
 Postscript

 dummy

 mechanical

 Sign-Off

 print proof

 NEW pdf

 revised pdf

LXI
Pg.40

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/o check

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

 July 2008	 www. .com

S

Benefits of LXI
and Scripting
B y P A U L F R A N K L I N A N D T O D D A . H A Y E S , K E I T H L E Y I N S T R U M E N T S

Scripting is a powerful and convenient way to provide
programmability for instruments in test and measure-
ment applications. Script-based instruments provide
architectural flexibility, improved performance, and
lower cost for many applications. Scripting enhances
the benefits of LXI instruments, and LXI offers features
that both enable and enhance scripting.

Users comfortable with conventional instruments
will find it easy and straightforward to begin using
script-based instruments. They can be programmed in
much the same way as conventional instruments are.
However, with minor adjustments to system design and
programming, the flexibility, improved performance, and
other benefits of scripting are easy to incorporate into
system configurations.

Programmable instruments have been available for
many years. Although specific capabilities vary, a pro-
grammable instrument allows the user to create and
store a set of instructions in the instrument itself, where
it can be executed on demand.

Early programmable instruments generally had quite
limited capability and capacity, which restricted the
usefulness of the programmability to relatively small
and simple applications. Larger or more complex ap-
plications required the use of a separate computer
that controlled the instrument via a communications
interface, often GPIB.

Improvements in computing technology and program-
ming languages and the steadily declining cost of embed-
ded computing capacity have led to a new generation of
programmable instruments. This new breed of instru-
ments breaks through the old limits to provide greatly
increased capability and flexibility. One key improvement
realized in these instruments is the use of a scripting
language to provide programmability.

Scripting vs. Macros or
Programming Languages

Simply put, scripting is writing programs in a scripting
language to coordinate a sequence of actions. Scripting

goes well beyond the more conventional use of macros
or recorded sequences. It uses the full power of a script-
ing language, which includes looping, branching, and
data processing.

Although macros can be repeated in a way that pro-
vides rudimentary looping control, scripting offers a full
run-time environment in which values can be stored in
variables. These variables then can be used to control
both looping and branching decisions.

Unlike other programming languages, script programs
do not need to be precompiled before being run. Scripting
environments will either interpret the program directly
or compile it automatically when needed.

Beyond that, scripting languages offer the full power of
a programming language. This includes creating stored
procedures or functions for code reuse.

A script need not be compiled as a separate step, so
scripting languages are well suited for embedded use
in test and measurement equipment. Scripts can be
downloaded to the instrument without the need for extra
preparation steps for greater user convenience.

One key difference between a scripting language that
runs on a PC and a scripting language embedded in an
instrument is the environment. When running on a PC,
the scripting language generally has access to a file sys-
tem, virtually unlimited memory, and a graphical display
as well as a keyboard and mouse. When running on an
instrument, a scripting language does not necessarily
have access to any of these amenities, but generally
they are not needed.

Scripting in Instrumentation
Popular scripting languages include Perl®, Python®,

VBScript®, and JavaScript®. The Lua scripting language
is particularly well suited for embedded use because
it executes faster than most other scripting languages
and is implemented as a library that takes very little
code space.

When adding scripting support to test and measure-
ment instrumentation, one of the most difficult choices

sc
ri

pt
in

gl
an

gu
ag

e

 Postscript

 dummy

 mechanical

 Sign-Off

 print proof

 NEW pdf

 revised pdf

LXI
Pg.42

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/o check

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

 July 2008 	 www. .com

sc
ri

pt
in

gl
an

gu
ag

e

to make is how to present the scripting to the user. This includes
answering tough questions such as “How do I integrate the
instrument command set with the scripting environment?” and
“How will the user load scripts into the instrument?”. Keithley
chose to integrate the scripting environment fully with the com-
mand set, which means that all instrument commands also are
fully legal Lua statements. Essentially, each command message
sent to the instrument is executed as a Lua program.

This choice makes it easy for the user to transition from
controlling an instrument with single commands to using scripts
because there’s no need to learn a whole new command set.
Commands that can be sent to the instrument over a GPIB or
LXI interface are the same as the ones used within a script.
This greatly simplifies the process of migrating from simple
command-based control to script-based control. The user can

simply send larger scripts to the instrument instead of individual
commands.

