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FOREWORD

This is the last of the volumes prepared by the staff of the Bateman
Manuscript Project, an enterprise whose origin and aims were described
in the prefatory material to the first volume. There are altogether three
volumes of Higher Transcendental Functions supplemented by two volumes
of Tables of Integral Transforms. The present volume contains chapters
on automorphic functions, Lam¢ and Mathieu functions, spheroidal and
ellipsoidal wave functiorns, functions occurring ir number theory and
some other functions; and there is also a chapter on generating functions.
The volume was prepared after the staff of the Bateman Manuscript
Project left Pasadena, but Professor Magnus continued working on
Chapters XIV, XVII, XIX after he joined the staff of New York University.

The chapter on automorphic functions contains examples of automorphic
functions which can be constructed explicitly. The general theorems
given in this chapter serve mainly the purpose of establishing a back-
ground for the examples, and the deeper algebraical and number-theoret-
ical aspects of the subject are definitely outside the scope of our book.
In the chapter on Lame functions we neglected somewhat Lame” poly-
nomials (which are discussed adequately in several easily accessible
books) and devoted our attention chiefly to the more recent theoriesof
periodic Lame’ functions and Lamé-Wangerin functions. Qur account of
Mathieu functions is largely descriptive and leans heavily on McLachlan’s
book which is the standard book on the subject. Another book on Mathieu
functions, by Meixner and Schifke, is in preparation and is expected to
appear soon. There are in essemce two rival systems of potations for
Mathieu functions: we adopted the one which is used by all British,
most European, and many American mathematicians, even though the
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x SPECIAL FUNCTIONS

most extensive numerical tables of these functions (those prepared by
the National Bureau of Standards) use the other notation. In the sections
on spheroidal wave functions we neglected much of the older literature
(accounts of which are available in other books) and attempted to sum-
marize the results obtained by Bouwkamp, Meixner, and others in the
last fifteen years. The forthcoming book by Meixner and Schifke will
cover this field too. The brevity of the sections dealing with ellipsoidal
wave functions reflects in some measure the lack of information on this
subject. In the chapter on the functions of number theory we attempted
to give some of the more important properties of certain arithmetical
functions. Here again the more profound aspects of the subject are out-
side of the scope of our book. Professor Apostol very kindly read this
chapter, and he supplied sec. 17.11, We have included brief sections on
some of the lesser known special functions, to which several papers
have been devoted in recent years. The final chapter, on generating
functions, contains an extensive list of generating functions. This is
one of several similar chapters planned by the late Professor Bateman.
The others were to contain lists of differential equations, power series,
nth derivative formulas, etc. defining special functions, and it was with
regret that we decided to omit them. Chapters XIV and XVII are frankly
experimental but we hope that they will prove useful enough to justify
their inclusion in a book of this nature.

As in the first two volumes, a list of references is given at the end
of each chapter, These lists are by no means complete but they should
be sufficient to document the presentation and to enable the reader to
find further information about the functions in question. Bibliographies
of the various functions are referred to in the text.

At the end of the volume there is a Subject index and an Index of
notations. Some of the notations introduced in the earlier volumes have
been included, others (the more common ones) have not been repeated.
The system of references is the same as in the first two volumes. In the
text, references to literature state the name of the author followed by the
year of publication, detailed references being given at the end of the
chapter., Equations within the same section are referred to simply by
number, equations in other sections by the section number followed by
the number of the equation. Chapters are numbered consecutively through-
out the book, Chapters I to VI being in vol. I, Chapters VII to XIII in
vol. TI, and Chapters XIV to XIX in the present volume. Thus, 3.7(27)
refers to equation (27) in section 3.7, and will be found on p. 159 of
vol. I, while 15,3(2) is on p. 57 of the present volume.
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Thanks of the California Institute of Technology to various organiza-
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CHAPTER X1V
AUTOMORPHIC FUNCTIONS

This chapter contains a number of basic definitions and some easily
accessible examples of automorphic functions, in particular of modular
functions. The numerous ramifications of the subject involving the theory
of groups, various branches of geometry, the theory of numbers, and
important aspects of the general theory of complex variables will be
left asides The fundamental ideas of Felix Klein, the painstaking inves-
tigations of Fricke, more recent discoveries by Hecke and C.L. Siegel,
and the relevance of their results in the theory of numbers, are scarcely
mentioned, and the brief remarks on Pomcare s theta series are far from
being adequate.
A list of references is given at the end of the chapter. The most
important works for the whole of this chapter are Fricke (1901-1921),
Fricke and Klein (1897, 1912), Fubini (1908), Giraud (1920), Schlesinger
(1924), and Ford (1929, with an extensive bibliography). For occasional
references to number theory consult Reid (1910), and for algebra van der
Waerden (1949).
Specific references for individual sections are
14.1.4 Ford (1929)
14,3  Klein (1884)

" 14.4  Krazer and Wirtinger (1901-1921)
14,6 Klein and Fricke (1890, 1892)
14,6.4 Fricke (1916, 1922).

Other references will be given as they are needed.
14.1. Discontinuous groups and homographic transformations

14.1.1. Homographic transformations

Let z be a complex variable which will be represented either as a
point z = x + iy in the complex plane (completed by the point at infinity),
or else as a point (¥, ¥, %) on the sphere

1



2 SPECIAL FUNCTIONS 14.1.1

)] xf+x§+x:=l

in three dimensional space: this sphere will be denoted by S and called
the Riemann sphere. The correspondence between the points of the com-
plex plane and the points of the Riemann sphere is determined by the
equations

x, %, .
2 x-= s ¥ = y Z=x+1y
1l+x 1+x
3 3
2 2 1-x2-—-42
(3) %, = z x 4 %, Ty

l+x2+y2" 72 1ax2442° Tlixiiy?

The mapping of S| on the z-plane is conformal and is known as the
stereographic projection. The circles on the sphere are mapped upon
circles or straight lines in the plane. In this chapter straight lines will
be regarded as special circles (those passing through z = «) so that
circle will mean circle or straight line, and circular arc will mean a
segment of a circle or a segment of a straight line. If a segment of a
straight line contains the point at infinity, its representation in the
Euclidean plane will contain two components; nevertheless, in the
complex plane the segment is a connected set (the two components being
joined at infinity).

Let a, b, ¢, d be any complex numbers such that

The relation
az +b

(5) z’= = o(2)
cz+d

defines a mapping of the z-plane, or of S, onto itself: this mapping is
called a homographic transformation (or substitution) o. In this inter-
pretation z “appears as another point of the complex plane. An alternative
interpretation regards z “as a new variable, or as new coordinates, of the
same point but in this chapter we shall generally adhere to the first
interpretation. The mapping (5) is non-degenerate if ad - bc # 0, and
since (5) is homogeneous in a, b, c, d, it is always possible to achieve
that (4) holds. Thus, (4), (5) define the most general non-degenerate
mapping of the form (5). [For a degenerate mapping (5), ad — bc = 0, and
the map is either indeterminate or else it consists of a single point.]
The relationship between z and z “is one-one. From (4) and (5) we have

6) z=—e—-
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Let o “be a second homographic substitution
a’z +b’
(7) 0"’(2):?, a'd'-—b'c'= 1.
c’z+d
Then
(aa+bdbe)z+ab+bd
(c’a+d’c)z+c’h+dd

defines a homographic substitution, since

(@a+b%c)cb+dd)~(ab+b'd) (c’a+d’)
=(ad -bc)(a’d’~b%c =1,
The substitution (8) is called the product of the substitutions o “and o
(in this order) and is denoted by o ‘. The product of any (finite) number
of homographic substitutions is defined in a similar manner. In general
0’0 and oo “are different. The inverse of o is the homographic substitu-

tion

(8) oTo(2)]=

, dz-b -
9 z'=——=0"(z), ad-bc=1

-cz+a

and is denoted by o~ ' If Iis the identity substitution, I(z) = z, then
clearly

or
ole” " () =0""[0(2)] =z,

Any homographic substitution maps any circle of S onto a circle,
and conversely, any continuous one - one mapping of S, onto itself which
maps circles onto circles, is a homographic transformation.

14.1.2, Fixed points. Classification of transformations

The point ¢ is called a fixed point of the transformation o(z) if
o{z) = z, T ¢ £ 0, the fixed points of the transformation o given by (5) are

1
,=——la-d+[la+d)? - 41%}
2¢

1
§2=2_c'{a_d_[(a+d)2-4]%};

and if ¢ =0 and a # d, the fixed points are

€1=b/(d—a), ¢2=Oﬂc
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If-c-=0 and @ = d both fixed points coincide at infinity, unless also
b = 0 when every point is a fixed point. In writing down the formulas for
4’1 and 42 in the general case use was made of (4).

Homographic transformations may be classified according to their
fixed points as follows:

(i) The identity. Every point is a fixed point,

a=d= 11, b=c=0.
(ii) Parabolic substitutions. The two fixed points coincide,
a+d=1%2, (,=(,=¢.

The substitution may be put in one of the forms
1 1

= + 0 oo
By . ¢
z’=z+ 6 {=0.
In the first case
-d
@+d)?=4, (==, §=zcit0,
2¢

and in the second case
a=d=1%1, ¢=0, &=b/d#0.

(iii) Substitutions with two distinct fixed points, {, and {,. Such
substitutions may be put in one of the forms

z’- él z—él
=A 'Y o0
A e
2= =Mz =E,) L oy L =oo,
where

1
)\%=?{(a+d)—[(a+d)2—4]%} if ¢c#0, A=a if ¢=0,

and there are three possibilities
(iiia) |A| = 1. Eliptic substitution
(iiib) Areal. Hyperbolic substitution
(iiic) X is notreal and |\| # 1. Loxodromic substitution.
For any homographic substitution r, the substitutions o and 7' gz are
called similar. Similar substitutions belong to the same type, i.e., both
are elliptic, or both parabolic etc.
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14.1.3. Discontinuous groups

A set G of homographic substitutions o, 0 «.. is called a group if it
has the following properties:
(i) The identity Iis in G.
(ii) I o is in G then also o~ ' is in G.
(iii) K o and o “are in G then also o¢ ’is in G.

The substitutions ¢, 0, ... are called generators of G if any substi-
tution of G is a product of a finite number of positive or negative powers
of some of the substitutions o . .

Two points £ and P “(of S_ or of the complex plane) are called equiv-
alent or congruent with respect to G if P £ P, and G contains a substi-
tution which maps P upon P, '

Let D be a fixed open region (=open connected set of points) on S, or
in the complex plane, and let G be a group of homographic substitutions"
each of which maps D_f0 onto itself, Some of the substitutions of G may
have fixed points in D . Let us remove from D  all points which are
either fixed points of some substitution of G (other than I) or else are
limit points of fixed points; we assume that the remaining set D (which
is open) is connected and hence a region. For any point P, of D, con-
sider the set of all points equivalent to P, with respect to G. If P is
not a limit point of the set of points equivalent to P , i.e., if all points
equivalent to P_ lie outside some neighborhood of P, and if this happens
for all points of D |, then G is called a discontinuous group in the region
D . For a simple proof of a criterion for discontinuity of a group of real
substitutions see Siegel (1950).

14.1.4, Fundamental region

We shall consider a group G of homographic substitutions with which
it is possible to associate a closed region (= closed connected set) F *
with the following properties. (i) F * is bounded by a finite number of
circles or arcs of circles (several disjoint arcs of the same circle may
occur). We shall denote these circles and circular arcsby 4, 4,, «e, 4.3
a point at which two arcs meet will be called a vertex, and the vertices
will be denoted by VI » V,5 e s Vo (ii) No two interior points of F*are -
equivalent with respect to G. (iii) The compohents Ags ey An of the
boundary may be arranged in pairs 4, A . v#£ v’ in such a mannerthat
for each v there exists exactly one 0 {n G which maps 4, onto 4 -
(iv) The substitutions a* of (iii) a.re generators of G, that is, eVery
substitution of G is a product of (positive or negative) powers of the o¥

We first remark that no substitution of G (other than 7) has a fixed
point in the interior of F* If P ( in the interior of #'*) were a fixed point
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of o in G then o maps a neighborhood of P onto some neighborhood of P,
both may be assumed to lie in F* and this is excluded by (ii). Consider
now the maps of F* under all substitutions of G. The union of all these
maps forms a region [the union being a connected set by virtue of (iii)
and (iv)]. No point occurs twice as the map of interior points of F¥ for
if we assume o(P) = ¢”(P’) for two interior points P, P% we have
P’= "7 "[6(P)), 6" "o belongs to G, and this contradicts either (ii), if
P # P, or the remark about the absence of fixed points, if P = P4 On
the other hand a point which is a map of a boundary point of F* certainly
occurs several times, for instance o, P = IP . where P is a point on
?

A_,and P, is the corresponding point on 4 .. By removing part of the
boundary of F* we shall construct a region F which is neither open nor
closed and whose maps under the substitutions of G cover a region of §_,
or of the z-plane, simply. The region F will be called a fundamental
region or fundamental domain of G.

To construct F, take the bounding circles and (open) arcs of F*,
arranged in pairs 4, 4 - as above: from each pair remove one arc,
retaining the other. Remove also those vertices at which an infinite
number of maps of F* meet, and divide the remaining vertices in classes
of equivalent vertices, retaining one of each class, and removing all the
others, The set of all remaining points (and this includes all interior
points of F*)isa fundamental region F of G: it contains notwo equivalent
points,

Let O Oy oee be the substitutions of G, ¢ . being the identity, The
substitution ¢_maps F onto F , and F| = F. The union of all the F_forms
a region D, (which in general is neither open nor closed), and the interiog,
D,, of D, is the open region which was discussed in sec. 14.1.3.

Let z be any point of F, and set z_= o (z). A limit-point of the se-
quence {zr} is called a limit point of G (~ may occur as a limit point).
The set of all limit points is mapped upon itself by any substitution of
G, and may be used to define the boundary of D  or D, .

A given group G does not determine ‘a udique fundamental region F,
and it may be proved (see Fricke and Klein 1897, Chapter 2, p. 128) that
F can always be chosen in such a manner that none of its vertices is a
fixed point of a hyperbolic or of a loxodromic substitution. At an elliptic
vertex V of F¥% the angle between two arcs meeting at V' is of the form
27/l where [ is a positive integer. If ¥ is a fixed point of the elliptic
substitution o of G, then o 'is the identity; ! is called the order of ¢ or
of V. A veriex of F* which is a fixed point of a parabolic substitutionofG
is called a parabolic cusp.

Two groups, G and G of homographic substitutions are called similar
or equivalent if there exists a fixed substitution 7 such that G °= r'Gr,
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ise., such that for each ¢ in G, the substitution 0= r~'or is in G, and
such that every o “in G " may be obtained in this manner froma substitution
o in G, If F is a fundamental region of G, then r~' F = F’is a fundamental
region of G *[r™' F being the set of all points 7~ ' (z) when z ranges over
F]o

Our definition of a fundamental region is needlessly restrictive, and
has been adopted here for the sake of simplicity; for a more general
discussion see Fricke and Klein (1897). It is not at all essential for the
fundamental region to be bounded by a finite number of circles and
circular arcs; it is essential that the fundamental region should form a
complete set of non-equivalent points, that it should be connected, and
that it should have a reasonably regular shape. The first two of these
requirements is fairly easy to formulate but it is very difficult to express
the third condition in a manner which is both simple and precise, and
sufficiently general. The assumption of a finite number of vertices of F
implies certainrestrictions onthe automorphic functions to be considered,
and these restrictions lead to a comparatively simple formulation of
certain general theorems.

For the definition of fundamental regions of automorphic functions of
several variables see the literature quoted in sections 14.11, 14,12.

14.2. Definition of automorphic functions
Let G be a group of homographic substitutions
a z+ b ,
(D) z = ar(Z) =W a,.d,.-b,.c,.= 1, r=0,1,2, e,
o, being the identity,

a°=d0=i1, bo=co=0.

Let G be discontinuous in a region D, and let F be a fundamental region
of G. We shall consider automorphic functions, ¢(z) = ¢(z; G) which
satisfy the identity

(2 ¢(z)=¢lo (2)]= ¢(2) . r=0,1,2, e s

The behavior of these functions in the neighborhood of a singularity

z, will be described in terms of a uniformizing variable t in the form

3) ¢(Z)-= t® (a0 +ta,t+ aztz 4 oeen ),

where m is an integer, and the uniformizing variable is defined with
reference to G as follows.
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If z  is not a fixed point of a substitution of G we put

@) t=z-z, z, # oo
(5) t= Z—l Z‘o = 00 ¢
If z  is the fixed point of a parabolic substitution
1 1
(6) > = +6 z, £ oo
z'-z,  z-z
we put

273 1
(7) t=exp <:|: ),
o z-z,

choosing the sign so that £ >0 as z » z in F, and if z = = is the fixed
point of a parabolic substitution
8y z’=2z+6

we put

o (+' Qi
= exp s b4
5

" again choosing the signsoasto make >0 asz » o in F.If z  is a fixed
point of an elliptic substitution oforder [, and z | * is the other fixed point
of that substitution we put

Z-—Z0 L : ,
(10) t ={ ——- z Fw, 2z tw
zZ2—~2Z
o]
(11) ¢=z""  zg=oe 2t
12) t=(-2z )" - \ z koo, 2z =w.

With the foregoing notations and definitions, ¢(z) = ¢(z; G) will be
called an automorphic function of G (or belonging to G) if it satisfies the
following conditions:

(i) ¢(z) is analytic and single-valued in ¥ with the possible ex-
ception of a finite number of points.

(ii) If ¢(2) is analytic at z_ in F, then it may be continued analyt-
ically, within D, to z = o (z o) all possible analytic continuations
(within D ) lead fo the same value #(z ), and ¢(z )= ¢(z )

(iit) In the neighborhood of a smgula.nty zgy ¢ ) may be represented
in the form (3).
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(iv) ¢(z)is not a constant.

It has already been mentioned that our definition of automorphic
functions (and fundamental regions) is not the most general definition.
The class of functions defined above leads to a simple formulation and
general validity of the theorems of sec. 14,7; Ford (1929, sec. 86) calls
automorphic functions of the kind discussed here simple automorphic
functions.

The most characteristic property of automorphic functions is their
invariance under substitutions of G: this property is expressed by (2).
More generally, the term automorphic function may be applied when a
function of one or several variables is invariant under a group of trans-
formations of the variable or variables. Some instances of such general-
izations will occur in sections 14,11, 14,12,

14.3. The icosahedral group

In general, the group G occurring in the definition of automorphic
functions is an infinite group (i.e., consists of an infinite number of
substitutions). In this section we shall discuss automorphic functions of
a finite group (consisting of a finite number of substitutions)s This
example will show some of the essential principles involved in the
construction of automorphic functions without the complications inherent
in the general case. The group in question is the symmetry group of the
icosahedron (the regular solid consisting of twenty equilateral triangles).
The group may be envisaged as the group of rotations of an icosahedron
into itself and is known as the {cosahedral group. It is identical with the
symmetry group of the dodecahedron (the regular solid consisting of
twelve regular pentagons) and is sometimes also called the dodeca-
tedral group, Now, in Euclid’s construction, the dodecahedron is derived
from a cube, each edge of the cube being a diagonal of a face of the
dodecahedron. Altogether five distinct cubes may be inscribed in such
a manner in any dodecahedron, any rotation of the dodecahedron effects
a permutation of these cubes, and thus our group may be identified as a
group of permutations of five elements which turns out to be the alter-
nating group (consisting of all the even permutations)s _

Let an icosahedron be inscribed in the sphere So of 14,1(1), and let
the edges of the icosahedron be projected on S, the center of the sphere
being the center of projection. We thus obtain a pattern of 20 congruent
equilaterial spherical triangles covering S . There are 60 rotationsof the
sphere which leave this pattern invariant, for any centroid of a triangle
may be brought into any of 20 positions, and in each position there will
be 3 rotations (by 2a/3) which leave the pattern invariant.
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If we map the sphere S| onto the complex z-plane by a stereographic
projection 14.1(2), we obtain a net of 20 curvilinear triangles (in the
z-plane) bounded by arcs of circles (in the sense of secs 14.1.1 so that
some of the “‘arcs of circles” may be segments of straight lines). The
60 rotations of the sphere induce 60 homographic transformations, and
these form a group G, a realization of the icosahedral group. Taking
the origin of the z-plane at one of the vertices, and the real z-axis as an
axis of symmetry of the fundamental region, it turns out that G contains
the three substitutions

‘ 1
1) U(z)=-—
F4

3
(2) 5(z.)=ez=ezz c=e2mi/S
€ .

A+)z+¢3 (e—e?) 5%z~ (2~ ¢€3)57%
Ez-(1+e) —(2=-e¥)5%z—(c—¢%)57*%

(3 T(2)= .
In the cases of S and T the first of the two forms is the simplest form
of the substitution, and the last is the form satisfying 14.1 (4). The
special substitutions U, S, T are generators of G, « More precisely, the
60 substitutions of G, are given by

(@ SX SKTsA usK  us<rsh

where x, A = 0, 1, 2, 3, 4. The identity is S° in this representation.
The group G, is discontinuous, and D  is the whole plane. The
fundamental region F has vertices at the points z =0, z , andz |, where

(5) =2 [ 2+ 458+ 2 5)H%],

and z|, Z, are conjugate complex. The boundary of F consists of the
segments A , 4, of straight lines joining z, to z, and Z |, and the cir-
cular arc 4 | joining z | and Z and intersecting the real axis at

(6) Zz=—7 2\/5+< +—\/5>

All substitutions of G are elliptic, U, S, T being of the order 2, 5, 2,
respectively. The pomts Z g9 %, 2, are fixed points of 5, T, TS, respec-
tively. S maps 4, upon 4, and T maps the part of 4 joining z and z,

onto that part ]ommg z, and z, Therefore the two halves of A . count
as separate arcs, z counts as a vertex, and the full set of vertices of F
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is z , z,, 2 ,, Z o I parts of the boundary are removed in accordance with
sec, 14,1.4, then the maps of F under the 60 transformations (4) will
cover the entire z-plane simply, The network of triangles on S or in the
z-plane is shown in Forsyth (1900, Fig. 104, p. 660 and Fig. 107, p. 667)
where six of the triangles alternately white and black (shaded) form a
fundamental region.

In the present case all automorphic functions are rational functions
of z and it can be shown (see, for example, Fricke, 1926, vol. 2, chapter
3) that they may be expressed in terms of the functions

(7)) uw(z)=z¥+1-228(z""—25)+4942"°

8) v()=2z%¥+1+522(z2%°- 2% - 10005(z % + 2 19)

9 wlz)=z(z"+11z5-1)

as follows, Let &, [, m, n be integers, n > 0 [if n = O the sum in (10)
must be replaced by zero, and the product in (11) by unity]; let ¢, = * 1,
and avand b, any non-zero constants, v = 1, e , 73 and assume that

(10) 20k +300+12m+60 5 ¢ =0,

v=1

Then

n €
(11) ¢(z')=ukvlw"' I (@ u®+b_ 027
p=1 Y v
is an automorphic function of G, and every automorphic function may
be represented in this form. Since the three functions u, v, w are not
independent, and satisfy the relation

(12) 2®-v2+12°w5=0,

the representation (11) in not unique.

For a description of the location of the zeros and poles of the auto-
morphic function defined by (11), and for the application of the theory
of automorphic functions of G to the solution of the generic quintic
equation see Fricke (1926, vol, 2, chapters 2 and 3).

All finite groups of homographic substitutions may be enumerated,
For the theory of automorphic functions belonging to these groups see
Fricke (1926, vol. 2, chapter 2).
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14.4. Parabolic substitutions

If all substitutions of a group G, with the exception of the identity,
are parabolic then it may be shown that all the parabolic substitutions
of the group have the same fixed point. Without restricting the generality
of our considerations, we shall assume that the common fixed point is at
infinity. In this case D will be the finite part of the plane, is., the set
of all finite complex numbers z (also called the punctured z-plane or
the plane punctured at infinity). The discontinuous group itself will be
of one of the following two types. Either there is a fixed real or complex
number @ such that

(1) ar(z)=z+rw r=0,11, 12, «ug

or else there are two fixed real or complex numbers @ and  “ such that
®/w”is not real, and the substitutions of the group are

(2) arr’(z)=z+r(0+r’(‘)’ r,r’=0,i].,i2,cooo

In the case of the group consisting of the substitutions (1)

2n7iz
(3) t=exp ( )
@

is an automorphic function of G. Any meromorphic function (= single-
valued function which is analytic save for poles) of ¢ is an automorphic
function, and every automorphic function is of this form. Thus, in this
case, the automorphic functions of G are meromorphic periodic functions
of period w.

If G consists of the substitutions (2), the automorphic functions of G
are meromorphic doubly-periodic (that is, elliptic, see sec. 13,11) func-
tions of z with periods w, %

At first it might seem as if one could have groups of parabolic substi-
tutions with three or more periods. However, it can be proved (see sec.
13.10) that a meromorphic function of a complex variable which has more
than two independent periods is a constant, so that a group with more
than two independent translations has no automorphic functions.

Generalizations. Multiply period functions. Translation groups with
several independent generators will have automorphic functions if instead
of a function of a single complex variable we consider meromorphic
functions of p complex variables, p = 2, 3, 4, «ss o Such functions may
have 2p (or fewer) periods. These are defined in terms of 2p? constants

(4) O p=1,2,0e5p; a=1,2,..,2p
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called the periods. The »  cannot be chosen arbitrarily and are subject
to certain conditions, It can be shown that after a suitable linear trans-
formation of the variables and periods :

(5) (o,uv=i7r3mj/e#, © iy =8 =0y, wr=L..,p

where Suv is the Kronecker symbol, the e, are positive integers, and

(6) Re i i a#vx#xv.<0

p=1 v=1

for all real x _satisfying

@ 3% x2 > 0.
a=1

A single-valued analytic function f@,, e , u,) of the p complex
variables which is regular for all finite values of ul, we , 4_ save for
isolated points which are not essential singularities, and which cannot
be expressed as a function of less than p linear combinations of the
variables, will be called a 2p-tuply periodic function of u , «., u, if for
any integer M B L ..,ppa=1,...,2p, and

2§n y=_1,..'.,p

(8) M= 2 " pua

we have

9) f(u1 g e s U, +1)p-)= f(ui, e s up)

for all finite (u,, eee ) at which f is regular, provided that the ®, are
such that at least for one L

i,\maéo

a=1

for all real A, ..., ’\zp except A, = s+ = A,

It may be proved that for any given set of perlods D0 satisfying (5),
(6) there exist 2p-tuply periodic functions. There always exist p such
functions which are algebraically independent; any p + 1 such functions
are connected by an algebraic relation (see sec. 13,11 for the case
p = 1). Every 2p-tuply periodic function may be expressed as a rational
function of suitably chosen theta functions defined as a p-tuple infinite

series
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(10) B(u', coe s up)

= 020 exp(f,ﬁ mm+2§mu)
ceey = : v=1

wy u=1 H#

in which the a _ are real or complex numbers such that the Re @, form

a negative definite symmetric matrix, i.e., @, _=a_ and
’ * % vi

D Re( 2 £a xx)<0

u=1 v=1

for all real x poe s ¥, satisfying

i x2>0,
p=1 K

For the theory of multiply periodic functions and its connection with
algebraic functions of a single variable and with the theory of Abelian
functions see Baker (1907), Krazer and Wirtinger (1901-1921).

14.5, Infinite cyclic group with two fixed points

Let ¢ be a hyperbolic or loxodromic substitution. If {, and ¢, are

the fixed points of g, this substitution may be represented in the form
z’- ¢, =pei"¢’z—é'
z’~ ¢, z-{,

or

zr-_é—|=pein¢(z_é‘|)

according as C # o0 or {, = o, it being assumed that C # oo, Here p >0,
p £ 1. If ¢ is an integer multiple of 27, the substltutlon is hyperbolic;
otherwise it is loxodromic.

Consider the group G generated by o. The elements of G are ¢”,
n=0,%1, £2, «s « The substitution ¢" may be represented as

.-él _ .ning z_é“ )
M =2, =pe PR $p & #

or

@ 2= =pme G- () Lt L=



14.5 AUTOMORPHIC FUNCTIONS 15

where p, ¢ are the quantities introduced above, and n is any (positive or
negative) integer.

The group G is discontinuous in the region D which consists of all
complex numbers different from {, and £, (the complex plane punctured
at ¢, and {,). In order to obtain a fundamental region F, let C' be any
circle which separates {; and (, (so that any continuous curve joining
¢, and ¢, intersects C ), and let C | be mapped onto the circle C_ by o™,
The sequence of circles C , n =0, £1, £2, ... is invariant under G. No
two circles of this sequence have a point in common. Any region bounded
by two adjacent circles, C_and C__,, (with one of the circles forming
part of the region and the other not) may be taken as the fundamental
region F,

The automorphic functions of G are the elliptic functions of the com-
plex variable

z -,
z-—(z

u=log(z-§') 4174""’ §2=°°

(3) U= log 419 éz 74 oo

with periods
(4) o,=logp+i¢, w,=2mi.

The occurrence of doubly periodic functions as automorphic functions
of the group G may be explained by the following circumstances, The
group G seems essentially the same as that identified by 14.4(1); there
is no algebraic difference between the two groups, they are isomorphic,
There is a considerable difference in the regions involved, though.
The region D (plane punctured at o) and the fundamental region F
(infinite strip) of 14.4(1) are simply connected; the region D, (plane
punctured at two points) and the fundamental region F (region between
two circles without a common point)of this section are doubly connected.
In a doubly connected region (such as F) a function may be analytic
everywhere and yet many-valued, thus violating condition (ii) of sec.
14.2. We need one periodicity to make our function single-valued in F,
and a second, to transplant it, as it wers, to the maps of F according to
14.2(2).

For an application to a boundary value problem in electrostatics see
Burnside (1891, 1892) where the case of 2n (rather than two) bounding
circles is investigated.
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14.6. Elliptic modular functions

14.6.1. The modular group
Let M be the group of all homographic substitutions
az +b

(1) z’= g ad -~ be=1
cz +

with integer a, b, ¢, d« M is called the modular group (see also sec.
13.24): it is of infinite order, and all of its substitutions map the upper
half-plane Im z >0 onto itself. Let D  be the upper half-plane. Then ¥

is discontinuous in D . The set of points

(2) Imz>0 andeither 12|21, -%<RezxO0
or |z| >1, O<BRez<k%
may be taken as a fundamental region F. The vertices of F are at the

points
() z,==W+Nhiy3, z,=i, z = K+RKi\3, z, =0

2 3
The substitution o defined bya=b=d=1,¢=0, or
(4) z’=o0(z)=2+1
maps the segment (ray) joining‘z' to z, onto the segment joining z  to

z,, and has z , as its parabolic fixed point, The substitution r defined
bya=d=0,b=~1,c=1,0r

(5) z’=r(z)=- 1
V4

maps the arc of the upper half of the unit circle between z, and z, onto
the arc joining z, and z,, and has z_ as a fixed point (the other fixed

point being in the lower half-plane).
The group M is generated by o, 7. Since r*> = I, any substitution of M

may be written in the form

n n n
l
o 'ro treo 70

where

1=1,2,3 000y npn;=0,1,2 000y n,ee,n; = L2 3 ...

The maps of F under these substitutions cover the upper half-plane

simply.



14.6.2 AUTOMORPHIC FUNCTIONS 17

14.6.2. The modular function J (z)

The absolute invariant, J(z), of the modular group M arises in the
theory of elliptic functions (where the variable is usually denoted by r,
see sec. 13,24).]t isimportant both in that theory and in its applications;
and a function nearly related to it is the key to Picard’s original proof
of Picard’s theorem. The principal properties of J(z) are as follows:

(i) The function J(z) is single-valued and analytic in D, (the upper
half-plane) and

az +b

6) J(z7)= J( z+d>=J(z) inD

for all substitutions 14.6(1) of the modular group M.

(ii) The function w = J(z) maps F [given by 14.6(2)] simply onto
the (entire) w-plane in such a manner that the boundary of F is mapped
onto the real w-axis from ~e to 1, and

(D) JE%+%iv3)=0, JGE)=1, J(e)=c.

(iii) By (i) and (ii), J(2) is an automorphu: function of M, and every
automorphic function of # is a rat;onal function of J (2)s

We may add that every point on the real z-axis is a singularity of
J(z), and the real axis is a nasural boumlary of J(z).

Expression of J(z) in terms of Eisenstein series. Let w, w”be two
real or complex numbers, Im(w?7w) > 0. We regard w and «” as half-
periods and form Weierstrass’ invariants

8 g,(00)=60%mo+rne”)™
gylw, ©)=10Z2mw+new’)®

[see 13.12(13)] where X’ indicates summation oyer all pairs of integers
(m, n) with the exception of m = n = O, We also set

(9 Aw, m')=g2—27g§

[see 13.13(7)]: Clearly, g*/A is a homogeneous function of degree zero
in @ and @ “and hence depends only on

1) z=w7w

which will be regarded as a complex variable ranging over the upper half-
plane. We have '
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(11) J(z)=g3/A
[see 13,24 (4)].

In
(12) Ez(z)=m4 gz(m, ©’)=60 3 (m + nz)"?
E (2)= 0° g (0, ©") =140 2 (m + nz)~®

we collect all those terms in which m and n have a fixed greatest common
divisor d so that n = sd, m = —td, s > 0 and s and ¢ are coprime. If s = 0,
= 1. Using the results

(13) i 1 w? o 1 ns
— = —
d* 90 dot ds 945

d=1
which follow from 1,13 (16), we finally obtain

14 E,@)==r*[14 S (sz-0"]
3 (s, t)=1, s >0
E,&)=—r®[1+ 3  (sz-07°
27 (s, t)=1,5>0

In the last two sums s runs through all positive integers, and for each s,
t runs through all (positive, negative, and zero) integers coprime to s,

The series (14) are examples of Eisenstein series. The characteristic
property of such series is the resiriction placed upon the indices of
summation by number-theoretical conditions,

The expressions g, and g, in (8) are called homogeneous modular
forms (that is modular forms expressed in terms of the homogeneous vari-
ables w, @’) of dimension —4 and -6, respectively, and E, and E_ in
(14) are called inhomogeneous modular forms (that is modular forms
expressed in terms of the inhomogeneous variable z). For a definition of
modular forms see Klein and Fricke (1890, 1892) and sec. 14,8.3.

If a, b, c, d are integers and ad — bc = 1, then s "= as — ct, t ‘= dt - bs
run through a complete set of pairs of coprime integers if s, ¢ run through
this set, it being understood that only one of the pairs s t”and ~s
~t’ appears in the set. From this it follows that for any substitution

14.6(1) of M
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(15) Ez(‘” - Z ) = (ez+d)*E (2)

cz +

E (az +é =(cz+d)*E 2 (&)

cz+d
and

£, ()]
£, -2 [E, )P

(16) J(z)=

satisfies (6).

From (14) it is seen that £,(z) and £ 3(z) are single-valued analytic
functions of z in D (the upper half-plane) and that the real axis is a
locus of singularities of these functions. A more careful discussion
shows that J(z) has the same properties [see (i) abovel.

Expression of J(z) in terms of theta functions. We put

(17) g=e*"* lg| < 1.

Since the substitution z = z + 1 is in M, we see that J(2) is a periodic
analytic function, with period 1, of z, as z ranges over the upper half-
plane. Hence J(z) will be an even analytic function of ¢ in the unmit
circle punctured at g = 0, and may be expanded in a series of even powers
Of qe

The expansion in question may be derived from the formula

7® (03+ 65+ 63)° 4n° (63-0;00)°
54 6,° o 0.8

(18) J(z)

which follows from 13,24 (5), 13.19(22) and (23) and in which

(19) 07=06:(0)= 27g* ia- -g™)?

n=1

6,=0,0)=2¢% T [(1-¢*X1+¢%)2]
=1

0,=0,0 = fl [Q-¢™1+g="7

n=1

6,=0,0)= i [(Q-¢™(1-g¢= "

n=1
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[see 13.19(16)] are the theta functions of zero argument. From (18) and
(19) we have an expansion of the form
(200 1728 J=)= g2+ £ a_ ¢¥ g=eim
n=0
convergent when 0 < |g| < 1. Clearly the coefficients @ are integers:
for their numerical values for 0 < n < 24 see Zuckerman (1939). Another
éxpression which can be obtained from (18) is
[1+240 ¥ n%g=/(1- g™
. n=1
(21) J(z)= — .
129¢2 T (Q-g™*

n=1

Connection with ﬁypergeometric series: From property (ii) of J(z)
it follows by meaﬁ‘é of secs 2.7.2 that the inverse function of J(z) may
be expressed in terms of hypergeometric functions. See also 13.24(2)

and (5), and 13.8(5) and (6).

We put
1 1 2
(22) F(J)= 2F1 (1—2- ’ -]3 ,—5-; J)
e (> 2.4 J)
-21(12’ 12’3’ ’

where ,F, is Gauss’ hypergeometric series defined in 2.1(2), and intro-
duce

o, FO l:r(',—;) :Iz r(%)
y - =
PO | rip 1 ore
(24) A=2~+/3)y.
Then, with J = J(z), F = F(J), F*= F*(J) it may be proved that

amips F = Aeim/2 ' px
F = xe™ ™ g\ F*

(25) z=e¢

This equation gives the value of z for any J inside the unit circle. Out-
side the unit circle we have
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G5, S 17

(26) 27iz=—log J—3log 12+ -

1 s -
RASTIR IR AN

1J|>1, |arg(l-J)| <=

where ZF' is again Gauss’ series and

2 @ G
@7) Gla b; Lu)= Y (—()'_)(2_)_ [W+n)+ gb+n) =24+ 1)
n.

n=1
+¢la)+ ¢y B) -2y (1),

¢ being the logarithmic derivative of the gamma function (see Fricke,
1930).

For applications of the modular invariant to the theory of numbers see
secs 14,6.5. For an application in the theory of functions of a complex
variable (to the proof of Picard’s theorem) see, for instance, Huwitz and
Courant (1925). '

14.6.3. Subgroups of the modular group

We shall now consider certain subgroups of the modular group; these
will be defined by congruence properties of the integers a, b, ¢, d in-
volved in the homographic substitution '

az + b

(28) z’= ad — bc = 1.

cz+d

Let m be a positive integer, and let ¥ be the set of all thoée substi-
tutions (28) of M for which

(29) either a+1, b, ¢, d+1 or a-1, b, ¢, d=1

are integers divisible by m. It is easy to see that M_ itself is a group:

it is called the principal congruence subgroup of level (in German, Stufe)

m of the modular group M. Each M is discontinuous in the half-plane

Im z > 0, and a fundamental region of M may be constructed by forming

the union of y,_ suitably chosen ‘‘copies’ of the fundamental region F

of M [defined by (2)]. By a ““copy’’ of F we mean here a region upon which
F is mapped by a modular substitution. If

a

a, a
(30) m=P"p22 '*"Pkk,
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where p ., +s , p, are distinct primes, and @y «+ 5 @, are positive inte-
gers, then y, = 6, and

By y, =km*(1-p7H A =-p;?) e 1-p3?) m> 2.

We shall further consider the cases m = 2, 5. For other M see Fricke
(1926), Klein and Fricke (1890, 1892).

For m = 2, we have (28) with a, d odd integers, b, c even integers.
M, is the A-group (sections 13.22, 13.24). The fundamental region F, of
M, may be defined by

32 Imz>0, |z-%|>%, J|z+%|>% -1<Rez<1l

The points
(33) z,=-1 z,=0, 2z =1, z,=o0
are vertices of F, . The boundary of F, consists of the parts in the upper
half plane of the straight lines Re z = £ 1, and of the circles |2z +1]| =1,
We denote the components of the boundary by 4,, «. , 4, as follows:
(34) 4,: Tmz>0, Rez=-1

A,: Imz>0, |z+4%|=%

A,: Imz>0, |z-%|=%

A,: Imz>0, BRez=1.
By (32), 4 . and Az belong to F, and 4 s and A4 do not. The A-group is

generated (in the sense explained in secs 14,1.4) by the substitutions

z

(35) Z'-=0(Z)=z+2, z’= T(z-):

2z +1

We have already seen in sec. 13,24 that k? = A(z) is an automorphic
function of M,. This function is single-valued and analytic in the upper
half-plane, is invariant under substitutions of M,, and maps F, onto the
entire w-plane; furthermore, every automorphic function of M, is a rational
function of k2. Since M, is a subgroup of M, and J(z) is an automorphic
function of M, it follows that J(z) is also an automorphic function of ¥,
and hence a rational function of k2. The explicit expression is

4 (1-k%2+1%3

(36) J(Z)=EY_ A Q-2
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The function A(z) can most easily be defined in terms of theta func-
tions [see 13,20(14)]. We have

4(09 q) 1+q
_ 2
37 AMz)=k2= 4(0 l I (1+q |>

00 2 4
S (m+%)
=0 q

=16[—
1+2 3 ¢

a=1

where
(38) g=e imz lg) < L.

Series expansions of \(z) which are of the type of Eisenstein series
may be derived from the theory of Weierstrass’ g -function.
The function

(89) w=A(z)

maps the region
(40) Imz>0, O<Rezgl, |z-%|>%

of the z-plane onto the upper half of the w-plane in such a manner that
the points z = 0, 1, = correspond, respectively, to w = 1, =, 0, As in the
case of J(z), this means that the inverse function of (39) may be ex-
pressed in terms of the hypergeometric function. By 13.19(3) and 13.8(5)
we have

LR % 11N

41) z = ’
@)z =i 2F 4 %5 1L A)

where F, is Gauss’ series.
An independent approach to the theory of A(z) was given by Nehari
(1947) who considered the functional equation

42) flg)=4[f(gH* 11+ [f(g?)]*}2
and showed that the conditions
(43) f©)=0, f%0)>0, f(g) analytic for |g| <1
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determine a unique solution, fo(q), of (42), We have f (g) = A(z) = k2,
where g and z are connected by (38), and (42) is essentially Landen’s
transformation (see sec. 13,23).

