EMS] in different terms. There is a filtration 
of M--{X~} by invariant sets where each leaf in X~-X~+ 1 has finite holonomy 
(and arbitrarily small invariant neighborhoods) in X~. One merely looks at the 
smallest ~ so that X~ intersects the support of the cyc le -  to see that the transverse 
measure must reduce to a Dirac measure if the cycle is on an extreme ray in the 
cone of cycles. 

In [-EMS] a compact foliation was said to be "homologically posit ive"if  the 
leaves determined classes in an open half-space of the real homology (for some 
orientation of the foliation). The definition may also be applied to any closed 
invariant subset X using Cech cohomology. 

The following corollary was conjectured by Bob Edwards. 

Corollary II.23. I f  X is a "homologically positive" closed invariant set of a compact 
Joliation, there is a closed p-form defined on a neighborhood of X which is positive 
on the tangent planes of ~ along X. 

Proof The previous proposition applies just as well to X. Now any foliation 
cycle in X is by Choquet's theorem [Ph] a positive measure of extreme cycles 
(we suppose a normalization). If ~o is a closed form defined on a neighborhood 
of X so that (leaf in X, ~o)>0, then for any cycle z--~ (L)dv (Choquet represen- 
tation). ~ o = ~ ( L ,  co)dv>O. (This formula was also achieved in [EMS] by 

z 

direct analysis.) Thus the foliation cycles on X are not boundaries in some closed 
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neighborhood where ~o is defined. By theorem II.2 there is a closed p-form positive 
on the tangent planes of ~ along X. 

Now we recall the Moving leaf proposition of [EMS]. 

Proposition [EMS]. I f  the volume of leaves is unbounded there is an isotopy of 
leaves L t so that volume L t is unbounded. 

Remark. The proof is a more delicate use of the filtration X,  and a theorem of 
Newman concerning periodic homeomorphisms. 

Using the moving leaf and the positive form constructed above we can have 
a proof  of the theorem of [-EMS]. 

Theorem [EMS].  I f  a compact foliation is "homologically positive" there is a 
bound on the volume of leaves. 

Proof Consider the integral of the closed form of the corollary, q, over the moving 
leaf Lt: ~ q. This integral is both constant (because q is closed and the L t are 

Lt 

homologous) and essentially the volume of L t (because q is positive on ~ and M 
is compact). This contradiction proves the theorem. 

Remark. A bound on volume allows one to describe the geometric structure of 
rather completely as a generalized Seifert fibration. If there is no bound the 

possibilities are fo rmidab le - fo r  example the filtration X, referred to above 
might have any countable ordinal type. 

w 8. One Dimensional Foliations 

A choice of  a non-zero vector field X tangent to a one-dimensional foliation 
determines a flow go t whose orbits are the leaves of ~ .  The vector field defines a 
map from measures to 1-currents, # ~ (X, #) defined by (X, #) (~o)= ~ ~o(X)d#. 

Proposition II.24./2 --} (X, p) defines continuous bijections 

i) non negative mearues on M,,~foliation currents along ~ ,  
ii) measures invariant under flow ~ foliation cycles along ~ .  

Proof Theorem 1.12 (Step i) and Theorem 1.13. 

We could say that foliations cycles in dimension one correspond to that part 
of the ergodic theory of got (the theory of invariant measures for the flow got) which 
depends only on the orbit structure and not  the parametrization. 

If a (Pt-invariant measure # is ergodic (gotA = A  implies pA = 0  or 1) one may 
reinterpret the ergodic theorem as follows (Ft(x) denotes the orbit of x out to 
time t): 

"for #-almost all x the currents 1/t. (Ft(x)) converge as t ~ ~ to the foliation 
cycle (X, #)"  [Sch]. 

One corollary is the following 

Proposition II.25. Any foliation cycle in dimension 1 can be approximated by a sum 
of circles which are nearly tangent to the foliation. 
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Proof In fact if the cycle corresponds to an ergodic measure one waits until x 
reenters the front of a flow box about  x and deflects the orbit slightly to close it. 
Then a single closed curve approximates 1/t. Ft(x ) and thus the current (X, #),/~ 
ergodic. 