There is a drawback to this choice: Instrument commands
might seem a little strange to the first-time user. A few ex-
amples comparing Keithley’s Model 2400 SourceMeter®, a
SCPI-based unit, with the dual-channel Model 2602 System
SourceMeter, a Test Script Processor (TSP)-based unit, will
help demonstrate this.

The command used to make the instrument source output
current on the Model 2400 is

:SOUR:FUNC CURR
The equivalent command for the Model 2602 is

smua.source.func = smua.DC_AMPS
The smua prefix designates Channel A of the Model 2602.

The rest of the command is similar to the SCPI command with
the exception of the equal sign. This is a Lua assignment opera-
tion that sets the value of the smua.source.func attribute to the
value smua.DC_AMPS.

Queries are a little bit stranger. Because commands are
valid Lua statements, the print function is used to generate
output. The SCPI query to return the source function on the
Model 2400 is

:SOUR:FUNC?
The equivalent command on the Model 2602 is

print(smua.source.func)
Just as a SCPI instrument supports compound commands

by separating individual commands by a semicolon, the script-
based instrument can accommodate compound commands by
separating the commands with a statement separator. In Lua,
the statement separator is a whitespace character.

Let’s assume the instruments are already configured to source
voltage. On the Model 2400, the following command message
will set the output level and then turn the output on

:SOUR:VOLT 1.0; :OUTP 1
The equivalent command message on a Model 2602 is

smua.source.levelv = 1.0 smua.source.output = 1

Sending Script Messages
The examples illustrate that the scripting instrument can

behave very much like the conventional instrument. Only the
command syntax has changed slightly.

To take advantage of the full power of the scripting engine, the
user simply starts sending messages that use the capabilities
of the scripting language. For example, a user could ask the
instrument to perform a binary search looking for the source
voltage that will generate an output current of 1 mA by sending
the following script:

step = 2.5
smua.source.levelv = step
while (step > 0.1) do
 if (smua.measure.i() > 0.001) then
 	 smua.source.levelv = smua.source.levelv – step
		 else
			 smua.source.levelv = smua.source.levelv + step
		 end

-- cycles programs how many waveform cycles to output
cycles = 25
-- del programs the delay time between each step in seconds
del = 0
-- define the smu channels to be used to output each phase
p1smu = node[1].smua
p2smu = node[1].smub
p3smu = node[2].smua

-- Set up the sources using Sourcesetup function defined below

function Sourcesetup(smu)
			 smu.reset()
			 smu.source.func = smu.OUTPUT_DCVOLTS
			 smu.measure.autorangev = smu.AUTORANGE_OFF
			 smu.source.autorangev = smu.AUTORANGE_OFF
			 smu.source.rangev = 40
			 smu.source.levelv = 0
			 smu.source.limiti = 1
end

Sourcesetup(p1smu)
Sourcesetup(p2smu)
Sourcesetup(p3smu)

twopi = 2 * math.pi

-- Turn on the ouptuts and output the waveform
p1smu.source.output = p1smu.OUTPUT_ON
p2smu.source.output = p2smu.OUTPUT_ON
p3smu.source.output = p3smu.OUTPUT_ON

for i = 1, cycles do
 for i = 0, twopi, twopi/36 do

			 p1smu.source.levelv = math.sin(i)
			 p2smu.source.levelv = math.sin(i + twopi/3)
			 p3smu.source.levelv = math.sin(i + twopi/1.5)
			 delay(del)
	 end
end
p1smu.source.output = p1smu.OUTPUT_OFF
p2smu.source.output = p2smu.OUTPUT_OFF
p3smu.source.output = p3smu.OUTPUT_OFF

Figure 1. Script That Outputs a 3-Phase AC Sine-Wave
Voltage Using Three SMU Channels

 Postscript

 dummy

 mechanical

 Sign-Off

 print proof

 NEW pdf

 revised pdf

LXI
Pg.43

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/o check

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

www. .com	 July 2008 	

		 step = step / 2.0
end
print(smua.source.levelv)

A script such as this avoids the communications time required
for reading each individual result and sending the commands to
source new voltage levels. Although it is reasonable to question
how long it takes to send the longer message, it generally will be
much faster to send one longer message than to communicate
several smaller messages back and forth.