We now turn to # . The fundamental region, ¥, of M_ consists of
Y5 = 60 *‘copies’, in the upper half-plane, of F. The 60 modular sub-
stitutions which map F on its 60 copies are representatives of the 60
cosets of M in M, [For the notion of cosets of a subgroup see van der
Waerden (1949).]

There exists an automorphic function, A(z), which stands in the same
relation to M, and F_ as J(z) to M and F, or A(z) to M, and F,. The
explicit expression defining A (z) is

§ (-1)y" q5m2+3m

n==—00

(4‘4) A(Z)=92/5 .
§ -1)™ q5m2+m

m==— 00

Every automorphic function of M is a rational function of A(z); the
absolute invariant J(z)is an automorphic function of every subgroup of ¥,
and hence of M, and must thus be expressible as a rational function of
of A (z)s The actual expressions are

J (A [u(A)]?
5) == gt
J-1 [v(A)] 1728 [w (A)]°
where u, v, w are the polynomials defined in 14.3(7), (8), (9). The for-
mulas (45) play an important role in F. Klein’s celebrated solution of the
quintic equation.
For all positive integers /, the function [A(z)]
function of some subgroup of M. If, and only if, [ = 1, 2, or 4, there is a
» and M, , respectively) of which

/@D is an automorphic

principal congruence subgroup (M, M,

[A(2)1" @) is an automorphic function.

14.6.4. Modular equations

If f(z) is either J(z) or the corresponding automorphic function of a
principal congruence subgroup (for instance A(z) in the case of M ,, and
A(2) in the case of M), then, for any integer [ > 1, the functions f(z)
and f(lz) are connected by an algebraic equation. Such equations are

called modular equations.
In the case of the absolute invariant we hayve the following situation.

For any integer [ > 1, the function J(lz) satisfies an algebraic equation
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of degree I + 1. The coefficients in this equation are rational functions
of J(z), and the coefficients appearing in these rational functions are
rational numbers. The roots of this equation are

z z+1 z+1l-1
J(lz), J(—), J( ), oo g J e — L]
l l l
We shall give explicitly the modular equation satisfied by J(2z).

Using the abbreviations

(46) j=12%J(z), j*=123J(2z),

the equation is

4D P+ -G +2%.3.315 7%+ ) -2%.3%.53(52+ §*?)
+34.5%. 4027 5%+ 28. 37 .55(j+ %) - 272.39.59=0,

14.6.5. Applications to number theory

Elliptic modular functions and related functions (Eisenstein series,
theta functions) play an important role in the theory of numbers., For
some applications see sections 17,2, 17,3, 17,4 and Hardy (1940). The
absolute invariant, J(z), has the property that J(a) is an integral algebraic
number whenever a has a positive imaginary part, and is a root of a
quadratic equation with integer coefficients. The algebraic equations
with integer coefficients satisfied by certain J(a) are the so-called class
equations for imaginary quadratic number-fields [see Fricke (1928),
Fueter (1924, 1927)]: see also Schneider (1936), Hecke (1939).

A new and far-reaching development was originated by Hecke (1935,
1937, 1939, 1940a, 1940b): see also Petersson (1939) and, for certain
numerical results, Zassenhaus (1941).

For some results which are relevant for the subject of this section,
although they appear as special cases of a much more general theory,

see Siegel (1935).
14.7. General theory of automorphic functions

In this section we shall briefly describe a classification of discon-
tinuous groups of homographic substitutions, and mention some of the
general theorems on automorphic functions of a single variable. All
results to be mentioned are based on the definitions of the first few
sections of this chapter: it has already been explained that these defi-
nitions are not the most general ones known in the literature.
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14.7.1. Classifications of the groups

Automorphic functions are often classified according to the groups to
which they belong. A classification of all discontinuous groups (see
secs 14,1,3) of homographic substitutions was given by Poincaré, It was
further developed by Fricke who devoted about one third of the first
volume of Fricke and Klein (1897) to a detailed classification the results
of which are fully stated on p. 164, 165 of Fricke and Klein (1897, vol. I).

As in the introductory sections, let G be a group of homographic
substitutions ar(r =0, 1, 2, 3, « ) where
(1 ar(z)=£—"::_2' a,d -bec =L

r r

If there exists a circle C | which is mapped onto itself by each o,
the group G is called a Fuchsian group. The circle C is called a prin-
cipal circle (in German, Hauptkreis) of G, and G is also called a group
with a principal circle. If G has a principal circle, a homographic trans-
formation of the z-plane may be used to map C, on a standard circle.
Two such standardizations are used. (i) C° is the unit circle, Necessary
and sufficient conditions for the unit circle to be mapped onto itself by
all o_are

r
(2) d =a Cr=br, lar|%|br| r=0, 1,2, (YY)

r r?

where bars denote conjugate complex quantities (see for instance, Copson
1935, sec. 8.31) (ii) C is the real axis. Necessary and sufficient
conditions for the real axis to be mapped onto itself by all ¢ _are

{3) a,., b, c, dr real, ardr—brcr;éo r=0,12, ...

The modular group and its subgroups are examples of discontinuous
groups for which the real axis is a principal circle.

In general, G will have limit points (see sec. 14,1.,4): let I be their
number. It can be proved that the only possible values of [ are 0, 1, 2,
and = If [ = 0, clearly G is a finite group (examples of such groups are
given in sec.14.3). If I = 1, it can be shown that G is a group of parabolic
substitutions, and all substitutions of the group have the same fixed
point: such groups are discussed in sec. 14,4, If [ = 2, we have the case
investigated in sec. 14,5, and the slightly more general case where G
is similar to the group generated by the two substitutions

r

4) o@)=az, r(z)=¢z
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where ¢ is a root of unity, i.e., ¢ = 1 for some positive integer m, see
Fricke and Klein (1897). If / = =, the limit points of G form an infinite
point set, and any limiting point (i.e., point of accumulation) of this set
is also a limit point (in the sense of the definition of sec. 14,1,4) of G.

If a principal circle, C , exists, and every point of C is a limit
point of G, then C  is called a limit circle of G, and G itself is called a
Fuchsian group of the first kind. If, on the other hand, the limit points
are nowhere dense on C, then G is called a Fuchsian group of the second
kind. In all other cases involving an infinity of limit points, G is called a
Kleinian group. If | = « and no principal circle exists, it can be proved
that G must contain loxodromic substitutions. The modular group and its
subgroups discussed in secs 146 3 are examples of groups for which the
real axis is the limit cirele,

14.7.2. General theorems on automorphic functions

Let G be an infinite discontinuous group (see sec. 14,1,3) of homo-
graphic substitutions, let F be a fundamental region (see sec. 14,1.4)
of G, and let ¢(2), ¢,(z), ... be automorphic functions (in the sense of
secs 14,2) of G. The following general theorems hold for automorphic
functions, and correspond to the general theorems of sec. 13,11 on
elliptic functions [which are automorphic functions of the group 14.,4(2)
generated by two translations].

Every automorphic functions has poles in F. The number of zerosand
poles in F is the same., An automorphic function assumes, in F, every
value the same number of times,

Any two automorphic function of the same group are algebraically
dependent, that is, for any two automorphic functions ¢,(z) and ¢ ,(z)
of G there exists a polynomial, P (u, v), in two variables, with constant
coefficients, so that P(¢,(z), ¢,(2)) = 0 identically for all values of 2
for which ¢, (z) and ¢, (z) are defined.

For any given group G it is possible tofind two automorphic¢ functions,
¢,(2) and ¢, (z), with the property that any automorphic function of G is
a rational function of ¢,(z) and ¢,(2z) with constant coefficients. The
expression of elliptic functions in terms of g (z) and p “(z) in sec. 13.14
is an instance of this theorem.

If there exists an automorphic function, ¢ (z), of G which has a single
simple pole in F, and is otherwise analytic there, then every automorphic
function of G is a rational function of ¢ (z). For examples of such
functions see J(z) in sec. 14,6,2, and A(z) and A(z) in secs 14,6.3. It
can be proved that a necessary and sufficient condition for such a ¢ (z)
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to exist is the condition that the ‘‘genus’’ of F be zero: for the definition
of the genus of the fundamental region see sec. 14,8,2; also Fricke and
Klein (1897) or Ford (1929).

If an automorphic function, ¢ (z), of the nature described in the
preceding paragraph, exists, and it 2 = 5(w) is the inverse function to

= ¢,(2) (under the circumstances described above such an inverse
function exists since ¢ (z) assumes every value exactly once), then
7(w) may be represented as the quotient, y /Y 2 of two particular solu-
tions of the linear differential equation

2
dw}; =ulw)y

(5)

in which z is a rational function of w. [In more general cases u will be
an algebraic function, see Ford (1929, sec. 44).] For a special case where
(5) is equivalent to the hypergeometric equation see sec. 14,10, In the
case of J(z), A(z), A(z), the differential equations corresponding to (5)
are special hypergeometric equations.

Every limit point (in the sense of sec, 14,1,4) is an essential singu-
larity for every automorphic function of G. In particular, in the case of a
Fuchsian group of the first kind, the limit circle is the natural boundary
for all automorphic functions of G analytic continuation beyond the limit
circle is impossible.

14.8. Existence and construction of automorphic functions

14.8.1. General remarks

The theory of automorphic functions has two fundamental problems.
The first of these is the enumeration of all possible fundamental regions
(or, of all fundamental regions satisfying certain conditions), and the
construction of the group belonging to each of these fundamental regions;
and the second problem is the construction of all automorphic functions
belonging to a given group.

The problem of finding all groups which possess a fundamental region
has been solved completely in the case of groups with a limit circle: see
Fricke and Klein (1897). The solution requires a thorough knowledge of
non-Euclidean geometry, Even for the more difficult problem of finding a
unique standard form for the fundamental region of a given group, partial
answers are known in the case of groups with a limit circle which are
generated by a finite number of substitutions.
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With regard to the second problem of finding all automorphic functions
belonging to a given group with a given fundamental region, the general
theorems of secs 14,7,2 show that the basic problems are: to find two
automorphic functions in terms of which all others can be expressed
rationally, and to discover algebraic relations between automorphic
functions belonging to the same group. Two powerful methods for achiev-
ing this will be indicated in sections 14.8.2, 14,8.3.

In general, it is very difficult to obtair explicit formulas: the theories
of modular and elliptic functions are rather exceptional. In particular,
with most groups the coefficients of the substitutions of the groups in-
volved cannot be characterized in a simple and explicit fashion.

14.8.2. Riemann surfaces

Given G and F, the generators of the group G set up a correspondence
between pairs of boundary points of the fundamental region F [see sec.
14.1.4(iii)le I equivalent boundary points are identified, a Riemann
surface S is obtained: this Riemann surface may have boundary points,
corresponding to fixed points of substitutions of G on the boundary of F,
The genus of this Riemann surface is also the genus of the fundamental
region F. (See Ford, 1929, p. 238.)

Single-valued analytic functions on S correspond to automorphic
functions of G so that the construction of automorphic functions of a
given group with a given fundamental region is equivalent to the con-
struction of single-valued analytic functions on a (not necessarily open)
Riemann surface, For an outline of this method see Hurwitz and Courant
(1925)s The problems of uniformization (see sec. 14,9) have played an
important role in the development of this approach to the theory of auto-
morphic functions.

In particular cases the construction may be performed explicitly. The
simplest examples are the Riemann-Schwarz triangle functions. For these,
and for theorems on differential equations satisfied by inverse functions
of automorphic functions see sec. 14.10.

14.8.3. Automorphic forns. Poincaré’s theta series

Poincaré, and after him Ritter (1892, 1894) and Fricke (Fricke and
Klein, 1912) developed the theory of automorphic functions by a method
resembling Weierstrass® construction of elliptic functions.

Let G be a discontinuous group of homographic substitutions as in
sec. 14.2, and let F be a fundamental region of G.
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Let s be a constant, and for each r = 0, 1, 2, « , let v(o ) be a real
or complex number of absolute value unity [so that v{(o ) is a function
on G to the unit circle of the complex plane]., With the notations ‘and
definitions of sec. 14,2, a function 1(z) will be called an automorphic
form of the class {G, ~s, v} if it satisfies the following conditions.

(i) ¢(2) is analytic and single-valued in F with the possible excep-
tion of a finite number of points.

(i) If (2) is analytic at z  in F, then it may be continued analyt-
ically, within D or t0 2 = ar(z o)’ all possible analytic continuations
(within D ) lead to the same value y(z ), and

D) ¢ )=vlo ),z ,+d)" y(z )

(iii) In the neighborhood of a singularity, 1(z) may be represented in
the form 14,2(3).

(iv) 4(z) is not a constant.

The function v(0,) is called a multiplier system, and it follows from
(1) that v is a multiplicative function on G, ies,

2 vl 0, )=v(0) v, )

The condition |[v(s )| = 1 is a customary assumption. The automorphic
form satisfying (1) is said to be of dimension ~s. An automorphic function
is an automorphic form of dimension zero having v (o) = 1 as its multiplier
system. Automorphic forms belonging to a subgroup of the modular group
are also called modular forms.

The construction of automorphic functions may be reduced to that of
automorphic forms, If ¥, (z) and ¥, (z) are automorphic forms of class
G, ~s,, v,} and IG, ~5s ,, v} respectively and if

o, )1 2 v, )] '=1 r=0,1,2 w
then
$(2) =y, ()] 2 [y, ()] "

is either a constant or an automorphic function of G.

It can be shown that every automorphic form may be represented by a
Poincaré theta series. We shall construct such a series under the assump-
tion that z = e is not alimit point of G. The series is then of the form

@ 06 =5 )",z +d ) H),

r=0
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where z , v(or), c drhave the meaning ascribed to these symbols in
sece 14,2 and in the present section, / is an integer > 2, and H(z) is a
rational function of z which is analytic at all limit points of G. The
infinite series converges uniformly and absolutely in every closed subset
of F in which H (z) is analytic, and it may be shown by means of (2) and
the relation

oz, V=0 lo 1 (@=0p )=z

that Poincaré’s theta series (3) represents an automorphic form of the
class {G, -21, vl. ~

In connection with the construction of automorphic forms in terms of
theta series a difficulty arises in certain cases, especially if G is a
group with a limit circle, this difficulty being due to the fact that the
function represented by the theta series may vanish identically. In the
case of automorphic functions with poles this difficulty may be over-
come by constructing theta series with a single pole in F; such series
do certainly not vanish identically in ¥, On the other hand, it may be
necessary to construct automorphic forms which are analytic in F and
vanish in parabolic cusps of F. In this case H(z) is analytic in F and
it may very well happen that the series (3) vanishes identically. This
circumstance caused the greatest difficulty which Poincaré had to over-
come in his theory of the series (3).

A new foundation of the theory of automorphic forms and of Poincaré’s
theta series was laid by Petersson (1940) whose method is based on a
metrization of automorphic forms, Let G be a Fuchsian group of the first
kind containing parabolic substitutions, Taking the real axis as the
limit circle, the coefficients a_ b, c,d of the substitutions may be
taken to be real. In this situation, Petersson puts z = x + iy and defines
a scalar product of two forms as

@ W y)=J S 4,6 g,y " dudy | s>2,
F

the bar, as usual, indicating complex conjugation. Using the invariance
of hyperbolic measure under the group G, Petersson computes (4) ex-
plicitly if ¢ is an automorphic form which is analytic in F and vanishes
at all parabolic cusps of F (‘“‘Spitzenform’’), and ¢, in a Poincar€ theta
series, The resulting formula is used for a characterization of theta
series and for the proof of the fundamental theorems in the theory of
these series. If G is a congruence subgroup of the modular group, the
theory holds for s = 2, vio ) = 1. For extensions, generalizations, and
applications of this method see Petersson (1941, 1944, 1949).
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For the case of a Fuchsian group of the first kind containing hyper-
bolic substitutions only, Dalzell (1932, 1944, 1949a, 1949b) developed
a new method for Poincaré’s theta series and related functions.

In many cases the theory of Poincaré’s theta series has been supple-
mented by the theory of functions analogous to Weierstrass’ sigma and
zeta function (while the theta series are analogous tothe p-function). See
Ford (1929), the references given in sec. 14,10,2, and also Ritter (1892),
Stahl (1888), Dalzell (1932).

In the case ofa group without limit circle, Poincaré’s theta series may
converge absolutely for [ = 1 and the multiplier system v(o ) = 1 (see

sec. 14,10.2).

14.9. Uniformization
Let G be a Fuchsian group of the first kind such that the closure of

the fundamental region F is contained in the interior of the limit circle
(if the limit circle is the real axis, we define the upper half-plane to be
the interior). We assume that all substitutions of G (with the exception
of the identity, o ) are hyperbolic. We know from sec. 14.7,2 that any
two automorphic functions, ¢,(z) and ¢z(z), of G are algebraically
dependent, i.e., satisfy a relation

1) Plg,G), ¢,(z))=0

identically in F, P (u, v) being a polynomial. This means that the vari-
ables u, v which are connected by means of the relation

2 Pl v)=0

and hence are algebraic functions of each other, may be expressed as
single-valued functions,

() u=¢,(2) v=¢,z)

of an auxiliary variable z which is then called a uniformizing variahle
for the algebraic relation (2). Alternatively, (2) may be regarded as
defining an algebraic curve and (3) as a parametric representation, in
terms of single-valued functions, of that curve. It is an important fact
that every algebraic relation may be uniformized in this manner, and
that automorphic functions are the most general functions that need to
be used (see also sec. 13,2). This result may be described in greater
detail as follows.

Let P(u, v) be anirreducible polynomial in two variables u and »
(i a polynomial which cannot be decomposed into a product of poly-
nomials), and let the variables u and » be connected by the algebraic
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relation (2). Then there exist two functions, ¢ . (z) and ¢z(z), of a com-
plex variable z, and a region F* in the z-plane, with the following pro-
perties: For any pair, u, v, of complex numbers satisfying (2), there
exists a z in F* such that u = ¢ (2), v = ¢,(2), and apart from a finite
number of pairs (u, v), this z in F* is uniquely determined, Moreover, the
functions @, (z) and é, (z) may be chosen so that either ¢|(z) and
¢, (z) are rational functions and F* is the entire z-plane, or ¢ (z) and
¢, (z) are elliptic functions with a common pair of periods and F*is a
period parallelogram of these functions (only one of the vertices and two
of the sides of this parallelogram being parts of F*), or else ¢,(z) and
¢, (z) are automorphic functions of a Fuchsian group of the first kind
all of whose substitutions (with the exception of o ) are hyperbolic, and
F*is a fundamental region of this group.

For the theory and history of uniformization see, for 1nstance, Burwitz
and Courant (1925, Part III, Chap. 9).

14.10. Special automorphic fanctions

Particular automorphic functions wefe- also described in sections 14,3
to 14.6.3. ’

14.10.1. The Riemann-Schwarz triangle functions

In certain cases the differential equation 14,7 (5) may be reduced to
the hypergeometric equation 2,1(1). The resulting automorphic functions
have a limit circle. They are called the Riemann-Schwarz triangle func-
tions; see also sec, 2,7.2, Klein and Fricke (1890-1892), Ford (1929
secs 114)

In order to conmstruct a fundamental region for the group of such a
trlangl_e function, and to obtain the group itself, let c,C, C, be three
circles, andletC  be a circle which is orthogonal to C |, C, C3. We may
take Co as the real axis when the centers of C |, C,, C, will lie on the
real axis (one or several of C , i = 1, 2, 3 may be straight lines perpen-
dicular to the real axis, the center of such a straight line being the point
at infinity of the real axis). Let A be a triangle bounded by arcs, 4 , 4 ,,
A4, of the circles C, C,, C : we assume that A is in the upper half-
plane, Let n, n,, n  be three positive integers, and let the interior

angles of A be a, ay a, where.

@ .
D a,;= on L=1a 23 3’
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and it is assumed that
(2) a,+a,+a,<m

Zero angles (or infinite integers n) are admitted. We number the angles
and vertices in such a manner that a, is the angle made by 4, and 4,
etc., V, is the vertex at which 4, and A, meet, etc. Let A’ be the
triangle obtained by an inversion of A on the circle C . The points V',
and V, are also vertices of A% let the remaining vertex of A’ be V.
We then take the closed region A + A”as the region F* of sec. 14,1.4.
Clearly our F* satisfies the condition (i) of sec. 14,1.4, and we shall
construct a group G so that conditions (ii)-(iv) are also satisfied.

There is a unique homographic substitution, o, with real coefficients
which maps V, onto itself and V3 onto V4; likewise a similar substi-
tution, o,, which maps ¥V, onto itself and ¥ onto V . Clearly, o, maps
A, onto A% and o, maps 4, onto A+ The arcs 4,, 4/, 4,, A ] bound F*,
and condition (iii) of sec. 14,1.4 is satisfied. The group G generated by
a, and g, clearly satisfies conditions (ii) and (iv)s Let F be the region
obtained from F* by removing V', and the interiors of A4 ,; 47, Then G is a
Fuchsian group of the first kind whose limit circle is the real axis, and
F is a fundamental region of G. '

The group G possesses an automorphic function ¢ (z) whose inverse
function is a Schwarz function (see sec. 2.7.2) and may be expressed
as a quotient of two hypergeometric functions, The function ¢ (z) assumes
every value exactly once in F, and every automorphic function of G is a
rational function of ¢ (z). Simple examples of such functions are the
absolute invariant of sec. 14,6.2 or the corresponding automorphic
functions (in sec. 14,6.3) of subgroups of the modular group. If

w w
(3) a, ='§', a,= 0, a, =?,

G is the modular group M, and we may take ¢ (2) = J(2); if
4 a=a,=a,=0,
G is the lambda-group ¥,, and we may take ¢ (z) = £*(z) = A(2).

E.T. Whittaker (1899, 1902) has studied another class of automorphic
functions which has the property that every member of the class is a
rational function of a single automorphic function. See also Ford (1929,
sece 96).
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14.10.2. Burnside’s automorphic functions

Let C#, C/:, g=1, .., m be 2m circles, and assume that no two of
these circles have a point in common, and no circle separates any two
others, These assumptions imply that there is at most one straight line
among these circles, and, if there is a straight line, all other circles lie
on one side of it: the half-plane bounded by this straight line and con-
taining no circle will be regarded as its interior.

Let Ty eees 7, bem hyperbolic or loxodromic substitutions such that
7, maps the interior of C  onto the exterior of C ’, and let G be the group
generated by 7, ..., r . The part of the plane exterior to all circles may
be taken as the fundamental region F. The group G has no principal
circle, If m > 1, G has an infinity of limit points; if these are removed the
remaining part of the z-plane is a connected set. ‘ ‘

Automarphic functions of G may be constructed in terms of Poincaré
theta series, and inthis case series of dimension ~2 converge absolutely.
The theory of automorphic functions of G has been developed by Burn-
side (1891, 1892) who applied his results to a boundary value problem of
Laplace’s equation. See also Riemann (1876) and, for similar groups and
their automorphic functions, Schottky (1887).

14.11. Hilbert’s modular groups

The theory of modular and automorphic functions has been extended
in several ways to functions of more than one variable. The first results
are due to Picard (1882), In this section we shall briefly indicate an
approach originated by Hilbert, and in the following section describe
researches carried out by Siegel. For the general theory of automorphic
functions of several variables see also Hurwitz (1905), Fubini (1908,
Chap. 3), Sugawara (19404, b), Hua (1946),

Let R be the field of rationals, let K, be a finite real algebraic ex-
tension of R, K,, «s, K the fields conjugate to K,, and assume that
all X , p=1, ..., n are real. For any a'" in K, let a®?, ..., a'™ be the

P
conjugates, %’ in K_, similar notations being used for B, y, 8. Let
Z,p= 1, ..., n,be n complex variables and let S be the region Im zp>0,
p =1, «., n, in the space of n complex variables (this space having 2n
real dimensions). Let a‘"}, 8", "), 5! be any algebraic integers in K
such that

(1) a(l) s _ Y(" B(l)= 1.

More generally, unity in (1) may be replaced by any totally positive
unit of K,. We then define a modular transformation o by the equations
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a®)z +B(p)

(o) )
y zp+5

and see that o0 maps S onto itself, The set of all such o forms a group G
which is called Hilbert’s modular group of K |,

Blumentkal (1903, 1904) proved that G possesses a fundamental region
in § and also that there exist automorphic functions of the n complex
variables z , ... , z_ belonging to G. If regularity conditions, analogous
to the conditions of sec, 14,2, are imposed, it turns out that any n + 1
automorphic functions are connected by an algebraic relation, and that
n + 1 automorphic functions may be selected in such a manner that any
automorphic function of G is a rational function of the n + 1 particular
functions,

Maass (1941) investigated Hilbert’s modular group when K, = R (y/5),
the field obtained by adjoining /5 to R, and consequently n = 2, He
applied the theory of modular forms of the resulting group to problems in
number theory (quadtatic forms), For other investigations of Hilbert’s
modular group and of its automorphic functions, for the extension to this
situation of Petersson’s theory of Poincaré’s theta series see Maass
(1940a, b, 1942, 1948), Maass (19404a, b) also investigated generalizations
of Hilbert’s modular group.

For an extension. of Blumenthal’s results in the direction of Hecke’s
theory of modular forms of one variable see de Bruijn (1943).

(2) z;)-_—

14 J2. 'Siegel’s functions

A theory of modular functions of %n(n + 1) complex variables with
n=1,2, .. , was developed by Siegel (1935,1936, 1937, 1939) who took
the arithmetical theory of quadratic forms as the point of departure for the
theory of what he called modular functions ofthe nth degree. Many general
theorems of this theory reduce, when n=1, to known results on modular
functions or modular forms of a.single variable; others lead tonew results
even when n=1, One outstanding feature of Siegel’s theory is the utiliza-
tion of symplectic geometry (geometry of positive definite matrices in the
space of symmetric matrices) in 7 (n + 1) real dimensions, in place of the
non-Euclidean (hyperbolic) geometry ofthe Poincaré half-plane of two real
dimensions (Siegel 1943), This leads to a theory of automorphic functions
(Siegel 1942, 1943), Another outstanding feature of this theory is the fre-
quent use of arithmetical methods for the proof of results which in the
case of a single variable are usually proved by analytical methods. Many
of the groups of automorphic functions ofa single variable have important
arithmetical properties, yet there is an essentially geometrical approach
to them: in Siegel’s theory arithmetical methods are of central importance
in the definition of discontinuous groups.
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In this section we shall give some of the basic definitions and results
in the simplest case corresponding to the theory of the modular group ¥
and its absolute invariant J(z) in the case of a single variable, A review
of the ramifications of Siegel’s theory, and of its numerous important
results and applications, is far beyond the scope of this section,

The modular group of degree n. Matrices whose elements are integers
will be called integral matrices. Unless a statement is made to the con-
trary, capital letters in this section will denote square matrices of n
rows and columns. The element in the /th row and kth column of the
matrix A will be denoted by a ;,, and we shall write

(1) Ad=[a,] Lk=1 .,n.

We shall write N for the zero matrix, and [for the unit matrix, of n rows
and n columns,

2) N=[nlk]’ I=[ilk]’ ny=0 i,=8, Lk=1, ..., n.
The transposed of 4 will be denoted by 4 “so that a j, = a,,; the inverse

of AisA™ ' sothat AA™' =A""A = I,
Let 4, B, C, D be four n x n integral matrices, and let

@ M_[A B]
“Lc bp

be the 2n x 2n matrix partitioned into 4, B, C, D as indicated in (3). We
define a 2n x 2n matrix J as

@ J-|" 1
-1 N |’

We shall assume that the integral matrices A, ... , D have been so chosen
that '

(B) M IM=J.

The necessary and sufficient conditions for this are
(6) AB’=BA%, CD’=DC’

(7) AD’-BC’= 1,
If C and D satisfy the second condition (6), ises, if CD “is a symmetric

matrix, then C and D are said to form a symmetric pair. Let C,, D, and
C, and C, be two symmetric pairs of matrices; these are called associate
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if there is a matrix U such that both U and U™' are integral and
@® C,=0C, D,=UD,.

All symmetric pairs of matrices which are associate to a given pair are
said to form a class, Let C, D be a fixed symmetric pair of integral ma-
trices, jand let U range over the set of all non-singular integral matrices.
The matrices C and D are called coprime if a necessary condition for
U™'C and U'D to be integral is that U™' itself be integral (this con-
dition is always sufficient),

All 27 x 27 integral matrices M satisfying (5) form a group. The two
elements

© i[I N]
N I

of this group form a normal (or invariant) subgroup of order two.The
quotient group of the group of all M relative to the subgroup (9), i.e., the
group of all M satisfying (5) if ¥, and M, = —M  are identified, is called
the modular group of degree n and will be denoted by %t . The elements of
% will be called substitutions, and each of these is determined by four
integral matrices 4, B, C, D satisfying (6), (7)s The matrices 4, B, C, D
and -4, - B, ~C, —D determine the same substitution,
Let Z be a (complex) symmetric matrix. We put

(10)zu=z“=xlk+iylk Lk=1 eeyn

and correspondingly
1) Z=X+iY

where the x,, and y , are real numbers, and X and Y are real matrices,
We shall regard the z ;, as complex variables and shall restrict them by
the condition that Y be positive (i.e., the quadratic form whose coeffi-
cients are the elements of Y be positive definite). The matrices Z may be
envisaged as points. of a space in which the z ,, or x, and y ;, are
coordinates: this space has %n(n + 1) complex dimensions, or n(n + 1)
real dimensions. That part of this space in which Y is a positive matrix
forms a subspace which will be called ¥, and our variable matrix Z will
range over ¥ (“‘the positive cone”).

For any integral matrices 4, B, C, D satisfying (6) and (7), i.e., for
any element of I, we define the substitution

(12) o(Z)=(4Z +B)(CZ + D),
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It can be proved that each substitution (12) defines a 1-1 mapping of ¥
onto itself, and that the group of these mappings is homomorphic to R. It
can also be shown that M, considered as a group of mappings of ¥ onto
itself, possesses a fundamental region 3 which is bounded by a finite
number of analytic hypersurfaces. For a set of generators of It see Hua
and Reiner (1949). .

Modular forms and modular functions. Let L be the set of all classes
of coprime symmetric pairs of matrices. From each class we choose a
representative pair C, D, and form the generalized Eisenstein series

(13) ¢, (2)=3 [det(CZ+ D)™™,

It can be shown that for sufficiently large positive integers r, the series
in (13) converges absolutely for every Z in ¥ and defines, in ¥, an
analytic function of the %n(n + 1) complex variables x ,,. The function
¥ (Z) thus defined is called a modular form belonging to It

K r, s are sufficiently large integers, the modular forms ¢ _and ¢
exist, and

(4) ¢y 4T

is a modular function of M with fundamental region 3. It can be shown
that there exist %n(n + 1) algebraically independent modular functions
of the form (14), and that any %n(n + 1) + 1 such functions are connected
by an algebraic relation with rational coefficients.

The modular forms (13) may also be expanded in theta series.

Petersson’s (1940) theory of Poincare’s theta series has been gener-
alized by Maass (1951). In this generalization, the hyperbolic metric
of Poincaré’s half-plane is replaced by Siegel’s sympleptic metric of
the positive cone X.

Two identities. We conclude this brief introduction to Siegel’s theory
by giving two remarkable identities, both for the case n = 2.

The first of these identities is due to Siegel (1937) and expresses a
modular form in terms of a theta double series. Let L be the set of all
classes of coprime symmeiric pairs of 2 x 2 matrices, and select a repre-
sentative pair C, D from each class. Let L, be the subset of all repre-
sentative pairs for which

CD’= N (mod 2),

ies, the elements of CD ‘are even integers (if this condition is satisfied
for one representative of the class it will be satisfied also for any other
representative). Put
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u v |
Z=|: ]=X+iY
v w

where u, v, w are complex variables, X, Y are real matrices and Y is
positive, and let @, b run through all integers. Siegel’s identity states

(15) % [det(CZ + D)™ ={ X explin(ua® + 2vab + wb?)]}®.
2 . a, b :
The second of these identities is due to Witt (1941) and is an identity
between two modular forms of degree 2. With the notation used in (13),
the identity may be written as

(16) 4, (Z)= [y, @)

Witt’s identity is analogous to the well-kknown formula
(17 2 (ez+5)=[Z (az +b)7%)?
a b a, b
in the theory of Eisenstein series of a single complex variable z, where

a, b run through all pairs of coprime integers @, b such that a > 0 and that
b=1whena=0.
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CHAPTER XV
LAME FUNCTIONS

15.1. Introdection

Lamé functions arise in solutions of Laplace’s equations in certain
systems of curvilinear coordinates. Separation of variables in the three-
dimensional Laplace equation is discussed fully in Bocher’s (1891)
book, and in recent papers by Levinson, Bogert, and Redheffer (1949),
and Moon and Spencer (1952 a, b, 1953). For the separation of variables
in more general differential equations see Eisenhart (1934) where there
are also references to earlier writers,

Strutt’s monograph (1932) gives a summary of the theory of Lamé
functions as of 1932, many applications, and an extensive bibliography.
For further information about these functions see also Whittaker and
Watson (1927, Chapter XXIII) and Hobson (1931, Chapter XI).

15.1.1. Coordinates of confocal gquadrics

Leta>b > ¢ >0 be fixed numbers, and let 6 be a variable parameter.
The equation

2
xz Y Z2

+ + 1
a®+ 0 b%+6 c%+0

(D

represents a confocal family of quadrics, x, y, z being rectangular Carte-
sian coordinates. The quadric represented by (1) is

an ellipsoid if —c%< 6

a hyperboloid of one sheet if —b?< 8<—c?
a hyperboloid of two sheets if ~a?<@0<-b?
an imaginary quadric if 6<-a?

For 6= —a? ~b? ~c? we obtain degenerate quadrics.

44
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Since (1) is a cubic equation in 6, three quadrics of the confocal
family pass through each point (x, ¥, z) for which xyz £ 0 (this excludes
the planes of the degenerate quadrics). A discussion of the sign of the
left-hand side of (1) as 6 varies shows that exactly one ofthe three roots
lies in each of the intervals (—c?, =), (-b% —c?), (~a?, —b?), showing
that through every point (notinone of the coordinate planes) there passes
one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted hyper-
boloid of the confocal family,

Let A, g, v be the three roots of (1) for given non-zero x, y, z, and let

(2) A>=c?>pu>=-b®>v>-a?

We may introduce A, g, v as curvilinear coordinates in Laplace’s equation
W W W
dx dy dz

which transformed to our curvilinear coordinates becomes

4f(N) 9 [ ] 4 f(y) [ ]
4y A
“) A-p) (A=) EN o dA (p- )\)(y v) du f(#)

4f@) d
oD & [f( ’— ]‘0

where
(5) (@) =[a?+ ) B2+ 62+ )%,

Now, A, p, v depend only on x 2, yz, z? and hence are the same for the
eight points (+x, ty, *z). In order to have a one-to-one correspondence
between Cartesian and curvilinear coordinates, we introduce uniformizing
variables, expressing A, i1, v, and hence x, y, z, in terms of Jacobian
elliptic functions of three new variables, a, 8, y. We put

az_bz bz_cz
2 , ’
(6) k =W k 2=az_—c_2 0<k’k <1

In what follows, £ will be the modulus of the elliptic functions. We then
set

() A=-(acn @)’ ~ (b sn a)?
p=—{(acnB)?~ (b sn B)?
v=-(acny)?~(bsny)?



46 SPECIAL FUNCTIONS 15.1.1

In terms of our new curvilinear coordinates we have
(8) x=£k2(@?-c¢?% snasn Bsny

2_¢*% cnacnBeny

z=;—;(az—cz)% dnadn Bdny,

and Laplace’s equation (3) becomes

a®-c? 1
9
© (@?~52)? [(sna)®*~(sn B)*1lsn B)*~(sny)?] [(sny)? - (sna)?]
2 2
x{[(sn V)% = (sn.)?] ja’f + [sna)* - (en )] j B"Z

%W

+ [(sn B8)? - (sna)?] 5 =0

dy

Hf we let a vary between /K “and K + K’ B between K and K + 2iK",
and y between 0 and 4K, it can be verified by means of the formulas and
diagrams given in sec, 13,18 that the inequalities (2) are satisfied, and,
moreover, that (8) represents a one-to-one correspondence between the
Cartesian coordinates x, ¥, z, and our curvilinear coordinates a, B, y
which will be called ellipsoidal coordinates, or coordinates of confocal
quadrics.

The end-points of the intervals in which a, B, y vary are of special
importance, They represent « and the degenerate quadrics of our system,
and may be enumerated as follows:

a =iK” infinity;

a =K+ iK’ degenerate ellipsoid covering (twice) the area of the
focal ellipse;

B =K and 8 = K + 2iK”two halves of the degenerate hyperboloid
covering (twice) the area “‘between’’ the two branches of the focal hyper-
bola;

B = K + iK " degenerate hyperboloid covering (twice) the area in the
%, y-plane “‘outside’’ the focal ellipse;

y = 0, K, 2K, 3K, 4K parts of the degenerate two-sheeted hyper-

boloids of the system which cover (twice) the area ‘‘outside’” the focal
hyperbola, y = 0 and y = 4K representing the same surface.
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The degenerate surfaces act as branch-cuts, and the postulate of
continuity of a function across these branch-cuts has the character of
boundary conditions,

We may mention that a corresponds to r in spherical polar coordinates,
Bto 6, and y to .

Instead of the ‘‘Jacobian’’ uniformizing variables, many authors use
““Weierstrassian’’ variables (see, for instance, Whittaker and Watson,
1927, secq 23.31).

Laplace’s equation (9) has normal solutions

(10) W = A(a) B(B) C ().

Substituting in (9) we obtain
A H B "
(11) [(sn y)? - (snB)?] — + [(sn @)% = (sn y)?] -

n

+ [(sn B)? - (sn a)?] % =0

and since this is an ideatity in a, 8, y, there must be constants 4 and [
such that

" i "

A B
(12)7=l(sna)2—h, —B—=l(snB)2-—h, %=l(sny)2—h

We write [ =k n(n + 1) and see that 4, B, C satisfy Lamé’s equation

d* A
(13) dz—z(Z)+ h—n+ 1) [Esn(z, £’} A(z)=0

with appropriate variables.

Suppose that (10) represents a solution of Laplace’s equation which is
continuous and has a continuous gradient on an ellipsoid a = const.
Since y = 0 and y = 4K represent the same curve on that ellipsoid, it
follows that

JC aC
(14) C(0)=C(@4K), —(0)=— (4K).
dy dy

Since the coefficients in Lamé’s equation are periodicmod 4 K, it follows
that C (y) must also be periodic mod 4K, If C(y) is any mod 4K periodic

solution of Lamé’s equation, so are C(2K ~ y) and C(y) * C(2K - y),
and we may restrict oursleves to periodic solutions which are even or
odd functions ofy — K:we shall express this by saying that our solutions

are even or odd with respect to K.
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The curves 8 = K and 8'= K + 2iK "’ are branch-cuts on the ellipsoid;
the points (K, y), (K, 2K ~ y)are identical, The continuity conditions are

(15) BE) C(3»)=BE)C(2K-17y)

dB dB
3p () C(y) 3F (K) C (2K —y).
If C(y) is even with respect to K, we have d B(K)/df8 = O so that B(B)
is also even with respect to K; and if € (y) is odd with respect to K, we

have B (K) = 0 so that B(f) is also odd with respect to K. We have the

same situation at 8 = K + 2iK’, so that if C(y) is even (odd) withrespect
to K then B () must be even (odd) both with respect to K and with re-

spect to K + 2iK*% In either case B(B) is a periodic function mod 4iK".

Moreover, B(6) and C(6) have the same parity at 6 = K, and satisfy the

same differential equation: it follows that they are constant multiples

of each other, We are thus lead to inquire into the existence of doubly

periodic solutions of (13). Tt will be seen later (sec. 15,5.2) that such

solutions exist only if n is an integer, and & has one of a sequence of
characteristic values, It may be mentioned that an analysis of the solu-

tions in spherical polar, or Cartesian coordinates leads also to the con-

clusion that n must be an integer.

The choice of A(a) depends on the type of ellipsoidal harmonics
under consideration. For internal harmonics we wish (10) to be regular
inside an ellipsoid a = const. Now, a = K + iK' is a branch-cut (the
focal ellipse), the points (K + K} 3, y) and (K + iK, 2K + 2iK"- 3, ¥)
are identical, and as above, we conclude that 4 () and B(0) must have
the same parity at K + iK “and hence are constant multiples of each other.
For external harmonics we wish (10) to be regular outside of an ellipsoid
a = const., in particular at infinity, a = iK’, and 4 () must be that solu-
tion of the Lame equation which vanishes at iK% Lastly, for an ellip-
soidal harmonic regular between two ellipsoids of the confocal family,
we take a linear combination of these two solutions.