Any invariant measure is a approximated by finite convex sum of ergodic 
measures [Phi  and the result follows. 

Remark. i) One example of this is a volume preserving f l o w -  which now appears 
as approximately equal as a current to a number of long circles coiled neatly 
around so as to nearly fill up the manifold. This interpretation was suggested by 
Thurston. 

ii) One may ask when the analogue of proposition II.25 holds for foliations 
of higher dimension. 

Now we derive some corollaries of Theorem II.2 in the context of flows. 
First suppose K is any compact set indide the manifold M on which we have 

a non-singular flow. 

Theorem II.26. The compact set K satisfies exactly one of the following 

i) K contains a closed invariant set 
ii) There is a gradient- like function f defined near K (that is, df  is positive 

on the flow directions). 

Proof Condition i) is equivalent to, there is a flow cycle whose support lies in K. 
In the absence of i) we must have ii) by the Theorem II.2 (relative). 

Now take the case when K is all of M and suppose we are in the non-degenerate 
case (Theorem II.3). 

Theorem II.27 (Schwartzman). If  each invariant measure for a flow determines a 
non-trivial homology class in Hx(M , R) then the flow has a C ~ global cross section, 
(A closed submanifold transverse to the flow and cutting every orbit.). 

Proof By hypothesis we are in the non-degenerate case and there is a closed 
1-form ~o positive on the flow lines. If we assume the form co has rational periods 

x 

the path integrals ~ co define a submersion of M onto the circle (argument of Abel 
P 

and Tischler). Any fibre provides the global cross section. 

Remark. The condition is clearly necessary. Note that Theorem II.3 says any 
rational cohomology class supporting the cone 112 in homology can serve here. 

Now we discuss volume preserving flows. First there is the analogue of 
Theorem II.18 (recall P(o~) is the union of the support of all transversal invariant 
measures, Definition II.9). 

Theorem II.28. Let ~,~ be a one dimensional (oriented)foliation which is totally 
recurrent-P(o~) = M. Then M may be (direction field) approximated by a volume 
preserving flow. 
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Proof We proceed as in II.18. By hypothesis there is a foliation cycle whose sup- 
port is all of M. A diffuse approximation is a closed ( n - 1 )  form defining the 
volume preserving flow (Proposition 1.8). 

Now suppose an ( n -  1) plane field ~ is given and we ask whether or not there 
are any volume preserving flows in the contractible space of flows transverse to z. 

Theorem II.29. A transversely oriented plane field z admits a transverse volume 
preserving f low iff no (n-1)-cycle tangent to z is homologous to zero. 

Proof By an ( n -  1) cycle tangent to z we mean a closed structure current for the 
cone structure determined by an orientation of ~. Then the theorem follows from 
II.2 which yields the desired closed (n - 1) form. 

Remark. We recall a particular c a s e - i f  z defines a foliation with all leaves non- 
compact,  there is a transversal volume preserving flow (Theorem II.20). 

Although we haven't  formulated the notion p rec i se ly - the  existence of a 
tangent cycle means ~ has a global solution. Thus a definite lack of integrability 
forces the transverse volume preserving flow. Of course complete non-integrabi- 
l i t y -  T defines a contact s t ruc ture - impl ies  there is a contact flow transverse to 
which is much more (If co is a 1-form whose kernel is z then co A (dco) k is a volume 
form, dim M = 2 k +  1, and (dco) k defines a volume preserving (in fact symplectic 
preserving) flow.). 

We also have (analogous to Theorem II.19) 

Theorem II.30. A given flow may be approximated by a volume preserving flow iff 
no transverse ( n -  1) cycle is homologous to zero. Using 1.10 one sees the transverse 
(n-1)-cycle may be taken to be a closed submanifold. We assume the flow is trans- 
versely orientable. 