However, one of the advantages of a scripting environment is
that the preceding code can be packaged into a function defini-
tion and then reused, which would completely avoid sending
the large message when used. For example:

function Search(start, target)
	 step = start
	 smua.source.levelv = step
	 while (step >.1) do
		 if (smua.measure.i() > target) then
			 smua.source.levelv = smua.source.levelv – step
		 else
			 smua.source.levelv = smua.source.levelv + step
		 end
		 step = step / 2.0
	 end
	 print(smua.source.levelv)
end

This script does not make the instrument do anything right
away, but it creates a stored procedure named Search that can
later be invoked with this command

Search(2.5, 0.001)

Instruments can have several features that complement the
scripting engine. If the scripting environment provides program-
matic access to the instrument’s front panel, the user can create
interactive scripts that prompt the user for parameters or display
results on the front panel.

The instrument also can provide on-board nonvolatile script
storage so that these stored scripts can be automatically
executed when the unit powers up. This allows executing a
previously loaded application without any user action other
than turning on the power for the instrument.

Embedded scripting provides significant benefits for test and
measurement instrumentation users. Although it has some
minor drawbacks associated with it, such as the unfamiliar
nature of queries, most users can work around them or adapt
to them readily.

Scripting languages generally manage memory automatically
so the user does not need to allocate and de-allocate storage
for strings or arrays. Although this is very convenient for the
user, the scripting engine periodically needs to reclaim memory
that no longer is being used, a process known as garbage col-
lection.

Even though garbage collection is done automatically, it
does take time, which can cause problems if it occurs during

a time-critical portion of a test sequence. These problems can
be prevented, but the user first must understand the impact of
the garbage collector and how to avoid it in time-critical test
sequences.

LXI and Scripting
The current LXI standards for instrumentation do not require

that instruments be programmable or implement scripting.
However, several features in the LXI specification anticipate
programmable instruments and provide useful functionality
that enhances scripting’s capabilities on LXI-compliant instru-
ments.

The LXI specification requires that Class A and B instruments
support peer-to-peer messaging via LAN messages, and it
permits Class C instruments to support it. LAN messages can
be used to notify other LXI instruments of events or to trigger
another instrument to perform some function.

Users must be able to specify what action is performed upon
receipt of a LAN message. The most flexible way to implement
this, and the way recommended by the LXI specification, is to
allow the user to download executable code such as a script
or program into the instrument, which then is executed upon
receipt of the appropriate LAN message. This provides a great
deal of flexibility because the user is not constrained to a pre-
defined set of actions.

Furthermore, the LAN message format defined by LXI in-
cludes a small space for including arbitrary data as part of the
message. It is feasible to transfer executable code, such as a
short script, as part of the LAN message. This would allow
one instrument to control another via LAN messages without
preprogramming the response.

For example, suppose an instrument performs a measurement
on a DUT. Based on the result of that measurement, it must
change a stimulus applied to the DUT by another instrument.
The new stimulus value is calculated based on the first mea-
surement, so it is not known in advance. In this case, the first
instrument could send a LAN message containing a short script
to the second instrument to adjust the stimulus value.

Benefits of Scripting
 Script-based instruments provide several benefits. Many of

these are enhanced when the instrument also conforms to the
LXI specification.

For many test and measurement applications, using a PC
as a controller for communicating to separate instruments or
using slot-based systems with integral controllers is perfectly
adequate. For other situations, those approaches are overkill—
and consequently overly expensive—or not quite up to the task.
These applications benefit from the additional capabilities and
flexibility that script-based instruments offer.

Architectural Flexibility

Small test systems with a few instruments can be built with-
out a separate computer; one of the instruments acts as the
controller and coordinates the operation of the others. Large

sc
ri

pt
in

gl
an

gu
ag

e

 Postscript

 dummy

 mechanical

 Sign-Off

 print proof

 NEW pdf

 revised pdf

LXI
Pg.44

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/o check

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

 July 2008 	 www. .com

sc
ri

pt
in

gl
an

gu
ag

e

systems can be divided into subsystems of a few instruments
each, with each subsystem coordinated by a script-based in-
strument. This simplifies system design and can help improve
performance. With LXI script-based instruments, subsystems
can be physically separated, such as in assembly lines, scientific
applications, or RF testing applications.