15.1.2. Coordinates of confocal cones

We introduce coordinates r, (3, y which are connected with Cartesian
coordinates x, y, z and spherical polars r, §, ¢ by means of the relations

(16) x=r sinB cosp=kr snBsny

y=rsin08in¢>=i; renfBeny

1
z=rcos 0 =?rdnﬁdny.
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As in sec. 15,1.1, B varies between K and K + 2iK ", y varies between™0 -
and 4K, and r > 0. The coordinate surfaces are the concentric spheres
r = const, and the confocal cones
- 2 y? 22 .
+ + =
-a®+ 0 b +0 c*+06

where @ is p or v as given in (7), and % is determined by (6). These
coordinates are known as sphero-conal coordinates: see Hobson 1892
and 1931 Chapter XI,

Lap]ace’s equation in these coordinates is

0 Kl W 1 a*w 9w o
8 ar _erZ[(sn B)Z__(sny)Z] aBZ - a_yz = s

normal solutions are of the form

(19) W =R()B(B) C(y)

and lead to the differential equation

QO)EE( >—n(n+1),

the equations for B and C being the same as in (12), with / = k2n(n + 1)

K (19) is to represent a function continuous and possessing a con-
tinuous gradient on a sphere r = const., the same considerations as in
secs 15,1.1 lead to the conclusion that B(6) = C(6) must be a doubly
periodic solution of Lamé’s equation, and hence that z is an integer, and
h one of the characteristic values. Alternatively, (16) sets up a relation-
ship between spherical polar, and sphero-conal coordinates, this leads
to a relationship between spherical and ellipsoidal surface harmonics,
and to the conclusion that » is an integer, and % has exactly 2a + 1
characteristic values,

The situation is entirely different if (19) is to represent a function
regular inside a cone 8= const., where we take 8 between K and K+ iK "
If (19) is to be regular inside the entire half-cone 8 = const., we must
have n = ~% + ip where p is real and arbitrary, if (19) is regular inside
the cone between the spheres r = r, and r = r, and vanishes on these
spheres, we must have n =— 2 + ip wherep is a root of the transcendental
equation sin[p ]og(r,/rz‘)] =0, In either case n is complex and Re n = - %.
Since y = 0 and y = 4K are the same surface, C(y) must be periedic
mod 4K, and & must have one of an infinite sequence of characteristic
values. Continuity across 8 = K makes B(6) and C(6) have the same
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parity at K and hence constant multiples of each other, but the functions
involved here are no longer doubly periodic.

15.1.3. Coordinates of confocal cyclides of revolution

Tn cylindrical coordinates p, ¢,z, Laplace’s equation becomes

1) 1 0 [ oW 1 oW o*w
A (P
p dp \ dp

+ —+ =
pZ a¢2 622

We now introduce new coordinates, u, v in the meridian plane by putting
z = z(u, v), p = p (u, v). Wangerin (1875) has determined the most general
systems of orthogonal curvilinear coordinates u, v in which Laplace’s
equation is separable, i.e. possesses normal solutions of the form

(22) W=wu, v) Ul) V() d(p)

where w (u, v) is a fixed function, and U, V, ® are solutions of ordinary
differential equations,Wangerin’s discussion wasrepeated by Snow (1952),
and also by R. Lagrange (1939, 1944). We shall give a brief indication
of this discussion, and then a more detailed account of the systems of
curvilinear coordinates obtained by Wangerin, and of the boundary value
problems which they suggest.

First one proves the following result. If u, v are orthogonal coordi-
nates, and Laplace’s equation has solutions of the form (22), then
w = p~#%, and the coordinates u, v may be taken in such a manner that
the mapping of the z, p-plane in the u, v-plane is conformal. We accord-

ingly put
23) z+ip=flu+iv)

where f is an analytic function; and we also put
(24) W= p"y2 Py, v)etin® = p A U@ V() efind

in Laplace’s equation (21). The partial differential equation satisfied by
¥ is

a2y g%y )
(25) —— + = = (" = %) Fla, ) ¥=0
u v
where

i) 7
(26) F(u, v)= m Ges )]~ o2
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and we will have solutions of the form U () V (v) if F is of the form
F,v)=F )+ F,(v), the ordinary differential equations satisfied by
U and V being

d2
- m - F,@v-0
u
d*V
oE [+ m*=%)F,@)]V =0,

It is them proved:F (u, v) = F, ) + F, (v) if and only if f satisfies the
ordinary differential equation

f'2=a°+a,f+a2f.2+a3f3+a4f4=P4(f)

in which @, ..., a, are real constants. Thus, f is either an elementary
function or an elliptic function. Moreover, the form of the differential
equation for f does not change if f is replaced by (Af + B)/(Cf + D) where
A, B, C, D are real constants and AD — BC # 0, and we may use such a
transformation to reduce the equation to normal form.

We shall assume that P, has four distinct zeros when the reduction
to normal form can be effected by the process described in sec. 13,5,
Three cases arise according as all zeros are real, all zeros are complex,
or two real and two complex zeros occur. The standard forms of f in the
three cases are

sn(w+iv, k), isn(w+iv, k), ecnlu+iv,k)

We shall now discuss each of these three cases separately. A bar
will denote complex conjugation, and the following abbreviations will
be used:

@7) s =sn(u+iv, B), s, =snlu, k), s, =snliv,k), s,=sn(v, k)
c=cnlutiv, k), ¢, =cnly, k), c,=cnliv,k), ¢,=cnlv, k)
d=dn(u+iv, k), d, =dnly, k), d, =dnGo, k), d/=dn(v, k)

If’(u + iv)|

[T f(u + iv))?

The aim of the following discussion is to show that in each case
F (u, v) appears in the form

nzi'm—l/-,:

Fu, v)=

[a sn(bu +c, a/b)]* +[a, sn(b,v + c,ya/b)?
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so that (25) becomes
2V 92w

du? +ﬁ

—nn+ 1) i[e sn®u + ¢, a/b)?

+[a, sn(bv+c,,a/b)t¥=0

For normal solutions, ¥ = U(u) V(v), and U and ¥V satisfy equations
which can easily be reduced to Lamé’s equation, the variables in the
latter being bu + ¢ and b, v + ¢, respectively. We then investigate the
boundary conditions which must be imposed upon U and V.

The coordinates u, v used in this discussion will be those which
arise most naturally from the general theory. They are not necessarily
the most suitable ones to use in a given problem, and it will be seenin
seco 15,8 how the transformation theory of elliptic functions can be used
to change over to new, and more suitable coordinates,

Case I, Four real foci on the axis
We put

As + B

Cs+D’

and find by a straightforward computation using 13,17(16), 13.23(13),
and Table 7 in sec. 13,18
deded k"*s? 4P

+

25 2 52 72 .2
(s -3)° cfd] s; ¢,

=_{(1‘—k) sn[i(1+k)u, 1-% ]}2
1+%
11—k }2
+ {(1 ot k) sn [(1 + k)(v - lK'),'m-]

For the further discussion we take 4 = D =0, B = C = 0 in (28).
The mapping z + ip = sn{u + iv) was described in sec. 13.25. We see
from the diagram given there that the half-plane p > 0 is mapped on a
rectangle in the (z, v)-plane with corners at (+ K, 0) and (f K, iK").
Thus -K <2 <K and 0 < v < K7 The curves z = const. and v = const.
in the z, p-plane are confocal bicircular quartics whose foci are at
z =+1, £k7', p = 0, Note that F becomes infinite for u = *K or for
v = 0, K”so that the end-points of the intervals of u and v correspond
to singular points of the ordinary differential equations for U and V.

A,B,C,D real, AD-BC#0

(28) z+ip=

(29) Fu, v)=-
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For a potential which isregular inside (or outside) a surface u = consts,,
p—% V (v) must remain finite at both end-points v = 0, K and we shall
see later that this determines certain characteristic values of & as well
as the solution V (v) to be used. For a potential regular outside [inside]
a surface u = ¢ <0, or inside [outside] a surface u = ¢ > 0, U(K)[U(~K)]
must be finite, and this determines the choice of U Similar statements
hold for potentials regular inside or outside a surface v = const.

Case II. No real foci on the axis

Here
Ais + B

(80) z+ip=——"1-—, A,B,C,Dreal, AD-BC#0
Cis+D
dccdd c?d? k4s?

(31) Flu,v)= =— - 2

-2 2 712
(s +73) s7 czd2

{ [ 1—k]}2
=~<(Q-F)sn|i(L+k)(u~K), —
1+k

, 1-% 2
+{(1—k-)sn|:(1+k)v, Tk ]}

For the further discussion we again take 4 =D = 1, B = C =0, The
mapping of the quarter-plane z < 0, p > 0 on the rectangle with corners
at (0, 0), (K, 0), (K, K"), (0, K’) in the u, v-plane is described by the
diagram in sec. 13,25 To complete the mapping we reflect in the (z, p)-
plane on z = 0, and in the u, v-plane either on v = 0 or on u = K. The
curves & = consts, v = const. in the z, p-plane are confocal bicircular
quartics with real fociatz=0,p=1, k7",

For a potential regular inside or outside a surface u = const., we map
the half-plane p >0 on the rectangle with vertices (0, tK’), (K, *K”) in
the u, v-plane. v = K“and v = ~K’ are both maps of 2 =0, p >£~'. By
the same argument as in sec. 15,1,1 it is seen that ¥ (v) must be a
periodic solution of the appropriate differential equation, the period
being 2K? This condition determines characteristic values of %, and
the corresponding characteristic functions V (v). For a potential regular
inside u = const, the continuity condition across v = K (ie., 2 = 0,
1< p<k~") demand that U at K and V at O have the same parity; for a
potential regular outside u = const,, U must remain finite at u = 0. This
case has been discussed in detail by Poole (1929, 1930) who used a
slightly different mapping.
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For a potential regular inside or outside a surface v = const., we map
the half-plane p > 0 on the rectangle with vertices (0, 0}(2K, 0),(2K, K*),
(0, K). Here p-% U (z) must remain finite at both z = 0 and z = 2K, and
this condition determines characteristic values of 4, and characteristic
functions U (u). V (v) is then determined by its parity at O (for a potential
regular inside v = const.) or at K”(for a potential regular outside v =
const,),

Case III. Two real foci on the axis

Here
Ac+ B
82) z +ip =——0!\ A,B,C,Dreal, AD-BC#0
Ce+D
P L P LL L
Uy V) =~ =
(¢ ~7)? s'zd:" s:d:

s’ 2
={(k—ik')sn[(k+ik')(u+K),]]:_+;%]}
(k - ik ") ['(k L
- —itk)sn| ik +: ”"K’/H_T]

In this case the modulus of the elliptic functions appearing in Lamé’s
equation is notareal fraction but a complex number of modulus 1, and the
transformation theory of elliptic functions (see Table 11 in sec, 13.22)
must be used to reduce all functions to a real modulus between O and 1.
We take A =D =1, B = C = 0, The curves u = const, v = const. in the
z, p-plane are confocal bicircular quartics whosefoci are at the points
z=%*1 p=0and z =0, p = k 7k. Further details of the mapping will be
seen from the diagram in sec, 13,25.

For a potential regular inside or outside a surface u = const., we map
the half-plane p > 0 on the rectangle with vertices (0, —2K”), (K, —2K"),
(K, 0), (0, 0) in the u, v-plane. The condition that p™* ¥ (v) remain finite
both at v = 0 and at v = —~2K“ determines characteristic values of £ and
characteristic functions ¥V (v). For a potential regular inside z = const.
we have a branch-cut at z = 0, p < k 7k, or u = K, and continuity across
this branch-cut determines the parity of U at K to be the same as the
parity of ¥ at ~K" For a potential regular outside of u = const,, p AU
is determined by the condition that it remain finite at u = 0.

For a potential regular inside or outside a surface v = const. we map
the half-plane p > O on the rectangle with vertices (0, -K*), (2K, ~K’),
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(2K, 0), (0, 0) in the u, v-plane, p“x U(u) must remain finite both at
u =0 and at u = 2K, and this condition determines characteristic values
of h and characteristic functions U(u). For a potential regular inside
v = conste, p-% V (v) must be finite at ¥ = 0, and for a potential regular
outside v = const, the parity of ¥ at ~K ’must be the same as the parity
of U at K.

15.2, Lamé’s equation
In the preceding sections it was shown that the solution of a number
of boundary value problems depends on the differential equation

2

+th=n(+ Wk snlz, £)J3A=0

() dz?

which we shall call the Jacobian form of Lamé’s equation, or briefly
Lamé’s equation, This form of the equation was used by Hermite, E.T.
Whittaker, Ince, and other authors and is preferable to other forms (to
be given below) from the point of view of numerical computations,

In (1), £© is mostly between O and 1, but we have encountered one
case in sec, 15,1.3 where k is complex and |k| = 1. z is a complex
variable, but in most boundary value problems z varies along one of the
lines Re z = NK, Im z = NK; N integer, % is a parameter, characteristic
values of which are determined either by a periodicity condition, or by a
““finiteness condition’’, n is sometimes an integer, sometimes half of an
odd integer (as in sec, 15.1,3), and sometimes (as in one problem in
15.1.2) a complex number whose real part is =%,

We have encountered several types of solutions, Firstthere are solu-
tions with a given parity at one of the quarter-period points MK + iNK
(M, N integers), or solutions which are to remain finite at one of the
poles 2MK +i(2N + 1)K’ (M, N integers) of sn z. Such solutions exist,
and are determined up to a constant factor, for any given values ofk,n, k.
Then there are the solutions with a prescribed period (which is also a
period of sn z), We shall see later that for given n, & there is aninfinite
sequence of characteristic values of & for which such solutions exist.
In sections 15,1,1 and 15,1,2 we found occasion to use solutions with
two prescribed periods. It will be seen later that such solutions exist
only when 2n is an integer. Lastly, in sec, 15,1.3 we were lead to solu-
tions which are to remain finite at two poles, We shall see later that for
given n, k there is an infinite sequence of characteristic values of A for
which such functions exist.

’
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Beside the Jacobian form (1) of Lamé’s equation there are other

important forms of this equation. If we put

e —e
(2) k2=_2_"3, z=iK’+u(e,-—es)%,

€, €,

(e‘—es)h+n(n+1)es=H

and use 13,16 (4) in conjunction with Table 7 in sec. 13,18, we obtain

the Weierstrassian form of Lamé’s equation
2

(3)

+[H-nn+1)p@)A=0

2
u

which was used by Halphén and other French mathematicians, and is

extensively used in modern theoretical work.
A trigonometric form may be obtained by the substitution

(4) snz=cos{, (=Y%m-amz

which leads to

d2A dA
+ k% cos ¢ sin { ——

) 1=k cos )l i

+[h=n@ + 1)k cos {)Z]A =0,

This form was used by GH. Darwin and Ince.
Several algebraic forms are also available, With

(6) (smz)’==x

we obtain from (1)

@ d*A 1/1 1 1 dA hk™% = n(n + Dx A
dx? +2 x+x—1+x—k_2 dx +4x(x—1)(x—k_2)

8 pl=p
we obtain from (3)

d*A 1 1 1 1 dA H-n@+1p
(9) —+— + +—
dp® 2 \p

15.2

0,

+ =
—e, p-e, p-e ) dp 4(p—e|-)(p—e2)(p—esr)

0.
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Other algebraic forms may be obtained by rational transformations of
these, Algebraic forms were used by Stieltjes, F. Klein, Bocher, and
others.

The algebraic forms of Lam€’s equation are of the Fuchsian type,
having four regular singularities, There are three finite regular singular-
ities)[at 0, 1, k72 for (7), at e, e,, e, for (9)] with indices 0,%,anda
regular singularity at infinity with indices —}%n, %n + %, For the theory
of Fuchsian equations see for instance Ince (1927, p. 370ff.) or Poole
(1936, po 74 f.)

There are general theories covering the other forms too. Forthe theory
of differential equations with doubly periodic coefficients see Ince
(1927, p. 375ff,) or Poole (1936, ps 170ff.); for equations with simply
periodic coefficients see Ince (1927, p. 381 ff.) or Poole (1936, p. 178{f.).

Unless the contrary is stated, we shall regard &, k, n as given (real or
complex) constants, and the variables as complex variables.

15.3. Hewn’s equation

It can be shown that any Fuchsian equation of the second order with
four singularities can be reduced to the form

" d?w y & € dw aBx - q 0
~+ + —_—t ———— w=
dx? * x z-1 x—a/ dx * z(x=-1Dx-a)

where

(2 a+B-y~8-e+1=0,

Here x = 0, 1, @, » are the singularities of (1), the indices at these
singularities depend on a, ... , €, and the constant ¢ is the so-called
accessory parameter whose presence is due to the fact that a Fuchsian
equation of the second order with four (or more) singularities is not com-
pletely determined by the position of the singularities and the indices,
(See Ince, 1927, p. 370{f,; Poole, 1936, p. 77ff.) The reductionis effected
by a linear fractional transformation of the independent variable and a
suitable transformation of the dependent variable according to (4) and
(5). Equation (1) is known as Heun’s equation (Heun, 1889, Whittaker
and Watson, 1927, p. 576 ff.).

Heun’s equation may be characterized by a P-symbol (see sec, 2.6.1,
or Ince, 1927, ps 372),
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0 1 a o0
3 P 0 0 0 a =
l-y 1-86 1-¢ B
but it should be noted that the P-symbol does not characterize the equa-
tion completely, and in any transformation of the equatiom, the trans-
formation of the accessory parameter must be ascertained by explicit

computation.
For the four-column P-symbol we have the linear transformations

b d

@ x—a \? [2=b \° [x-c \” p a' , c, 5
x~d x—d x~d a, BI 4 *

al Bl yll 8”

a b c d

=P<La +p B'+0 y' +r 8§ ~p-0-r x

a"+p B"+0 y"+1r 8" -p-o-71

e b c d M) MB) M) M@)
6G) PSa’ B'y" 8 xp=Pqa B y & M
all BII yll 81/ all B” yll 8”

where

6) a' +a"+B"+B" +y' +y" +8' +8" =2

Ax + B

M = » AD - BC £0.
() 5 #

x +

If two of the exponent-differences are equal to %, we have a quadratic
transformation. For instance, if

(7) 8=¢<%, y=a+B
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in (1), (3) we have

0o 1 v
@ PJ 0o o0 @ xp <P 0 x'j
x—

1-y % B 1-y %

—a% -1 1 ao* y
x—a
=P 0 a a 0 < )
x—1
1-y 8 B 1-y
0 1 A% =

=Pdda 0 0 a X
g 1-y 1-y B

where in the last P-symbol

© A_1+a% X_A(x-D%+u—a%
T1-a® T T DR - (x - a)%

If three of the exponent-differences are equal to % (as in the case of
the algebraic forms of Lamé’s equation) then there are three distinct
quadratic transformations, and each can be followed by a second quad-
ratic transformation thus leading to biquadratic transformations.

We now turn to the analytical representations of solutions of (1),

Let a,, w. , a, be the singularities of the four-column P-symbol,
a; and a] the exponents at a;, and Z(a; + a;) = 2. In analogy with
Kummer’s 24 series for the three-column P-symbol (sec,2.9), we have
192 series of the form

(L0) ;-4 *-4, ore
j—ai x—al

where i, j, k, I is a permutation of 1, 2, 3, 4; p is a; or a'i'; ois a’ or
a’; and ris a, or a,. Actually only 96 of the 192 series are distinct.
ese series were studied by Heun (1889), Snow (1952, Chapter VII), and
others. When quadratic transformations exist [as in the case of equation
(8))y they lead to further power series expansions,
Alternatively, solutions of (1) can be expanded in series of hypergeo-
metric functions. Such expansions have been studied by Svartholm (1939)

and Erd€lyi (1942, 1944), A typical expansion may be indicated as
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0 1 a 00
(11) P 0 0 0 a «
l-y 1-6 1-¢ B

- 0 1 00
= z AmP 0 0 A+m x

mn= 0

l-y 1-6 p-m
where

(12) A +p=y+d6-1l=a+fB-c
It turns out (Erdélyi, 1944) that there are essentially two possibilities
for choosing A and p. Series of type I (Erd€lyi, 1942) have A = a, p=~¢,
converge outside of an ellipse with foci at 0, 1 and passing through a,
and represent that branch of (3) which belongs to the exponent a at e,
There are three distinct expansions of this type for each branch of (3).
Series of type II (Svartholm 1939) have p=0 ,y~-1,8- 1L ory+ &- 2
They are series of Jacobi polynomials, do not converge in general; but
they do converge in the exceptional case of Heun functions(seebelow)
when the accessory parameter has one of its characteristic values.
In all the above-mentioned expansions the coefficients X satisfy
three-term recurrence relations

(13) B, X, +v,X,=0
aX_+B.X +y, X ,, =0 r=1,2,..

wh;re a,, B,, vy, are known expressions in r and the parameters, y _# 0,
an

(14) a,»a, B,»B, y,»y as r->o,
Ift and ¢, are the roots of the quadratic equation

(15) a+ ,Bt+yt2=0

and |t | < |¢,], then lim X /X _, exists and is in general equal to ¢,:
if the parameters of the problem satisfy a certain condition,

lim Xr/Xr_b1 =t, as T

(Perron 1929, sec, 57). The recurrence relation may be written as
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X -a
r - r r= ]., 2, Y
Xr-i ﬁr+ yr‘H Xr"‘-1/Xr

and by repeated application we are lead to the infinite continued fraction

ar

(16) ¢,=-
8 Qb1 Vet
r
Atz Yrtz
ﬁr"" -
2tz Yrs
ﬁr+2 -
Bows— vo-

It can be shown that this continued fraction is divergent when |¢,| = |¢,|
and ¢t £ t,, it is convergent when |¢,| < |t | or ¢, =¢,, and ¢ ¢, as
r-=> oo,

If |t,| < |t ] and the parameters satisfy the equation 8, = ¢, y,, then

X _,»t,asr> «, and the X may be computed by means of the g
if {¢,] <, and Bo#qy vysthen X /X __ st 5andif [¢,]=|¢,], ¢, #¢,,
lim X /X __, does not exist.

In the apphcatlon to Heun’s equatlon (and hence also to Lamé’s equa-
tion), B, and ¢, depend on the accessory parameter (g or %, as the case
may be). In general, B, # q, v,, X,/X,_,> t,, the domain of convergence
of the power series and of series of type T of hypergeometric functions
is restricted, and includes only one of the four singularities of the
equation: series of type TI of hypergeometric functions do not exist in
this case. If the accessory parameter has one of a sequence of charac-
teristic values, then B =¢q,v,, X /X __, > ¢, the series converge ina
more extensive region which includes at least two singularities, the
corresponding characteristic solutions behave in a prescribed manner at
two singularities, and will be called Heun (or Lamé) functions. In this
case the series of type II of hypergeometric functions also converge and
represent a Heun (or Lamé) function,

Theorems on the existence and distribution of characteristic values
of the accessory parameter follow from the general (singular) Sturm-
Liouville theory,

In general, B = ¢, y, will be a transcendental equation for the
accessory parameter, but an exceptional case arises when a 0 for
some positive integer R. When r < R, ¢, is a finite continuederactlon,
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Bo = 9, v, is an algebraic equation for the accessory parameter, if
Bo=9,v,then X, =0 and from (13) also X, , =X, =+ =0, 1In this

case the series expansions terminate and we have Heun (or Lam€) poly-
nomials or algebraic Heun (or Lamé) functions. Alternatively, when
ap = 0, we may put X, = X, = «+ = XR-1 = 0, determine the accessory
parameters from the equation 8 =y p,, 9,4, (which is a transcendental

equation) and obtain transcendental Heun (or Lamé) functions.

15.4. Solutions of the general Lamé equation
We shall now apply the results of the preceding section to Lamé’s
equation, and put
(1) s=snz, c=cnz, d=dnz,
Throughout this section, n and & are arbitrary.
From 15.2(7),
0 1 k72 )
(2) A=PL0 0 O -Y%n s? .
1/2 1/2 % l2 n+ l/z
and various transformations of this follow from 15,3 (4), (5), (8); in partic-
ular from 15,3 (8),

1+k\?
0 1 e oo
1-%

3) A=P y 0 0 Y 1+t d+ke
I I \ TPk deke
Yon + % 1/2 % Yn+ %
Further quadratic transformations of (2) lead to
-11 ! -5
c
4y A=PL{0 0 -Y%n ~Yn =
¥ % YUn+Y% YUn+ %
k2 -k° ik ~ik J
(5) A _=P 0 0 —l/zn _%n —
s

% % Yn+% Yn+ %
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ik’ =ik’ i -1
6) A=P«q 0 0 -Yn -Y%n —
% % %n+h% Wn+h

From (2), (4), (5), (6) and the results of sec, 15,3, a large variety of
expansions of solutions of Lamé’s equation follow. An unpublished list
by Erdé€lyi gives 30 variables which may be used in series like 15,3 (10),
with four different factors for each variable. Taking account of the fact
that p may be either 0 or % with the first 18 of these variables, there are
altogether 192 distinct series. For some of the simplest power series,
and the recurrence relations which their coefficients satisfy see Ince,
1940 a, and the literature quoted there, For expansions in Legendre func-
tions see Erdélyi, 1942a. Expansions in exponential or trigonometric
functions follow from 15.2(5), and other trigonometric forms of Lamé’s
equation, bythe theory of differential equations with periodic coefficients
(Ince, 1927, p. 381 ffs, Poole, 1936, p. 1821f.), Such expansions have been
discussed by Ince (1940b) and Erdélyi (1942a).

15.5. Lamé functions

We shall now assume that &, n are given, 0 <% <1 and n(n + 1) is real
so that either n is real or n = ~% + ip where p is real. We shall study
periodic solutions of Lamé’s equation,and shall show that such solutions
exist for certain (characteristic) values of A: they will be called periodic
Lamé€ functions, or briefly, Lamé functions,

15.5.1. Lamé€ functions of real periods

Since sn” z has the primitive real period 2K, the primitive real period
of any Lame function of real period must be of the form P = 2p K where
p=1, 2, .... Now sn®z is an even function of z — K and when A(z) is a
periodic solution of Lamé’s equation then so are the functions A (2K - z),
A(z) £+ A(2K - 2), and we may restrict ourselves to the investigation of
Lam¢ functions which are even or odd functions of z — K. A Lam€ func-
tion of real period will be denoted by Ec_(z, k%) if it is an even function
of z - K, and by Es_(z, k?) if it is an odd function of z — K. More specif-
ically, we shall write Ecm" (z, £?) and Es:(z, k%) for functions of period
P = 2p K which have exactly pm zeros in 0 < z < 2pK (or any half-open
real interval of length P). The characteristic values of & belonging to
Ecand Es” will be denoted by a: :?) and b:(kz) respectivelys This
notation was introduced by Ince (1940a) and modified by Erdé€lyi(1941a).
There being no generally accepted normalization we leave a constant
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factor undetermined in Ec’::(z) and Es"':(z )o For this reason, we suppress
constant factors in relations such as (31) below.,

Solutions of periods 2K and 4K.In either of these cases Ec (K + t) =
Ec(3K + t) on account of periodicity, and this is equal to Ec{(~K — ¢) on
account of parity, so that Ec (z) is an even function of both z ~ K and
z + K. We thus have the boundary conditions

1) AK)=A’(K)=0 for A=Ec(z)

Conversely, if a solution A(z) of 15,2(1) satisfies (1), then it is an even
function of both z — K and z + K, and it must have period 4 K. Similarly,

(2) ACK)=AK)=0 for A=Es(z)

On account ofthe symmetry relations at K, itis sufficient to investigate
Lame functions of periods 2K and 4K in the interval, (-K, K). We shall
show that this interval may be reduced to (0, K),

TEE (z) is either Ec (z) or Es (z), then E (z) and E (- z) satisfy the same
differential equation and, by (1) and (2), the same boundary conditions,
and must be constant multiples of each other. Thus, E (z) is either an
even, or an odd function of z, and we have the following four cases

(m=0,1,2..)

(3) A(0)=A(K)=0, A=Es**2(z), period 2K
@) AN©0)=AK=0, A=Es**'(z), period 4K
(5) A(0)=A(K)=0, A=Ec®™*'(z), period 4K
6) A©0)=AN(K)=0, A=Ee?(z), period 2K

with the appropriate symmetry relations.
Cur functions may also be determined as solutions of a boundary value
problem on the interval (0, 2K).

(7) AW)=A@K)=0 for A=Es’2"‘(z)/ or Ec:"“(z)
8 ANO®)=A"CK)=0 for A=Es**' (z) or Ec? (2),

The existence of exactly one solution of each of the problems (3) to
(6) for each m = 0, 1, 2, ..o now follows from the Sturm-Liouville theory
(see, for instance, Ince, 1927, sec, 10,61). Since the characteristic
numbers of a Sturm-Liouville problem form an increasing sequence, we

have from (1), (2), (7), and (8)
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(9) ag<a;<a:<---, a:-uac as mooo
(10) b;<bi<---, b" > as m-o o
(1) a' <b?<ad<bi<n

n n n n
(12) a2<b! <aZ<b3 <o,

Thus, the relative position of the characteristic values is fairly well
established, except that no statement can be made about the relative
position of a?, and b}, Ince (1940a, b) computed characteristic values
for integer values of 2z, but it should be noted that his notation differs
slightly from the one adopted here: a®**' and 5> *' should be inter-
changed in order to convert Ince’s notation to ours.

For the construction of Lamé functions, Ince (1940a) first used power
series. Later (1940b) he discovered the expansions in trigonometric
series which are more rapidly convergent, especially when % is near 1,

The expansions in trigonometric series are based on 15,2(5) and on
the similar differential equation satisfied by A(z)/dn z, For each Lamé
function of period 2K or 4K we get two expansions which are listed below,
The abbreviations

(13) (=% -amz, H=2h-k%n(n+1)

are used throughout, and m is a non-negative integer,
. 13 - 4 - -
Trigonometric series for Lame functions of period 2K, 4K:

(14) Ec:“(z-)=1/2A0+ ?1 AZrcos(2r§)=dnz[I/zCo+ §1C2rcos(2rg“)]

(15) Ec:"ﬂ(z): 020 A2r+1cos[(2r+ 1){]=dnz 020 C2r+|cos[(2r+1)é']
r=o0

r=0

(16) Es* ()= £ B, sin@r)=dnz ¥ D, sin(2r )

(17) Es>*'(z) = ) B, +sinl2r+1){]=dnz §°D2r+| sin [(2r+1)¢]
r=o r=

The recurrence formulas for the coefficients in (14) to (17) are (r = 1,
2, 3, ... )2
(18) -HA  + n-1n+ 2)!:21‘12 =0
ha-2r+2)n+2r-1Vk%4, _, -[H-4r2(2-%%14,
+%n-2r-D(n+2r+ 2)k2AZr+2=0
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(19) ~HC,+n(n + D Ek* C,=0

bm-2r+ D+ 2r-)k2C2r_2- [H—4r2(2-—k2)]C2r
+B@E-2r)m+2r+ DEEC =0

2r +2

(20) - [H- 2+k.2—l/zn(n+1)k2]Al +%@-2)@ + 3)k2A3=0

Yn-2r+ 1)m+2r)k24 =1 ~-[H-C2r +1D2(2-£?)] A2r+l

+ % (m=-2r-2)(n+2r +3) k%4 wt3=0

@) -H-2+k*-Yn(n+DE*1C, + %(r-D(+2) k*C,=0

Y(n-2r)n+2r +DEk2C H-~2r+1D2(2-k®1C

2r—1" 2r +1
+%@=2r =@+ 2r+2Dk*C, =0
(22) -(H-8+4k")B,+%(n-3)n+4)k*B,=0
l/2(n—Zr)(rL+2r+1)szZr— [H-Q@Qr+2)?(2-k2)] B, 4,

+%m=-2r -3)Y(n+2r +4)kZBZr+4=0

(28) —~(H -8+ 4k*) D, + %@ - 2+ 3)k2D, =0

Y%(—2r —D+2r + k2D, ~[H - @r+ 2)* 2~ k1D, ,,
+%@-2r-2)(n+2r+3)k*D, ,,=0

@4) —[H-2+k*+%n(n + DE?IB, + %(n - 2)m +3)k*B,=0

Ymn-2r+1)(n + 2r)k232r—1 - [H-(2r+1)% (2-%9)] B, +
+%(m-2r-2)(n+2r+3)k%B, =0

(25) —[H-2+k%+Y%n(n+ l)kz]Dl+l/z(n—l)(n+2)k2D3=0

Y(n-2r)Yn + 2r + l)kzDZ'__I -[H-C2r+D?2(2- lcz)]DZr+1
+%m-2r-1)@m+ 2r + 2)k2D2r+3=0.

15.5.1
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After division by 4r%, each of the eight recurrence relations is of the
form 15,3(13) with X =4 2" A art19 o003 D, 4y Tespectively. In all eight
cases a =y = %k? B =k?* — 2, and the roots of the quadratic equation

15,3 (15) are

1+k%\?
26) ¢, ,= Z

For periodic Lam¢ functions Xr/Xr—l tends to the smaller root, and the
convergence of (14) to (17) for real ¢ is comparable with that of a geo-
metric progression with ratio (1 - %)/ (1 +£°).

For the characteristic values of A4, the continued fraction 15.3(16)
gives an equation in each case: these equations were given by Ince
(1940b). In general, these equations are transcendental equations, and
the method of numerical solution is explained in Ince (1932, p. 359). If,
however, n is an integer, some of the continued fractions terminate, and
we obtain (for n = 0, 1, 2, ...) altogether 2n + 1 Lamé functions which
are represented by terminating trigonometric series, and are therefore
polynomials in s, ¢, d: these Lame functions are known as Lamé poly-
nomials . Note that even in this case there exists an infinite sequence of
transcendental Lamé functions (Ince, 1940a),

Lamé functions of real period may also be represented by series of
Legendre functions (see Erd€lyi, 1948 and the literature quoted there),
We obtain finite expansions in the case of Lamé polynomials, and infinite
series for transcendental Lam€ functions. The coefficients in these
series are simple multiples of the coefficients in the trigonometric expan-
sions, The expansions in Legendre functions are most useful in the con-
struction of Lamé functions of the second kind (see below),

Ince (1940b) has discussed the coexistence question. His results can
be summarized as follows. If n is not an integer, there can never be two
distinct periodic solutions belonging to the same characteristic value
of k. If n is an integer and we have a L.amé polynomial, then the second
solution is never periodics On the other hand, if » is an integer and we
have a transcendental Lamé function then an even and an odd solution
always belong to the same characteristic value of k. Thus, (9) to (12)
may be supplemented by

(27) ar #b; forallm=0,1,2, .., if n is not-an integer

orif n is an integer and m =0, 1, ..., |n + %| - %;

a’=>b" ifm andn are integers and m > |n + Y| — 4.
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Ince (1940a) also investigated the asymptotic behavior of the charac-
teristic values when n is large and found that for large real n

28) a2 ~ b *! ~ (4m + Dk[n (o + V¥
a?*l~ b2 ¥2 0 (4 + B)k[n (o + 1)]%

Solutions of other real periods. Solutions of primitive period 8K may
be represented in terms of Fourier series such as

cos
24, @r-W¢
sin
which lead to recurrence relations for the coefficients, and an equation
involving a continued fraction for the determination of the characteristic
values of s When 2n is an odd integer, the continued fractions terminate
and we have an algebraic equation for %, The Lamé€ functions of period
8K which correspond to the roots of this algebraic equation are algebraic
functions of s, ¢, d and are known as algebraic Lamée functions. (For
algebraic Lam€ functions see Lambe 1951, 1952 and the literature quoted
there,) For both algebraic and transcendental Lamé functions a; »tE
b"' *% form = 0,1, 2 ..andalln,
Solutions of primitive period 2p K may be represented in terms of

Fourier series such as

4, 7 (2r-q—)g
sin P

which lead to the appropriate recurrence relations -etc. Except when
p =1, 2, or 4, the equation determining & is always a transcendental
equation, and the Fourier series never terminate.

Functions of the second kind. Let h have one of its characteristic
values, a® or 5. Then one solution of Lamé’s equation is a (periodic)
Lamé function, E (2), say. Except when 21 is an integer and m> |n+ | -1,
Lamé’s equation has only one periodic solution, and it is necessary to
construct a Lamé function of the second kind, For many purposes a suit-
able function of the second kind will be that solution of Lamé’s equation
whichbelongs tothe exponent %n+ % at = in 15,4(2), We take Re n > -4,

Various constructions of Lamé functions of the second kind are avail-
able. Equation 15,4 (2) suggests an expansion in descending powers of
s, and the theory of Heun’s equation provides several alternative power
series expansions. Also, if £ (z) is the (periodic) Lam€ function of the
first kind,
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EG) ] K E@)] 2 du

will represent the Lamé function of the second kind. This representation
is often used in the older literature (see, for instance, Whittaker and
Watson 1927, sec, 23.71)

If the Lamé function of thefirst kind has been represented by a series
of Legendre functions of the first kind in which the variable is proportional
to s, ¢, or d, then the corresponding Lam¢€ function of the second kind
may be obtained simply by replacing each Legendre function of the first
kind by the corresponding Legendre function of the second kind. This
solution is of especial importance when 2n and 2m are integers and
0 <m < |n +%| ~ % In this case the Lamé function of the first kind is a
Lamé polynomial (if 27 is even) or an algebraic LLamé function (if 2n is
odd), in either case it is represented by a terminating series of Legendre
functions of the first kind, and the corresponding Lamé€ function of the
second kind will be represented by a finite combination of Legendre
functions of the second kind. This representation is most useful for con-
structing external ellipsoidal harmonics (see sec, 15,1,1).

15.5.2. Lamé functions of imaginary periods. Transformation formulas

Since sn’ z has the primitive imaginary period 2:K* the primitive
period of any Lamé function of imaginary period must be of the form
2ipK “where p =1, 2, ... . The existence and properties of such functions
could be established in a manner analogous to that of the preceding
section by setting up certain Sturm-Liouville problems, e.g., for the
interval (K, K + :K ")k Instead of this, we shall deduce all the requisite
information from the results of the preceding section by means of the
imaginary transformation of Lamé’s equation.,

We put
(29) z’=i(z-K-iK”"), h’=n(n+1)-h
in 15.2(1) and use Table 7 in sec, 13,18 and Table 11 in sec, 13,22 to

obtain
dn (iz % k)

2
(% sn(z, k)% = [m] =[dn(z% )%= 1-[k’sn(z " £ )]?
cn(iz 9

and hence
2

d°A '
(80) —= +1h’—-nw+ Dk sn(z% k)*} A=0.

dz,z
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Clearly, every solution of (30)satisfies 15,2(1)and vice versa. Moreover,
solutions of (30) which as functions of z “have a real period will have an
imaginary period when considered as functions of z, From the results of
sec, 15,5,1 we obtain the following information,

It is sufficient to consider Lamé functions of imaginary period 2ipK
p=1, 2, ..., which are even or odd functions of z — K= —i{(z'~ K")
Even functions will be denoted by Ec 7" (z, £?), and odd functions by
Es"" (z, k?) if they have exactly pm zeros when z = K + it and ¢ ranges
over 0 < ¢t < 2p K’ (or any half-open interval of length 2p K*). The char-
acteristic values of #”=n(n + 1) — & belonging to Ec’ ‘% and Es'" will
be denoted by a’ ‘® (k2) and b ‘®(k?) respectively,

EO<k<landn(+ D) is real, we have for eachm = 0, 1, 2, a0
exactly one Ec’" and for each m = 1, 2, ... one Es /", These functions
have the period 2K’ if m is even, and 4iK’if m is odd. They, and the
characteristic values of & “belonging to them, can be expressed as.

. (31) Ec;" (z, k2)=Ec: (z5 k%), Es’® (z, k24)=Es"r‘l(z’, E’?)
(32) a’} (k2'>=a":,(k'z), b’" (/fz-)=b';(k 2).

Two distinct solutions of periods 2:K” or 4iK’ belong to the same
characteristic value of % (or &) if and only if » is an integer and the
functions in question are transcendental Lam€ functions of imaginary
periods (i.eq, m > |n + 15| -

Information about the relative position and asymptotic behavior of the
characteristic values may be obtained from (9)-(12), (27), (28) by means
of (32).

Lamé€ polynomials, being polynomials in s, ¢, and d, have both a real
and an imaginary period. An analysis of the zeros leads to the following

identities

(33) Ec"(z, k*) =Ec TR (e, k?) = Ec’™"(z%, k 2y
Es"(z, k*)=Es""™ "' (z, k*)=Es ™" "'(z %, k)

B4) a"EHN+a U =a" kN +a" " kP =n(n+1)

bR + b D) =0 )+ 2T (k) =n(n + 1)
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which are valid provided n is an integer, m = 0, 1, ..., |n + %| -~ %, and
the Lame’ functions have been normalized suitably (Erdélyi, 1941 a). In
particular, for k¥ =k *? =%,

35) an()+ar () =b2C8)+ 62" (B =n(n+1)

(36) a; (M)=n(2n+1), B %)= (n + 1)(2n + 1)

2nt1
n=0,1,2, ..

Similar relations hold for algebraic Lame’ functions (Erd€lyi, 1941b),
(37) Ec?*#(z, k) =Ec”" ™" (z, k*) =Ec" ™" (2", k%)

Es*(z, k%)= Es"" ™ (2, k) =Es" ™" (z , k%)
38) a*t N +a kD =a (kD +a" " (kD) =0+ 1)

(39) a®™ (P +a" (W) =nk+1)

provided n — % is an integer, m = 0, ... , |n — %2| and the Lamé€ functions
have been normalized suitably. Note that corresponding even and odd
algebraic Lamé functions belong to the same characteristic values, and
hence a = b for these functions. From (39) we also have
(40) %1%, (6 = %(2m + %)(2m + 3/2) m=0,1,2
We can now discuss the coexistence question for solutions of periods
2K, 4K, 2iK’ 4iK’ (see Erdélyi, 194la). We already know that two
solutions of realperiods.coexist (belong to the same characteristic value) if
and only if n is an integer, and the functions in question are transcen-
dental Lam€ functions of the same real period. Likewise, two solutions
of imaginary period coexist ifand only if n isan integer and the functions
in question are transcendental Lamé€ functions of the samg imaginary
period. Moreover, in the case of Lamé polynomials, a Lamé function of
real period, and a Lam¢ function of imaginary period coincide. Lamé
polynomials are doubly-periodic Lamé€ functions, and it can be shown
that they are the only doubly-periodic solutions of periods 4K, 4i K of
Lamé’s equation. Ananalysis of the information about the relative position
of the characteristic values also shows that two distinct Lamé€ functions
one of which has a real period 2K or 4K, and another an imaginary period
2iK’or 4i K’ can never belong to the same value of 4.
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Summing up, if E_(z) is a Lame’ function of period 2K, 4K, 2i K’ or
4iK’ and n is not an integer, then £ _(z) has only a real, or only an
imaginary period, and it is the only periodic solution of Lamé’s equation.
On the other hand, if n is an integer, then E _(z) is either a Lam€ poly-
nomial and doubly-periodic (in which case the corresponding Lam€ func-
tion of the second kind is not periodic), or else E_(z) is a transcendental
simply-periodic Lame’ function and coexists with another Lamé function
of the same period.