Proof By transverse cycle we mean a structure cycle for a cone of directions 
transverse to the flow. Given this condition the closed ( n - 1 )  forms positive on 
wider and wider cones (given by Theorem II.2) provide the approximation by 
volume preserving flows. 

Remark. These theorems on volume preserving flows are in the spirit of recent 
work by Dan Asimov [As]. 

Part III: Applications to Other Structures 

w P.Lorenz Geometry 

A cone structure of 1-direction includes the case of a conformal class of Lorenz 
geome t r i e s -wi th  the positive light cone determining the cone field. 

Suppose M (not necessarily compact) is provided with a field of oriented light 
cones and let K be a compact  region of M. Then we have (analogous to Theorem 
II.26), 

Theorem III.1. Exactly one of  the following holds: 

i) in K there is a non-trivial one-cycle "going in the light cone directions", 
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ii) there is a function defined in a neighborhood of K whose gradient is positice 
on the light cone directions. 

Proof Either we have a cycle or an exact one form d fby  Theorem 1.7. 

Remark. The one cycle of proposition i) can be closely approximated by sums 
of closed curves whose directions are arbitrarily close to the light cones. (One 
applies diffusion Proposition 1.10 and then the deflection argument of the proof  
of Theorem II.25.) 

Note the one-cycle in the limit defines a recurrence set in K for the dynamical 
structure determined by the cone field. 

With the approximation remark the above theorem comes close to one proved 
by Hawking ([HE],  p. 198). 

Theorem (Hawking). A (non-compact) space-time has a cosmic time function iff 
it is stably causal (there is no closed curve which is almost time-like). 

Hawking's theorem suggests the basic technique here can be extended to non- 
compact  manifolds. 

w 10. Symplectic Structures 

We can describe a geometrical cone structure which plays a Poincar6 dual role 
to a symplectic structure (a closed 2-form co so that o)" is a volume form). 

Say that a cone structure of 2-directions is ample if at each point x the cone C x 
intersects the linear span of the Shubert variety S~ of every 2-plane z at x (S~ is the 
set of 2-planes which intersect z in at least a line). 

Now suppose M is a closed orientable even dimensional manifold. 

Theorem III.2. i) An ample cone structure of 2-directions on M always has non-trivial 
cycles. 

ii) I f  no structure cycle is homologous to zero then M admits a symplectic struc- 
ture (transverse to the ample 2-direction structure). 

Proof If a 2-form ~o is positive on the cone C x then tn cannot have less than the 
maximal r a n k -  for if ~o were induced from a ( 2 n -  2) dimensional quotient of the 
tangent space at x (dimension M =  2n) ~o would annihilate the linear span of the 
Shubert variety of the kernel (a 2-plane). 

Such a form cannot be exact for its n-th power is a volume form, S ~o"4:0 
M 

and so ~o, co 2 . . . . .  ~o" are all cohomologically non-trivial. Thus by Theorem 1.7 
there must be non-trivial structure cycles. 

If for some ample 2-direction structure no cycle is homologous to zero, 
then Theorem 1.7 gives a closed 2-form co positive on the cone structure. By 
the first remark co has maximal rank and so provides a symplectic structure on M. 

Example. i) Let J denote a (continuously varying) complex structure on each tangent 
s p a c e ,  j 2  = _ Id. Then the complex lines at x generate a cone C(J)~ of 2-directions 
in A 2 ( x  ) which is ample. (For any plane z and any vector v in z the plane (v, Jr) 
belongs to S~ and to the structure C(J)~.) 
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Also C(J)x is a compact cone because in terms of standard coordinates on C", 
zj=xi+iyj,  a~=Y'dxi^dy i gives a supporting hyperplane for C(J)x. So the 

i 
C(J)~ define a cone structure of 2-directions which is ample. 

ii) We can ask whether a given almost complex structure J has a transversal 
symplectic structure og -a  closed 2-form ~o positive on the complex lines. Then 
Theorem III.2 asserts 

a) there are always 2-cycles going in complex directions, 

b) there is a transversal symplectic structure iff none of these cycles is homo- 
logous to zero. 

iii) A symplectic structure o~ determines preferred coordinates whose overlap 
diffeomorphisms preserve the basic form )-" dxi A dye. (Darboux's Lemma). In 

i 
particular the structure group of the tangent bundle is reduced to Sp(2n, R ) -  
the group preserving the basic form. 