Improved Performance

Dividing large systems into subsystems coordinated by
script-based instruments spreads the control and data-process-
ing functions across multiple processors, increasing the total
processing power available in the system and often improving
overall speed and throughput. Furthermore, such division of
labor allows for parallel testing: Instruments or subsystems
do not need to sit idle while a central controller is busy with
another task.

Scripts running in an instrument can operate at maximum
speed because there are fewer delays due to communications
with the controller while each command and piece of data are
transferred. This is especially significant when the instrument
is performing a repetitive test sequence.

With a separate controller, the sequence of instructions is
transferred to the instrument once for every pass, even if the
same sequence is run hundreds or thousands of times. Contrast
that approach with a script that needs to be transferred to the
instrument only once and then executed as many times as
desired using a short command.

Conditional processing, such as when the results of one mea-
surement determine the next function to be performed, offers
another avenue for performance improvement. Performing the
condition check locally in the script can eliminate the delays
when sending the first result to the controller, waiting for the
controller to process it, and then sending the next commands
to the instrument.

In systems with high data rates and large data sets, com-
munications latency, bandwidth limitations, and controller
throughput can be serious bottlenecks. Script-based instruments
can compress data to reduce bandwidth requirements and buf-
fer it for background transmission when bandwidth is available.
They also can filter data, for example, by only transferring data
that falls outside of normal limits.

Reduced Costs

Using script-based instruments, smaller or less complex test
systems can be built without a separate controller, saving the
cost of the controller and that of any separate test-executive
software that otherwise would be used to control the instru-
ments. When building subsystems from script-based instru-
ments, the same cost savings can be realized when building
large test systems.

Example Scripts
Figure 1 shows how two Keithley System SourceMeters can

be controlled from a single script to generate a three-phase AC
waveform. In this case, the TSP-Link technology connects the
two instruments and makes it easy for a script to control both
instruments.

Figure 2 demonstrates how timers based on LXI Class B
technology can control script operation. In the script, a Keithley
Model 3706 System Switch, a Class B instrument, uses timers
based on IEEE 1588 to sequence a series of measurements.
The timing features in Class B are particularly useful for avoiding
or minimizing system delays caused by latency or communica-
tions delays.

Developing Effective Scripts
Scripts can be developed in several ways. Keithley Instru-

ments provides an Integrated Development Environment (IDE)
called Test Script Builder (TSB) for developing scripts for any
TSP-enabled instruments. TSB can be used to edit, download,
and execute scripts on the instrumentation. It includes a built-in

-- 3001 through 3020 (card 3, channels 1-20). The measurement on each
-- channel is triggered by an alarm.
--
-- The alarm is a simple repeating alarm based on 1588 time. It is
-- set to 15 seconds after the program starts and repeats with an
-- interval of 100 ms 20 times
--
-- The script blocks (on "scan.execute(buffer)") until all 20 measurements
-- are complete. Then timestamps of the measurements are printed relative
-- to the desired trigger time.

reset()
scan.reset()
buffer=dmm.buffer.make(200)
dmm.connect=dmm.CONNECT_ALL
dmm.autodelay=dmm.OFF
dmm.range=10
dmm.autozero=dmm.OFF
dmm.nplc=.0005
dmm.measurecount=1
dmm.configure.set('mydcvolts')
dmm.setconfig('3001:3020', 'mydcvolts')

scan.add('3001:3020')
scan.measurecount=1

scan.trigger.measure.stimulus=schedule.alarm[1].EVENT_ID

sec,ns=ptp.time()
schedule.alarm[1] .ptpseconds=sec+15
schedule.alarm[1] .fractionalseconds=0
schedule.alarm[1] .repetition=20
schedule.alarm[1] .period=0.100
schedule.alarm[1] .enable=1

print("alarm set to trigger in ", schedule.alarm[1] .ptpseconds-
sec, " seconds")

scan.execute(buffer)

for j=1,20 do
print((buffer.ptpseconds[j] +buffer.fractionalseconds[j]) -sec‑15‑
 (j-1)*.1) end

Figure 2. Script That Sets Up a Keithley 3706 Switch
to Measure DC Volts on Channels

 Postscript

 dummy

 mechanical

 Sign-Off

 print proof

 NEW pdf

 revised pdf

LXI
Pg.45

 CIRCLE/RS#

 LIT#

 SHOWLINE

 I/o check

 PROD MGR

Nelson Publishing

2500 Tamiami Tr N

Nokomis, FL 34275

1-800-226-6113

www. .com	 July 2008 	

simulator for debugging a script without the need to transfer it
to the instrument, which allows developing scripts even when
the hardware is unavailable.