15.5.3. Integral equations for Lame functions

Integral equations for Lamé functions have been discovered by Whittaker
(19154a,b), and have been investigated by Ince (1922, 1940a,b), Erdélyi
(1943) and others. The corresponding integral equations for Heun functions
have been investigated by Lambe and Ward (1934) and Erd€lyi (1942b).

Let N(B, y) satisfy the partial differential equation

2 2

d
(41) zﬁl\:—n(n + D[k sn(B, EY’N = ay[i—n(n + [k sn(y, k)I’N

and let A (y) be a solution of Lamé’s equation

2

(42) +¥-n@+DEsnly, )P} A=0.

dy?
We then have, by integration by parts,

dz
(43) {dﬁz +h—n(n+ Dk sn(p, k,)]z} J‘a”'N(B, WAG)dy

b 8%N
=/ gt -nGr Dk suly, PN | AG)dy
. Y

AN ( dA |®
- [ﬂ A =NB, ) —]
dy dy

a

b d2A
+/ N(B, y) o +1h = n( + DIE snlly, £ A) dy,
Y

and it follows that fb N(B, y) Aly)dy is a solution of Lame’s equation

provided that the ‘“integrated parts’’, [« ]g, vanish.
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Now, let & = a® or b”, and let A(y) = E (y) be a solution of period
2K or 4K corresponding to h: assume also that N(B, y) is a solution of
(41) which is a periodic function of both 8 and y mod 4K. Then our
argument shows that

j'“‘ N(B, y)E™(y)dy

is a solution of Lamé’s equation, is periodic mod 4K, and belongs to the
same characteristic value as E2(y). If n is not an integer, or else if n is
an integer and m < n so that E (y) is a Lamé polynomial, E* (y) is the
only periodic solution of (42), and we obtain an integral equatwn for E7

(44) J° 2;;N (B, WE (N dy=A"E"(B)

n=0,1,2 .., m=0,1,..,n
or » not an integer, m=0,1, 2, ...,

If n is a non-negative integer and m > n, the Lamé equation has two
distinct periodic solutions, and the integral will be a linear combination
of Ec: (B) and Es""l(ﬁ)efln this case we obtain integral equations for two
distinct periodic solutions but these-need not be Ec” and Es”. However,
integral equations for Ec” (Es”) may be obtained by taking N(B, y) an
even [odd] function of B — 'K,

The construction of suitable kernels N (B, y) is facilitated by the
remark that upon the introduction of new independent variables 0, ¢
according to

(45) sin@cos¢p=ksn Bsny

rd

sin@sinq&:i;{—- cn Beny

cos 0 —?dnﬁdny,

it is seen from 15,1(16)and 15,1 (18) that the partial differential equation
(41) becomes the partial differential equation of spherical surface har-
monics, so that N(B, y) is any solution of the latter equation expressed
in sphero-conal coordinates. If n is an integer, and N (B, y) is a (regular)
spherical surface harmonic, and hence (according to sec. 15.1.2) also a
(regular)ellipsoidal surface harmonic, all characteristic functions belong-
ing to non-zero A” of N are Lamé polynomials.



74 SPECIAL FUNCTIONS 1553

We now list a few simple kernels together with their characteristic
functions (determined by consideration of the parity of the kernel as a
function of B and of B8 ~ K).

1
(46) N = Pn(cos 6) = P"(k' dn B8 dn y> (Ec'zlu)

1
kl

a7) N=P;(cose)cos¢-=k SD,BSD)’P;< dn,Bdny) (Eci"‘“)

k 1
(48) N=Pl(cos@)sin¢-=ik—, cn,BcnyP;<k, danny) (Es2")

2

(49) N=P:(cose) sin(2¢)= 2ik—,sn BsnycnBeny

1
xPr (= danny) (Es2*1)

If n is an integer, the characteristic functions of the kernels (46) to
{49) are Lame polynomials: kernels appropriate for transcendental Lamé
functions involve Q . Ttmay also be mentioned that further simple kernels
involving Legendre functions of ¥ sn 8 sn y or i(k/k ) cn B cn y are also
known,

155.4. Degenerate cases
If £ = 0, Lamé’s equation becomes

(50) -;7’: +hA=0,
we have K = %n, and the solutions of (50) satisfying (3) to (6) are
(51) EC;(Z, 0)=cos[m(z - % )]
Es”(z, 0) = sin [m(z - %))
They both belong to the characteristic value
(52) = (0)=5"(0) = m?

If k= 1, we see from 13,18(4) that Lamé’s equation becomes
2

(53) +[A-n(+ V(tanhz)21A =0

dz?
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and K = «, K’= % 7. In this case Ince (1940a) has shown that
(54) e (D=5 =Um+ Vn-4m?
ai"“(l) = bi’“ 2D =Um+3n~Cm+ 12

(55) Ec?(z, )= Es***'(z, 1)= P"7* (tanh z)
Ec2**'(z, 1)= Es® *2(z, 1)= P""* ™" (tanh z).
Finally, let n » « and simultaneously £ -» 0 in such a manner that

(56) n(n+ 1k*>~46
In this case sn(z, 0) = sin z, and, from 15,2(4), { = % — z. Equation
15,2(5) becomes

‘A
i [h+46(cos )*1A=0
which is a form of Mathieu’s equation, Lamé functions of real periods
become Mathieu functions: the imaginary period K’ = o in this case,

(57

15.6. Lame-Wangerin functions

We have seen in sec, 15,1,3 that some of the potential problems
formulated in the systems of coordinates introduced by Wangerin lead to
postulating solutions which are finite attwo singularities of Lamé’s equa-
tion. We shall now show that such solutions are possible only for certain
characteristic values of h: and we shall call the ensuing characteristic
solutions finite Lamé functions or Lamé-Wangerin functions in order to
distinguish them from the (periodic) Lamé€ functions discussed in the
preceding sections. Comparatively little is known about Lamé-Wangerin
functions, and most of the material to be presented here is taken from a
note (1948a) and unpublished work by Erdélyi.

A Lame“Wangerin function is a solution of Lamé’s equation 15,2(1)
and has the property that (sn z)% A(z) is bounded in a region which con-
tains at least two poles of sn z. More specifically, we shall denote by
F® (z, k?) a Lamé-Wangerin function for which (sn z)% F" (z, k?) is
bounded, and has exactly m zeros on the open interval (K 2K + iK”);
it then follows that (sn z)* FZ (z, k°) is also bounded in a region which
includes this interval, indeed in an infinite strip which contains the line
z=iK’+ 2Ki, ~« <t < =, The characteristic value of & which belongs
to F'” will be denoted by ¢, (& % '
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We shall assume that £ and n are given and are such that for real ¢

n(n+ Dk KsnGK + 2Kz, £2)]?

is real, so that Lamé’s differential equation 15.2(1), when expressed in
terms of ¢t as the independent variable, is a differential equation with
real coefficients, Without loss of generality we shall take Re n >4,
Qur assumptions are always satisfied when 0 <k <1 and n(n + 1) is
real, butit is seen from 15.1(33) that the case of complex £ also occurs.
From 13,23 (13) and Table 11 in sec, 13,22 it is easy to verify that the
functions involved in 15.1(33) satisfy our reality condition.

Tf F (2) is a Lameé-Wangerin function, so are the functions

FRK+2iK’-2z) and F(2)tF(Q2K+2iK’-2z2),

and we may restrict ourselves to the investigation of Lamé-Wangerin
functions which are even or odd functions of z ~ K —iK{ H F" (z, k?)is
such a function, it will be an even or odd function of z — K ~ i K “accord-
ing as m is even or odd. Thus we arrive at the following boundary con-
ditions '

(1) (snz)® A(z) boundedat z=iK’
AK+iK’)=0 for A=F:'"(z)

(2) (sn2)* A(z) boundedat z=iK’
AK+iK)=0 for A=F:”'+'(z)

Since z = iK”is a singular point of Lamé’s equation, the existence
and properties of Lamé-Wangerin functions must be deduced from the
singular Sturm-Liouville theory. However, the nature of the singularity
at z = iK’ and of the boundary condition there enables us to use the
simplest kind of singular Sterm-Liouville theory, retaining practically
all the features of the regular theory. It follows from the work of McCrea
and Newing (1933) that for each m = 0, 1, ... there is exactly one Lamé-
Wangerin function, and that the characteristic values of K? 4 belonging
to these functions form an increasing unhounded sequence,

3) ch:_gl(zc;.gl(zc:_g--# ch";»eo as m - o

Tf Re n > =% or n = ~%, no two Lamé-Wangerin functions belong to the
same characteristic value, and we have a strictly increasing sequence,

(4) ch:<'ch:z<K2c:<m Ren>~-% or n=-%.
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If0 <k <1, so that K is real, the ¢” themselves are real, and we have

n

(5) c2<c;<c:<m, e® >0 0<k<l, n>-%

For the construction of Lamé-Wangerin functions, the P-symbols given
in sec. 15.4 suggest a variety of expansions of the form 15,3 (10). We
shall give here the series indescending powers of s which are convergent
when 0 <% <1,

Any Lamé-Wangerin function belongs at s = oo to the exponent %27 + %
in 15.4(2), and 15,3(10) suggests power series in s > multiplied by
sTnTIT2PT20 020 §29 where p and o have the values O or %, Clearly, 0=0
for Fan and o= % for Fi”' 1, We thus obtain the power series

(6) Fi"(2)= §Ars—"—2’_'=c s Crs-n-Zr-z

r=20 r=0

(7) Fimih'(z):d § Ars-n-zr-2=cd § Drs-n"Zr-:'l

r=0 r=o0
The recurrence relations for the coefficients are (r =1, 2, ;3, ves)t

8) h-m+D?>A+k>)]4,+2Qn+3)k*4,=0

(+2r=De+20)4 _ +[h=-(n+2r+ 1) Q4 E2]A,

+2(r + 1-)(2n+2r+3)k2Ar+1=0

9 [h-(+2°-G+1*k* 1B, +2(2n+3)E2B, =0

n+2r)m+ 2r + 1)Br_|+[h—(n+2r+2)2'—(n+2r+1)2kZ]Br
=0

+20+1)(2n+2r+3)k%B _,, =
(10) b=+ 12— (n+ 22 k21C +2(2n+3)E2C, =0

m+20)n+2r+1DC__ +h=+2r+ 12—+ 2r+ 2221 C,
+ 20+ 1){(2n + 2r + 3)k? €,y =0
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(1D h-G+2)*QA+E]1D +2©2n+3)k*D, =0
+2r+ Dn+2r+2)D _ +h-(n+2r+ 2)? (1+k2)]Dr

+2+1D)2n+2r + 3)1€2D,+, =0,

After division by 4r?, each of these recurrence relations is of the
form 15.3(13). In all four cases a = 1, 8 = —(1 + £2), y = £? and the
roots of the quadratic equation 15.3(15) are ¢, =1, ¢, = k7%, For general
values of 4, the ratio of two successive coefficients approaches % 2, and
the series (6),(7) do not converge at z = K + i K “where s 2 = k%, If 4 has
one of its characteristic values, the ratio of two successive coefficients
approaches 1, and the series converge inthe region |s| > 1 which includes
the entire line Im z = K/,

The series (6), (7) are unsuitable when |k| = 1, i, in Case III of
sece 15,1.3. In this case analogous series in descending powers of ¢
may be used with advantage.

Series which are more suitable for numerical computation may be
derived from the P-symbols 15.4(4), (5), (6)« At z = iK ", ¢/s = —i, Lamé-
Wangerin functions belong to the exponent /% + } at ¢/s = —i in 15.4 (6),
and 15,3 (10) suggests series in powers of (c + is)/(c — is) = (¢ + is)?
multiplied by )

c+is \2% e ik’s\ P [fc+ik’s\°
c—1is c—is c~1is ’
where p and o have the values 0 or Y%. Clearly, p = ¢ = 0 for even m,

p =0 =% for odd m. Moreover, if we introduce ¢ as in 15,5(13), we have

¥itl

(12) snz=cos{, cnz=sinl, c tis=ztie
We thus obtain the alternative expansions

(13) F,zlm (z)= § A _exp [~(n + 27 + 1) i

r=o

(14) Fi’"“(z)=dnz § Brexp[—(n+2r+2)(:i]

r=o0

whose coefficients satisfy the recurrence relations

(15) [H-(+ D2 (2-k2] A4, + 2n +3) k24, =0

(2r—1)(n+r)k2Ar_‘ +H-(+1+2r)? (2—k2)]1‘1,
+(r+1D(2n+2r+3)k%4_,,=0
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(16) [H-(n+2)*(2~k®]B,+ (2n +3)k*B, =0

Qr+1)an+r+ l)szr_‘ +[H-(+2r+2)° (Z—kz)]B,

+ 0+ 1 (@2n+2r+3)k?B _,,=0
where H=2h -n(n+ Dk?andr=1, 2 3, ....

After divisionby 2r? these recurrence relations are of the form 15,3 (13)
with a=y=k?, B8 =~2(2-£%?), and the roots of the quadratic equation
15.3(15) are

1-k" 1+k°

L, =—, t,=
Vlskt’ 21—k’

I Re k”> 0, we have [t,| < [¢,|. Let us consider the convergence of the
series (18), (14) when 0 <k, k’< 1, When z = iK "+ 1, 0 <u <K, it can
be seen from Table 7 in sec, 13,18 that

. iksnu

c+is=——r
: l+dnu

and consequently {c + is|?> < (1= %")/(1 + k). If & has one of its char-
acteristic values, the ratio of two successive coefficients of (13) or (14)
approaches ¢, = (1 - k“)/(L + k") so that the convergence of (13) or (14)
ontheline Im z = K”is at least as good as that of a geometric progression
with ratio [(1 = & *)/(1 + & *)]%. Note that

-t . . ksnu
e *=—j(c+is)= ——
l+dnu

’

is real on the line Im z = K~

Other power series expansions, and series of exponential functions,
and also expansions in terms of Legendre functions may be obtained in
the manner indicated in sections 15.3 and 15,4,

Integral equations for Lamé-Wangerin functions can be obtained very
much in the same manner as for periodic Lamé functions. As in sec,
15.5 3, let N(B, y) satisfy the partial differential equation 15.5(41) and
consider the integral

SN, ) PG dy.

iK
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The computation indicated in 15,5(43) shows that this integral satisfies
Lame’s equation with & = c¢” provided that the nucleus is so chosen that

) Ve
dy ’ dy

NGB, ) F*()- 0
as y»>iK’or y» 2K+ iK" If, moreover, N(8,y) belongs to the exponent
Y%an + % at 8 =iK”and at 8 = 2K + i K", uniformly for all y in the range
of integration, then the above integralis a constant multiple of the Lamé-
Wangerin function, and we have the integral equation

(17) f_2KK,+"K'N(/3, WF () dy =A% F*(B)
1

The construction of suitable kernels N (B, y) is based upon the remark
thatthe change ofvariables 15.5(45) transforms 15.5(41) into the partial
differential equation of spherical surface harmonics. It should be noted
' (see the diagrams in sec. 13,25) that on the interval (K} 2K + iK’), s
is positive, ¢ is negative imaginary, and d is real, so that in 15.5(45)

(18) cos freal, sin fcos ¢ >0, isinBsinp>0,
Now, for every sufficiently regular function f, and every constant aq,
f(x cos a + ¥ sin a — iz)
is a solution of Laplace’s equation (in Cartesian coordinates %, y, z),

and we may take f(u) = u~ """ thus seeing that

(19) (sinf cos ¢ cosa + sin 0 sinp sina—i cos )
IE 1, -n=1
=(k snf3 sny cosa+ i? cnfBeny sina—k—,dn,B dny)

is a surface harmonic, provided a has been so chosen that the expression
intheparantheses doesnot vanishas 3 and y range over (K} 2K+ iK").
Moreover, N, dN/dy » 0 as 3 or y approach one of the end-points of the
interval so that (19) represents suitable nucleis We choose, in particular,
a= 1t Jinm, and obtain the integral equations

20 [2¥ YKt anB dny —k enB eny) ™ FR(y) dy =A% FL(B).

We can also construct integral equations for even or odd Lamé-Wangerin
functions only, over the interval (K K + i K”). The appropriate kerels
are the sum or difference of the two kernels in (20).
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15.7. Ellipsoidal and sphero-conal harmonics

We shall now briefly discuss the application of our results to the con-
struction of ellipsoidal and sphero-conal harmonics.

Let us introduce ellipsoidal coordinates a, 8,y in place of rectangular
coordinates x, y, z, The transformation formulas are 15,1(8), and the
ranges of a, B, y are described in the lines following 15,1(9). We shall
call B(B) C(y)an ellipsoidal surface harmonic if B and C satisfy Lamé’s
equation, and BC is continuous and has a continuous gradient, on all
ellipsoids @ = const. We shall call 4(a) B(B) C(y) an internal ellip-
sotdal harmonic if A, B, C satisfy Lamé’s equation and 4BC is continu-
ous and has continuous derivatives inside an ellipsoid a = const., and we
shall call A(a) B(B) C(y) an external ellipsoidal harmonic if similar
conditions prevail outside an ellipsoid, and 4 (K ) = 0.

We have seen in sec, 15,1,1 that for an ellipsoidal surface harmonic
we must have B(#) = C(0), and that this function must be a doubly-
periodic L.amé function with periods 4K and 4 K" By sec. 15,5.2, the
only I.amé functions which have periods 4K and 4;K” are Lamé poly-
nomials, and for these n must be an integer which we may take non-
negative, and m < n. Thus we arrive at the 2n + 1 ellipsoidal surface
harmonics of degree n,

(1) Se™ (B, ¥)=Ec” (B)Ec” (y) n=0,1,2,..., m=0,1,..,n

Ss* (B, y)=Es";(B)Es""1(y) n=1,23 .., m=1,2 ..,n
In terms of the variables 6, ¢ of 15,5(45) these functions are spherical
surface harmonics, and the number, 2n + 1, of linearly independent sur-

face harmonics could have been established by this connection.
Ellipsoidal surface harmonics form an orthogonal system, i.e.

@ J ef Sc™ (B, y) Sc“(B, y) [(sn B)? ~ (sny)21dB dy
= fgf Ss™ (8, ¥) Ss“(B, y) [(sn B)? ~ (sny)?1 dB dy =0

except whea n = v and m = p, and

(3) [ J Sc®(B, y)Ss&(B, y) [(sn B)* - (sn y)*1dB dy = 0.
g
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Here € indicates the surface of the ellipsoid where B ranges from K to
K + 2{K and y from 0 to 4K. Equation (3) follows from the different
parity of Sc and Ss at y = K, To prove (2) for n # v, we recall that

62 62
(é? - -67 S,=n+ 1)[(% sn B)? — (k sn )/)Z]S’I

where S_is Sc” (B8, y) or Ss” (B, y), and hence

L L 92 92
v 2~ 2 S,-8 2 = 2 S
B2 dy2 ) "n\ap® 9y* /)"

=h@-1-vl-1DIk[(sn B)®- (sny)?]1S S .

Integrating over € we have

[n(n -1 - vlw-D]] [ [sn B)? - (sn y)?1S, S, dBdy=0,
£

and hence (2) forn # v, Forn = v and m #£ u we remark that Ec” and Ec“
(and likewise Esn and Es“) are two characteristic functions of the same
Sturm-Liouville problem 15 5(1) [or 15.5(2)], and that by 15.5(9) [and
15,5(10)] they belong to different characteristic values. Equation (2)
for n = v, m # p then follows from the orthogonal property of Sturm-
Liouville functions.

The orthogonal property of ellipsoidal surface harmonics enables us
to determine the coefficients in the expansion in a series of ellipsoidal
surface harmonics of an arbitrary function given on &, The validity of
the expansion can be deduced by means of the connection between ellip-
soidal and spherical surface harmonics,

For internal ellipsoidal harmonics, we have seen in sec. 15,1,1 that
A(6) = B(0) = C(0) so that internal ellipsoidal harmonics are of one of
the forms

(4) He"(a, B, y) =Ec”(a) Ec*(B) Ec” (y)
n=0,1,2 ., m=0,1,2 ..,n

Hs"(a, B, y) =Es"(a) Es"(B) Es" ()

n=1,23 .., m=1L,2,..., n

The Lame polynomials occurring here may be written in the form s ¢ d”
times a polynomial of degree %(n — p ~ 0 — r)in s?, and consequently
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Hc’, and Hs” are polynomials of degree n in the Cartesian coordinates
%, ¥, 2 (harmonic polynomials),

E.T. Whittaker (Whittaker and Watson, 1927, sec, 23.62) found elegant

integral representations of internal ellipsoidal harmonics.

(5) J;)4KPn(w) Ec':l(r~)dr= AHc"".(a, Bsy)

fO4KPn (w) Es':l(r) dr=AHs" (a, B, ¥)

where
k’xsnr+y cnr—izdnr
k’(@®-c?)*

(6) w=

2
2 .
=k snasnBsnysnr—k—,zcnaancnycnr

1
+k_'2 dnadn S8dnydnr

isthe sphericaldistanceoftwo points on the unit sphere whose Cartesian
coordinates are

k 1
(7 ksnaSnB,ik—, cnaan,k—,dnadnB)
and

(8) {£snysn r,i% cn y cn r,kl—, dn y dn r).

To prove (5), we remark that P_(w) is a solution of Laplace’s equation,
and so are the integrals on the left-hand sides of (5), Moreover, these
integrals are polynomials in sn @, sn B, sny, cn @ ... , dn y. Lastly,
P (w), as a function of the point (8), is ‘a spherical surface harmonic of
degree n, and by 15,5(44) the integrals must be multiplies of Ec’ (y),
Es?(y). Since a, 8, y occur symmetrically in w, (5) follows,

External ellipsoidal harmonics differ from (4) in that Ec”,'1 (a), Es” (a)
are replaced by the corresponding Lam€ functions of the second kind (see
the end of sec, 15,5.1)s Such harmonics may also be represented by the
integrals

_I;;“( Qn(w) Ec:(r)dr, _f;;lKQn(w) Es:(r)dr

where @ is the Legendre function of the second kind and w is given by
(6)«
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In sphero-conal coordinates 15.1(16) we have the surface harmonics
(1) which, if B and y are sphero-conal coordinates, are spherical surface
harmonics. Internal and external sphero-conal harmonics are,respectively,
of the form

r®Ser(B, y), r"Ssk(B, ) (internal)
ront Se2(B, ¥), rnt Ss (B, ¥) (external)
where n is a non-negative integer and m < n.

15.8. Harmonics associated with cyclides of revolution

In order to show the application of Lamé-Wangerin functions to the
construction of harmonic functions associated with confocal systems of
cyclides of revolution, we shall discuss in greater detail Case T of sec,
15.1.3, thatis to say, the case of a confocal system of cyclides of revo-
lution with four (real) foci on the axis of rotation. In particular, we shall
construct harmonic functions regular inside one 6f the surfaces u = const,
> 0. '

The reduction of the differential equation for f tonormal form suggests
in this case the introduction of curvilinear coordinates u,v by means of
the transformation

(1) z+ip=s=snlu+iv, k)

and 15.1(29) shows that the separation of variables leads to the ordinary

differential equations
1-k\ [F
snl i (1+k)u, U=0
1+k

a2y . 2 | 1-F ( AN
W+(1+k) {h—(m - | 1ok sn | (1+£)(v-iK), ﬁk—> V=0

It has been shown in sec. 15.1,3 that the boundary conditions are that
p—% V should remain finite both at v = 0 and v = K’ (where the second
equation (2) has singularities), and that p_% U should remain finite at
u = K (where the first equation has a singularity).

Now, equations (2) are of the form of Lamé’s equation, and the re-
quisite solutions may be obtained by means of secs 15.6, This procedure
is satisfactory when k& is near 1 (when two of the foci of the confocal
system are near to each other); for smaller values of k it is of advantage

2

42U
@ — —(1+Ic)2{ﬁ—(m2—1/4) [

1-k
1+k

u
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todeal with L.amé’s equation with modulus %, rather than (1~%)/(1+%) as
in (2), This can be achieved by using curvilinear coordinates u, v which
are different from those introduced by (1),

By a combination of transformation B of Table 11, sec, 13,22 with
Landen’s transformation 13,23 (13) it is seen that

2L Sn(l;',l;?’)
1+% cn(zl, £+ dn(zl,l;)

snlu, k) =—i scGu, k) =—

where
1-k

11=i(l+k)u, k=
1+k%

9

and this suggests the introduction of curvilinear coordinates, u, v by
means of the equation
iak’s  d-c

c+d=w TR =f(u+iv)

3) z+ip =

where
4) s=snlu+iv,k), c=cnlu+iv, k), d=dnlu+iv,k),

and the foci

1-k |% 1+ )%
z=t*a , *a
1+% 1-%

of the confocal system determine a >0, and £, 0 < % < 1. From now on u
and v will be the curvilinear coordinates introduced by (3), and the
abbreviations 15,1(27) will be used.

By means of the formulas of sec. 13,17 we obtain the real form of the
transformation (3),

iak’s, ak’s,
(5) z=ttt e o, %
. cd,+c,d, cd,+c,d,
and also
“wtiv)|? 1—k2s?s?
6) F(u,v)=|f uzwl _ _ 155

[4 )

| —

~k?s2=Tlksnlu+iK} k)~ [k snlov, k)2
S

- N
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The ordinary differential equations for U and ¥ become
2

(7) d(i +h—(mi-%)ksnw+iK k)3 U=0
u

2

V+ {h ~ (m?=%) [k sn(iv, £)I}} V =0,

2
v

d
(8) 7

The transformation (3) maps the rectangle with vertices *i K/ 2K*iK”
in the u, v-plane on the half-plane p > 0. In the diagram on page 87,
corresponding points are denoted by the same letter. The line v = v >0
is mapped on a part of a bicircular quartic whose foci, (1 and 3, are the
points z = —a[(1 - EYQ + k)]%, z=—-al(1+%)Y(Q1- k)]%, p =0, and we
shall construct harmonic functions which are regular inside this bi-
circular quartics The condition that p—% UV remain bounded on the axis
of rotation inside v = v, entails the conditions that [sn (u + i K/, AU (u)
remain bounded on the interval (0, 2K), and [sn(iv, £)]* V (v) remain
bounded on the interval (v , K”).

Now, the differential equation (7) is Lamé’s equation with n = m — %
and z = u + i K’ Solutions for which (sn z)* U (u) is bounded at z = i K’
and z = 2K + iK”exist if and only if b = ¢ _, (£?), and the only such
solution is

U(u):F’:_,/z(u+iK',k2) r=0,1,2, ..,

In equation (8) we now have /& = el _y, ((2) so that one solution of this
equation is

Vw)=F, _, (v, E?).
Moreover, this solution has the property that[sn (v, £)]* V (») is bounded
at v = K’ and is determined (up to a constant factor) by this property,
Then equation 15,1 (24)shows that the only normal solutions of Laplace’s
equation in the curvilinear coordinates introduced by (3) are of the form

d_+c.d ¥
@ W, = (w\> F";_,A(u+iK',k2)

S

xF;_%(iv,kz)eii'"qs

m=0,1,2 .., r=0,12, ..
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u=0
, 2K +iK”’
iK
B a
1J=1J°
I 3
0 v=20
C 9
-iK’ —,
2K - iK
z=0
3 G BE C 9

The mapping (5)
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Other potential problems in coordinates of confocal cyclides of revo-
lution may be handled in a similar manner. In view of a certain lack of
clarity in the literature of this subject it deserves mention that none of
the boundary value problems mentioned in sec, 15,1,3, in fact no known
boundary value problem in the coordinates introduced by Wangerin, leads
to algebraic L.amé functions (although such functions exist for certain
values of h since n+% is an integer), With the exception of the harmonics
of a flat ring which were discussed by Poole (1929, 1930) and shown by
him to depend on periodic Lam€ functions, all the other boundary value
problems of sec. 15.1,3 involve finite Lamé functions (i.ec Lamé-

Wangerin functions).
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CHAPTER XVI

MATHIEU FUNCTIONS, SPHEROIDAL AND ELLIPSOIDAL
WAVE FUNCTIONS

16.1. Infroduction

The functions to be discussed in this chapter arise when the wave
equation AW + «*W = 0 is solved by separation of variables in certain
systems of curvilinear coordinates. For the general problem of separation
of variables in the wave equation and in related partial differential equa-
tions see the literature quoted in sec. 15.1.

For Mathieu functions there is a standard work, by McLachlan (1947),
which contains many applications and a bibliography. A book on the
theory and applications of Mathieu functions and spheroidal wave func-
tions, by Meixner and Schéfke, is in preparation. A monograph by Strutt
(1932) summarizes the theory of all the functions discussed in this chap-
ter, indicates their applications, and gives an extensive list ofreferences.
A supplement to this list was also published by Strutt (1935), For
Mathieu functions see also Whittaker and Watson (1927, Chapter XIX).

Inthe present chapter we shall give abrief description of the principal
properties of the functions concerned, and references to the newer litera-
ture. For a more detailed presentation of these functions, and for the
older literature, see the works mentionéd above. In the sections on
Mathieu functions we shall follow McLachlan’s book, and in the sections
on spheroidal wave functions, Meixner’s papers. Very little is known
about ellipsoidal wave functions, and what there is, is summarized in
Strutt’s monograph.

16.1,1. Coordinates of the elliptic cylinder

We introduce curvilinear coordinates u, v in place of the Cartesian
coordinates x, y by means of the equations

(1) x=ccoshucosv, y=csinhusinv

91
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where ¢ is a positive constant. In the x,y-plane, the curves u = const.
form a confocal family of ellipses, and the curves v = const., a confocal
family of hyperbolas, the foci of the confocal system being the points
(+6,0).Each curve v = const.is one quarter of a hyperbola, and we obtain
the whole x,y-plane if we take theranges of u and v as 0 <u<w, 0<v<27.
v =0 and v = 27 are the same curve (that portion of the x-axis from x = ¢
to x= + ). The curve u = 0 is a degenerate ellipse (the segment ~c<x<c
covered twice) which acts as a branch-cut, the points u =0, v = v, and
u =0, v =27 -v, being identical. Inthe x,y,z-space we have correspond-
ingly confocal families of elliptic and hyperbolic cylinders.
In the coordinates introduced by (1),

9 AV + k2 2¢72 *W W
+ = +
K cosh (2u) ~ cos (2v) ou?  9v?
tWw
+—5 + kW =0;
az‘

and if there are normal solutions of the form

3) W=Uw@)V(v)Z(z),
the functions U, V, Z must satisfy the ordinary differential equations

d*U
(4) 3 ~[h~20cosh(2u)1U=0
u

2

d*v
(5) 3 +{h=-26cos(2v)IV =0
dv

iz
(6) dz2+lz=0'

Here 4, 6, and { are separation constants, % is arbitrary while

(7 «®=1%+4c7206, ‘

Equation (5) is known as Mathieu’s equation; (4) may be reduced to
Mathieu’s equation by an imaginary change of variable, and is known as
the modified Mathieu equation. _

For a wave function W which is continuous, and has a continuous
derivative, on an elliptic cylinder » = u,, we must have V (27) = V(0),
V (27) = V “(0). Since 27 is a period of the coefficients of (5), it follows
that V (v) must be a periodic function of v with period 27. It will be seen
later that for a given O there is an infinite sequence of characteristic
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values of A for which such periodic solutions exist: they are called

Mathieu functions. If V(v) is a mod 27 periodic solution of (5), so are

V(-v) and V(v} + V(~v) so that we may restrict ourselves to the con-

sideration of Mathieu functions which are even or odd functions of v.
Suppose now that W is continuous, and has a continuous gradient,

inside the ellipyic cylinder u ='u . Since u=0, v=v, and u=0, v=27-v,

represent the same point on the opposite sides of the branch-cut, we must
have

UO) V(v)=U©) V@r-v), U©Vw)=-U0)VCr-uv,)

for 0 < v, < 2w If V(v) is an even Mathieu function then V(27 —v,)
= V(-v,)= V(p,), the first of these conditions is always satisfied, and
the second demands that U“(0) = 0. From (4) it then follows that U () is
an even function of u, so that U(u) = ¥ (iu) up to a constant factor.
Similarly, if ¥ (v) is an odd function of v, then U (u) must be an odd func-
tion of u, and again U(u) = V (iu). The solution of (4) thus determined is
called a modified Mathieu function of the first kind.

For a wave function W which is continuous, and has a continuous gra-
dient, outside an elliptic cylinder u = u , usually the behavior at infinity
is prescribed (for instance, by Sommerfeld’s radiation condition). Now, for
large values of u,

p=(x%+y)*% = cl(coshu cos v)? + (sinhu sinv)?]#
is approximately Y ce®, and those solutions of (4) which behave asym-
ptotically like exp (J4i k ce ®) or exp (—¥%i k ce ®) are called modified Mathieu
functions of the third kind. :

16.1.2. Prolate spheroidal coordinates

We now introduce prolate spheroidal coordinates u, v, ¢ by the equations

(8) x=csinhusinvcos¢, y=c sinhusinvsing,

z=c coshu cosv

where ¢ is a positive constant. The surfaces u = const. form a confocal
system of prblate spheroids, and the surfaces v = const., a confocal
system of two-sheeted hyperboloids, the foci of the confocal system being
the points x = y = 0, z = % c. The respective ranges of u, v, ¢ are:
0<u<w 0<v<m 0<¢ <2n The surfaces ¢ = const. are meridian
planes, ¢ =0 and ¢ =27 being the same. u = 0 is a degenerate ellipsoid
which reduces to the segment x =y =0, ~c <z2<c,andv=0andv="r
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are the two halves of the degenerate hyperboloid of the system reducing
respectively to x =y =0, z > ¢ and x = y = 0, z < —c. Thus, the entire
axis of revolution is a singular line of the coordinate system.

In the coordinates introduced by (8),

¢ 2 W 9w oW
9) AW+ «2W = tnh v —
K Coshu)— (cosm)? \ du? 9wt ¥ gy
L 1 LA
+ ctn v — + =
dv (¢ sinhz sin v)? dg? T ’

and if there are normal solutions of the form

(10) W=U@) V@) etin?,
the functions U, ¥V must satisfy the ordinary differential equations

2

d
o7 + ctnhud—- [k - (ke sinhu)? + (m cschu)?]U =0
u u

v

2 av
(12) — +ctnv — + [h + (k¢ sinv)2 = (m escv) 2]V =0

dv? dv
where & is again a separation constant. Equation (12) will be called the
trigonometric form of the equation of spheroidal wave functions: (11) may

be reduced to (12) by an imaginary change of the variable.

Forawave function W which is continuous inside or outside aspheroid
u =uy, Wmust be a periodic function of ¢ with period 27, and hence m
in (10) must be an integer. Also, W must be bounded on ellipsoids u =
const., that is to say, ¥ (v) must be a solution of (12) which is bounded
for 0 < v < 7. As in the case of Legendre’s equation 3.1(2) to which (12)
reduces when k = 0, such solutions exist only for certain characteristic
values of h: the bounded solutions of (12) are called spheroidal wave
functions. If W is to be continuous inside a spheroid u = u, then it must
be bounded on the degenerate spheroid u = 0; this determines the choice
of U and shows that U(z) is a constant multiple of ¥ (iv), that is to say
U(u) is a modified spheroidal wave function of the first kind. On the
other hand, if W is a wave function regular outside a spheroid u = u ; then
usually its behavior at infinity is prescribed to be asymptotically that of

7Y exp(+ikr) where

r=(xt+ry?+ 22)% = ¢[(sinhu sinv)? + (coshu cos v)2]%



16.1.3 MATHIEU FUNCTIONS ETC. 95

is approximately % ce® when u is large. The solutions of (11) determined
by their behavior at infinity are modified spheroidal wave functions of
the third kind. The solutions of (11), with % having one of its charac-
teristic values, should more precisely be called modified wave functions
of the prolate spheroid.

16.1.3. Oblate spheroidal coordinates
Oblate spheroidal coordinates u, v, ¢ are introduced by the equations
(13) x = c coshu sinv cos ¢, ¥ = c coshu sinv sing,

z=c sinhucosv

where ¢ is a positive constant. The surfaces u = const. form a confocal
family of oblate spheroids, the surfaces v = const., a confocal family of

one-sheeted hyperboloids, and the surfaces ¢ = const. are meridian planes.
The focal circle of the confocal system is the circle x> +y?=c?, z =0,
The respective ranges of u, v, pare: 0 <u <o, 0 <v <7 0L Pp< 27,
¢ =0 and ¢ = 27 being the same meridian plane. u = 0 is a degenerate
ellipsoid which covers the area inside the focal circle twice. v = 0 and
v = 7 are two halves of a degenerate hyperboloid reducing respectively
to the positive and negative z-axis, and v = ¥ is a degenerate hyper-
boloid which lies in the plane z = 0 and covers the area outside the
focal circle twice. Thus, the entire x,y-plane is a singular surface of

the coordinate system.

In the coordinates introduced by (13),

(14) AW +k2W . VT ana
+ = + tanhy ——
x (coshu)? - (sin v)? du? " vt du

oW 1 %W
+ ctn v —

: 2y =0,
dv +(c coshu sinv)? 9¢? K

and if there are normal solutions of the form
(15) W=U) V@) e*™=?,
the functions U and V must satisfy the ordinary differential equations

2

d°U dU
(16) ——5+tanhu — — [ — (k¢ cosh u)? = (msechu)?]U =0
du du
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2

(17) —5 +ctnv——~+ [A = (ke sinv)2~ (m cscv)?]V =0
dv dv

where % is again a separation constant. Equation (17) is the differential
equation of spheroidal wave functions with xZc? replaced by — k?c?
(16) may be reduced to (17) by the substitution u =i (v ~ %#).

As in sec. 16.1.2,m must be an integer, ¥ must be a spheroidal wave
function, and /s must have one of its characteristic values. The solutions
of (16) may be called modified wave functions of the oblate spheroid, and
it should be noted that the modification appropriate to oblate spheroids,
u = iv — % ni, differs from that appropriate to prolate spheroids, u = iv.
Since V(7 - v), V(v) £ V{(z — v) are also spheroidal wave functions, we
may take ¥V (v) to be an even or odd function of v — % 7. For a wave func-
tion which is regular inside a spheroid u = u,, a consideration similar
to that given in sec. 16.1,1 shows that continuity across the degenerate
spheroid of the coordinate system (where the points u = 0, v = v, and
u=0,v=n-v, coincide) demands that U (z) be an even or odd function
of u according as ¥ (v) is an even or odd function of v - %, that is to
say, that U(u) = V(iv — %ni): we call these solutions of (16) modified
spheroidal wave functions ofthe first kind, Wave functions for the exterior
of an oblate spheroid are determined in terms of their behavior at u = o,
and the functions U involved are modified spheroidal wave functions of
the third kind.

16.1.4. Ellipsoidal coordinates

We define ellipsoidal coordinates a, B, y by 15.1(8) where a > b > ¢
> 0, and % is given by 15,1(6). For the description of the coordinate
surfaces and for the ranges of a, 3, y see sec. 15.1.1. It is seen from
15.1(9) that in ellipsoidal coordinates a, B, y the partial differential
equation AW + x?W =0 is
*w a*w
Py + [(sn @)? - (sny)?] Ve

(18) [(sny)?-(snpB)?]

*W

5.2 +(@2~53k%k%[(sn a)?
Y

+ [(snB)? = (sna)?’]

~(sn B)?1 {(sn'B)? ~ (sny)*1 {(sn y)? ~ (sn a)*1W = 0,
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and if there are normal solutions of the form
(19) W =4(a) B(B) C(y),
then the functions 4, B, C must satisfy the ordinary differential equations

2

(20) Tz +h-1(Gna)?+(@®-b2)k2«%(sna)?]4=0
a
°B 2 2 2y 12 2 4

(21) TE +[h-1(np) + @ -2 k" k" (snB)' 1B =0
dZ

(22) +[h-1l(ny)2+@*-b)Ek%k?(sny)*]1C =0,

dyz

where h and [ are separation constants. These three equations are of the
same form, they differ only in the ranges of their independent variables.
The common form is known as the equation of ellipsoidal wave functions
or Lamé’s wave equation. Solutions of these equations which satisfy
appropriate boundary conditions are known as ellipsoidal wave functions
or Lamé wave functions. When « = 0, the equations reduce to Lamé’s
equation (Chapter XV) and Lamé wave functions reduce to Lamé functions.

If W is continuous and has continuous derivatives inside or outside
an ellipsoid u = u , the boundary conditions to be imposed upon B and C
are those obtained in sec. 15.1.1. These boundary conditions determine
characteristic values of & and [/, and also the corresponding Lamé wave
functions of the first kind. Fora wave function regular inside an ellipsoid
u = u, the boundary condition for 4 is also the same as in sec. 15.1.1
so that 4 is a Lamé wave function of the first kind. For a wave function
regular outside an ellipsoid the asymptotic behavior at infinity, i.e., near
a=iK’is given, and 4 can be expressed as a Lamé wave function of the

third kind.