Since Gl(n, ff~)cGl(2n, R) and Sp(2n, R)cGl(2n, R) have the same maximal 
compact U (n)c Gl(2 n, R) there is a well defined contractible set of almost complex 
structures J determined by co. They are in fact characterized by the transversality 
condition o~(x, J x ) >  0. In particular, every symplectic structure arises in the man- 
ner proposed by the Theorem I I I .2 -g iven  ~o choose a transversal J and the 
homological situation of the theorem holds for the ample cone of 2-directions 
determined by J. 

Now we give a geometric condition to be able to deform a closed 2-form ~/ 
of rank 2 on a 4-manifold to a symplectic form. Suppose the foliation defined by 
r/is homologically non-degenerate (II.3). For example, suppose there is an immer- 
sed surface which is transversal to the foliation and cuts every leaf. 

Theorem 111.3. A closed 2-form ~1 of constant rank 2 on a 4-manifold which defines 
a homologically non-degenerate (II.3)foliation can be perturbed to a symplectic two 
form. 

Proof By Theorem II.2 there is a closed 2 form v which is positive on the leaves of 
the foliation defined by q. Let co=q+ev. Then co2=(rl+ev)2=2erl �9 v+e2v2~  
2 e r/- v (for e very small) is a volume form. 

Example. Suppose M 4 has two transversal foliations ~ and ~ .  Assume ~ has 
a smooth transversal measure whose interior support is all of M and o~ 2 has any 
transversal measure whose support cuts every leaf of ~ .  Then Ili.3 applies. 

Such examples are not infrequent. One case is a fibration over a 2-manifold 
with fibre a 2-manifold and structure group discrete and measure preserving (for 
some measure). The latter include the examples of Thurston where M 4 is symplec- 
tic but the first Betti number is odd. 

Remark. One can view a symplectic structure geometrically as a ( 2 n - 2 )  cycle Z 
for a cone structure transverse to an ample 2-direction s t ruc tu re -  if the support 
of the cycle is all of  M. For  one may diffuse Z into a symplectic form (if it is not 
already diffuse) by Proposition 1.9. 
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For the canonical structure co on complex projective space there are many 
ways to approximate the current c) by large numbers of complex hypersurfaces. 
Such descriptions restrict (by intersection) to approximate the symplectic form 
on any algebraic submanifold of projective space. This yields a geometric picture 
of any symplectic structure using Gromov's theorem that it may be induced by an 
immersion into complex projective space. 

w 11. Complex Structures on Manifolds 

A compact complex manifold M (C-dimension=n) has ( n + l )  natural cone 
structures Co, C1, ..., C, defined by the almost complex structure J )  At a point x, 
Cv(x ) is the compact convex cone in A2p(x ) generated by the positive combinations 
of complex subspaces of It-dimension p. (I.2 and Example following III.2.) 

If we compare from a dynamical point of view a complex manifold and a 
foliated man i fo ld -each  has preferred local submanifolds which have unique 
maximal extensions - one can nope the study of these cone structures will be useful. 

We will describe the situation as far as we understand it, v isa  vis Part I. The 
statements are merely listed and proofs given in parentheses. 

III.4. "For each p the structure currents for Cpform a compact convex cone in the 
space of 2 p-currents on M". 

((I.5) This cone is by definition (I.4) the convex closure of the Dirac currents 
obtained by evaluating forms on the single elements of Cp(x).) 

III.5. "Each structure current c may be represented by a pair (11, v), where # is a 
non-negative measure on M and v is a II-measurable function into 2p-vectors 
(v(x)e Cp(x)), via an integral 

c= ~ v(x)d~" (I.8). 
M 

"This representation is not unique although the related one as a 2p-vector valued 
measure is unique (I.8). 