Some LXI instruments have a Telnet port that can be used for
remote control. For these instruments, using a text editor offers
a quick and simple way to write and debug scripts. From the
Telnet application, the user can paste script text or download
script files directly to the instrument.

Some users prefer to embed scripts directly into the test-
executive application. They develop and debug scripts and the
test-executive application at the same time.

LXI’s web connectivity has allowed Keithley to use a script-
development tool called TSB Embedded in its Series 3700
Switch/DMM products. Users can access this tool via a Web
page served by the instrument itself, using a Web browser to
develop and manage their scripts without installing any software
on the PC.

A function-based or object-oriented approach is advisable
when developing scripts for a product with embedded script
processing. Functions should be used wherever possible. This
not only is good practice for maximizing code reuse, but it also
reduces the amount of code stored in the run-time environment
of the scripting engine and leaves more memory for additional
scripts and data storage.

Embedded scripting can reduce the communications time
between the host PC and the instrumentation. A function-based
approach maximizes this advantage because the host PC need
send only a short message to invoke a stored procedure. If
more lengthy messages are often sent to the instrument, the
communications reduction advantage is diminished.

Regardless of how a script is developed, scripting brings
some new concerns to test management. Although it is useful
in some situations to store scripts in nonvolatile memory on
the instrumentation, it is not always best to do so. When a
test executive expects that a particular version of a script will
be on the instrumentation, it is better to load the scripts on
the instrumentation when the test executive starts. That way
there is complete control over which version of script code the
test executive is using.

Script-Based Instruments
Script-based instruments may be used in conventional test

systems with a separate controller. The details vary depend-
ing on exactly how the manufacturer chooses to implement
scripting.

Those accustomed to using instrument drivers to interface
the software and the instrument will find that they can continue
to use an instrument driver and treat a script-based instrument
much like a conventional instrument. However, doing so would
eliminate many of the advantages scripting offers. Fortunately,
there are methods that allow instrument-driver writers and users
to benefit from the extra flexibility and capability script-based
instruments offer.

When developing an instrument driver for a script-based
instrument, you can choose from three general approaches:

Conventional

The driver is similar to one for a conventional instrument. No
use is made of scripting capability. The only adjustment is to
accommodate the differing syntax.

Extended

The conventional-style driver is enhanced with functions for
transferring scripts to the instrument and perhaps managing
return data. This provides a way for users to exploit scripting
capability, but the driver itself does not do so.

Enhanced

An instrument driver for a script-based instrument can take
advantage of scripting in many ways. For example, such a
driver could download scripts that perform many of the func-
tions normally handled by the driver to the instrument itself.
Then, calls made to the driver are sent to the instrument as
short simple commands rather than as longer series of typical
instrument commands.

As always, there are trade-offs with such a design. But script-
based instruments provide additional flexibility for optimizing
system and software design to achieve the best performance
possible for a given application.

The same three approaches apply to writing software that
controls a script-based instrument directly without using an
instrument driver.

About the Authors

Paul Franklin is the manager
of Keithley Labs, the technology
development group within Keithley
Instruments. He chaired the LXI
Consortium’s Technical Committee from
2005-2007. Before joining Keithley
Instruments in 2000, he gained more
than 20 years of measurement and
control industry experience as an
engineer and a manager with electronic controls and industrial
automation firms. Mr. Franklin earned B.S.E.E. and M.S.E.
degrees at Case Western Reserve University and is a member
of IEEE, the IEEE-Computer Society, the IEEE-Instrumentation
and Measurement Society, and the Association for Computing
Machinery. 440-542-8097, e-mail: pfranklin@keithley.com

Todd A. Hayes is a senior staff firmware engineer at Keithley
Instruments. He has more than 15 years of experience in

embedded firmware design and
was the lead firmware architect on
development of the company’s TSP.
Mr. Hayes received B.S.E.E. and
M.S.C.S degrees from the University
of Akron. 440-248-0400, e-mail:
hayes_todd@keithley.com

Keithley Instruments, 28775
Aurora Rd., Cleveland, OH 44139

sc
ri

pt
in

gl
an

gu
ag

e