MATHIEU FUNCTIONS

16.2. The general Mathieu equation and its solutions
We shall adopt

dZ
@ - 2 +Th=26cos(22)]u=0
z

as the standard form of Mathieu’s equation. This is the form used by
Ince (1932 and other papers) and several other authors. There is no
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generally accepted standard form. Whittaker and Watson (1927, Chapter
XIX)put h=a, 0 =—8¢, Stratton et al. (1941) have h = b — %c?, 40=c?,
Jahnke-Emde (1938) put 2 = 4a, @ = 8¢, and in the tables prepared by
the National Bureau of Standards (1951) k= b ~ %5, 0=Y4%s.
Ince (1923) also studied the equation
d?u

2
V4

+[h-20cos(2z)=v(y—1)(cscz)?]u=0

which he called the associated Mathieu equation. Since the substitution
- ) . - - -
u = (sin 2)# v carries this equation into

d? d -2
it +ctnz—v+[]z—%-—26005(2z)-—u]v=

dz? dz (sinz)?

which is the differential equation of sphercidal wave functions, the
associated Mathieu equation will not be discussed here.

In this section we shall consider both 2 and 6 as given (real or
complex) constants. Equation (1) is then referred to as the general
Mathieu equation to distinguish it from the equation of Mathieu functions
in which only 6 is prescribed while & has one of its characteristic
values. For the sake of brevity, we shall call (1) Mathieu’s equation.

With

(@) x=(sinz)?

we obtain
2

d°u du
(3) 4x(1-x) >+ 20-2x)— + (A~ 20+ 40x)u=0
dx dx
and we shall call this equation the algebraic Mathieu equation. This
algebraic form and related equations were used in the investigations of
Lindemann, Stieltjes, and others. The algebraic Mathieu equation has
two regular singular points, at x = 0 and x = 1, both with exponents 0
and %, and one irregular singular point at infinity. Because of this
irregular singularity, (3) is comparatively untractable, although it can
be used to derive certain series expansions of the solutions, both
series in powers of x or 1 - x, and series of hypergeometric functions.
The equation is a limiting case of Heun’s equation (sec. 15.3).
Mathieu’s equation (1) is a differential equation with periodic coeffi-
cients. From the general theory of such equations (Ince 1927, p. 381f.,
Poole 1936, p. 1781.) it follows that (1) has a solution of the form

(4) e**P(2)
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where P (z) is a periodic function with period #, and p is a constant,
called the characteristic exponent, which depends on % and 6(Floquet’s
theorem). Clearly

(5) e **P(-z2)

is also a solution of (1). In general (4) and (5) are linearly independent
and form a fundamental system of solutions of (1). The only exception
arises when ip is an integer: this is the case of periodic Mathieu func-
tions which will be discussed in sections 16.4 to 16.8.

Solutions of the form (4) and (5) are sometimes called solutions of
the first kind. Other significant solutions of Mathieu’s equation are
those which vanish when z - { o or z » —i co: such solutions are called
solutions of the third kind.

There are several methods for the determination of p. We shall out-
line some of these, and refer the reader to Blanch (1946) and to Chap-
ters IV and V of McLachlan’s book for further details and for a descrip-
tion of numerical methods.

Poincaré bases the determination of y on the two solutions, u and
u,, of (1) defined by the initial conditions

(6) u'(0)=1, u;(0)=0; u2(0)=0, ug‘(0)=1.

These two solutions are linearly independent, their Wronskian is unity,
and u, [uz] is an even [odd] function of z. If P (0) # O we have

et P(z)+ e #2P(-2)

2P ©)

u (z)= )

and if P “(0) + pP (0) # 0 we have

et? P(z)—e ™ P(~2)
2[P0) + pP (0)]

u,(z)=

At least one of these two expressions is meaningful. We now differen-

and put z = 7 in both u_ and u_: since P(* #) = P(0), P (*n)

tiate u 2 1 2

= P “(0), we obtain
(7) cosh(um)=u, (7)=u;(w)

It is evident from (7) that p is determined up to its sign and an integral
multiple of 2i. (7) can be used for the determination of p if u'(ﬂ) or
u () can be evaluated with sufficient accuracy. (See also sec. 16.3.)
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Hill expands the solution (4) in the form
@ 3, oWt
n

-0

Substitution in (1) leads to the recurrence relations

(9 -6c, _,+h+(p+2ni)?lc -6c ., =0 n=0, t1, +2,...
for the coefficients c, We write (9) in the form

(10) ¢ +y Wil ,+c, ,)=0 n=0, 1, 2 ..
where

(1D y, =y, (W= 6/l(2n - pi)? - 4]

The (infinite) determinant of the system (10) is

4] K |
P L (7 I 0 0
Yo 1 oy @ O 0
vee 0 yo‘(#) L A N ()
... 0 0 ¥, @ 1 oy .-
0 0 0 v, (1) 1

and y is determined by the equation A(g)=0. The infinite determinant
(12) is clearly absolutely convergent, and it represents a meromorphic
function of p. This function has simple poles at p = +i(h% + 2n),
n=0, tl, £2, ..., Since y _(p+ 2ki)=y_,,(u), k integer, and y (~p)
= y_,(p), we see that A(p) is an even periodic function of period 2:.

Thus,
C

cosh (u7) — cos (nh

is an even periodic meromorphic function of p. If C is determined so
that (13) has no pole at p = ih%, then(13) will have no pole whatsoever,
and hence will be a constant. Since A(y) » 1 as p » o, the value of
this constant is unity. To determine C, we put p =0 and obtain
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[1- A(0)1[1 —cos(h*%n)]
cosh (u7) — cos (h* =)

cosh(pm) - 1+ A(0) [1 = cos % m)]
- cosh (u7) ~ cos (& % )
Since p is determined by the equation A (g) = 0, we have

(15) cosh (uz) =1+ 2A(0) [sin L% D2

For further work on infinite determinants arising in connection with
Mathieu’s equation and similar differential equations see Magnus (1953).

If 2 and 6 are both real, it is seen from (7) or (15) that cosh (ur) is
also real. If -1 < cosh(uz) < 1, then p is imaginary, pi is not an integer,
and (4)and (5)show that every solution of Mathieu’s equation is bounded
on the real z-axis. Stable regions are those regions of the k,6-plane in
which ~1 < cosh(p7) < 1. If cosh (pm) > 1, then y may be taken as real
(and non-zero), if cosh(um) < -1, then p ~ i may be taken as real (and
non-zero): in either case it can be seen from (4) and (5) that Mathieu’s
equation has no solution bounded on the real axis. Those regions of the
h,6-plane in which cosh (pz) > 1 or cosh (u7) < =1 are called unstable
regions. Stable and unstable regions are separated by curves along
which cosh(ym) = + 1, one solution of Mathieu’s equation is bounded
(and periodic), and the general solution is unbounded: for this excep-
tional case see sections 16.4 to 16.8. For stability charts showing
stable and unstable regions of the k,6-plane see Strutt (1932, p. 24),
McLachlan (1947, p. 40, 41), and p. xliv, xlv of the NBS tables. For
computation of stability charts see also Blanch (1946), Schafke (1950).

Most numerical methods for the solution of Mathieu’s equation with
moderate values of A and 6 are based on the recurrence relation (9) or
on some variant of it. From (9), :

c 6

n

c _h-—(2n—i,‘z)2—19c"+l/c'I

n—1

(14) A =1~

~0(2n - ip)"?
T 1-k(2n - ip) 2+ 6020 -ip)? c.u/c,

and repeated application of this, as in sec. 15.3, leads to a convergent
infinite continued fraction, R, say, so that

c
n

(16)

=R _(p.
cn-l
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On the other hand, from (9) we also have
c -0(2n - ip)~?

n

C 4 "1-h@2n- W+ K2n —ip) e /e

n

and repeated application of this leads to

17) CC" ~L (W=R_ (~p)

n+t

where L (u) is again an infinite continued fraction. The equation for
the determination of y is
(18) L, ()R, (@) =1,

and in the course of computing y from (18) all ratios (16) and (17) are
automatically obtained so that

(19 ¢ =c, R, (WR,(n) ... R_(p) n=123,..
@0) ¢ =cyL_, (D L_,() e L_ () n=1,23, ..
From (16) and (17)
nlc ncc 0
(21) lim = lim L
n-» oo Cn_' n-»=—oo C"_H 4

so that the series (8) converges absolutely and uniformly in any region
in which e*% is bounded, for instance in any horizontal strip of the
complex z-plane.

In a stable region p=ip, p is real, so are all the ¢ _provided ¢ is
taken as real, and from (8) we have two linearly independent real solu-

tions
(22 § ¢, cos [(p + 2n)z], § c, sin[(p + 2n)z]

In an unstable region either p or p — i is real, in either case (8) is a
real solution, and two linearly independent real solutions are given by

(23) § ¢ eWt2nid § c e Wiz
—o n ? % n
While (8) is the best expansion when z is real, other expansions

lead to more rapidly convergent series for complex values of z, and
they are also suitable for representing solutions of the third kind.
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Erdélyi (1942) puts

;mcos(z=p)
(24) ¢,(2)= |: osGi f)

where B is an arbitrary fixed real or complex number. By a straight-
forward computation using the recurrence relations and differentiation
formulas for Bessel functions

d*¢
(25) dz?

v/2
] J {2[0cos (z - B)cos (z+ B)1%}

2 _20¢,cos(22)=-0¢,_,-v>¢,-06,,,
and it follows that

(26) 2 c ¢2n'w
is a formal solution of Mathieu’s equation provided the coefficients ¢
satisfy (9), i.e. are the same as the ¢ _of (8). From the asymptotic
formulas for Bessel functions we have

-4
3

27) lim M— lim ¢2"_”‘ 5
n>00 n ¢2n i n>=—00 n ¢bx ipt2 G[COS(Z—B)]

and (21) and (27) show that (26) is convergent, and represents a solu-
tion, when |cos (z — B8)| > 1. The region of convergence consists of two
disjoint parts, one entirely in the half-plane Im(z — B) > 0, and the
other in the half-plane Im(z = 8) < 0. From (24), ¢, = [cos (z - B)I¥
times an entire function of z. As z changes to z + 27 in the half-plane
Im(z — B) > 0, cos(z — B) encircles the origin in the negative sense,
and it follows that, in its region of convergence in the half-plane
Im(z = B) > 0, (26) represents the solution of the first kind (5). By a
similar consideration, in the region of convergence in the half-plane
Im(z - B) <0, (26) represents (4).

Particular forms of (26)are obtained for 8 =0 and 8 = #/2. They are,
respectively,

(28) e*™ £ (Drc, J, _, (26% cosz)

%o, .
2'_‘_1.M(26 i sin z).

@) e J

As B - i, (8) appears as a limiting form of (26).
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We now replace J, by H(J) /=1 2in (24) and call the resulting

functions ¢ ] G), Since Bessel functions of the first and third kinds
satisfy the same recurrence relations and obey the same differentiation
formulas,
B0) = ¢, v,
will be a formal solution of Mathieu’s equation, the ¢ bemg the same
as in (8). An investigation of the convergence of (30) by the ratio test
shows that convergence obtains if [cos(z — B)| > 1 and |cos(z + B)| > L.
There is always a region of convergence in the half-plane Im z > |Im 8|,
and another region of convergence in Im z < ~ {Im B{. In both these
regions, (30) represents solutions of the third kind as can be seen by
investigating the asymptotic behavior of (30) as z » ix (see Meixner
1949a). If |Im B is sufficiently-large, more precisely if sinh |[Im 8| > 1,
there is a third region of convergence which includes the entire real z-
axis and is situated in the strip |Im z| < |Im B|. In this region of con-
vergence (30) represents a solution of the first kind, (4) or (5) according
as Im B is positive or negative.

Expansions of solutions of Mathieu’s equation in series of products
of Bessel functions were introduced by Sieger (1908) and Dougall
(1916). In this case we put

B1) ¢, \2) = eI, (0% e¥) T (6% e7H)
and obtain, by a straightforward computation,

d? '
(32) %i\- - 20¢V’}\cos (2z)= —9¢y-|,>\" (2V+A)2¢v,}\_ e¢v+l.>\

This relation shows that
(33) _5 ¢, P, -

is a formal solution of Mathieu’s equation, the coefficients being those
determined by (9). Since

2
. 6 . .
(34) lim P P in A Py g mea
n-> oo . 4 n-> — oo

n,~tu nt+tl,=ipn
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it follows from (21) that (33) is convergent in the entire z-plane. Since
(33) is of the form e** times an entire function of z, it represents the
solution of the first kind (4).

There is a considerable number of series of products of Bessel func-
tions, for instance
@5) S o HY, (6% e®)J_ (6% e j=1,2
Further series are modifications and combinations of (33) and (35). See
also sections 16.5 and 16.6.

16.3. Approximations, integral relations, and integral equations for
solutions of the general Mathieu equation

Approximations for small |6|. When 0=0, the two (degenerate) solu-
tions of the first kind of Mathieu’s equation 16.2(1) are exp (£ ik 2)
so that p = ik * in this case. For small values of |6| the determinant in
16.2(15) may be evaluated as

A©O) =1+ -2 LA AP
(1) = +(1—h)h% ctn 5 +

so that equation 16.2 (15) becomes

2
(2) cosh(un)=cos *h* n)+-(17_7%2- sin &% 7) + 0(6%)

and can be used forthe computation of p. Alternatively, u, as determined
by 16.2(1) and 16.2(6) may be expanded in powers of 6,

u,@)= 3 6"f (2)

n=0

where

fo(2) = cos % z),

fa@) =207 % cos(28) sinh*(z - )] f,_, (&) dt
12, ..

&
I
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and then 16.2(7) may be used for the computation of the characteristic
exponent p. Once p is known, the coefficients of the expansion 16.2(8)
may be computed from the continued fraction, or else P (z) of 16.2(4)
may be expanded in powers of 6, and the terms of this expansion may be

determined recurrently from 16,2 (1).
For another method of approximation for small |6| see Whittaker and

Watson (1927 sec. 19.7) or Strutt (1932, p. 26).

Asymptotic forms for large |k|, |0|. We shall assume that h and 6 are
both real.

If 2> 2|6}, we use Liouville’s transformation

3) ¢= foz [h-268cos(2e)1%dt, n=[h-20cos(22)%u

to turn Mathieu’s equation 16.2(1) into
dz'r]
4) i +[1+r()]n=0

where
4602~ 2h 0sin(22) + 62 [sin (22)]?
[A - 26 cos (22)]3

If & is large, then r({) is small in comparison with unity,that solution of
(4) which corresponds to u, is approximately a constant multiple of
cos £, and 16.2(7) becomes

6y r(Q)=

(6) cosh(un)= cos{fw[h - 26 cos (2))% di} + O(B™%)
° By, 20| <h—¢, >0,
If h <~ 26|, we use a slightly different transformation

(= foz [-& + 26 cos (2£)]% dt, n=[-h+20cos (22)1% u
and obtain again (6). Actually, (6) is valid for arbitrary complex values

of h, provided 26| <[] —¢ €>0.

When % and 0 are real, and —26 < & < 26, then r({) as given by (5)
is no longer bounded, and for those values of z near to Ycos '[h/(26)]
certainly not negligible. Also, the integral occurring in (6)is neither real
nor imaginary. Strutt (1932, p. 28) states that in this case

(7) cosh(um)= cosiRe fow[h - 20 cos (22)1* dt}
x coshilm [ [h - 20 cos(20)]¥ de} + O ™*)  ho o
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A detailed investigation of the solutions of Mathieu’s equation 16 .2(1)
for large real &, 6, and complex z, was given by Langer (1934).

Asymptotic forms for large |sin z|. The point x = = is an irregular
singularity of the algebraic form 16.2(3) of Mathieu’s equation. There
are formal series of the form

exp(+26% x%) 3 a x "% Hn

satisfying 16.2(3); these are called subnormal solutions (Ince 1927,
sec. 17.53). Although these series diverge, it follows from the general
theory of linear differential equations that they represent certain solutions
of 16.2(3) asymptotically as x - eo.

Reversing the transformation 16.2(2) we see that there are formal
series

(8) exp(x 26% sin z) 3, a, (sin 2)7% 7"

which satisfy Mathieu’s equation 16.2(1), and that there are certain solu-

tions of Mathieu’s equation (solutions of the third kind) which are asym-

ptotically represented by one or the other of the series (8) as Im z » % o,

Any solution of Mathieu’s equation is represented bya linear combination

of the two series (8) but the constants involved in that linear combination ,
may be different for different vertical strips of the z-plane. See also

Dougall (1916) and Whittaker and Watson (1927, sec. 19.8).

For asymptotic expansions of the solutions of the first kind in de-
scending powers of e '” rather than sin z see Erdélyi (1936, 1938). The
asymptotic behavior of the solutions of Mathieu’s equation as Im z » e
may also be determined by means of the series of Bessel functions re-
presenting the various solutions. The requisite general theorems were
proved by Meixner (1949a).

Integral relations and integral equations. Let N(z, {) be a nucleus
satisfying the partial differential equation

2 2
(9) (;zhzl -20cos(2z)N = :;Z — 20 cos(24)N,

and let

(10) gle)=J" Nz, O F(Q)d L.
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Then
42 b 2
(11 ?g-+ [A~26cos(2z)]g =/ {%+ [h—20cos (2 ()]N}fd(:
z /

_l:&N Nd]b+‘/‘!J N a*f [h—20cos (2 )]}d
_—é?f_za ] d§2+—cos ONf pd

by repeated integrations by parts. If the nucleus N and the limits of
integration, a and b, are chosen so that

aN af | t=?
12) | —f-N— =0,
— [64f dc];“

then (11) shows that g(z) will be a solution of Mathieu’s equation pro-
vided that f(z) is a solution of that equation.

The case cosh{(pr) = 1 is that of periodic Mathieu functions and
will be discussed later (see sections 16.4, 16.8). In this section we
assume that cosh (u7) # * 1 so that the two solutions of the first kind

(13) u (z)=e#*P(2), u (~z)=e"*P(-2)
are linearly independent. We know from (8) that
(14) 2,(2)= ¢, (sin2) 7% exp (26% sinz) [1 + O(|sin z]™)]
s, (sinz) ¥ exp(-26% sinz) [1+ O([sin 2[~")]

as z » 1ioo where the constants ¢ and ¢, may change as we move from

one vertical strip to another one.

In (10) we shall choose f({)=u,({) and
(15) N(z, ¢)=exp[260*(sin z sin ¢ sin B + i cos z cos { cos B)]

where 8 is a fixed real or complex number: (15) satisfies (9). The asym-
ptotic behavior of the expression in the square brackets in (12) can now
be investigated by means of (14) and (15) when Im ¢~ * . Set

(16) argt6” [cos(z - B)+ 1B=a,, argif*[cos(z-P)~1l=a,
argw% [cos(z +B)+ 1} =a,, argw% [cos(z + B) - 11} = a,.
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It turns out that

-a—N—u —Ndu°—>0 as Im (-
¢ ° d¢ ’
provided that p = Re {satisfies
(17) sin(p-a,)<0, sin(p~a,)<0,
and that
ﬂu—Niu—o—»() as Im {-»-o
a¢ ° d{

provided that p = Re {satisfies

(18) sin(p’+ a,)>0, sin(p’+a,)>0.
The two inequalities (17) are comsistent if Im(z ~ B) £ 0, and the two
inequalities (18) are consistent if Im(z + B) # 0. If p is any solution of
(17) then also p + 2n 7 is a solution where n is integer, and similarly for
p’- This investigation shows that the paths of integration which may be
used in (10) are very similar to those occurring in Sommerfeld’s integral
representations of Bessel functions (see sec. 7.3.5).
Let p satisfy (17) and consider
g@)=[PTETT IR NG, Ou (D),
ptic
the path of integration being like C, of sec.7.3.5.Then(12) is satisfied,
and g(z) is a solution of Mathieu’s equation and hence of the form'

(19) g(z)=C, u,(2)+C,u (-2)

As z changes into z + 27 in the half-plane Im(z - 8) <0, a,and a,, and
hence also p, are increased by 27.

(20) g(z + 27r)=C1 ez“muo(z‘)+ Cze_z“muo(—z)=f

pt2m+ ico

ptamtiocc

In the last integral replace {by {+ 27, obtaining

(21) glz + 2w>=fpﬁ+:“°° N, Qug(C+2m)dl=e®g(z)
From the comparison of (20) and (21) it follows that C, = 0. Hence the
singular integral equation

@2 SO Nz, ) uy (8 dd=Aug(2) Im (z ~ B) <0
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is satisfied by the solution of the first kind. The close relation to Sommer-
feld’s integral representation 7.3(23) of Bessel functions of the first
kind is seen if 8 = 0 is taken in (22) when that equation becomes

(23) u,(z) = const. ITF_ZW‘F oo exp (2 0% cos z cos () u,({)dd
pPTIo0

Imz <0

These integral equations can also be used to elucidate the connection
between the various expansions of solutions of the first kind given in
sec. 16.2. If 16.2(8) is substituted for u , under the integral sign in (23),
and then 7.3(23) is used, 16.2(28) is obtained, and 16.2(26)is similarly
obtained from {22). Thus the interesting fact that all expansions of sec.
16.2 have the same coefficients is a direct consequence of the integral
equations satisfied by u (z).

Instead of a path of the type C of sec. 7.3.5 we may use paths of the
type C, or C,. Let p, p’satisfy (17) and (18), and consider

. x -

(24) gla)= [P Nz, uy(L)dl Im(z £ B)£0
p =ioco

First let us assume that z is confined to the strip |Im z{ < |Im B|. As z

increases by 2« in this strip, either both p and p” increase by 27 or both

p and p “decrease by 27 according as Im B is positive or negative. Thus

(25) f":ﬁw N(z, {)u ({)dL= Auy(£2) [m z} < {Im B]
P —ico

is another singular integral equation satisfied by u (z), and leads to

expansions .of the form 16.2(30) for solutions of the first kind in the strip

[Im z| < [Im B] (see also sec. 16.2). On the other hand, if Im z > |Im 8},

or Im z <~ |Im B, then either p increases by 2 and p “decreases by 27,

or vice versa, as z increases by 2x. In this case the path of integration

in (24) changes its shape as well as its position, and the integral no

longer represents a solution of the first kind. From the behavior of N as

Im z » o it follows that

(26) u3<z)=fp’j::1v<z, Ouy (&) dd Im z > |Im 8]

vanishes exponentially as Im z » o, and hence is a solution of the third
kind. Integral relations. of this kind between solutions of the first kind
and those of the third kind lead to expansions like 16.2(30) for solutions
of the third kind. '

There are also singular integral equations for solutions of the third
kind, and integral relations which express a solution of the first kind as
an integral involving u,.
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16.4. Periodic Mathieu functions

If iy is an integer, then the solution of the first kind, 16.2(4), is.a
periodic function: m is a period of this function if ip is an even integer,
and 7 is a half-period (i.e., the solution changes its sign when z is in-
creased by #) if ip is an odd integer so that the period in the latter case
is 27. Unless otherwise specified, periodic will always mean period # or .
half-period #. Periodic .solutions are required in many applications. of
Mathieu’s equation, and sections 16.4-16.8 will be devoted to periodic
Mathieu functions, and to the corresponding solutions of the second and
third kinds.

Those curves.in the real A, @-plane-along which iy is an integer are
called characteristic curves; they divide the %, G-plane into stable and
unstable regions.(see sec. 16.2). Given 0, those values of % for which
periodic solutions exist are called characteristic values, and the periodic
solutions are called Mathieu functions or Mathieu functions of the first
kind. No generally accepted definition or notation of Mathieu functions
exists. We shall adopt Ince’s notation (1932) which is.also used by
* McLachlan (1947) and by many other authors. It should be noted however
(i) that many older authors use a normalization which is different from
that proposed by Goldstein, adopted by Ince and McLachlan and followed
here; and (ii) that Strattonet al.(1941) and the NBS tables (1951) use a
different notation and a different normalization. On p. xxxviii of the
NBS tables there is a detailed comparison of three notations.

Throughout our discussion we take 6 to be real so that the character-
istic values.of %, and the characteristic functions, are real. The case of
complex parameters has been discussed by Strutt (1935, 1948).

If u (z) is a Mathieu function, then so are the functions

u(-2), u(z)tz(-2),

and we may restrict ourselves to Mathieu functions which are even or odd -
functions of z: An even Mathieu function with n zeros in the interval
0 < z < m, or in any half-open interval of length 7 on the real axis, will
be denoted by ce (z, 0), an odd Mathieu function by se (z, 6). The
corresponding characteristic values of & will be denoted by & (0) and
b (6) respectively. Often we shall write ce (2), se (2), a_, b , omitting 6.

Mathieu functions are the characteristic functions of the Sturm-
Liouville problems .involving the differential equation

d*u

dzz+ [ ~26cos(22)]u=0

(1)
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and the boundary conditions

2) u@)=u(®)=0 for se (z, 6)

@) j—‘:(o) - %(n) -0 for  ce_(z,6)

From the general Sturm-Liouville theory (see for instance Ince 1927,
Chapter X) it follows that for each n = 1, 2, ... there is a characteristic
function se (z, ) determined up to a constant factor, and that for each
n=0,1,2, .. there is a ce (z, 6)determined up to a constant factor.
We complete the definition of Mathieu functions by choosing the arbitrary
constant factor so that

4) ce (0, 0)>0, f:‘" [ce (z, OPdz=n

d
n (0, 0>0, f:ﬂ lse (z, N*dz =n
z

If e (2) is either ce o(2) or se (2), then ¢ (z) and e (7 ~ z) satisfy the
same differential equatlon and the same boundary conditions, and must
be constant multiples of each other so that e(z) is either an even or an
odd function of %7 — z, and we have the following four cases:

5) u@)=u (%) =0, e =se, ,,(z), periodnw
Cdu .

(6) uf(0) =72- (? =0, e=se, . (z), period 27

du 0 4 0 iod 2
7) -d—z-( )=u 5 )= e=ce, ., (z), period 27

u o

8) d—z 0) =— | e =ce,, (2), period 7
For each m = 0, 1, 2, ... there is exactly one characteristic function of

each of these four boundary value problems, and m is the number of zeros
in the interval 0 <z <% .
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From (5) to (8) we also have

(10) — (— —-) (%) =0 for ce z.(Z) and se z.+|(z)

and fmally,
11 u(~m)=ulm), & (~m)= d (m) for all Mathieu functions.
dz dz

If we use the comparison theorems for characteristic values of Sturm-
Liouville problems we obtain: a,<a,., from (3), b < bn 4+ from (2),
@optr < byoss < Gpsg from (9), and a, <b, ., <&, ,,from (10). Thus
we know the relative positions of the characteristic values except for .
the relative positions of @ and b . Ince has proved that a_# b if

620, and from the numerical tables a, >b, when 6 <0, Thus we have

(12) a,<a,<b,<b,<a,<a,<b, <o 6>0
a,<b,<a,<b,<a,<b;<a < <0
a“,bn-»m as n-ooeo.

For further investigation, estimates, and asymptotic forms of the
characteristic values see Strutt (1943).
The symmetry relations given in Table 1 follow from the above bound-

ary conditions.

TABLE 1. SYMMETRY RELATIONS FOR MATHIEU FUNCTIONS

e(z) e(-z) e(m—z) e(m+z)
cez. . ceZl ceZl ceél

CCon+1 L R T = CCoutt
S€on+1 =5 1 S€om+1 e T
SContz | T5C2442 ~SCant2 | S€2a +2
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Mathieu’s equation (1) is.invariant under the transformation 6 = -8
z = Y%z -~z It then follows from (5) to (8) and (4) that

(138) a,,(-0)=a, (0), b, ,,0=b, (), a,, (8)=b,, (6),

(14) ce,, (z, =)= (D" ce, 7 -2, 6)

se, 4z, =0 =(-1)"se, ,,0rn~2z, 6)

ce 2m+|(z, —6)= (— l)m se 2m+1>(%ﬂ— z, 6)

Since Mathieu functions.are characteristic functions of certain Sturm-
Liouville problems, they have the following orthogonal properties.

(15) f;é" ce, (z) ce, (2)dz= fo%'” ce uq (@) ce, , (2)dz
= fo%‘” se, ., (2)se, ., (2)dz = fo%"’sezk“(z)sez”z(z)dz =0

k,km=0,1,2 .., k#fm

(16) [Tce (2)ce (2)dz=["se ,, (z)se,, (z)dz=0
[ [
l9n=0’1’27"“9 l#n

17 foz'”cen(z) se; ,,(z2)dz=0 : ,n=0,1,2, ...

If ip is a rational fraction then 16.2(4) and 16.2(5) are periodic
solutions of Mathieu’s equation, the period being a multiple -of 7. Such
solutions are sometimes called Mathieu functions of fractional order (see
McLachlan 1947, Chapter IV). Orthogonal properties of such solutions
have been obtained by Schafke (1953).

Integral equations for Mathieu functions may be obtained from the work
of the preceding section. If f is any periodic Mathieu function, b=a + 27,
N is a solution of 16.3(9) which is periodic in ¢, then 16.3(12) is
satisfied, and 16.3(10) is a solution of Mathieu’s equation. If N is also
a periodic function of z then 16.3(10) is a periodic solution of (1) and
hence the multiple of a Mathieu function. As a nucleus we may use
16.3 (15) with an arbitrary B, or special values of B8, combinations of
nuclei 16,3(15), partial derivatives of these nuclei with respect to B,
and the like. The interval can be reduced by utilizing the symmetry
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properties of Mathieu functions. In Table 2 we list the intervals and nuclei
for the principal integral equations of the form

(18) fj Nz, &) e () de= re(z)

for Mathieu functions. Other nuclei may be obtained by giving special
values to 3 (when 8 =0 or 8 = #/2, it may be necessary first to divide
by sin B or cos f3), or by integrating with respect to 8. Nuclei involving
Bessel functions (Erdé€lyi 1942a, McLachlan 1947, Chapter X) may be

obtained in this manner.

TABLE 2, INTEGRAL EQUATIONS FOR MATHIEU FUNCTIONS

a b NGz, {) e(z)

0| =7 | exp(2i 6% cosz cos { cos B) cosh(2 6% sin z sin{ sin f3) ce (2)

0 g exp(2i 9% cos z cos{cos‘B) sinh(2 9% sin z siné’sin,B) senH(z)

0 | Ym | cos(2 0% cos z cos { cosf3) cosh(2 6% sinz sin {sinfB) ce,. (z)

0| 47w sin(29% cosz cos { cos 3) cosh(29% sinz sin{ sinB) ce2m+|(z)

0 | Y= cos(2 0% cosz cos { cos B) sinh(2 0% sin z sin {sin B) se, (z)

0 | Y7 | sin(2 0% cos z cos { cos ) sinh(2 0% sin z sin {sinf) se 2m,‘_z(z)

16.5. Expansions of Mathieu functions and functions of the second kind

From the periodicity of Mathieu functions, and their symmetry prop-
erties listed in Table 1, it follows that these functions may be expanded
in Fourier series as follows.

1) ce o (z, 6) = OEO 4, cos 2rz)

r=20

(2) ce, ,,(z, 0= >3 A, .y cosl(2r+1)z]

r=0

(3) se, ., (z,0= s B, ,,sin [(2r+ 1)z]

r=0

4) se 2m+2(z, 0) = §0 B, ,,sin [(2r + 2)z].
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These are the forms to which 16.2(8) reduces when iy is an integer. If
necessary, the order of the Mathieu function, and the value of 6, may be
indicated by writing 4 :(0) ford , , etc.

Substitution of the expansions (1) to (4) in Mathieu's equation 16.4 (1)
leads to the following recuwrrence relations for the determination of

Ay ey By yye
(5) hd,-064,=0
(h-4)4,-6(24,+4,)=0

(h-4r2)A2r_ o(Azr'2+A2r+2)=‘0 h=az.(0x r= 2, 3, see

(6) (h-0-1)4,-064,=0
[ -(2r+1)°14 04, ., +4, ;)

h=a, @), r=12..

2r+1” =0

(M *k+6-1)B,-6B,=0
[r-@r+1?*1B,, ,,- 6B, _, +B, +3)=0
h=b, (0, r=12 ..

8 (h-4)B,-6B,=0

(A-(r+2)%1B, ,,- 6B, +B, ,)=0

h=b

2r +2

2.+2(6), r= 1, 2, oo

As in the case of 15.3(13), each of the recurrence relations leads to
an expression of the ratio of two successive coefficients as an infinite
continued fraction .involving %, and 'substitution into the first equation of
each of the systems (5) to (8) leads to a tramscendental equation for 4
which may be used for determining the characteristic values. In the case
of (5), for instance, the transcendental equation for 4 is

-0%/2

’l = ; h = az. (0)
h 0%/64
1-E /
2 k 0%/576
__l.g -
h
1 e w— * L] *

36
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Once & has been determined, the ratios of successive coefficients are
known. For the determination of the coefficients themselves, (5) -to (8)
must be supplemented by the relations

© I 4,>0, 2[4 P+ goubP=1

r=0

(10) §°A2,+,>o, S U, =1

an ¥ (er+ 1)B,, 4 >0, g [B,, +,1%=1

r=0 r=90

w £ @r+28,,>0  B,,1r=1

r=0 r=0
which follow from 16.4(4). For more detailed desi;tiptions of the numerical
computations see Ince (1932), Blanch (1946), and McLachlan (1947). For
a list of numerical tables see Bickley (1945) and also the list of refer-

ences in the NBS tables (1951).
From the infinite continued fractions

2 2
r°d r<4d
(13) lim —2*2 - lim —&x*1
r—-> oo Azr r-> oo ) 2'.-'
2 2
= lim r BZr+| = lim r Bzr t2 =—0_
re B, _, reec BZ,_ 4

so that the series (1) to (4) convérge in the entire complex z-plane.
Expansions of Mathieu functions in series of Bessel functions may be
obtained from 16.2(26), (28), (29) by putting iy = 0, 1 and taking account
of the symmetry of Mathieu functions, or else from the .integral equations
listed in Table 2 by substituting the Fourier expansions (1) to (4) under
the integral sign. The following expansions follow from the integral
equations when the limiting forms 8 = 0, 8 = V7 of the nuclei are used.

ce, Um0 o ,
(14) ce,, (z, 0)=ﬁ)—r§ D4, d (20% cosz)
0,6 o
LD R _I,(26% sinz)

Az’ (0) r=0



118 SPECIAL FUNCTIONS 16.5

: Ym0 o
Lo BB TS 14, ,, d, ., 20% cosz)

(1) cepss & O) === mrr(y 2,

ce ©, 9) .
=_0;:Z;_-'zm+'(6) ctn z ,-Eo Dr@r+1)4,, ., zr+1(26 sinz)
1

2p+1 (%, 0)

(16) se,_,,(z, 0)= Wtanzrgo(—l)'(%+l)32rﬂ J,, 41(26% cosz)
©,0 «
—_L 2 1B B, 41 2r+1(26/ sinz)

6/4 BZm+1 (6) e

(4m, 6)
a7n -se2m+2(2, 0)=- %tanz 2 (—1)'(2‘+2)B2’_+2 2’_4,2(26 cosz)
2m+2 (O 0)

—-63?4-2(6) ctnz ’50 ("1)'(2T+2)Bzr+2 I2r+2 (2 6% SinZ)

In these formulas e “= de/dz. The constant factor A in 16.4 (18) has been
determined in each case by setting z = 0 or z = Y7 in the expansion or
in the derivative of the expansion. The infinite series of Bessel func-
tions converge for all values of z.

‘There is a considerable number of expansions of Mathieu functions in
series of products of Bessel functions of the kind 16.2(33), (35). The

most important emong these are

(18) ce,, (z, 6)= Pi”‘ S 14, J(0%e) J(6% e7i)
r=o0

4,
Pop x
19) ce, 4, (z, 6) =_A§_mi: r‘EO - l)rAZrH
1

x[J (6% e®) d , (0% e™®) +J , (6%e™)J (0% ™)

S o0
(20) se,, (=, 0)= —# PED (=1)"B,, 4

X [J’_(Gl/4 e il,)JrH(g% e'i;)_ JrH.(e% e i) Jr(G% e-i‘)]
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§ et 00 .
(21) se,,,,(z, 0)= iBZ""'Ilfz r§o D"B, s,
? 2

x [T (6% e™) T, (6% e™2) = J_, (6% ™) J (6% e™™)]

The multipliers p , and s | have been determined by McLachlan (1947
p- 368ff.) who compared the asymptotic form of the two sides of the
expansions (18) to (21). By means of the results of sec. 16.7 one obtains

(22) A:’“ P, = ce, (0) ce, (in)

6% A f’“+' p2m+l == ce2m+| (o) cez'm+l(% 77)
0% B>**'s, ., = se; ., (0)se, ., Cin)

9 B*2s, ,,=se; ., (0)se] ,, (%n)

m+2

The series in (18) to (24) converge for all values of z. These and
other expansions in ‘series of products of Bessel functions may be
obtained from integral equations whose nuclei involve Bessel functions
(McLachlan 1947, p. 193.£.).

Ince has proved (see for instance McLachlan 1947, Chapter VII) that
the general solution of Mathieu’s equation with 6 £ 0 is never periodic.
Thus, if e (z) is any Mathieu function of the first kind, any second solu-
ion of Mathieu’s equation will be non-periodic. Since Mathieu functions
of the second kind are of minor importance, we shall not give many
details, and refer the reader to McLachlan’s book, or to the analogous
work in connection with the modified Mathieu equation in sec. 16.6.

There are several ways of constructing Mathieu functions of the second
kind. A degenerate form of Floquet’s theorem states that in the case
that ip is an integer, and e(z) is the corresponding Mathieu function of
thefirst kind, asecond solution may be determined in the form z e(z)+f(2)
where f(z) is periodic and is represented by a sine series if e(z) is a
cosine series and vice versa. Another method is based on integral re-
lations such as 16.3(26). The simplest, and perhaps most efficient
method is based on the remark that the series of Bessel functions given
in this section remain formal solutions of Mathieu’s equation if the
Bessel functions of the first kind are replaced by Bessel functions of
the second or the third kinds. The series resulting .in this manner from
(14) to (17) converge only if |cos z| > 1 or |sin z| > 1 respectively, and
are not suitable for the computation of Mathieu functions of the second
or third kinds for real values of z. On the other hand, the series of pro-
ducts of Bessel functions, .in which one of the Bessel functions is of
the first kind and the other of the second or third kinds, such as 16.2(35),
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converge for all values of z. Moreover, these series are well suited
for numerical computations. :

16.6. Modified Mathieu functions

The differential equation
2

(1) d_z;— [~ 260 cosh(2z)]u=0

is known as the modified Mathieu equation: it differs from 16 .2(1) only
in that z has been replaced by iz, and accordingly, the results of
sections 16.2and 16.3 apply with slight changes. Frequently (1) appears
in conjunction with Mathieu’s equation when % has one of the charac-
teristic values a_ or & . We shall restrict ourselves to this case.
Modified Mathieu functions of the first kind may be defined as

(2) Cen(z, 0) = cen(iz, 6 h=a (6)
Sen(z, =~ sen(iz, 0) k= bn(G)

Expansions of modified Mathieu functions in Fourier series, in series
of Bessel functions, and in series of products of Bessel functions now
follow from the preceding section and are recorded in McLachlan
(1947, sections 2,30, 2,31, Chapters VIII and XIII).

Modified Mathieu functions of the second kind are obtained on re-
placing Bessel functions of the first kind by Bessel functions of the
second kind in 16,5(14) to (17), and, similarly, Bessel functions of
the third kind appear in the definitions of modified Mathieu functions
of the third kind. The notation adopted by McLachlan indicates by Fe
the functions corresponding to Ce, by Ge the functions corresponding
to Se and adds a y for functions of the second kind, a k for functions
of the third kind. '

Modified Mathieu functions of the second kind

g )
ceh(%”’ ) S (-1YA4. Y. (26% cosh z)

® Feya G ==/ 2 o tar

ce (0, 0) (] .
——Aﬂg;m— ,Eo AZrYZ'(20% 'Slnh Z)

“Pa F (C1y4, g (6% e VY, (65D h=ay ()

%a
47 r=0
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Gom 0)
(4) Fey, ,,(z, )=~ % rg,o( T4, ,, Y, ,,(20% coshz)
1

€€y ©, 6) o0
=K [ mTT gy 12.” o) ctnh z E°(2r+ 1)4

r= 2r+1 2,.+,(20 sinhz)

=:§;1: % cura,,, [0 ey, 0% o)
2

+ 4, (6% e7) Y (6% )] h=a, . (6)

Y, 0
5 Gey,,y, () @)= znrlim O

_GZBZ.+—' tanh z

x 2‘, DT (2r+1)B,_,, 2H_‘(20 cosh z)
r=0

S_e' +1 (O, 0) oo

W 2 By Yy (20% sich 2)

S opti

=§fT+r $ 1B 2,,x,[J,(e’f e Y, (6% e?)

r=20

I (0% ™) Y (6% e2)] h

b o1 (6)

se . (%, 0)
(6) Gey, 4,z O)= _02.8;.:%— tanh z
2

x £ 17@r+2B,,,Y,.,,(26% coshz)
r=0
- 2.+2(O 6)

—— T cothz (2r+2)BZr+2 2’4_2(20 sinhz)
2 r=0

_ Son+2

S 5 DB, 08 e, @ e

2

~J_,, (0% ™) Y (6% )] h=b, .0
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In each of these four groups of expansions the firstseries converges
when [cosh z| > 1, the second when [sinh z| > 1, and the third for all
values of z: in the first two series we also assume Re z >0,

There are several modified Mathieu functzons of the third kind. The
functions obtained when Y, is replaced by i G j =1, 2, m the series
for Fey, and Gey  are denoted respectively by Me -’ and Ne U " Yi=1,2
and the functlons obtamedwhen Y, (w) is replacedby )z 'K (—zw)
and Yz,_“ (w) is replaced by (- 1)" K, .y (~iw) in thefirst two series
representing Fey_ and Gey, are denoted by Fek and Gek_respectively.