III.6. "The integration currents defined by compact complex submanifolds (with 
boundary) and their positive combinations are dense in the structure currents for Cp." 

(Clearly the Dirac currents above can be so approximated.) 
For this reason and some below we term the structure currents for Cp complex 

currents and the closed currents among them omplex cycles. 

III.7. "The cone of complex cycles (denoted Cp) is a compact convex cone in the 
space of 2p-currents." 

(~p is the intersection of the compact convex cone of complex currents with the 
closed subspace of cycles.) 

III.8. Points on extreme rays of the compact cone Cp of complex cycles are called 
irreducible complex cycles. 

"Any complex cycle c can be represented by a measure on the space of irreducible 
cycles c = ~ c'd#". (Choquet's theorem [Ph].) 

5 Notation. J denotes the circle action on forms and currents generated by the au tomorphism of 
tangent  spaces J satisfying j z =  - I d .  Example: When n = 4 ,  C2(x) is a 36-dimensional cone in a 70- 
dimensional  space, A 4 R s 
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Remark. The geometric analysis of irreducible complex cycles is completely open. 
These include classical irreducible subvarieties and (certain) foliation cycles in 
holomorphic foliations. An optimal conjecture for non-classical cycles would 
involve a representation by a non-compact analytic space F which is "closed 
at ~ "  (11.5) relative to some metrical structure and which maps to M, F ~  M 
by a holomorphic map which is generically an immersion and has bounded distor- 
tion. Algebraic varieties in C n project to such examples in torii. 

111.9. We do conjecture that "complex cycles can be locally represented near x 
in M as c=~ c'dv where the c' are irreducible subvarieties passing near x and v 
is a non-negative measure on the space of such (regarded as a subspace of the currents 
on some neighborhood of x.)" 

Remark. The analogous local result holds for foliations (Theorem 1.12). 

III.10. "A compact complex manifold M always has non-trivial complex cycles 
in C-dimension one." 

(III.2 and example following.) 

III.11. " I f  no complex cycle in dimension one is homologous to zero, the same is 
true for cycles in higher dimensions. In this case the manifold has a symplectic struc- 
ture transverse to the complex structure" (111.2). 

1II.12. "For such complex-symplectic manifolds (which include Kaehler manifolds) 
the set of complex cycles in one homology class (the Chow space)forms a compact 
convex set" (I.7 iv)a). 

Ili.13. "The Lie group of holomorphic automorphisms of a compact complex 
manifold acts on each cone of  complex cycles. Each particular automorphism 
M ~ ~ Mf i x e s  rays in each cone. Namely for each automorphism tr and for each p 
there is a non-trivial complex cycle z and a positive number 2 so that 

a z = 2 z  (as 2p-currents)." 

We are tacitly assuming in this argument that there are complex cycles in C- 
dimension p. 

(One applies the fixed point theorem for compact convex sets to the induced 
map on some base of the cone of cycles.) 

1II.14. Recall Cp denotes the cone of complex cycles of C-dimension p. Let 
Dp c •p denote the diffuse complex cycles. (Those currents in Cp which are given 
by (closed) 2 n -  2p forms). 

" I f  p + q = n + r, the natural intersection pairings (between diffuse currents and 
currents) satisfy 

Dp. C~ c C r. (,) 

In particular if p + q = n ,  the intersection numbers [Dp. IF.~] are non-negative, 
and the diffuse complex cycles form a semi-ring under intersection." 

(By (Remark iii) I1.8) (*) reduces to linear algebra at a point x. If f2 is a positive 
generator of A2n(x ) and v and v' are in Cp(x) and Cq(x) one sees that (f2/x v)/x v' 
is in Cr(x) by considering the cases when v and v' are decomposable.) 
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III.15. "A Kaehler metric on a compact complex manifold determines a diffuse 
complex cycle oft-dimension n -  1." 