Since we have

J, @) +iY, ()= H“’(w)—— VK (~iw)

4

from 7,2(5) and 7.2(17), the various modified Mathieu functions are
obtained by the relations

(7) Ce, (z, 6)+iFey, (z, 6)= Mel'(z, 6)=-2iFek, (z,6)
Ce,oiy (2, O)+ i Fey, ., (z, 0)=Mel, (z, 6)=- 2Fek,_,, (z, 6)

Se, 44 (2, 0) +i Gey, 4, (z, )= Ne‘¥ (2, ) =-2Gek,_,,(z, 0)

2nt1

SezMz(z, O)+i Geyzm+2(z 0) = Ne“z)“_z(z, 0)=-2i Gek2m+2(z, 0)

For expansions of the various modified Mathieu functions of the third
kind see McLachlan (1947, sections 8,14, 8,30, 13.30, 13.40).

The asymptotic behavior of modified Mathieu functions as z » o may
be read off their expansions in series of Bessel functions, or in series
of products of Bessel functions (see sec. 16,7).

There are numerous integral relations between Mathieu functions
and modified Mathieu functions, and also between modified Mathien
functions themselves, If N(z, {) is a nucleus for the interval (g, ) as

in 16,4 (18), then
f: Nz, £)e($)d

is a multiple of a modified Mathieu function of the first kind. The
integral relations thus arising from the limiting cases 8 =0, B = %7 of
the nuclei of Table 2 of sec. 16,4 are listed in McLachlan (1947, sec.
10, 20).
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Let 6 >0, z > 0. Then the integrals
fm exp(2i 6% cosh z cosh ¢) Ce (¢, 0)dL
)

j:c sinh z sinh ¢ exp(2i 6% cosh z cosh ¢) Se, (¢ 0)dl

are convergent. If the Fourier series are substituted for the modified
Mathieu functions of the first kind, and the resulting integrals are
evaluated by means of 7,12(21), the following integral relations result

(8) 77A§"' Fek, (z, 6)
= ce, (4w, 6) f: exp(2i 6% cosh z cosh £) Ce,, (¢, 0)d¢

6>0, z>0

(9) 743" Fek,_,,(z, 6)
=-97% ce, .,(hu, ) f: exp (2i 6% coshz cosh{)Ce,,,,(¢,0d¢
>0, z>0
(10) ﬂBf"'“ Gekzm_' (z, 8) ==2i Se, 4 (% n, 6)

x J7° sinhz sinh{ exp (2i 6% coshz cosh() Se,,,,(¢, ) d¢
6>0, =z>0

(1)) 7 B3**? Gek, ,,(z, 0) =~ 2i 67% se ,, (Y, 6)
X f:o sinhz sinh¢ exp(2i 6% coshz cosh {)Se, 4, (L, 0)dL
>0, z>0

We now 'separate in (8) to (11) the real and imaginary parts by means
of equations (7) and obtain a further group of integral relations

(12) ﬂAcz)"‘ Fey,, (z, 6)
=-2ce, (7, 0) f:o cos(20% coshz cosh() Ce, (£, 0)d¢

>0, z>0
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(13) 742" Fey, ., (z, 6)
= 207% ce, 4,Usm, 6) _f:a sin(26*% coshz cosh() Ce, +,(¢{,0)d¢

>0, z>0

(14) 7 B> Gey,,,,(z, O)=4 se,_,, (57, 6)
x _f:” sinhz sinh ¢ cos(20% coshz cosh{)Se, ,, (£, 0)d¢
>0, z>0
(15) 7 B**2 Gey,,,,(z, 0)=-407% se] ,, (4, 6)

x f:o sinhz sinh ¢ sin(20% coshz cosh() Se, +,({ 0)dL
6>0, z>0

and also the integral equations
(16) 7 A2 Ce,_(z, 6) ,
= 2ce2.-'(z, 9 f:o sin (26% coshz cosh ) Ce,, (£, 0)d¢
| 050, z>0
17) 7 A3 Ce,,,,(z, 6)
=207% ce; ., (m, 0) f:o cos(20% coshz cosh¢) Ce, (4 0
>0, z>0

(18) 7 B>*' Se,_,, ratt G5, 0)

x _f:c sinhz sinh¢ sin(26% coshz cosh() Se,, 41(&, 0)dL
>0, z>0

(z, )= -4 se

(19) 7 B®**Se, ,,(z, 0)=-407% se’ , (%4m, )

2nt2

X _f:o sinhz sinh{ cos(26% coshz cosh¢) Se, 4, (¢, O)dL
>0, z>0

For integral relations for negative 0 see McLachlan (1947, Chapter X).
For integral relations whose nuclei involve Bessel functions see
McLachlan (1947, Chapter X) and Meixner (1951 a). Meixner (ibid.) also
gives some integrals involving products of Mathieu fun ctions.
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16.7. Approximations and asymptotic forms

Approximations for small |6|. Mathieu’s equation reduces to adiffer-
ential equation with constant coefficients when 6 =0, and we have

1) a,0)=b,0)=n?
ce, (z, 0)= 2'%, ce"(z, 0) = cos (»z), se"(z’ 0) = sin(nz)
n = 1, 2, (11

Starting from (1), the characteristic values and characteristic functions
may be expanded in powers of . Strutt (1932, p. 36) proved that

@ o (O=n?+0(0"), b (O)=n+0(6" 6-+0

so that the characteristic curves belonging to ce, and se  are at con-
tact of order n ~ 1 at the point & = n%, 6 = 0; this is the only common
point of these two characteristic curves. Strutt (1932, p. 31f.) also
gives the expansion of a (0) as far as ¢, of ce, (z, 0)/A: as far as
0* and of some coefficients Al/A; as far as 6* or 6°. Numerical bounds
for the O-term in (2) were given by Weinstein (1935).

Asymptotic forms for large |z|. The asymptotic behavior of Mathieu
functions as Im z » «, or of modified Mathieu functions as Re z » o,
may be ascertained from the Bessel function expansions by means of .a
general theorem proved by Meixner (1949a) which states that under
certain conditions the asymptotic expansions of series like 16.6(3)
may be obtained by substituting the asymptotic expansions of the
Bessel functions on the right-hand side.

To obtain the leading terms of the asymptotic expansions of modified
Mathieu functions as Re z + e, we remark that

dJ, (26% cosh z)~ 8% (= coshz)™* cos (260%coshz—Yvm - Y% n)
~YBar) E R e % cos (6% e —% vir - Y4 m)
Rezs0, -w<Imz<nw
by 7.13(3). Substituting this in 16.5(14),
Ce,, (z, 0) = ce, (i, 6)
. €5, (0) ce, (ia)
Gsm)* 6% 42

On the other hand, using 16.5(18), and noting that for large Re z the
first term of the series dominates the others,

e %% cos(0% e* - Ynm)

Ce,, (z, 0) = ce, Gz, 6)~p, (% m) 7% 0% e ¥ cos (@¥e* - Y ).
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By comparison of the last two equations we obtain the first relation
in 16,5(22), and the others may be confirmed similarly. In order to
obtain the asymptotic forms of modified Mathieu functions of the second
kind from 16.6(3) to (6), we use 7,13(4) instead of 7,13(3), and this
amounts to replacing

cos(0% e* = Y%vr -Yn) by sin(0% e? —= Yom - Y% )
In this manner the following results are obtained:

(3) Ce,, (z,0)~p, (%m)7% 07% e %2 cos(6% e* - Y n)

Ce, 1y (z, OV ~p, . Chm)% 07% 752 cos (6% e* - Y%n)

Se, iy (a, O~ s, o Gha) ™% 07% e 75 cos(6% e - %)
Se,, 4 (2 0) "'82m+2(1/217)_l/’ 0% e ™% cos (0% e* - %17).
Rezs> e, —-w<Yargf@+Imz<n
(4) Fey, (z,0)~p, %m)™" 67% e % sin(6% e* - % m)

Fey, . (z, )~ p, 4, Gam) % 0% e ¥ sin (0% e* - %)

Gey g (25 O) sy H%a) 7% 07% e %2 sin(0% e —¥%m)
Gey 2tz (2 6)~s2m+2(1/2,7)'% 6% e sin(6% e* - Y n)
Rez»>e, -n<largf+Imz<w

Asymptotic series in descending powers of e® or cosh z may be
obtained from the modified Mathieu equation 16,6(1): see Mcl.achlan
(1947, Chapter XI). '

Asymptotic forms for large |6|. The asymptotic behavior of Mathieu
functions and of the characteristic values of A for large real values of
6 has been investigated by Jeffreys, Goldstein, and Ince. The results
of these investigations, and references to the literature, are given in
Strutt (1932, p. 37f.) and McLachlan (1947, sections 11,40 to 11.44).

The principal results are:

(5) a (@~b (O~ -260+22n+1)0%-%(20%+2n+1)

6~
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(6) cen(z, 0)~ C, (cos 2) " "{[cos Mz + Y 7)) ! exp(20% sinz)
+ [sin %z + Ym))*H! exp(- 20% sinz)}
se ., (z, O~ S . (cos 2) " il cos %z + 4 m)]** " exp (26 sinz)
- [sin(%z + ¥ m)]**" exp(-20* sinz)}
—1/277 <z < l/277, G-
(1) Ce (z, )~ C, 2% "(coshz)™*
x cos[20% sinhz — (2n + 1) tan"" (tanh % z)]

Se_,y(z, )~S ., 2%" (coshz)™*
% sin[26% sinhz - (2n + 1) tan™" (tanh%z)]
‘ z> 0, 0
For large z, (7) and (3) may be compared to give
8) C =12 6% 7z 7%p

Sn ____(_]_)m 2n—3/2 6-1/4 77_—1/2 s

n
n

where m = [l] , Iy, n=2m orn =2m + 1 according as n is even or
odd.

Langer (1934) investigated the asymptotic behavior of Mathieu func-
tions when 0 is large and real while z may be complex.

Equations (6) describe the behavior of Mathieu functions when

~1<cosz <],

and (7), when cos z > 1. Both formulas fail near cos z = 1. In order to
have formulas valid in a range including this point, Meixner (1948) and
Sips (1949) expand Mathieu functions in a series of parabolic cylinder
functions. These expansions are of the form

(9) cen(z, 0) = § a, Dr(26% cos z)

r=0

. k] Y
se ,,(z, 0)=sinz rz,o B.D (26* cos z)
where r ranges over even or odd integers according as n is even or odd,
and the a , B satisfy five-term recurrence relations, When 0 is large,
the dominant terms in the expansions (9) are those corresponding tor = n,
and we have
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(10) ce (z,0)~a D (26% cos z)
senﬂ(z, G)N,Bn sinan(ZGlA cos z) 6>

The a, and B, may be determined by putting z = Y27 (after differentiation
if necessary) and using the values of DV(O), D;(O) obtained from 8,2(4).

16.8. Series, integrals, expansion problems

Most of the known infinite series involving Mathieu functions may be
interpreted as superpositions of solutions of the wave equation. As in
sec. 16,1.1, let x,y be Cartesian coordinates, and u, v elliptic coordi-
nates, while p, ¢ are polar coordinates so that '

(1) x+iy=c cosh(u+iv)=pei®,

Typical solutions of the two-dimensional wave equation
oW  9*W

+

9x? ayz

in elliptic coordinates are U (u) V (v) where V is a Mathieu function, U an

associated Mathieu function, and

(3) 6=C(txe)?
in Mathieu’s equation. Typical solutions in polar coordinates are

Z (xp)eiv®
where Z  is a Bessel function of order v. The remark that elliptic cylin-
drical waves may be generated by the superposition of (circular) cylin-
drical waves, and vice versa, leads to a number of important infinite
series; and elliptic cylindrical waves may similarly be related to plane

waves.
Consider

3] +k?W =0

@ W= 3 (1742 (0) HY (kp) cos(2r ¢) i=1,2

r=20

as a function of u and v, recalling that

(5) «xp=2[0 cosh(u + iv) cosh(u —- Ik

2id cosh(u + iv)
e -

cosh(u - iv)

from (1). Thus, (4) is an expansion of the form 16.2(30), and for real
u, v {or, more generally, for |Im v| < |Re u|), and fixed u, it represents a
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multiple of ce, (v, 0). Since
W= UG ce, (o, 6)

we have from 16,1.1 that U (u) is an associated Mathieu function, The
asymptotic behavior of (4) as u » «, and hence p > =, shows that U ()
must be an associated Mathieu function of the third kind, in fact

W = const. Me.‘f{l) (u, 0) ce,, (v, 6) i=1,2

We deterniine the constant factor by making u » e, p » =, using 7.13(1),
(2) on the lefi-hand side, and 16.7(3), (4) on the right-hand side, This
computation, and analogous work with €€, 115 S€, 44y S€, .. leads to
the tollowing expansions in which @ is omitted from the symbols of
Mathieu functions and also from the coefficients , )

6) Me () ce, )=p,, r:z"o 1742 HNkp) cos(2r )

Mez(i)ﬂ (@) ce, @) =popay rgo (- 1)’A22)'f:: H;’:,(Kp) cos [(2r+1)¢]
Nel), (w)se, , 0 =s,.., Eo(—n'B 2041 g G) (kp)sin [(2r+ 1]
Ned). @) se,,,,@)=—s, ., Eo(—l)'B;j:; HY), (kp)sin [(2r +2) ]

i=1,2

Here p and s have the same meaning as in 16,5(22),

For v = 0 and v = %7, (6) reduces to 16,5 (14)-(17), and as u - «, (6)
reduces to 16,5(1)~(4) so that the most important series expansions of
Mathieu functions are particular or limiting cases of (6).

Meixner (1949 a, see also Schifke 1953) generalized (6)in two respects.
He admitted polar coordinates whose pole does not coincide with the
venter of the confocal family of ellipses and hyperbolas, andhe expanded
a product U () V (v) where V (v) is a solution of the first kind of the
general Mathieu equation, i.e., with arbitrarily given £ and 6, and U ()
is a solution of the third kind of the corresponding modified equation.
His expansions are of the form

00 . —)i
U) V)= 3 drHr('J‘)ip.(Kp) g (rmin)id

r=e=0co
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where
kp = 210[cosh(u + iv) - allcosh(u - iv) - alt*

2id cosh(u + iv) — a

cosh(u —iv) - a
and p is the characteristic exponent of the general Mathieu equation. The
coefficients d _are given in Meixner’s paper as

d"= n=:.2jeo(—l)n Cn JZn-r 2a6)

where the ¢ are the coefficients occurring in 16,2(8), and V (z) is that

solution of the general Mathieu equation which is represented by 16,2(8).
The representation of elliptic cylindrical waves as a superposition of

plane waves leads to integrals rather than series. Consider

(1) W=/ explic(x cosa+7y sina)l ce (a, 0)da
0

as a function of u, v. We see from Table 2 in sec, 16.4 that for fixed u,
W is a multiple of ce (v), while for fixed v, it is a multiple of Ce  (u).
Thus,
W = const. Ce_(u) ce (v),
and the constant may be determined by putting x =y =0, ie,, u =0,
v="Y%n, in ¥ or dW/dv according as n is even or odd. We follow asimilar
process with se ., use the symmetry relations of Table 1, sec,16.4, and
obtain

(8) Ce,, ) ce,, (v)

=2z""p, foé‘”cos(/(x cosa) cos (ky sina) ce, (a)da

Ce

(u) ce, ., (@)
Y

2n+1

=27 Ponss j; sin(kx cosa) cos(xy sina) ce, ., (a)da

Se 4y W) s€,, 4, @)

=27""s, ., j;ym cos(kx cosa) sin(xy sina) se, ,,(a)da

Se

2at2 (8) 85,4, (@)

=—2x""s, ., fo sin(kx cosa) sin(ky sina) se, ,,(a)da
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where x and y are given by 16.1(1), 6 by (3), and p and s by 16.5(22).
- Similar integrals involving Bessel functions instead of trigonometric
functions were given by Sips (1953, 1954).
Inversion of the relations obtained above yields sums of infinite
series of products of Mathieu functions, Equations (8) may be regarded as
determining the Fourier coefficients in the expansion of

cos cos .
. (kx cosa) | (xy sina)
sin sin

in a series of Mathieu functions; and lead to the following expansions.

(9) cos(kx cosa) cos(ky sina) = 2 .;20,0 p;: ce,, (a) Ce,, () cez.(v)

sin{kx cosa) cos(ky sina)

=2 ?o Pontt Ceapiy (@) Ceyyy @) ey sy ()

cos(kx cosa) sin(ky sina)

=2

Il Mg

-1
\ S 2m+1 S€apsy (a) Se,, 4, @) se,_,, @)

sin{kx cosa) sin{xy sina)
=-2 E:o sz:'-l-z 8€,,45(a) Se, y, W) se, ,, )

Here again x,y,«, ¢ and u,v, 0 are connected as in 16,1(1) and 16. 8(3),
@ has been omitted from the symbol of Mathieu functions, and p, s are
given by 16.5(22), From (9) a large number of expansions may be derived
by differentiating with respect to a, u, or v, and choosing special values
for some of the parameters, Some of these expansions are listed in
McLachlan’s book (1947, sections 10.60, 10.61).

The inversion of (6) leads to the expansion of

0s

HO (kp) 7 () =12
sin

in a series of products of Mathieu functions and associated Mathieu
functions (see, for instance, Sips 1953, 1954), and the result may be
interpreted as the generation of circular cylindrical waves by the super-
position of elliptic cylindrical waves. Sips has also expansions invol-
ving products of four Mathieu functions: these are needed in case the
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axis of the circular cylinder is different from the axis of the elliptic
cylinder. The generalization to expansions involving products of solu-
tions of the general Mathieu equation was given by Schafke (1953).

Lastly, the generation of elliptic cylindrical waves by the super-
position of other elliptic cylindrical waves leads to the so-called addition
theorem of Mathieu functions (Schafke 1953), _

A somewhat different type of infinite series of Mathieu functions and
of products of Mathieu functions was investigated by Ince (1939), Using
special cases of (9) and of derivatives of (9), Ince expanded

se, 4y (2)

sin z
in a series 2 «a cle(z) and gave numerous other expansions involving
Mathieu functions and their derivatives in combination with trigonometric
functions. When 6 = 0, Ince’s expansions reduce to the addition theorems
and differentiation formulas of trigonometric functions, and other trigo-
nometric identities. ‘

For integral relations with trigonometric nuclei see sections 16.4,
16.6, and (8); also McLachlan (1947, Chapters X, XIV). Integrals invol-
ving Bessel functions are given in McLachlan (1947, Chapter X), Sips
(1949 a), Meixner (1951 a), Schifke (1953), The latter author has evaluated
an integral of a product of three Mathieu functions. Both Meixner and
Schéfke extended their results to solutions of the general Mathieu equa-
tion,

The orthogonal properties of Mathieu functions arerecorded in 16.4 (15),
(16), (17). It follows from the general theory of Sturm-L.iouville problems
that each of the four systems ice, !, lce, , .}, ise, , i, {se2m+2} is
complete in the interval (0, }47), eack of the two systems {cenf, {senﬂf
is complete in (0, 7), and the system {cen, sen_H} is complete in (0, 27):
here my n =0, 1, 2, ... . An arbitrary function which can be expanded in a
Fourier series can alsobe expanded ina series of Mathieu functions. The
coefficients in the latter expansion may be computed by means of the
orthogonal properties of Mathieu functions, Important examples of such
expansions are (9) and the expansions of (circular) cylindrical waves in
series of Mathieu functions,

Characteristic value problems for (non-periodic) solutions of the
general -Mathieu equations have been considered by Strutt (1943) who
gave bounds for the characteristic values, asymptotic forms, expansion
formulas, and expansion theorems. In Strutt’s work, cos(2z) in 16,2(1)
is replaced by any real periodic function (period p) which canbe expanded
in a convergent Fourier series: the resulting differential equation is
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Hill’s equation, and the boundary value problem consisting of Hill’s
equation and the boundary conditions

ulz,+p)=oulzy), vz ,+p)= ou’lz,),
o given, is called Hill’s problem by Sirutt. (In the case of periodic
Mathieu functions, o = £ 1.)

Expansions in series of products of Mathieu functions and associated
Mathien functions arise in connection with the (two-dimensional) wave
equation (2), Suppose we consider (2) inside of an ellipse u = u, and
impose the boundary condition W (uj, v) = O (appropriate to the problem
of vibrations of an elliptic membrane). Solutions of (2) are of the form

Y cn(u, v)= Cen(u, 6) cen(v, 6)
z,bsnﬂ(u, v)=Se_,,(u, 0) senﬂ(v, 0) n=0,1, ..

Those values of k for which Cen(uo, 0) =0 or Sen+l (uo, 0) =0 are the
characteristic values of (2) for the region u < u . These correspond to
certain characteristic values of 6, and the resulting characteristic func-
tions may be denoted by c:, Yshipn=0,1L2..,m=142..,
The element of area is [cosh(21) — cos(2v)] du dv, and we have the
following orthogonal property

SN co ¥ ¢ [cosh(2u) ~ cos(2v)] du dv
o o

= f:° fozwl'b shn ¥ s£+1 [cosh(2u) - cos(2v)]du dv =0

kyn=0,1, .3 mi=124.; k#n or m#£l

u
foo IOZ'rr v c'; Y siﬂ [cosh(2u) - cos(2v)] du dv=0
k’n=0’1,'~-; l,m=1,2,...

For the computation of the integrals involving [¢/ c:]2 and [ s::]2 see
McLachlan (1947, sec. 9.40), The expansion of an arbitrary function in
a series of ¢ ¢ and ¢ s in the region u < u, now follows. There are
corresponding expansions for other boundary conditions.
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SPHEROIDAL WAVE FUNCTIONS

16.9. The differential equatioﬁ”of spheroidal wave functions and its

solution
We shall adopt
d? d
1 (l—zz)——Z _e: A+460(1-23)-p?(1-23)""]y=0
dz dz

as the standard form of the differential equation of spheroidal wave
functions. There is no generally accepted standard form, Meixner, in his
recent work (1950, 1951), uses (1)with 49 = y?, Bouwkamp, Strutt (1932),
and Meixner in his earlier work (1944, 1947, 1948) have, respectively,
k%z% -k%c%z%, and —y?z? in place of 49(1 - z2) so that their A corre-
sponds to A + 4 6 in (1), Stratton et al, (1941) use the differential equa-
tion satisfied by (1 - z2)%#y. We shall, in this section, regard 6, A, . as
given, real or complex parameters, and z as a complex variable. p will
be called the order of the spheroidal wave functions,
With

(2) z=cosv

we obtain
d* d
(3) dv—)zl + ctn v;}; +[A+46(sinv)? - yz (csc v)?]y =0,
v

the trigonometric form of the differential equation of spheroidal wave
functions [see also 16.1(11), (12), (16), (17)].

We shall now discuss several special and limiting cases of (1) since
these suggest the choice of relevant solutions,

If §=0, i.e., k = 0 in the wave equation 16,1(9) and (14), then equa-
tion (1)reduces to Legendre’s equation 3,2(1)with A = v(v + 1) For the
solutions in the cut z-plane see sec, 3.2, and for the appropriate solu-
tions on the cut see sec, 3,4,

If p = %, a simple computation shows that in térms of the variable v,
(sin v)™*% y (v) satisfies Mathieu’s equation with ¢ having the same mean-
ing as in 16.2(1), and & = A + %4 + 26.

With '

@ ¢=260"z
as the independent 'variable, (1) changes into
d?y dy 40u°
2 —_ 2 _ A= - =
® @40 52T (c A-40 42_4(,) y=0,
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and if @ = 0 in (5), the solutions can be expressed in terms of Bessel
functions. In particular, if @ = O in (5), this equation has the following
four solutions

%
© ¥ = ( ) Iy (O ¥ = (2 =) Hu©

YL A m w7 @ (r
Y, (C)—(24> Hyp (€),  ¢7(<) <2¢> H?, ()

where A = v(v + 1) = (v + %)? — Y%; see also 7.2(44) for the notation.

These special and limiting cuses are important not only because they
exhibit the relation of spheroidal wave functions to other special func-
tions butalso because they indicate the behavior of solutions of (1) near
the singularities, and suggest the choice of special solutions of (1) as
well as expansions of these solutions in series of Legendre or Bessel
functions. For the relation of (1) to the differential equations of con-
fluent hypergeometric functions and parabolic cylinder functions see
Meixner (1948, 1951), Sips (1949).

The differential equation (1) has three singular points, z = 1, — 1, and
oo, z = * ] are regular singular points, the exponents at eachof thembeing
* Yp. z = o is an irregular singular point, and (5) suggests that there
are two solutions of (1) which behave at  like z¥ times a single-valued
function, and z7¥"' times a single-valued function, The exponent v
appearing here is called the characteristic exponent of (1): it is a func-
tion of 6, A, p and, like the characteristic exponent of Mathieu’s equa-
tion, it is determined by a relation of the form cos(2m) = f()\, p?, 6).
Often it is more convenient to represent A as a function of 6, p, and v,
and the notation used by Meixner is A“(O). Clearly,

(M MO =v+1), MO =20)=2r%_ (6

-v~1

For a discussion of the functional relationship between A, p, v, 0 see
Schmid (1948, 1949), Schifke (1950), Meixner (1951),

We shall assume that A = A2() in (1), and express the solutions in
terms of 6, p, v,

A first group of solutions will be obtained as expansions in series
of Bessel functions, (5) suggests expansions of the form

(8) SEUXz, 0)=(1-2"2)%ksk(g) § ak (6)yY), (26% 2)

=1 234
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where l//(j) are the functions defined in (6), As a rule, we shall write a
for a"; (0) and simplify other notations similarly. Substitution of (8) in
) leads to a recurrence relation for the coefticients a which is given

by Meixner (1951) as
(w+2r-p) (v+2r-p-1) (v+2r+pu+2)(W+2r+ p+l)

®) w+2r-3/2Y(v+2r-1/2) ba .+ (v+2r+3/2Xv+2r+5/2) Gram

v+2 +2r+1)+p%-1
v+2rY(v+2r U 26 [a -0

K(gYy_ 2r Zr+l
+ [/\V(ﬁ) (v+2r)v+2Zr+1)+ (v+2r=1/2)(v+2r+3/2)

r=0, 1, +2, ...

From now on we assume that v + % is not an integer. (It appears that the
case thus excluded has not been fully investigated.)

The recwrence relation (9) is similar to 16,2 (9). After division by a
suitable factor it leads to an infinite determinant whose vanishing is the
condition which determines the functional relationship between 6, A, p, v.
Alternatively, infinite continued fractions R and L may be derived as
in 16,2(16),(17), We shall assume that a" (9) has been so chosen that
(10) af ,(0) =ak ()= a ¥, (O).

-v=1,0

It then follows that

(v—p+1)
11) a“ (D=ak  _ (9)=——2r a X (6
( v-i, (V+[l+].)2 v, r )
From the continued fractions we have, as in 16.2(21),
rla ria 6
(12) lim Z = lim T o= —
r oo r—1 r— —oc r+i 4—

unless the sequence of coefficients ... ,a_,, a_,, a,, a,, a,, .. termi-
nates to the right or the left, when the first or the second limit in (12)
becomes meaningless, Tkis cannot happen unless v + p or v — p is an
integer, From the asymptotic formulas for Bessel functions we have

JAL)) 1, (1) 4
(18) lim Tviwez | i vie
vizr 7T T ¢'y+zr+z 6z
G) ;G
: l;/,u*-Zr . Yoy tor 4 .
(14-) lim W— = rl_:rl‘.w r ) = ezz ] = 2, 3, 4

r>o0 T Vo ko2 Y rar+2
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and it follows from (12)}(14) that (8) converges when |z| > 1. In this
region, (1 ~ z2)™# may be made single-valued by defining it by the
binomial expansion, and we may take —7 < arg z < 7 in (8). In the excep-
tional cases, when one or the other of the limits (12) ceases to exist,
the series of coefficients terminates in one direction, and the question
of convergence in that direction does not arise.

H.L. Schmid (1948, 1949) investigated thoroughly a class of recurrence
relations which includes (9). His results establish the existence and
uniqueness (up to a common factor) of the ar; and also the expansion of
A and a‘; , in convergent series of powers of 0.

The asymptotic behavior of § () as z > = may be determined by means
of results by Meixner (1949), If j = 1, 2, and 0 > 0, we let z > = in the
upper or lower half-plane, if j = 3, 4, z > « in any manner. Then

;)
¢V1+2r
’l’z(/”
by 7,13 (1)-(4). If we set

(_1)r as Z >

(15) s2@ =0 £ e’ (@1

re~o

then

(16) lim [$49z, 0y (26% 2)]= 1

20
where in the cases j = 1, 2, it is assumed that Im(6% z) £ 0, This relation
may also be written as

17) $EUe, 0)~ g I (20% 2)
i=1,238,4 z-o, |arg(8%2)<n

and in this form the case of positive %2 need not be excluded. When

= 3, 4, the range of arg (6% z) can be extended as in 7.13(1), (2),to
(-m, 27), (-2m, ) respectively, We shall assume throughout that s‘; is
determined by (15),

From (6) it follows that (/J“ﬁr‘z’r, and hence S‘””, is of the form z¥
times a function which is single-valued near «, so that $¥'"is a solution
of the first kind. S‘“z) may be called a solution of the second kind. From
(16), (6) and 7.13 (1) (2) it is seen that S“(S) and 55(4) vanish exponen-
tially as z -+ e in the half-planes Im(6* z) > 0 and Im (6% z) <0 respec-
tively: thus S * are solutions of the third kind. Beside S“(J) we have
the further solutions S “#0) and Sf“(l,), i=1,2, 3, 4. Between these 16
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solutions there are numerous relations which are consequences either of
(16) or of (11) and identities between Bessel functions, We list a few of
these relations, omitting z and 6 which are the same throughout,

;) =u(5)
(18) SLU)= §7KU

1(3) _ quiD | squl2) __ —im W+¥%) oul3)
(19) SE™ =S8+ iST = e SE0Z,

p8) _ qult) _ soul2 _ i Wik%) que(d)
SHM) - gui _ jgh) _ ¢ sHa

(20) S‘;‘z’ = ~(cosvm)™! [S‘If“) sin (vr) + S‘_f,(j'_)1 ]

B3 _ [ =1 repty) _ qutn - in %)
SE® =i cos(um)]™" [SE)0, —SKiD ™t ]

S/,j“’= [ cos(w)]-’ [S;:(i) e i1'r(v+%)__S/._L,(j!_)I]

(18) follows from (17) since the asymptotic representation in a sector of
angular width > # determines a solution of (1) uniquely. (19) and (20)
follow from (6), (8), (11), (15) in combination with 7.2(4), (5), (6), (9).
Meixner (1951) gives these and other relations, in particular formulas for
the analytic continuation to values of arg(6* z) outside (~m, =), and
formulas for the Wronskians of the solutions S‘:(j ), It turns out, like in
the case of Bessel functions, that any two of our four solutions are
linearly independent since v + % has been assumed not to be an integer,

The solutions discussed so far are represented by series convergent
for |z| > 1, and are especially useful when z is large. We now turn to
solutions useful near + 1, and also on the segment (~1, 1), and to expan-
sions convergent inside the unit circle. Meixner denotes these solutions
as follows:
@) Pskz, 6)= £ (-1)a’ (6) PX,, (2)

r=-—0o0

0siz, )= I (D7a” (9) 0%, (2)

r=-—o

(22) Psk(x, )= S (-D7a” (6) PX,, (x)

r=-—oco

Qshlx, )= S (-17ak (6) Q4,, ()

r=—o
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Here, P, Q are the Legendre functions as defined in sec, 3,2 for the cut
plane, and P, Q are the Legendre functions on the cut defined in sec, 3.4.
Accordingly, in (21) z is in the complex plane cut along the real axis
from —eo to 1, and we take |arg(z *1)| < 7 in (21); and in (22) % is on the
cut, -1 <x <1, although these solutions could be continued analytically
into the complex plane cut along the real axis from ~oo to —1 and from
1 to oo,

Substitution of (21) and (22) in (1) leads to the recurrence relation
(9) so that the a, are the same coefficients as before, We assume from
now on that

(23) aj, (0)=1
and also that (10) and (11) hold, so that
(24) Psk(z, 0)= P4(z), Qs*(z, 0)= GX(2)

Psk(x, 0) = P4(x), Qsk(x, 0)= Q4)

From (12) and sec, 3,9.1 it follows that (21) and (22) converge every-
where with the possible exception of * 1 and «~. From 3.2(3), 3.6(2) it
follows that Ps is (z = 1)™%* times a function single-valued near z = 1
ifpto0,1,2 .., and Ps is (z - 1)%® times a function single - valued
nearz=1ifp=m=20,1, 2, ... From 3,2(5) it follows that Qs is z ™7~
times a function single-valued near z = « provided that p + v is not a
negative integer, Thus, Qs is a solution of the first kind.

Between the sixteen solutions Psi¥, Qs;f“, Ps_i_’;_', Qsi_’;_,, Ps:“,
Qsiv, Psf’;_i, st’:_ithere are numerous relations. These follow from,
and resemble, the analogous relations for Le gendre functions given in
sections 3.3.1 and 3.4, Examples of such relations are
(25) Psh=Pst Ps = Pst

-y=-1? -v-1
26) e " T(w+p+1) Qs H= P (y—p+ 1) Qs%
(27) Pst(~x) = cos[(p + v)w] Psh(x) - (2/7) sin[(g + v)7] Qs &x)

which follow, respectively, from 3.3(1), 3.4(7), 3.3(2), 3.4(14) in con-
junction with (11). For a more detailed list of such relations, and for a
list of Wronskians, see Meixner (1951).
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Finally, we shall indicate the relations between the solutions repre-
sented by series of Bessel functions, and those represented by series of
Legendre functions. S“(” and Qs% _ are both solutions of the first kind,.
they both belong to the exponent v at «, and hence must be constant

multiples of one another. Meixner (1951) writes

(28) S‘;(”(z, 0)=n" sm[(v— #)ﬂ] e (v+u+|)mKu(9) Qs (z, )

—v—1

and establishes a number of identities satisfied by K”(G) these follow
from the identities valid for S‘;(” and Qs”‘ An expl1c1t expression for
K”‘ is based on the remark that it follows from (8), (6), and 7.2(2) that

z ¥(1- z_z)%”S‘:m(z, 6)

Yvtrts gortas

=1 % m 0 x x _1 S 23
A= s )r=§oo SEO -1 a”"(e)s!l—‘(v+2r+s+3/2)

while it follows from (21) and 3.2(41) that

27V(1 - z TR)AM g TN Qs‘_’jy_1 (z, 6)

=”% § z (_1)ra’u' (0)27/—27'-21'2-27"'21' I_‘(F- V+2T+2t)

r=—o0 t=0 —v=1 tITGe+2r +t—v)

Multiplying both sides of (28) by z ¥ (1 ~ z “?)**, expanding in a Laurent
series, and then comparing coefficients of z% we thus obtain after some
simplification

(29) KH(0) = %4 O T (L vt 2k) e @HETEs K (g)

$ (-1)7a% (6)

; JE-DITwk+r +3/2)
X

y L0

A, G=ENDG-v—k=r)

Since all § ) may be expressed in terms of S'" by (20), and Ps may
be expressed in terms of Qs by 3.3 (8), clearly (28) suffices to express
any one of the Bessel function series in terms of Legendre function
series and vice versa. All these relations simplify considerably when p
and v are integers, see sec. 16,11.
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16.10. Further expansions, approximations, integral relations

Power series expansions. Expansions in powers of z or z? — 1 have
been given by Fisher (1937) and others: they do not seem to be very
useful either for analytical work or for numerical computations.

Expansions in series of products of Bessel functions do not seem to
be known except in the case of spberoidal wave functions, see also

sec. 16.11.

Meixner (1950) bas given expansions of products of solutions of
16.9(1)asseries of products of Bessel functions and I.egendre functions.
His expansions are based on the following remark. In a notation which
differs slightly from that adopted in sec. 16.1.2, we introduce on the
one hand spheroidal coordinates &, , ¢, and on the other hand spherical
polar coordinates r, y, ¢ whose pole is on the axis of revolution. The
connection with the Cartesian coordinates is

(1) x=c[(&2- 1D -n*)]* cos ¢ =r sin x cos ¢
y=cl(é*= DA -7*)* sin ¢ =r sin x sin ¢

z=cén=rcosy+ca

and we put 460 = x%¢c?. It follows from sec. 16.1.2 that

() +i ) i
SEUV(E, 0) Pstiy, ) e*H4?,  SEU(E, 6) Qskin, 6) et ii?

are solutions of AW + «2W = 0; and so are

LN J)(Kr) PK(COSX) eiw(ﬁ ‘p}(\j)(KT) QK(COS X) e Tind

An investigation of the behavior of these solutions as £+ « and hence
r » «, and again as 7 » * 1 and hence ¥ » 0, 7 suggests expansions of

the form

@ $L9%g, 0Pk, 0= £ b (6,0 Y], kr) PE, (cosy)

t=—o

SLU(E, 6) Qsk(y, )= I b~ (6, @) ¢ ) (xr) QX (cos x)
t=—00 ’
where
(38) «r= 2-0%(52 + 7]2 + az'—_2a§77 - 1)%
cos ¥ = (§2+ 7]2+ al? - 2aén - 1)°% (én—-a)
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Meixner shows that the b . satisfy a five-term recurrence relation (which
reduces to a three-term recurrence relation when @ = = 1 or when a = 0),
proves the existence of a solution of this recurrence relation, and the
convergence, in appropriate regions, of (2), and gives an explicit repre-
sentation of the b, in terms of the a,of 16.9(9) and certain other coef-
ficients 85,’: which satisfy a comparatively simple recurrence relation.
He discusses the cases of integer values of p, v, p * v, and shows that
all important expansions of solutions of 16,9(1) may be obtained by
specializing the parameters in (2). For instance, if a =0 and > 1 1n
the first expansion (2), we obtain 16.9(8); again if a = 0 and £ » =, we
obtain 16.9(21).

We obtain new expansions for solutions of 16.9(1) if we take a = £ 1
and £ o or 7> 1 in (2), These expansions, together with their regions

of convergence are:

(4) Psk(z, O)=exp(x20% zi) § i'b% (6, VP, (2)

t=—o00

Qsite, O)=exp(20% z0) § i*b% (6, 1) Qo) 1
F4 g — 1y o0

. 1\ o0 R
© 59 0-(57) w0 550 0u@ite

lz=1]>2, j=123,4

z-1 t=—o0

. zZ + 1 l“'L m =] ) Y
§L0N(z, 6) = si(0) 3 bk (6,-1) Y I) 126" (z + 1]

z+1]>2, h=1,23,4

The coefficients in all these expansions satisfy three-term recurrence
relations, and in some regions these expansions are more useful than
those of the preceding section. For Ps’ (x, 6), Qs’ (%, 6) replace P1, (z),
L+2) in (4) by P4, &), QF, &) _
Meixner also obtained more general expansions by making £ > o« or
7 » 1 in (2) without specializing a. The ensuing expansions contain an
arbitrary parameter: for special values of this arbitrary parameter they
reduce to 16.9(8) and 16.9(22) or (4) and (5).
Expansions of S#U)(z, 6) in series of Bessel functions of argument
26%(z2-1)% may be obtained by putting a= 7= 0 in (2). Such expansions
were given by Fisher (1937), Meixner (1944) and others.
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Approximations for small |0]. From 16.9(7), (9), (24), (28), (29), taking
k =0in 16.9(29), we have

6) A0)=v(w+1), Psh(z,0)=PL(z), Qsi(z,0)=QL(z),

Psi(x, 0)= P4ix), Qsh(x, 0)= Qbtx),

al ,0)=s50)=1, af (0)=0 r=t1, 2
- VTP (14 p—p) [(1/2-
lim 67% K4(6) = e (+‘+ v—p) I'( v)
=0 v 2" [ (v + 3/2)
2777 M (1/2-v) )
I 6'%'/5’“”(2, 0)=-- - A
60 v T(u-) T (v+3/2) “v-1 &)

From the last of these relations and 16.9(20) it is easy to evaluate

lim 6—%”5’;”’ (Z, 6) j= 2: 3’ 4
6=o
For expansions of AL(6) and a, (6) in powers of 0 see Meixner (1944,
sec. 6.3).
Asymptotic forms for large |z|. From 16,9(17), 16.9(6) and 7,13(1),
(2)

Y ey i(20% ., - -
(7) S’:(a)(z, 0)=1/20—’4 z 161(29 z = Yym %17)[1+ O(lzl—')]
z2 e, -n<arg(f®z)<2n

RPN
(8) S’;“‘)(z, 0)= 1/26-% 21 8-1(29 z-%vw-%w)[1+0(lzl—1)]
z+ 0, -2n<arg(f”z)<n

and the asymptotic forms of S4(", S4 follow by means of 16.9(19).
Meixner (1951) has obtained asymptotic expansions in descending powers
of z — a, with a arbitrary, and has given the four term recwrrence relations
satisfied by the coefficients of his expansions.

The asymptotic form of the @ s follows by 16.9(28), and the P s can be
represented as combinations of the @'s by 3.3(3).

Behavior near z = 1. If p is not a positive integer, we have from

16.9(21) and 3.2(14)
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Yo
—_—— (g - 1) S (_1\r ok _
Fa eV, 2, e, O+ 0(z-1D]

bz — Yp) Tk

T p) s2(6)

(9) Ps‘zf(z, 9) =

[1+0(z - 1))] 21

and similarly
(10) Peis, = 1 o1 ) 1
sh(x, 0) = — T —— [1+ -x x> 1-
z T~ @20

The behavior of the Js can be deduced from (9) and the behavior of
S‘;‘(J)fo]lows by means of 16.9(28) and 16.9(20).

Integral relations. In order to obtain integral relations between solu-
tions of 16.9(1) we remark that this equation arises when the wave
equation AW + «*W = 0 is separated in the coordinates £, 7, ¢ introduced
by (1). Let N(&, ) e *® be a solution of AW + x2W =0, and let f (z) be
a solution of 16.9(1). By a corputation similar to that carried out in
sec. 16.3 it is seen that '

(11) g(&)= L' N(& ) fG) dy

is a solution of 16.9(1), with £ = z, provided that

oN df b
1= {— f-N— =0
(12) [( 1})<an f Ndn)]a

We choose f() = Ps_*(z, 6) and

(13) N(&, ) = (£2 = D* (5% ~ 1) exp (26% £7i)

From (9)and the asymptotic behavior of Ps it follows that (12) is satisfied
if we take a = 0, b = i oo, and Re(6% &) > {Re 04|. Under these circum-

stances

g(€)= (€7~ 1 [ (n® - 1) Ps G, 0) exp(26% £ni)dn

is a solution of 16.9(1) with &= z. Moreover, from (9) and the theory of
Laplace integrals it follows that as £ > e« in Re(6% &) > |Re 0%|, g (&)

behaves asymptotically as
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, N e \ ,
24# flJ- / F(177+ IL’)ZS = (1] _ 1)/:/.1. exp (20’4 f"li) d’l
v

exp(20% &i + Y% pmi + Yomi)
(2071 £ s7H(0)
so that from (7)

AT

(26%)* s #(6)

g(&)= SH (£, 6),

Thus we obtain the first of the two integral relations

( Y {utv)m i g = g
(14) SHP (¢, 6) = — e AW igu ghu s "i(g) (£2 - 1)%#
x J ™ (57 = 1Y% Ps (s, 0) exp (20% Eni)dy

Re (6% &) > |Re 0|

% Yo i AT %
(15) Sﬁ“’(f, O=-e wry mTigu g usvu(e)(fz_ 1)%

x j;-ioo (n? - 1% Ps_*(n, 0) exp(~2 6% &ni) dn
Re (6% £)> |Re 6%
The proof of (15) is similar.

16.11. Spheroidal wave functions

In the applications to solutions of the wave equation in prolate or
oblate spheroidal coordinates (see sections 16.1.2 and 16.1.3), p=m
is an integer in 16.9(1). Moreover, only those values of v and A are of
interest for which 16.9(1) possesses a solution which is bounded on
the interval (-1, 1), Without restriction, we may take m = 0, 1, 2, ... . We
see from the table in sec. 3.9.2 that the only solution of 16.9(1) which
remains bounded at z = 1 is Ps';(x, 0) (or a constant multiple thereof).
From16.9(22)and 3.9(13)and (15) we see that this solution is unbounded
at z = — 1 unless v is also an integer. Accordingly, from now on we shall
restrict ourselves to the differential equation

a2 d
1) (1-z9— =22 ==+ N3O + 400 - 29 - m? (-2 Ty =0
F4 z

where m and n are integers and 6 is real. On account of 16.9(7), we may
take m, n=0, 1, 2, ... and n > m, ’
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Most of the older, and many of the more recent, papers deal exclusively
with the case of integer p and v, and the solutions of (1) are mostly
referred to as spheroidal wave functions, although some authors use this
name for the solutions of the more general equation 16.9(1). The A" (6),
m, n = 0,1, 2, .. are called the characteristic values of A, and the
bounded solutions Ps}, (x, 6) which are the corresponding characteristic
functions are called spheroidal wave functions of the first kind. There is
a fairly extensive literature on spheroidal wave functions. For a biblio-
graphy and a summary of the results up to 1932 see Strutt (1932), for
references to more recent literature see Bouwkamp (1947) and Meixner
(1951): the latter paper also gives an excellent summary of the results.
Some of the more recent papers are listed under Abramowitz, Bouwkamp,
Eberlein, Hanson, Leitner and Spence, Meixner, Sips, Spence, Stratton
et al. at the end of this chapter. For numerical tables see Stratton et al.
(1941), Bouwkamp (1941, 1947), Meixner (1944}, Leitner and Spence (1950).
It should be noted that there is no uniform notation, and care is needed
in using the results of the aforementioned papers.

The numerical computation of A” () for moderate values of ¢ may be
based on the infinite continued fractions mentioned in sec. 16.9: this
method has the advantage of producing the ratios a /a in the course of
the computation. For a description of the computational routine see
Bouwkamp (1941, 1947) and Blanch (1946). For small values of § the
characteristic values and the coefficients may be represented by series
in ascending powers of 6. Bouwkamp (1950) and Leitner and Spence
(1950) give the expansion of A" (6) in powers of 6 up to and including 6*.
The numerical values of the coefficients in this expansion have been
tabulated by Bouwkamp (1941, 1947,1950), while Meixner (1944) tabulated
the coefficients in the expansion of A" (6) up to and including 6°, and for
a 7:, r(@)/a :' o (6) up to and including 63,

We assume throughout that m and n are integers, and 0 < m < n, In the
recurrence relation 16.9 (9) satisfied by the coefficients of the expansions
16.9(22), the factor of a _,, vanishes when

2r=~m-n-1 or 2r==-m~-n-2

according as m + n is an odd or even integer. From the infinite continued
fractions representing the coefficients it follows that

@) a® (0)=0 % <~m—n-1



16.11 MATHIEU FUNCTIONS ETC. 147

From 3.6 (3) and (6) it follows that
(3) _PnHr(x):O -m-n-1<2r<m-n
so that the first expansion (22) reduces to

@) Psx, )= 3 (D7at (OPh, &)

2r>m=n

or

(8) Ps},,(z, 0)= S Hra a ion, - (O Pr &)

r=0

Ps o (% 0)= £« 1)k+ra.+zk+1 r= (O Plis sy @)

r=0
k,m=0,1,2, ..
The coefficients satisfy 16.9(9) with
p=m, v=n, and a =0 for 2r<-m-n-1L
We normalize (4) so that

1 n + m)!

1 n 2 =
(6) f [Ps*(x, 6))* dx P 1

By 3.12(19) and (21) this is equivalent to normalizing the coefficients so
that

1 (n+2r+m)! ) 1 (r+m)!
(7)2r22n-n"+2"+1/2("+27'—m)'[ ()] n+/z(n-—m)'

and we complete the normalization by
(8) ay, (6)> 0.

On account of 16,.10(6) this normalization is consistent with 16.9(23).
The series

@ Pstz, )= 3 (-D'a% (O)PE,, )

2r> »—n

converges for all finite z, and the functions (4) and (9) differ only by a
factor of (xi)®.
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From 3.3 (7), (10) and 16.9(11) we have

(10) Ps " (z, 6) = -(—)—-Ps"‘(z )
(n +m)!

Ps® (-z, §)=(~1)" Ps" (z, ©)

and numerous other relations for Ps and Ps follow from known formulas
for Legendre functions. From 3.4 (20) and 3.4 (23) we have

. @2m + 2k
(11) PSm+2k(o, 0)=(2—k)| y m+2k(0 0)
on ok 1" e",, (0
re =k G+ G -k-m=-71)
Psi? ., (0,6)=0 kym=0,1,2, ..
in

dP
(12) ——=*2 (0. )= 0
dx

d Ps” st ©, 6= 2m+2k+1) d Psm+2k+1 ©, 0)
dx (2k + 1! dx

(-1)7a (0
_ _ontl Y% mt2k+1,
e E_k(k+r)!l"(—l/z k-m—r)

k,m=0,1,2, ..
For the solutions 16.9(8) we have in this case
(13) 529z, )= 57"0(z, 6)
== E) B anO) v, 6% o)

i=1,23 4

@s%, _, becomes infinite when v — p is zero or a positive integer but
sin [(V - wWn]Qsk _ approaches a finite limit. By 3.3(3)

sinl(v - @ml Qs* _ (z, O)» D" 7 PsE (2, 6)
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as p~»m, v~ n, and 16,9(28) gives the connection
(14) S:(”(z, 8) = K (0) Ps ] (2, 0)

between the two solutions (9) and (13), thus showing that spheroidal
wave functions of the first kind may be represented by series of Bessel
functions of the first kind; and these series turn out to be convergent
for every finite non-zero z. The expression for K7 simplifies considerably,
Using (9) and (13) and proceeding as in the derivation of 16.9(29), with
k=(m—-n)/2o0r{m -n + 1)/2 according as m — n is even or odd, we
obtain

(15) T'm + 3/2) K" (6) Ps" 0, 6)

=%(-1)" z# 9%n s "(0) ay (m"n)/Z(e) n—m even

d Ps"
(16) T'(m +5/2) K3(6) —=2-(0, 0)

X
G DR A N () PPN () n~m odd

From (14), (15), (16) follow explicit expressions for the values of
S™Mand dS™M/dz at z = 0,

Other- expansions for spheroidal wave functions of the first kind are
(17) Ps™(z, )= exp (£26% zi) § i**B™ (O)P"(2)
t=nm ’

which follows from 16.10(4), some expansions which can be derived
from 16.10(2), (5), and expansions in series of products of Bessel func-
tions which were given by Meixner (1949). »

Spheroidal wave functions of the first kind are orthogonal functions
on the interval (-1, 1). For statements about the zeros see Meixner (1944).

Both S:(Z) (z, 0) and Qs " (z, 0) are spheroidal wave functions of the
second kind. H |z| > 1, both of these functions satisfy the functiornal
equation f(~z) = (- 1)H f(z), and hence they are numerical multiples
of each other. Meixner (1951) gives the relation between them in the form

(18) 26% K "(6)S"A(z, ) = (- 1)*"" s%(6) s 7" (6) Qs " (z, 6).

Other expansions follow from 16.10(2), (4), (5) expansions in series of
~products of Bessel functions were given by Meixner (1949). Spheroidal
wave functions of the third kind are S:(a’ 9. they can be expressed in
series of Legendre functions by means of 16.9(19), 16.11(14), (18).
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We are now in the position to construct appropriate normal solutions
of the wave equation in spheroidal coordinates. First, let us take
prolate spheroidal coordinates u, v, ¢. It has been explained in sec.
16.1.2 that for a wave function which is regular inside a spheroid u = u ,
U is a spheroidal wave function of the first kind, and V is a modified
spheroidal wave function of the first kind. Thus, interior prolate spke-
roidal wave functions are seen to be of the form

(19) Sz“!‘(cosh u, Yx?c? Ps” (cos v, YkZc?2)etim®
m=0,1,2,...,0; n=0,1,2,..
while external prolate spheroidal wave functions are of the form
(20) S:(j)(cosh u, Y¥x?c?) Ps” (cos v, Ykic2)etind
j=3,4;m=0,1,..,n; nr=0,1...

where j = 3 or 4 according as the asymptotic behavior at infinity is pre-
: ~1 _iKr -1 _=iKr

scribed asr e orr e .

For oblate spheroidal wave functions we obtain from sec. 16.1.3.

similarly
21y S:(j)(—i sinh u, %x2%c?) Ps® (cos v, ~Y%«?c?) etimd
j=1,3,4; m=0,1,...,n; nr=0,1,..

where j = 1 for wave functions for the interior, and j = 3, 4 for the ex-~
terior, of an ellipsoid u = u,. In (21), 40 = ~ x*c?, and it is understood
that 26% = ixc is taken in the asymptotic formulas of sec. 16.10.

The expansion of an arbitrary function given on a (prolate or oblate)

spheroid u =u in a series of the form

o0 n

3 3 (A" cosm¢ + B sinm¢) Ps! (cos v, 6)
n=0 m=0 " "

is valid under the same conditions as for spherical surface harmonics,

and the coefficients may be computed by using the orthogonal properties

of trigonometric functions and of spheroidal wave functions.
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16.12. Approximations and asymptotic forms for spheroidal wave functions

Behavior near £ 1. The behavior of spheroidal wave functions near
% 1 may be investigated by substituting the approximations given in the
table in sec. 3.9.2 in the expansions of spheroidal wave functions in
series of Legendre functions, and then using 16.11(2), 16.9(11), and
16.9(15) to simplify the formulas. The results are as follows.

(1) Ps*(z, 6)= [K* (O] S2(z, 6)

(n + m)! (z -1)%=

= _ 1| 1+4=
" (n=m)! 2%"‘m!s;"‘(0) +0(z - 1] )

(n+m)! D" Q-x)%"
(n —m)! 2%% mls " (6)
m=0,1 ...,n; n=0,1,...

+0(]1— x| %)

Ps™ (x, 6) =

(2) Qsy (2, 0)==20%[s° (O] K2(6) S22, 6)

1 o - z-1
Y [s 2(6)] log<2 )

- 3 CDTal Ok, 0z - 1))

2]‘2_—'11

Qs™(z, )= 1" 26% [s " (6) s = (O] K ™(6) S*12(z, 6)

1" (m - 1)1 2%="1

S.(e) (z - 1)%! + 0(,2 - ]_l '-%M)

m=1,2, ...,n; n=12,3,..

where
1 1 1

() hy=0, h,=—+ =+t — k=1,2 ..
1 2 k

For Qs, replace z — 1 by 1 ~x in (2).
The behavior of these functions near — 1 follows from

(@) Psi-z,0=(-1"Ps"(z,0), Qs*(-z, 0)=(1D""" Qs (z, 0)

Ps? (~x, 0)=(-1)""" Ps%(z,6), QsZ(-x,6)=(1r™""Qs"(x, 0)
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Behavior near infinity. For S'(’) see 16. 10(7) (8) and 16.9(19). The
Ps and Qs may be expressed in terms of the S"(J by means of 16.11(14),
(18).

Approximations for small |6|. For A, Ps, Qs, a_, s see 16.10(6).
From 16.10(6) we also have

6) lim 67 K" (0) e ™
6o R TYRONEIY
n+m)!

lim 7% K" (0) = ——=~ m=0,1,..,n; n=0,1,,..
-0 n 2" (), () .

and then by 16.11 (14), (18)

(n - m)!
=Y%n om(1) _ p*
(6) 91_1.13'1 7] S (z, 0) = —2"( O35 ()
) Yntl -(2) (_ )l+‘ 2n- .
eling 6 Sy (z, ) = (n )] Q (z)

m=0,1,...,n; n=0,1, ...

Asymptotic forms for large |0|. First 6 will be taken as positive. The
substitution

(M) y=(Q-z%y, 20%:=2

carries 16.11(1) into
m+1 dY A Z? Y0
B de 20% 4z 4 -
where

9 A=0*+%07%O\% —m-m?)

For large 6, (8) is approximately the differential equation 8.2(1) of
parabohc cylinder functions, and the interval -1 < z <1 corresponds,
in the limit as 6> =, to —ec < Z < oo, Now, Ps” is a bounded solution of
16.11(1), and also (1 - z2)Hm Ps” (z, 0) is bounded on-1<z<1.0n
the other hand, it is seen from sec. '8.4 that Weber’s differential equation
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has a solution which is bounded on ~> < Z < o if and only if A~} is a
non-negative integer. Moreover, this integer is equal to the number of
zeros of the bounded solution; since Ps” has exactly n — m zeros, we
conclude that A is approximately n — m + ’4, and Ps” is approximately a

numerical multiple of (1 -~ z2)** D___(26% z). Thus we obtain
(10) A*(0)=- 40+ 20% (2n—2m+1)+0(1) 0 oo
Ps® (x, )~ c* (1-x2)%" D ___(26% x) 0o
where
(11) ¢ =Ps2 (0, 6YD,_, (0) n -m even
.y d Ps” D __
c;=1/204dx"(o 6)/—dZ"—"(0) n ~m odd

Explicit expressions for ¢ ? follow from 8.2(4) and 16.11 (11), (12).
In order to obtain 1ncreased accuracy, one may replace (10) by formal
infinite series,

(12) A%(0)=-46+26%(2n~2m+ 1)+ S 0 %')w

r=o

Ps*(x,0)=(1-x%)% S c* D __ . (26%x)
r=—oc

substitute (12) in 16.11(1) and then equate coefficients of like powers
of 0. Approximations along these lines were obtained by Meixner (1944,
1947, 1948, 1951), Eberlein (1948), Sips (1949). In particular, Meixner
(1951) gives the expansion of A" up to and including the term 6752, and
he also states some of the ¢” . The usefulness of these formulas has
been tested numerically. ’

If x is bounded away from zero, the parabolic cylinder function in
(10) may be replaced by its asymptotic representation 8.4(1). In the
neighborhood of x = 0, the behavior of Ps” (x, 6) is more complex since
all zeros cluster around this point.

When @ is negative, the points around which the zeros cluster are
x = + 1, and accordingly, these are the points near which the behavior
of Ps:(x, 0) is rather complex. To investigate the behavior near x = 1,
the substitution

(13) y=(1-2z3%* Yy, 4-0%*Q1-2)=2
may be used to transform 16.11(1) into
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VA d¥y Z dY
(14) Z [1—8(——9)%1' dZ—z+(m+1) |: ————:I———

A z 1 z Y=0

(15) 8A=(-0% (A2 - m~m?).

where

For large values of — 6, (14) is approximately a differential equation of
the form 6,2(1) with

a,=1, a =0, a,=-Y%, b,=0, b =m+1, b,=A.

1 2 [o]

The general solution of this approximate equation is given by 6.2(6) as

1
-4z 3(’"; -A,m+1,Z)

where J(a, c, x) is the general solution of 6.1(2). Since Y is bounded
on 0 <z <1, it must be bounded, as s -~ , on 0 < Z < . Now, the only
solution of the confluent hypergeometric equation with ¢ = m + 1 which
is bounded at Z = 0 is ® (g, ¢, Z), and it is seen from 6,13 (2) that this
function increases exponentially as Z -+ « unless a is zero or a negative
integer. Thus, % (m + 1) - A = -M, where M = 0, 1, 2, ..., and the solu-
tion is approximately a numerical multiple of

e #Z (M, m+ 1, Z)

or, by 6.9(36), a numerical multiple of
exp[2(-0)% 21 L¥ [4(- )% (1- 2)].

Now, M is the number of zeros of this solution in 0 <z <1. SincePs (z, 6)
has (n = m)/2 or (n = m — 1)/2 zeros in this interval according asn - m
is an even or odd integer, we have n = m + 2M or m + 2M + 1 according
as n —m is even or odd. Moreover, Ps} (z, 6) is an even or odd function
of z according as n — m is even or odd, and hence we have the following
results:
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(16) A2, ()= 4(=0)% (m + 2k + 1)+ O(1) 0 —oo
P8,y (% 0)~ %ok, p (1= 2% lexp [2(- 0)% 2] L} [4(-60)%(1-2)]

+exp[~2(-0)*x] L2 [4(-6)% (1 + x)]} 6+ -
= P52, (OV/LE[4(-0)%]

(A7) A%, 004, ()= 4(=0)% (m + 2k + 1) + O(1) 6~ —oo

Ps®, a1 O~ Yek 0 (1~ x2)% " exp[2-0)% x 1L 24(-6)% (1-2)]
- expl-2-6)%x] L} [4(~0)% (1 + x)1 0>~

The coefficients ¢ * may be obtained by comparing both sides for small
values of x.

As in the case § » =, increased accuracymay be obtained by expanding
A* in decreasing powers of (-0)%, and Ps} in a series of Laguerre
polynomials (combined with exponential functions as above,) substituting
in 16.11(1) and then equating coefficients of like powers of 6. See
Svartholm (1938), Meixner (1944, 1947, 1948, 1951), Sips (1949). In
particular, Meixner (1951) gives the expansion of A up to and including
* the term (=0)"%2, and he also gives a few coefficients in the expansion
in series of Laguerre polynomials.

If x is bounded away from % 1, then the Laguerre polynomials in (16)
and (17) may be replaced by the leading terms

-1k
k!

Near * 1 the behavior of Ps is more complex and cannot be described by
elementary functions.

Other asymptotic forms. The asymptotic behavior of A% (6) and a) (6) .
as n + = has been investigated by Meixner (1944) who showed that the _
continued fractions lead to expansions in descending powers of 2n + L.
He gives the expansion of A up to and including the term (2n + 7S,
and the expansions of a /a  up to and including the terms (2n + 1)72.

Abramowitz (1949) investigated the case of a large m, and that of
large m and @ by methods similar to those employed above for the investi-
gation for large |6|. He also tested his formulas numerically. -

4(-0)% (17 x)]*
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16.13. Series and integrals involving spheroidal wave functions

Integral relations and integral equations. The integral relations estab-
lished towards the end of sec. 16.10 remain valid for spheroidal wave
functions. In addition, there are integral relations with a = - 1, b =1
since Ps is bounded on (~ 1, 1), and has a bounded derivative, and
hence 16. 10 (12) is satisfied for a = - 1, b = 1 whenever N and dN/dp
are bounded. We take the nucleus 16,10(13) and consider

D) g(&)= (1~ 9% [ (1 ~7?) Ps?(n,6) exp(26% £ni)dy

By the work of sec. 16.10, this is an ellipsoidal wave function, and
since g(£) is bounded on - 1 < £ < 1, it is a numerical multiple of
Ps> (& 6). In order to determine the numerical factor involved here, we
compute

@ §©=J @-n* PsI, 6)dy

dg
E(O) 2¢* ;j (1~ 2)%® Ps” (9, 6) dy

by substituting 16.11(4). Now
@ J' @-n®* Pr,, (ndn
-1

clearly vanishes if n — m is an odd integer because then the integrand is
an odd function of n; and by 3.12(25) the integral also vanishes when

n —m is even and n + 2r £ m. Lastly, when n + 2r = m, we have by
3.12(25) ~2)" m!

@ [ a-9¥% Pr@)dy- -
m+%
Similarly,
! Ynm m
S, n(—9?Y*" P2, () dn
vanishes unless n + 2r=m + 1 and

(=2)" m!

1 4n p
(5) f_, 7(1-9*)%" P*, () dn= 33
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so that
" 2% m! :
(6) g(o)=(-1) n"—+—'l/' a:-k(e) n=m+2k
m 2 4
g0)=0 n=m+2k+1
dg
— 0)=0 n=m+ 2k
d¢
2®% m!

d
d_z(o)=2e%i(_1)“m ) nem+2k+1

et
m+3/2 "™k

Using these results and the parity of Ps, we obtain from (1) the
integral equations

(7) (m+%) Ps2(0, 6) (1~ £2)** [ (1-7")** cos(20% £&4) P (n, O)dy

=DM 2" mla? _ (6) Psk (£, 6) n=m+2k

8 m+3/2)

dPs™ .
g °n o, 0)(1—62)%"' f‘ (l—nz)é"sin(zazfn)Ps:(ﬂ,0)d1]
0

=Dk 2" m16% o™ _, (0) Ps™(& 6) n=m+2k+1

n,

Meixner (1951) gives also the integral relations

© [ exp(@i6%0én) L1200(1-0) (1~7?)( &2~ ¥} Ps™ (s, O)dy

= 2i"7" S™I(¢, 6) Ps” (o, 6)

(10) 7% (6) J_\ P 1" (cos x) 9 (kr) Ps™ (3, 6) dn

1) 67%% (n + m)!

- 22m-|

(a2 - 1)-%::: S:(j)(tf, 6) S:m(a, 6)

ml(n -~ m)!

In (10), xr and cos x have the same meaning as in 16.10(3). When j = 1,
(10) is valid for all & when j = 2, 3, 4 only for sufficiently large £, Both
relations can be established by remarking that their nuclei, as functions
of £ and 7, satisfy the partial differential equation of N in sec. 16.10
and hence the integrals, as functions of £, are ellipsoidal wave functions.
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In the case of (9), this wave function is bounded at £ = + 1 and hence
must be a multiple of S*"(£). The factor involved here may be deter-
mined by multiplying by zf 2 _1)"%#=both sides of (9), making £ 1 and
using (7), (8), and 16.12(1). In the case of (10), the asymptotic behavior
as £ » o determines the right-hand side.

Other integral formulas may be derived from some of the expansions
of earlier sections by using the orthogonal properties of Legendre func-
tions. For instance, it follows from 16.11(4), 16.9(11), and the ortho-
gonal property and normalization, 3.12(19)and (21), of Legendre functions
that

(11) f‘_“ Ps*(x, 6) P} (x)dx =0 if I - n is negative or odd

17a* (6) (+m)!
I+%  (-m)!

J! Psi(x, 0) P} (x)dx =

_ (- 1)'a::'r(0) (n + m)l

1+ % aomy  F lmm=2n r=0 L2 ..

Other integral formulas may be derived from expansions such as 16.10(2)
and its various special and limiting cases. Some important integrals may
also be obtained by giving special values to a, o, £ in (9) and (10), see
Meixner (1951).

From the series and integrals already obtained, anumber of expansions
in series of spheroidal wave functions, or products of such functions
follows. (11) may be thought of as determining the Fourier coefficients
in the expansion of P‘; (x) in a series of spheroidal wave functions,
and leads to the expansion

{~2r+}
__r_-i-_é TR (6) Ps‘l'_Zr(x, 9)

(12) P';(x):rzo D" on 2,
which may also be regarded as the inversion of 16.11(4). Similarly
(7>~(10) ‘may be interpreted as determining the Fourier coefficients in
the expansions of the nuclei of these integral relations in series of
spheroidal wave functions, see Meixner (1951). The expansions of plane,
spherical, and cylindrical waves in spheroidal waves were given by

Meixner (1944, 1951), Leitner and Spence (1950).
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ELLIPSOIDAL WAVE FUNCTIONS

16.14. Lamé’s wave equation
The differential equation

2

dzi\ +1kh ~l[sn(z, B)I? + 02k?[sn(z, k)I*} A=0
(see sec. 16.1.4) will be called the Jacobian form of Lamé’s wave
equation: it is sometimes also called the generalized Lame€ equation, or
the differential equation of ellipsoidal wave functions. If @ = 0, (1)
reduces to Lame’s equation 15.1(6). In this section, all elliptic functions
will have the same modulus %, and 15,1(6) shows that 0 < k£ < 1. Sec.
15.1.1 also shows that in ellipsoidal wave functions only those values
of z occur for which Im z = 0, or Im z = K/, or else Re z = K but at first
(1) will be considered for arbitrary complex values of z.

An algebraic form of Lamé’s wave equation may be obtained by the
change of variables

Q)

(2) (snz)’=x

which transforms (1) into

d2A 1(1 1 1 )dA B2k x4 ofx?

3) dx? +2 x * x=1 * x-k"2/) dx * 4x(x-1)(x~%"2) B

The Weierstrassian form of (1) may be obtained by the substitution
15.2(2), trigonometric forms by 15.2(4), combined with A = f(z)M where
f(z)is 1, snz, cnz, dnz, cnz dnz, snz dnz, snz cnz, or snz cnz dnz,
and an alternative algebraic form by 15.2(8) and other rational trans-
formations of (3).

Equation (3)has four singular points: x = 0, 1, £~2 are regular singular
points, each of them with exponents 0 and %, and x = = is an irregular
singular point. For the general theory of equations with irregular singular
points see Ince (1927, p. 417 ff.). Around any of the regular singular points
there are solutions in terms of power series, very much like in the case
of Heun’s equation (sec. 15,3); but no such convergent expansion exists
around the irregular singular point. Instead, there are formal expansions
of the form

@) e tiwé § cnf'z_"
(4]
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where &= x%, (x = 1)¥, or (x — £™2)% (subnormal solutions, Ince 1927,
sec. 17.53). Although these formal series are divergent, they represent
asymptotically, as x » « in certain sectors, solutions of (3).

Equation (3) can also be considered, in several ways, as a confluent
form of an equation of the Fuchsian class. The point of departure is
either an equation with five regular singularities (Ince 1927, sec. 15.4)
or else an equation with six elementary singularities (Ince 1927, p. 592).

From the general theory of differential equations with doubly-periodic
coefficients (Ince 1937, p. 375fF., Poole 1936, p. 170f.) it follows that
(1) has a solution of the form

(&) .
(x

where a and p are constants which depend on £, K l, o, and P (z) is a
doubly-periodic function with periods 2K, 2;K ", [In writing down (5), we
used the relation 13.20(1) between the sigma function and' theta func-
tions.] Clearly,

(5) u,(z)=e* ———

1
(6) uo(—2)=e“‘“‘—-—- P(-z)

is also a solution, and it is seen from (5), (6) and Table 8 in sec. 13.19
that a is determined up to its sign, and integer multiples of 2K and
2;K’. Once one of the possible values of @ has been chosen, p is deter-
mined.

In general u (z) and u (~2) are linearly independent, and the general
solution of (1) is a linear combination of (5) and (6). The only exception
arises when u (z)= iuo(—z), or

82#16 Z+a zZ—-Qa
T\ 2K 2K

Putting z = a, we see from Table 9 of sec. 13.19 that a/K is a zero of
6,(v) and hence a=mK + nK’ in this case, Putting z = K we see from
Table 8 of sec. 13.19 that e2 _ + 1 and hence 2Ky = n’ni in this
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case, and a brief computation shows that n = n*, In any event, it follows
that in the exceptional case u is either an even or an odd function of z,
uy(z + 2K) = tu (2), u (2 + 2K%) = tu(2) so that 2K and 2K i are
periods or half-periods of u(z). In this exceptional case a solution of
the second (or third)kind must be constructed in order to obtain a general
solution of (1).

According to sec. 16.1.4, the boundary conditions for B (8) and C (y)
in the case of ellipsoidal wave functions are the same as 1n the case of
ellipsoidal harmonics, and by sec. 15.1.] this means that the only case
of interest from the point of view of ellipsoidal wave functions is the
case when (1) possesses a solution which is a doubly-periodic function
of z, with periods 4K and 4K ", This is precisely the exceptional case
of the last paragraph. The doubly-periodic solution isu ,(2), and is called
a Lamé wave function of the first kind. There are two condltlons for the
existence of such a solution, one is a condition on a, the other on p.
Given o [= (a2 — b2)¥ « in the case of the wave equation], these two
conditions determine characteristic values of both & and [.

From now on we assume that  is fixed in (1), and % and [ have
characteristic values. As @ » 0, the characteristic values of { approach
l, = n(n + 1% where n = 0, 1, «e. , to each ln there belong 2n + 1 char-
acteristic values of &, these being the characteristic values of £ belong-
ing to Lamé polynomials (see sec. 15.1.1). This shows that for @ = 0
the characteristic values of / are degenerate (or multiple): this degen-
eracy disappears when @ # 0 (see also Strutt 1932, p. 61).

I & and [ have characteristic values, then uo(z) is a Lamé wave
function of the first kind. We have seen above that in this case uo(—z)
and u,(z) are linearly dependent, i.e., u, is either an even or an odd
function of z, and it may be proved as in sections 15.5.1 and 16,4 that
u, is alsoaneven or an odd function of z—-K, and likewise of z—- K ~K1.
According to their parity at the points 0, K, K + K7, Lamé wave func-
tions of the first kind may be divided in eight classes, and functions
within the same class may be characterized by the number of their zeros
on the intervals (0, K), (K, K + Ki). There does not appear to be a
standard definition of these functions, nor is there a well-developed
notation.

As in sections 15.5 and 16.4, the properties of Lamé wave func-
tions at z = 0, K, K + i K’ may be used to set up a number of Sturm-
Liouville problems for the intervals (0, K) and (K, K + K" i). As in
sec. 15,5, each Lamé wave function is a common characteristic func-
tion of two Sturm-Liouville problems, one for each of the two intervals
(0, K) and (K, K + K”i). For each of these two Sturm-Liouville prob-
lems one obtains characteristic curves, that is characteristic values
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of h in their dependenceon /, and the characteristic values of 4 and [ are
determined by the intersections of these curves in the k,l-plane. Ortho-
gonal properties of Lamé wave functions follow from these Sturm-Liouville
problems in conjunction with the symmetry properties at the points 0, K,
K+ K",

No integral equations seem to be known for Lamé wave functions but
Moglich (1927) has derived integral equations for ellipsoidal surface
wave functions. From 16.1(21), (22) it is seen that

(7) ¥(B,y)=B(BE)C(y)
satisfies the partial differential equations
a*y *y
2 _ -1 (9 9%
(8) [(sn B)? ~(sn y)?] (8,82 ayz)
+iw2k?[(sn B)* + (sny)?]1-1} ¥ =0

Solutions of (8) which are regular on the surface of an ellipsoid (sec.
15.1.1) will be called ellipsoidal surface wave functions. Transformed
to the coordinates ¢, & introduced by 15.5(45) we shall abbreviate (8)

as
(9) L9,¢T=0. .

Now consider
(10) explix(x sin@’cos '+ y sin 0’ sin¢d "+ z cos 6°)]

which represents, for fixed 0 ¢ | a plane wave, and hence is a solution
of AW + k2W = 0. Using 15.1(8) and 15.5(45), and putting w=(a?~b2)%x,
(10) becomes

(11) K(6, ¢; 6%, ¢ = exp[iwéc sna sinf sinf‘cos¢ cos g’

+i 7 cna sin @ sin §’sin ¢ siﬁ¢'+i dna cosf cosG')]

Méglich now shows that for any fixed a, K satisfies

(12) (La'¢ - Le"¢')K =*O

and deduces by a process similar to that employed in sections 15.5.3
and 16.3 that for each fixed a the characteristic functions of the integral
equation
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(13) S STTR6, ¢5 0% 67 U (0% ¢ ) sin0°d0’dg’= AW (6, §)

are ellipsoidal surface wave functions expressed in terms of the coordi-
nates 0, ¢ of sec. 15.5(45).

Very little is known about the actual construction of Lamé wave
functions. Ellipsoidal surface wave functions reduce to ellipsoidal sur-
face harmonics as w » 0, and this suggests an expansion of ellipsoidal
surface wave functions in a series of products of Lamé functions (i.e.,
in a series of ellipsoidal surfacec harmonics). For small values of w the
expansion would be expected to converge rapidly (Strutt 1932, p. 60£.).

Msglich (1927) obtained a number of expansions of Lam¢ wave func-
tions by expanding the nucleus of the integral equation (13) in various
ways, and allotting particular values (mostly 0, + K, t K + K%) to a
The most noteworthy of his results are expansions of ellipsoidal surface
wave functions in series of spherical surface harmonics, expansions of
Lamé wave functions in series of Legendre functions of variablek *~'dnz
(other possible variables being snz, k snz, enz, ikk ™' cnz, and dnz),
and expansions of Lamé wave functions in series of spherical Bessel
functions 16.9(6). These latter series have the advantage of exhibiting
the asymptotic behavior of Lame wave functions as z » iK%

Lame’ wave functions of the second and third kinds may be obtained
by replacing !,b( ) in Maglich’s expansions in series of Bessel functions
by !,01(;’ ) j=2,3, 4 (Moglich has the series with !,0“’ which he calls
1ntegra1s of the second kmd) For ellipsoidal wave functlons, B and C
in sec. 16.1.4 are Lamé wave functions of the first kind, while 4 is a
Lame wave function of the first or the third kind according as the ellip-
soidal wave function is constructed for the interior or exterior of an
ellipsoid.

For further information on ellipsoidal wave functions see Malurkar

(1935) and Méglich (1927).
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CHAPTER XVII
AN INTRODUCTION TO THE FUNCTIONS OF NUMBER THEORY

Preliminary Remarks. The purpose of this Chapter is merely to give
a first information about the more common functions of number theory and
to indicate where more results may be found. No comprehensive survey
has been attempted, and in particular the whole theory of algebraic num-
bers has been omitted, as have been all topics which require the defi-
nition of a group, or a valuation, or other algebraic concepts,

In order to avoid too many references in the text, a list is given here
of those standard works of reference which should be consulted for infor-
mation on the topic of each individual section, For the whole of Chapter
17, L. E, Dickson (1919-1923) is the most important source. For the
1nd1v1dual sections consult:

17J1. L. E. Dickson, 1919, vol. I; Hardy and Wright, 1938, 1945,

17.2.  MacMahon, 1915, 1916; Hardy and Wright, 1938, 1945,

17,3, L. E. Dickson, 1919-1923.

17,5,  Landau, 1927, vol. L.

17.6.  Landau, 1927, vol. I; Hardy and Wright, 1938, 1945.

17.7. Landau, 1927, vol. II; Titchmarsh, 1930, 1951; Ingham, 1932.

17.8. Landau, 1927, vol. I, 1909, vol. 1.

17,10, Landau, 1927, vol. Il.

17.1. Elementary functions of number theory generated by Riemann’s’
zeta function

17.1.1. Notations and definitions
The following notations will be used throughout this Chapter:

lL,mn denote positive integers (unless another definition is
- given),

mln . means that m divides n.

m)f n means that m is not a divisor of =,
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(m, n)

s, O

din din

b

(m, n)=1

_P, Pys Py
qs 9y 9,
3, I
P P

_ a'! “z v
(]_) n=p, p, ...pv

SPECIAL FUNCTIONS 17.1.1

denotes the highest common divisor of m and n. If
(m, n) = 1, we say that m is prime to n, or that m and n
are coprime.

sum or product taken over all (positive) divisors d of ».

sum taken over all m which are prime to n.

denote prime numbers, i.e., numbers > 1 which have no
divisor except unity and the number itself,

the sum or the product taken over all prime numbers
p = 2, 3, 5, 7, 11, s o

a

is the standard form of n written as a product of powers of different prime
numbers. Except when n = 1, we assume that

(2) a1 >0’ aZ >0, "ee 9 av>0.

vin)
¢(n)

¢, (n)
J,(n)

d(n)= 12 1
in
g, @)

'_(u.n)=1. 1<aln

denotes the number of different primes dividing n;
v(1) =0,

denotes Euler’s function. Tt is the number of positive
integers m which are prime to, and do not exceed n.

m*. ¢, ()= p@).

for k=1, 2, 3, «as » denotes Jordan’s function. It is the
number of different sets of £ (equal or distinct) positive
integers <nwhose highest common divisor is prime to n.
A common notation for J,(n) is % (n) or kth totient of n.

is the number of divisors of n.
for £ = 2, 3, 4, «es , denotes the number of ways of ex-
pressing n as the product of £ different factors. Expres-

sions in which the order of factors is different are re-
garded as distinct.

) ag,(n)= S d*
din

denotes the sum of the kth powers of the divisors of n, (including 1 and

n).

@) d@)=d,@)=0,().

We shall write o (1) for o, (n).
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The following definitions refer to the standard form (1) of n.

Al) denotes Liouville’s function. I n has the standard form
. + (XX} +
(1), AMD=1and M) = <D ¥,
uln) denotes Mobius’ function, u(l)=1, u(n) = 1)V if

a,=a,=++=a,=1, Otherwise p(n) =0,
A(n) denotes zero unless n = p® is a power of a prime. In
this case, A(n) = log p.
Multiplicative functions. A function f(n) which is defined for all
positive integers n and for which

5) f)fm)=fam) i (,m)=1,

is called multiplicative. If f(n) f(m) = f(mn) for all m, n then f(n) is
called completely multiplicative. The terms factorable and distributive
are also used.

The functions which have been defined in this section are also called
arithmetical functions, this name being applied to any function f(r)
defined for all positive integers n.

17.1.2. Explicit expressions and generating functions

¥ n is written in the standard form (1), then ¢ (1) = 1, Jk(l) =1, and
forn>1

©) ¢)=n(l-pNA-p;"N - Q-p"
@) T ) =n*(1-p (A= p;H) e L -p2h
(8 dw)=(a,+ Dla,+1) - (a,+1)

e+l kla, +1) 1

1
© o,m=— Fx

pE-1 pr-1

For a multiplicative function f(r) there is the fundamental identity

S f)=T+fp)+f(p2) + ]
n=1 p
valid if the series on the left is absolutely convergent. In this case the
product on the right is also absolutely convergent, and it is known as the
Euler product of the series, If f(r) is completely multiplicative, then
1+ f(p)+ f(p?) + ++ is a geometric progression, and we have

s f@)=T[1-fE)]" f(n) completely multiplicative,
n=1 p
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Applying the fundamental identity to the completely multiplicative
function n”* and to some multiplicative functions related to it, we obtain
a number of identities involving Riemann’s zeta function. The zeta
function is discussed in sec. 17,7, and many of the identities below are
obtained in this manner.

Hs)= S amt=M(1-p~9)" Res>1
n=1 P
10 ——= § uwn Res>1
éTs)_ gt p\n)n €es
1D C(Z;:) = ’E' é@)n~s Res>2
44((2:;)= n§! Ar)n™* Res>1
sy = -
52s) = HE' |u(nr)[n Res>1
KO & e
(12) C(2—s)= HE' 2 n Res>1
(13) [¢(s)k= 3 d, () n"s Res>1, £=2,3, .
n=1
[C(S)]4 0 2 -
= n $ 1
(14) 2@9) "51 [d@)]*n Res >
(15) ¢(s) ¢(s = k)= izoiak(n) n”* Res >max(1l,Re b + 1)
£(s) ¢s—a) ¢(s=-b) L(s—a~-b) .
(16) 7@s—a—b) ="§'aa(n)ab(n)n
Re s >max[l,Rea+1, Reb+1, Re(a+b)+1]
L 1+p~° o0 -
(17) [L* P, _, (1 __s) = 32 M, @™ Res>1, k>2
p - P n=1

where P denotes Legendre’s polynomial (defined in sec. 36.2),

&) - 5 Ay n~%,

(18) - £(s) n=1
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where the prime indicates differentiation with respect to s. Relations
(14), (16) were discovered by Ramanujan, and (17) was proved by Titch-
marsh; (16) has been generalized by Chowla (1928).

The functions on the left-hand side of (10), (11), (12), (13), (14), (15),
(16), (17), (18), may be considered as generating functions of the coeffi-
cients of n7° on the right-hand side because of the following lemma:

LEMMA: If X c, n~°=0 for all real s > s ., and if the series con-

n=1
verges absolutely for s =s, then ¢ =0 forn=1,2,3, «« (see Hardy
and Wright, 1945, sec. 17.1).