(The metric can be written ~o(x, Jy)+i~o(x,y) where ~o is a symplectic 2- 
form invariant under J, ~(x, y )=  o~(Jx, Jy). The 2 n -  2 current determined by o~, 
the Kaehler form, is a diffuse complex cycle. For  in a basis {zi=xi+iyl} of C" 
the canonical 2-form S dxi ^ dy~ on R 2" corresponds to the ray given by the sum 
of the coordinate complex hyperplanes of C"=  R 2" in A 2._ 2. (Conversely a diffuse 
(n - 1) cycle whose interior support is all of M determines a Kaehler metric.)) 

III.16. "A Kaehler manifold M" has non-trivial complex cycles in every dimension 
O<d<n" (III.14, III.15). 

Let [Cp]cH2p(M , R) and [DpJ=H2p(M , R) denote the cones in homology 
determined by the complex cycles and the diffuse complex cycles. Let ~ p =  
H2p(M, R) denote the Hodge space, the real points of Hp, p(M, ~). 

Theorem I|I.17. " I f  M is a Kaehler manifold, the compact convex cone, [ ~ p ] =  
H 2 p(M, R), determined by the complex cycles is contained in and generates the Hodge 
space ~p c H2p(M , R)." 

Proof. Write p + q = n and consider the three subspaces of HEp(M , R), 

V 1 = closed J - invar ian t  2 q forms (mod exact). 

V 2 = closed j - inva r i an t  2p currents (mod boundaries), 

C = the linear span of I-~p]. 

The theorem follows from the relations 

i) V ~ = C = V  2, 

ii) V~--V2-- ~ .  

The first inclusion of i) is the important one. First note that the q-th power q 
of a Kaehler form belongs to V 1 and also C (III.15). Moreover a small perturbation 
oft / in  the closed J - invar iant  forms remains a complex cycle so stays in C. (Diffuse 
complex cycles ~o contain those satisfying the following conditions: ~o is a closed 
2q-form which is J invariant and at those points x where (o is not zero co(x) is 
positive on the (non-zero part of the) dual cone in Azq(X ) of Cp(x) ~ AEp(X), p + q = n. 
Since r/is non-zero at every point and satisfies the condition, a C o perturbation 
will also.) By the open mapping principle for Frechet spaces such perturbations 
form an open set of V 1 and this implies all of 111 is contained in C. 

The second inclusion of i) is obvious from the definition. The relations of ii) 
are formal consequences of Hodge theory. Q.E.D. 

As corollaries we have, 

III.18. "The cone [Dp] has non void interior in the cone [Cp]." 

III.19. " I f  M is projective algebraic the rational points of the Hodge space inter- 
sect the interior of the cone [Cp]." 
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111.20. "Unde r  a small deformation of the complex structure of a Kaehler manifold 
the cones [lI~p] cHzp(M , R) maintain a constant dimension." 

III.21. "The linear spaces generated by the cones [Cp] and [~q] are dually paired 
under Poincar~ duality p + q = n." 

II1.22. "The Hodge space ~pcH2p(M, R) is generated by irreducible complex 
cycles." 

Proofs. 111.18 follows directly from the proof  of Theorem 111.17. So does Ili .19 
remember ing  that the na tura l  q determines a ra t ional  point  in the projective alge- 
braic case. II1.20 and 111.21 are well known  properties of the Hodge spaces. 111.22 
follows because l inear combina t ions  of extreme rays (the irreducible complex 
cycles) are dense in ~p  (the complex cycles). 

Ili.23. The cone [liSp] c ~p  c H2p(M , R) adds precision to the quest ions about  
homology classes represented by algebraic subvarieties of a projective algebraic 
manifold.  Besides III.19 one has, 

"The algebraic classes lie in the cone [~p].  In fact the positive algebraic cycles 
are precisely the rectifiable currents among the complex cycles ~p." 

(The first s ta tement  is clear from the definitions. The second one follows 

easily from Theorem 5.2.1 [K]. )  
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