17.13. Relations and properties
The functions ¢(n), p(n), J ,(n) are multiplicative and

19 = AW@=logn,

The functions ¢(n) and u(n) are connected by Mébius’ inversion
formula (also called Dedekind-Liouville formula). Let f(r) be defined for
all n= 1, 2, 3, v 9 and let

(20) gn) = dlE f(d).
Then .

@D fo)= 3 4@ (})

and conversely. In particular:

n
@) n= 3 ) $)= ) = u@).

din

Mébius’ inversion formula is a consequence of

0if n>1
23) X =
@) 2@ {1 if n=1.

It ean also be written in the form:

(24) flx) = §1 p(m) m™* F (mx),

if
. (25) Flx)= :Eoim-sf(mx)
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where f(x) is defined for all x>0, |flx)|=0(x so) as x->oo, and Res>s +2.

Another inversion formula (see Hardy and Wright, 1945, Chap. 16) can
be stated by saying that each of the following equations is a consequence
of the other

A L)
cw= Y F(f?) Fe= ) p(n)cG)

where x is a real positive variable,[x] is the largest integer < x and
where an empty sum (e.g., the first one if x < 1) is interpreted as zero.
I F (x) = 1 for all x, this gives the formula of E, Meissel

Z p(m) [’i] =1,
n=1 m

The Mgbius inversion formula has beer generalized (see Cesdro, 1887;
H, F. Baker, 1889; Gegenbauer, 1893; E, T. Bell, 1926) and it has been
used for a definition of an arithmetical integration and differentiation,
g (n) in (20) being called the ““integral’’ of f(rn) (see L. E. Dickson, 1919,
vol, I, Chap. 14), Another connection between p and ¢ was stated by
Rademacher and proved by R. Brauer (1926):

d m m
(26) ¢(m) — (—) = p(m) du (—) .
dln,(zd,n)=1 ¢(d) d dlg.n) d

For the ¢ function we have

0 if niseven

(27) dz (—1)"/d¢(d)={
in

-n if nis odd,

r~1
(28) li (7 {1'-'+2"'+..-+ ['%:l }: 174274 et n”
=1

where 7 = 1, 2, 3, ... , and where [x] denotes the largest integer < x.
(29 = (/d) ¢,(d)=1F+ 28+ eco 4 n* E=0,1,2 e
30) &,()=%ng) n>1
BD 3 @/dP $,@ =1 X w/d) g(@N*

3

"2

(32) lim {iz [ ¢+ ¢(2)+ s + ¢ (n) ]} -
n-»co n
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(33) liminf (¢(n) log logn> =e 7Y ’
n

n—-» oo

where y is Euler’s constant. Davenport (1932) proved that for n »

a

n
Paln) = a+l

{(n) + O a>0

and obtained analogous results for a < 0.
The function p(n) can be expressed in the form

(34) pln)= = g2min/n
(m,n)=1

This means that p(n) is the sum of the primitive ntB roots of unity, or
the sum of those numbers, p, for which p"=1but p® # 1ifl <m <n.
These numbers, p, are the zeros of a polynomial

(35) £ (x)= dn (xd - 1)s00/d)
In

of degree ¢ (n).
For the following results see Landau (1927, vol. 2, Chap. 7), and

Titchmarsh (1951). Let
(36) Mn)= p(1) + p(2) + +ov + pln)

Then for n » o

(37) Mm)=0 [n exp (A logn >]
log logn

where A is a real positive constant. A consequence of this result is

is convergent for all s for which Re s > %
For A(n), the analogue of (38) is

o0

AG) -1
(40) Z-%:—.‘Zy,

n=1

where y denotes Euler’s constant defined in 1.l (4). See also Kienast
(1926).
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For the following account of the properties of o(n) and of d (n) see
Hardy-Wright (1945, Chap. 18), We have

o(n) = O (nlog logn)
1
(1) + g(2) + +e« + o(n) BT 7% n* + O(nlog logn).

There is a positive constant 4 such that

<a(n)qS(n)

A <1,

n? -
limsup {0 (r) n7%} = {(a) a>1
lim sup o) =e7,

ns00 n loglogn

(see Gronwall, 1913). For the case where —1 < a <0 see Bellmann (1950).
Vaidyanathaswamy (1930, 1931) proved that

m n
aulmn)= F (7) ”k(‘d‘) 2" u@,

and G. N. Watson (1935) showed that o, ,, (1) is divisible by any fixed
integer k for almost all values of n. The term ‘‘almost all’’ is defined at
the beginning of sec. 172,

If ¢ > 0 is arbitrary and fixed, then

dn)< 2 (1+€)log n/log log n

for all sufficiently large r, and
"d(n)>90-€)log n/log ig n

for an infinity of values of n, Forn - =

d(1)+d(2)+ - +d@)=nlogn+ 2y - Dn+0®'?)

where y is Euler’s constant. For d (d(n)) and related questions see
Ramanujan (1915).
The asymptotic behavior of

dfD)+d (2) + e +d,(0)

for large n has been investigated by Titchmarsh (1938).
K Q(rn) denotes the number of integers m, 1 < m < n which are not
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divisible by the square of an integer > 1, then for n » = we have

Q@) =6n/a*+ O@*),

General theorems on arithmetical functions. Bellmann and Shapiro
(1948) proved that the functions n, ¢ (n), 0(n), d (n), 2¥(n), p(n) arealge-
braically independent.

Schoenberg investigated the asymptotic properties of classes of arith-
metical functions. For investigations of additive arithmetical functions
see Erdés and Wintner (1939). For other results see E. T, Bell (1930):
D. H, Lehmer (1931).

17.2. Partitions

17.2.1. Notations and definitions
We shall write
(1) a=b (modnr)
if a — b is an integer which is divisible by n.
Let {aV}, v=1,2,38, «,be asetS of positive integers and let N (x)
be the number of those a_, which do not exceed x. Suppose that
2 lim s"'"N@x)=a

x> 0

exists. If a = 0, we shall say that almost no integer n belongs to S. If
a = 1, we shall say that almos¢ all integers n belong to S,
The number of decompositions

(3) n:m‘+mz+...+mk k=1,2,3,'n

of n into a sum of any number of positive integers m, , m,, «., m, where
(4) m2m>e2m,

is called the number of partitions of n and is denoted by p(n), I £ is
restricted so that

(5) k<l

we write p l(n) for the number of partitions of n into at most I parts, If m,
is also restricted, m, <N, we write Py (n) for the number of partitions
of n into at most ! parts none of which exceeds N, The number of parti-
tions of n into an even number of unequal parts shall be denoted by E ()
and that into an odd number of unequal parts by U (n).
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17.2.2. Partitions and generating functions

If P(n) is the number of partitions of n of a certain type, and if, for
sufficiently small |x|, the infinite series

6 S PGr)x"=F),

n=1
converges, then the generating function F (xj is said to enumerate P (n).
This is meant to include the case where F (0) £ 0; then P (0) shall be
defined to be equal to F (0). We have

@ 3 p(n)x"=kﬁ {1~ g} x| <1
=1

n=0
@ 5 p,m)x"= 1 Q-xhH |%| < 1.
n=0 k=1

Relation (8) expresses the fact that p, (r) is also the number of partitions
of n into parts which do not exceed m. It can also be shown that the
number of partitions of n into precisely m parts equals the number of
partitions of n into parts, the largest of which is precisely m.

Many theorems on partitions may be stated in the form of an identity
for the enumerating function F (x). These identities are usually of the
following type: F(x) is expressed as both an infinite product and a
series; both the product and each term of the series can be expanded in a
series of powers of x. Examples:

1 o0
= 3 x",
l-x n=o0

© 1 (1+x2)=
k=o0

(10) I (Q+x%= II {1 -x2t"4",
k=1 k=1

Euler’s identities:
2
oo xk
k; Q-x)QA~x4 e QA -2’

(11) il 1+x2")=1+
k=1

o \ =) xk(k'l-l)
H 1 2k = 1 ’
. (12) k=l( +xfl=1+ ;I Q-2DA -2 . Q-2x%)

00 k._‘=
s I1,0-=3 1*,2, L-2(1-29 = 1-2Y

’
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2
=

—x)2 (1-xP2°

T (1 — %)t =
o I a-=5 “,2, a-=ra

(15) il (1-x8)= 5 (1) g%= Ga+1),
k=1
Jacobi’s identities:

(16) ki’i H1 =221+ 2271 22)(1 + 2271 272)}
=1

=1+ S @) T g e 2 £0,

an ;ﬁ{(l—xz”")z(l—x”‘)}= S pram

n=-—00

ao [T () - 5, o0

(19) kﬁ 1-x%°= 3 (__1)n (@n+1) gEnlatt)
=1

n=20

(20) kﬁ’ (1 = xSE 1) (1 = xSk H4) (1 — 5 SEFS)} = °E° (- 1)= xHalom+3)
=0

@) f Q-2 -2 Q-2 = § (1 gHalmn,
k=0 m=—00
Rogers-Ramanujan identities:

(22) kﬁ H(1 — g %) (1 g Se*4)=1
=0

2
m

< x
+.§___:, Q-2)A-%3) .. Q~%")

@) 1= Q2%
=0

o0 xn(n+l)

=1+.Z=, 1-x)1~x2) e (1—x2)

The identities (17) to (22) and also (15) follow from Jacobi’s formula
(16) for z = €', x = ¢'™"; the right-hand side of (16) becomes the
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Fourier expansion of 0, (u|7); and the left-hand side is the expansion
of 0, in an infinite product, where 6, is one of the elliptic theta functions
in the usual notation (see Chap. 13), Asurvey on the connection hetween
partition problems and modular forms was given by Rademacher (1940).

The formulas (9)to (23) can be stated in the form of partition theorems.,
Examples of such theorems are:

Formula (9) shows that every n can be expressed in exactly one way
as a sum of different powers of 2,

Formula (10) states the fact that the number of partitions of n into
unequal parts is equal to the number of its partitions into odd parts.

Formula (15) shows that

E@~-U@=D* i n=%k@k+1), k=1,2,3, we,m
E@)-U{®)=0 all othern,
where E, U are defined in sec. 17,2,1,

The general term in the sum on the right-hand side in (22) enumerates
the number of partitions of n ~ m? into at most m parts. Since

m2=1+3+ i 2m—1,
we find that it enumerates also the number of partitions of n into at most
m parts of minimal difference 2, Therefore, we find that (22)is equivalent
to the fact that the number of partitions of n into parts of the form 5m + 1
and 5m + 4 is equal to the number of partitions of n into parts with
minimal difference 2,

For a corresponding theorem about the number of partitions into parts
of the type 6m + 1, 6m + 5 see Schur (1926); an asymptotic formula for
this number was given by Niven (1940).

For the non-existence of certain identities in the theory of partitions

see D, H. Lehmer (1946) and Alder (1948).

17.2.3. Congruence properties
Ramanujan (1919, 1921) conjectured and Darling (1921), Mordell (1922)
proved that
(24) pGrn+4)=0  (mod 5),
25) p(Tn+5)=0 (mod 7),
26) p(Qln +6)=0 (mod 11).

These statements can be derived from certain identities, the first two of
which are ;
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hnd (l_xsk)s

27 = p(Grn+4)x"=5 T

n=20 b=t

= TA-x™? T =™
28) X p(Tn+5)x"=7 — + 49 —_—
(28) n=op " ¥ k=‘(l-—xk)4 xk=‘(]_—xk)8

There exists a similar identity for the enumerating function of p (13n + 6)

which was discovered by Rademacher and Zuckerman (1939). But not all

the terms on the right-hand side of this identity are divisible by 13,
Watson (1938) proved that

(29) p(r) =0 (mod 7%)

if n=7%n', where @', 7) =1, and b = 2, 3, 4, w.,and if 24n=1

(mod 72~2), For a survey of results of this type see Rademacher (1940).
D. H, Lehmer (1936, 1938) proved

(30) p(599)=0 (mod 5%,

(81) p(721)=0  (mod 113),

(32) p(14031)=0 (mod 11%),

and hereby showed that certain conjectures of Ramanujan are justified

in some special cases, The number p (14031) has 127 digits and was
computed by using the asymptotic formulas of Hardy and Ramanujan

(see sec. 17.2,4) for p ().

17.2.4. Asymptotic formulas and related topics
Hardy and Ramanujan (1916, 1918) showed that

(33) lim 4n 3% p(n) exp[-7(2n/3)%]=1.
n-oo

They also obtained an asymptotic series for p (n) up to terms of the
order of magnitude O (n™*); since p (n) is an integer, this result makes it
possible to compute p (n) from the asymptotic expansion exactly if n is
large enough (D. H. Lehmer, 1938). For simplified proofs see also Knopp
and Schur (1925). D. H. Lehmer (1937) showed that the Hardy-Ramanujan
series is divergent, Rademacher (1937 a, 1937b, 1943) obtained a remark-
able convergent series for.p (n), namely,

1 o d 1
= K -_—
p(n)_Z%n kZ‘Ak(n)k dn fi (n 24)’

where
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%
fr)= n~% sinh |:—;—:— (—il ]
’ P« e [he] 1
o 3 wfornien § 11
k E\Ek k 2

(R, k)=1
1< <k

A summation formula for p (r) was given by Atkinson (1939).

Husimi (1938) studied integral representations for p_(n).

Tricomi (1928) investigated the asymptotic behavior of p,; , (r), and
Brigham (1950), general asymptotic formulas for partition functions.

For the whole of this subsection see also Rademacher (1940).

17.3. Representations as a sum of squares

General remarks. The problem of the representation of an integer
as a sum of squares is a special case of the problem of its repres-
entations by a (positive definite) quadratic form. For this latter problem
see Siegel (1935, 1936, 1937) and Minkowski (1911), The representation
of n as a sum of squares can also be considered as a special case of
the problem of the representation as a sum of a fixed number of At
powers. For an account of the results in this field see Landau (1927,
vol. H)'

The evaluation (or approximate evaluation) of the sum

3 r, (n)

nlz

is the problem of counting lattice-points in a k-dimensional sphere. For
the case k = 2, or for the general theory of lattice-points in two-dimen-
sional space, consult Landau (1927, vol, II), and sec. 17.10.

17.3.1. Definitions and notations

Let k£ > 2 be a fixed integer, Then 7, (z) shall denote the number of
representations of n as a sum of £ squares of integers,

(D) n=l2+12+ews+l]

where , e, lk need not be different from each other and may be neg-
ative or zero. Two representations shall be considered different if they
involve the same numbers [, v,/ in a different order. For example we

have r,(2)=4, since 2=1%+1%2=(-1)*+1%=1%+(~1)?=(-1)*+(~1)%, We
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shall need the sums of powers of certain divisors of n. Let d* d** d’,
d",d,, d_, d,, d,, d,, d, be any (positive) divisors of n which satisfy
the conditions

@ d*=1  (mod 4), d**=3  (mod 4),
(3) n/d' =1 (mod 4), n/d" =3 (mod 4),
4) d,=0 (mod2), d_=1 (mod 2),
(5) d,=0 (mod 2), n/d, =0 (mod 2),

d,=1 (mod 2), n/d,=1 (mod 2),
6) d,=0 (mod 2), n/d,=1 (mod2),

d,=1 (mod2), n/d,=0 (mod 2),
and let

M E, @)=Sd™* -3 dm,

® E@)=Sd'*-Zd"™,

9 A,G)=3d*

10) £, ()= d*-Zd¥,

(1) ¢,)=Sdf+3d}-3d* -3 dk,

We shall also need the coefficients of the expansion of certain pro-
ducts of elliptic theta functions in a series of powers. Let 6 (u, 1)
[v=1,2,3,4; 6 (u, D=0 (u, 7)] denote the four elliptic theta functlons
(see Chap. 13). We shall write 6, for 6,0, 7) and g for e 7T, Then we

have

(12) 6,= n ~q®) (1-g% )2,

(13) 6,=2¢% kﬁ (1-¢%)(1+q%)?,
=1 .

(14) 6, = k§1 1-qg2) (1-g%* )2,

Using these infinite products for 6,, 6,, 0, we define the functions
Q(m), W (n), G(m), ©(m) by their generating functions
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(15) 16 3 Q(m) g™ =06%0%6°,

mn=20

(16) 16 3 W(m)g® =6% 98 6%,

n=0

(17 16 3 ©(m)g= =02 0104,

n=20

(18) 16 3 G(m)q™ =02 6% 65(6% - 69

m=0

173.2. Formulas forr, (n)

Representation as a sum of an even number of squares. Glaisher
(1907) has given a survey of the known formulas for r,,n) for 21 = 2, 4,
ees s 18, His table has been supplemented by Ramanujan (1918) who gave
formulas forr, , r,,, 7, « For 2/ > 12, these formulas involve functions
of the type of Q(n), W ), ® (), G (n) which do not have a number-theo-
retical significance, (Formulas which involve only expressions of number-
theoretical significance have been developed by Boulyguine (see Dickson,
1939, vol. II, p. 317). For 2/ = 10 and for 2/ = 18, the formulas in the
table by Glaisher involve also sums which are taken over powers of
certain complex divisors of r, a complex divisor of n being a number
a + ib, where a, b are integersand such that (@ + 5%)|n. These two
cases being omitted, Glaisher’s table reads {with the notations of sec.

17.3.1):
(19) r,(n) = 4Eo(n),

(20) r, ()= (=1)"""' 8¢ (n),
(21) r (n)=414E, @) - E, ()},

(22) r,(n) = D16 ¢, (),
(23) r,,@n)=-8 &, (),
(24) r,,2n+1)=81A,(2n+1)+2QQ2n+ 1},

4
(25) 7, ) =164 £} () = E ;) + 364W )},

32
(26) 1 (n) = 1)1 i {CT(n-)+ 16 O(n)}.
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For a formula for r,, see sec. 17.4. The formula for r, (n) is equivalent

to an identity in the theory of elliptic theta functions, viz.,

n

00 22 b q
27) 02={ 3 ¢"}=1+4
( ) 3 ¥n=—eoq } * nZ' 1+q2n

_ 3 (4u=~3)n_ , (4n=1)n
—1+4n'.2=|¥q q }r
As a consequence of (19) we rave the following criterion. Let & (p)
be the highest power of the prime number p which divides n. A necessary
and sufficient condition for n to have a representation as a sum of two
squares is that % (p) be even whenever p = 3 (mod 4).
Formula (20) is equivalent to Jacobi’s celebrated identity

-3 2 d 0
28) 62=f{ ¥ g™ }'=-4g—| _2>
(28) 63 o 7 } qdq (loge4

-1+8 3 {ng™ — 4ng*=i,
ne=1

This may also be stated in the following way: The number of representa-
tions of n as a sum of four squares is eight times the sum of those
divisors of n which are not divisible by four. For an odd n, this is also
eight times (and for an even n, it is 24 times)the sum of the odd divisars
of n. This implies Lagrange’s theorem: Every integer n > 0 has a repre-
sentation as a sum of four squares. It also shows that r, (n)>0 for all n
and k= 4, 5, 6, ese o

Representation as a sum of an odd number of squares. This problem
is more complicated than the problem of representation as a sum of an
even number of squares. Now n can be represented as a sum of three
squares if and only if, n is not of the form

(29) 4°(86+17) Gy b=0,1,2, een s
For odd values of n, Eisenstein (1847) showed that

< l
(30) ry(dm +1)=24 ZZI (4m+1),

2z +1 !

l=1
l
where (l:) is the Legendre-Jacobi symbol defined in sec. 17,5.
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If m is odd and not divisible by the square of a prime number, Eisen-
stein (1847) announced, and Smith (1894), Minkowski (1911) proved that

(32) r (n)=-80s, -800, -1120, 80s
according as

n= 1, 39 59 7 (mOd 8)
Using the Legendre-Jacobi symbol of sec. 17,5, we have

¥n=% %n-

=3 u(t). o

u=1 u= l

Hardy (1920) proved that the number r, 5 () of primitive representations

of n as a sum of five squares (i.e., of representatlons for which the high-
est common divisor of the five squares is unity) is

—\_C - 3 n : -2

l=o0

where
¢ =80, 160, 112
according as
n=0,,4, n=2,36,7, 2=5 (mod 8).
For more general results, in particular for r (n), see Mordell (1919b),
Stanley (1927), Hardy (1918, 1920, 1927). _
Hardy and Ramanujan (1918) have found asymptotic expansions for
r, @) which are exact when & = 3, 4, 5, 6, 7, 8.

17 4. Ramanujan’s function

We define Ramanujan’s function, 7(n), forn =1, 2, 3, ..., by
W £ w)xt=x kﬁ (1 k)2
n=1 =1

Ramanujan’s function is connected with Tos (n) (defined in sec, 17.3.1) by

691

(2) 1 (2n) = 0,,(20) - 20}, (n) =8 [259 (28) +512 7(n)]

691
3) T 2+ 1)=0,,(2n + 1)+ 20727(2n + 1)

where o, (m) is the sum of the elevenths powers of the divisors of m and
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01,(m) the sum of the eleventh powers of its odd divisors; see Ramanujan
(1916), Hardy (1927).

Ramanujan conjectured, and Mordell (1919b) proved that r(n) is a
multiplicative function (in the sense of sec. 17,1,1) and that

@ = r@n T =T[l-rp)p~t+p"2]""
n=1 p
where Re s > 13/2, and the product is taken over all prime numbers p.
Mordell also showed that for all p
(5) rp®)=r@)r*"N=p" (p*7? m=2,3,4, e
It follows from (5) that 7(p™) is a polynomial in 7(p) and p''; this poly-
nomial has been determined by Sengupta (1948). For an expansion of
S r(n) & -n)*

n>~=z

in aseries involving Bessel functions see Wilton (1929)and sec.17,11.2;
for other series involving r(n) see van der Blij (1948).

Ramanujan conjectured and Watson (1935) proved that r(n) is divisible
by 691 for almost all n (in the sense defined at the beginning of sec.
17.2). This is true although, as Ramanujan showed, r(n) is not divisible
by 691 if -

1 < n < 5000 n £1381.
Walfisz (1938) proved that for almost all n, r(n) is divisible by

2%.32.52.7.691.

For congruence properties of r(n) consult also Wilton (1929), Bambah and
Chowla (1947). D. H. Lehmer showed that r(r) £ 0 if

n < 214928640000.

Mordell (1917) proved a formula analogous to (4) for the coefficients
f(n) of the series

© t 5 Onglm s F 1) gn,
n= n=-1

this formula being

(7) §, fR)n~s=T {1-2f(p)p~*+p5 2471,
n= P

This result was also conjectured by Ramanujan. For other results and
generalizations see Rankin (1939).
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17.5. The Legendre - Jacobi symbol

In this section p, p;, p,, +ss , denote odd prime numbers and z, v

denote odd positive integers.
We shall say thatthe integer & is a quadratic residue (mod »)if the con-

gruence
(1) x2=k (mod n)

has an integer solution x. We define the Legendre-Jacobi symbol (5)
forall£=0, %1, £2, ..., and for all u =1, 3, 5, 7, «es , as follows, If

u =p is an odd prime,
k :

(2) (-— =1 if p/)k andk is a quadratic residue (mod p),
p
k

3) (—) =-1 if plk and k is not a guadratic residue (mod p),
p

k
(4) (—)=0 if plk.
p

Hu=p,p, - p,is aproduct of r odd prime numbers (not necessarily

different from each other), we define

o ()-G) GG

If u, v are odd positive integers and (u, v) = 1, we have

6) 'i)(ﬂ) C (1) %) Gum)
v u

@ Gi)=@nm%
u

(8) (3) = (@18,

u

Equations (6), (7), (8) are called the quadratic law of reciprocity and its
first and second supplementary theorems. In particular (7), (8), state that
-1 is a quadratic residue (mod p) if and only if p = 1 (mod 4), and 2 is a
quadratic residue (mod p) if and only if p =1 or p = 7 (mod 8). It should

k
be observed that (—) = 1 implies that £ is a quadratic residue (mod )
u

only if u is an odd prime.



17.6 FUNCTIONS OF NUMBER THEORY 187

Generalizations of the Legendre symbol can be defined if the theory
of algebraic fields is employed. For this see, for instance, Hasse (1930).
Jacobsthal’s sums. We define the ¢ b Jacobsthal sum of s by

p=1 q
® @ ()= ) (_’"-)(”‘ ”) G=2,3, 00, s=1,2,3, .
! n=1 P P

Let the prime number p be of the form p = 4f + 1, where f is a positive
integer. Then p = a? + b?, where a, b are integers. Jacobsthal (1907)
proved that

(10) a=7%2,(¢), b=%2,(), %®,(-1)=%(p-3) (mod8)

where r denotes any quadratic residue and n denotes any quadratic non-
residue (mod p). Analogous results for p = 6f + 1 = a®+ 352 were obtained
by Schrutka (1911) and Chowla (1949). For various other results and
generalizations see Whiteman (1949, 1952); E. Lehmer (1949).

17.6. Trigonometric sums and re lated topics

Gaussian sums. Let n be a positive integer. We define for every in-
teger m

1 S(m,n)= ni' exp(2ﬂirzm/n).
r=o

I @,nr')=1, then

Q2 SGrynn’)=S(mn', n)S(mn,n').

Form=1
(L+i)n% i n=0

(3) S,n)=< n* if n=1 (mod 4).
0 if n=2
in*# if n=3

K n = p is a prime number and (m, p) = 1, then

Pl ,
(4) S(m,p)= 2 (‘L) exp 2mrm> =(l) S, p)
P p P

r=1

4 m y .

(;) p if p=1 (mod 4),
m

(—) ip% if p=3 (mod4),

\ P

=<




188 SPECIAL FUNCTIONS 17.6

m .

where (—) denotes Legendre’s symbol defined in sec. 17,5,
p

" Ramanujan’s sums are defined by

6) c,m)= X exp (2xirm/n),

(r, n)=1

where the sum is taken over the set of those of the numbers r = 1, 2, ...,
n —1 for which (r, n) = 1. Using Mébius’ function (see sec. 17.1) we have

n
@ e m= 5 du (Ii)

where the sum is taken over all positive integers d which divide both n

and m. If (n, n')="1, then
® c,rm)=c mc m).

A sum involving the c,(m)is

9) E'm-' ¢ (m)=—-A)
"=

For a proof consult Holder (1936). For applications see Ramanujan
(1918); the ¢ _(m) are important for the representation of a number as a
sum of squares. For series expansions see Carmichael (1932); for the
statistics of Ramanujan’s sums see Wintner (1942).

Kloosterman’s sums. Let n > 0 be an integer and let r denote any
integer 0 < r <n such that (r, n) = 1. Then there exists a uniquely deter-
mined r’ such that

(10) 0 <r' <n, ' =1, (modn)
Kloosterman’s sum is defined for integer u, v, n by

(11) S(u, v, n) = z exp[

r

2n7i

(ur+or’ )] .

n
If (n, m) = 1, then
(12) Su, v, n) S(u, w, m) =S, vm? + wn?, nm).
For applications consult Kloosterman (1926), Atkinson (1948)s For
generalizations see A. Weil (1948), also Sali¢’ (1931), D. H. Lehmer
(1938), Whiteman (1945).

Generalizations. Gaussian sums have been generalized in many

respects, For generalizations applied to the theory of quadratic forms
consult Siegel (1935, 1936, 1937,-1941). Expressions of the type
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(13) nE—' exp (2mm rk) (m,n)=1

r=0 n

for fixed values of k>2 have been used by Hardy and Littlewood for the
definitions of the so-called “singular series’’ for Waring’s problem (i.e.,
the representation of an integer as a sum of afixed number of k! powers);
see Hardy and Littlewood (1920, 1921, 19224, b, d, 1925), These are the
papers which are usually referred to by the title Partitio Numerorum. For
other types of trigonometric sums see Vinogradow (1939, 1940).

17.7. Riemann’s zeta function and the distribution of prime numbers

Let s be a complex variable, Then, for Re s > 1, Riemann’s zeta
function

W )= £ o

is an analytic function of s, As Euler has shown,
(2) &)=0@Q-p™)7" Res>1
P

where the product is taken over all prﬁne numbers p = 2, 3, 5, 7, e s
The integral representation

co xs-l 1—1(1_8) .(°+)(—Z)s—'
®) 5(8) F()f e*—1 dx == 2ni ﬁ e®*-1 dz

shows that {(s) can be continued analytically and is one-valued and
regular everywhere with the exception of s =-1 where {{(s) has a simple
pole, with residue 1. Equation (3) also gives

(4) ¢0)=-%, (2m)=0, ((Q-2m)=-B_/(2m)

where m = 1, 2, 3, ..., and where B is the m® Bernoulli number (see
sec. 1,13).

The Laurent series of {(s) for the neighborhood of s = 1 was given
by Stie]tjes. We have

((s)— +y+y|(s—1)+y2(s—1)2

where y denotes Euler’s constant [see 1,1 (4)], and where for k =1,2, 3, «ee

(log v)k 1
=1 - 1 k+1
i3 S

(see Hardy, 1912).
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From (3) follows the functional equation

(5) £(s)=2%7*""sin(H%ms) (1 ~5) (A ~s),
6) ¢(Q-s)=2""*7"%cos(HBas)(s) {(s)

The zeros of {(s) at s = -2, —4, —6, ... are the only real zeros.

It can be shown that apart from these, {(s) has no zeros outside the
strip 0 < Re s < 1, but that there are infinitely many complex zeros, p,
within this strip, and that

ebs ( S) iy
M L&) =5 T [] [ -=)e P]

where the product is taken over all complex zeros, p, and where
(8) b=log27-1-Y%y.

The definition of Euler’s constant y is given in 1,1 (4).
If 4 is a positive constant, s = o + il,

0<0<gl, 2mxy=|tj, x>h>0, y>A>O

x($8)=2 25T sinMUrs)['(Q~s)= ((s)/é(l —-s),

then

(9 ¢6)= 3 a7+ x() 3 a4+ 0GT)+ O(|t|%7Ty0 Y,
nS = n<y

This equation is called the approximate functional equation ofthe zeta
function, The O-terms in (9) can be replaced by an asymptotic series
which proceeds in powers of |t| ™%, and whose coefficients are trigono-
metric functions. See Siegel (1931) and Titchmarsh (1935, 1951)s

The function- '

(10) &(s) =%s(s = D) r %5 T (%s) £(s)

satisfies

(11) £ -s) = &(s),

and has the integral representation

12) &(s)=Y%s(s-1) _];w( s e‘"zﬂx) xA5Vdx,

n=1
With
(13) s=Y%+it, &(s)=EQ),
equation (12) gives

oo 2
S e™ ™)x"¥2cos (Y%t log x) dx.
n=1t :

(14) E(t)=‘/z-(t2+%)f'°°(
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For other results connected with {(s) consult sec. 1,12.

Zeros of {(s). Riemann conjectured that all the complex zeros of
£(s) have the real part % (or that 5(t) has only real zeros). Riemann’s
hypothesis has neither been proved nor disproved, although a great deal
of relevant information has been obtained since Riemann’s work. It is
known that Riemann’s hypothesis is true if and only if

%‘T_' wln)n™*

converges for Re s > %. [For u(n) consult sections 17,2, 17.3]

The following are some of the known results about the complex zeros
of £(s). Let s = o + it, let N ,(T) denote the number of those zeros of
¢(s) for which =% and 0 <t < T, let N(T) denote the number of those
zeros for which 0 < 6 < 1 and 0 < ¢ < T, and let N(¢', T) denote the
number of those zeros for which 0 < ¢ < T and ¢ > o', Selberg (1942)
proved that there is a positive constant 4 such that

(15) N(T)> AT log T

for sufficiently large 7. Also as T » = we have

(16) 2aN(T)=T log T —(1 + log 27) T +.0(log T),
(17) N{g, T) = 0[T31170V/ 279 (1og T)®],

The last result was obtained by Ingham (1940) and holds for any fixed o
in % <o < 1. By taking o a function of T such that 0 =% is sufficiently
small, Selberg (1946) obtained an improvement of (17).

Concerning numerical evidence in favor of the Riemann hypothesis,
see Titchmarsh (1935, 1936). Titchmarsh uses the approximate functional
equation (9) and replaces the O terms by quantitative approximations.
This enables him to compute the complex zeros of {(o + it) as far as
t = 1468 and he finds them all, 1041 in number, on the line o = %.

A large number of theorems has been proved about the distribution of
values of {(s). For these see Titchmarsh (1930). For the zeros of

s (n+a)*

n=1

consult Davenport and Heilbronn (1936).
Distribution of prime numbers. Let w(x) denote the number of primes

p not exceeding x. Then for x -+

(18) =(x) =/ la’u + Ox exp[-a (log x)% 1}
) .

ogu
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where a is a positive absolute constant. In particular

(19) lim [x~! 7(x) log x]= 1,

x> 00
and this result is known as the prime number theorem. The function

(20) nlx) - f %P
, logu

changes its sign infinitely many times as x » . In fact, there exists a
constant a such that both of the inequalities

o

og x

(21) P(x)>a ] log log log =,

log log log ¥

%
(22) Ply) <-a—
log y
are true for certain arbitrarily large values of x, y. However, if x > 10,
P (x) <O for the range of any existing tables.
All of these results about 7(x) can be proved from theorems relating
to the distribution of the zeros of {(s). If Riemann’s hypothesis is true,
then for x - oo,

(23) P(x)=0(x* log x).

But this cannot be proved at present. On the other hand, if (23) could be
proved, or even if it could be shown that for any ¢ > 0

P(x) = O(x%*9)

as x » «, Riemann’s hypothesis would be true.
Mills (1947) proved the existence of a real number 4 > 1 such that

43" is a prime for all integers n >.1, deducing this in a simple way
from a result due to Ingham (1937) namely, that for all large x there is a
prime between x° and (v + 1)3, See also Niven (1951).

Generalizations. Dedekind’s zeta function is the analogue to
Riemann’s zeta function for an algebraic number field; {(s) may be con-
sidered as Dedekinds’s zeta function for the field of ratiopal numbers
(Hasse, 1927, 1930; Brauer, 1947). For the definition of a zeta function
in “‘fields of characteristic p’’ and in a ‘‘simple algebra’ consult F. K.
Schmidt (1931), Hasse (1933), Deuring (1935) and Eichler (1949). Other
generalizations of Riemann’s zeta function are the L -series of Dirichlet
and their generalizations and the zeta function of P. Epstein. For these
see sections 17,8 and 17,9, : '
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17.8. Characters and L - series

Let n > 1 be a fixed positive integer, and let m be any integer. We
shall consider functions y (m) such that

(i) xm=yxm') if m=m' (modn),
(i) x(1)=1,

(iii) x¥(m)=0 if (m,m)#1,

(iv) y(m) x(m')=y(mm'),

A function with these four properties is called a ckaracter (mod n), The
function

1 if (mn)=1
1 x, (m) =
0 otherwise

is called the principal character (mod n), The value of x (m) is different
from zero if and only if (m,.n) = 1, and its qS(n)th power is then equal to 1.
Here ¢(n) denotes Euler’s function of sec. 17,1, A character is called
real if all of its valuesare real, The real characters modulo » are the

principal character and the Legendre-Jacobi symbol (ﬁ> « A product
n

X m) X, (m) of two characters is again a character (mod n). There exist
precisely ¢(n) different characters (mod n). If we denote ¢(rn) by % and
the & different characters by y,, ... , Xy then

R i v=p

@ 2 x,m)x,m)= va=1,2, e,k
" 0 if vép

where a bar denotes the conjugate complex value. I (m, n) =1, (m',n)=1,

E if mm'=1 (modn)
® 2 x,mx,m)=

0 otherwise,
If we take =1 in (2), we find that
2 xtm=0

for all characters different from the principal character.
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Let n > 1 be a fixed integer, and let ¥ be a character modulo n, Then

@) Lis,x)= ?l xm)m™* Res>1

is called an L-series. The L -serjes were introduced by Dirichlet, They
have many properties in common with Riemann’s zeta function. The
analogue to Euler’s product is

(5) Lis,x)=H[1-y@)p~°]"' Res>1
p

where the product is taken over all prime numbers p. If x, denotes the
principal character, then

© L x)=¢6) T (1-p™)
pin

where the product is taken over the finite number of primes which divide
ne If x# x,, then L(s, x) is an entire function of s which does not
vanish at s = 1.

Let x be a character modulo n. Suppose that for some fixed divisor, N,
of n(N<n)and for all m and m ' satisfying

m=m' (mod N), myn)=(m',n)=1
we have

xm)=xGm").
Then we say that the character y is imprimitive (mod n). Otherwise we
say y is aprimitive character (mod n). If n > 1 and we choose N = 1, then
y will be imprimitive (mod n) if y(m) = x(m') for (m, n) = (m’, n) = 1;
since (1, n) = 1, and x(1) = 1, such a y can only be the principal char-
acter (mod n). Hence the principal character (mod n) is primitive if and
only ifn =1, ‘

Let x be a primitive character (mod n). Then L (s, yx) vanishes for

s =0,-2, ~4,..., if y(~1)=1 and for s =~1, -3, -5, ..., if x¥(-1)=-L.
If we introduce
(1) a=Y%-Y%xE1),

then for every primitive character y and for n > 2

(8) &(s, x)=n%s~Hhapkstha " (Ys 4+ Ya) L(s, x)
is an entire analytic function which does not vanish outside of the
strip 0 <Re s < 1. Ithas arepresentation as an infinite product analogous
to 17.7.(7), and it satisfies the functional equation

(9) &G, x)=elx) £EQ -5, x)

where
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(10) e(x)=—=in-% gl x (m) cos (2m u/n).

It can be shown that |e(y)| = 1.

The L-series are important for the investigation of the distribution
of prime numbers in an arithmetic progression.

For the relation between (5) and (9) see Hecke (1944), Petersson
(1948). The zeros of £(s, x) show a behavior similar to that of the zeros
of {(s); it has also been conjectured (but not proved) that their real
part is always %. For lower bounds for L (1, x) and for applications to
number theory consult Siegel (1935, 1943), Page (1935), Rosser (1949).

The L-series have been generalized by Artin (1924, 1931, 1932).
Artin introduced into the coefficients the characters of other groups
besides those of the multiplicative group of the residue classes which
are coprime to n. (These are the coefficients of the ordinary L series.)

17.9. Epstein’s zeta function
Let p be a positive integer, let
g=(g', oco,gp), h=(h,,ooc,hp), m=(ml,.u,mp)

be vectors with p real components (the components ofm will be integers),
and let

W) G@w= 2 g,h,

be the scalar product of g and %, and similarly for other vectors. Let
[a‘w] be a non-singular symmetric p X p matrix, [a}_] the inverse (recip-
rocal) matrix, -

(2) ¢k)= i i a

p=1y=1 K TuTy
the quadratic form associated with [¢ ], ¢*(x) the quadratic form asso-
ciated with [a*y], and let A be the determinant of the @ . We assume
that the real part of ¢(x) is positive definite. Finally, let s be a complex

variable.
Epstein’s zeta function of order p, associated with the quadratic form

¢ is defined by
18 813 se0s 8,

3 Z (s)y=Z (s)yg
[ hyyosh,

= 5 . - g' [ (m +g )] 7#P° exp [27i (m, AL
p— - 00
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The prime indicates that summation is over all integers m , <, m,
except if all components of g are integers when the term m = —g is to be
omitted, The series is absolutely convergent, and defines an analytic
function of s, in the half-plane Re s > 1,

The fundamental theorem in the theory of zeta functions is the func-
tional equation

@) 77T (hps) Z , £,

k
I (1_3) .
_g‘ ¢*

=A"% %P (1-s)r[yzp(1 Y e 2milg h) 7

The function defined by (3) and its analytic continuation is an entire
function of s except when all components of / are integers: in the latter
case the zeta function has a simple pole at s = 1, and the residue at this
pole is

(5) #APATH/T (%p+1)

The zeta function vanishes at

(6) S =—2k/p, k'—' ]_’ 2, 3, ses o

It also vanishes at s = 0 unless all components of g are integers when
its value at s =0 is
() -expl-2ni(g, A

These results are due to P. Epstein (1903, 1907). Epstein has also
investigated some special cases, for instance, the cases where p = 1 or
p = 2 and where all components of g and b are zero. In particular, the
constant ¢  in the Laurent expansion of

(S)¢= +CO+C'(S—]_)+.--

0
-z
(8) 0

0
0 s-
has been determined by Epstein. He also showed that the results of
Herglotz (1905) canbe derived fromhis formulas. Herglotzhad investigated

sums of the type
©® £ 3 (@+ib)"(a+b?)Hns
a==00 pbh=—00
where n = 0, 2, 4, «. « Siegel (1943) has investigated and generalized

Epstein’s zeta function and has proved theorems about the zeros.

17.10. Lattice points

A lattice point in the x, y-plane is a point whose coordinates are
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integers. There exists a general theorem of van der Corput (1919) about
the number of lattice points in certain domains, a special case of which
will be stated below. We define a domain D in the x, y -plane as follows.
Let w — % be a positive integer, and let f(x) be defined and possess
continuous and positive first and second derivatives in % <'x < w, Let

1 f&>2, 0<f'(x)<l, f"&)>z"3
where z > 1 is independent of x. Let D be the closed domain

(2) %<x<w, Y¥<y<fl),
let

@) 40)= [, [fx)-%ldx

be its area, and let L (D) denote the number of lattice points in D. Then
van der Corput’s theorem states that

(4) |L(D)-A4D)| <cz?

where ¢ is a constant, Jarnik (1926) has proved that for certain curves
f (x), the exponent 2 on the right-hand side of (4) is the best possible in
the sense that it cannot be replaced by any smaller exponent,

More detailed results have been obtained for domains enclosed by
special curves, in particular by a circle. Let 4 (z) denote the number of
lattice points within the closed domain
(5) x*+y?<u.

With the notations of sec. 17.3 we may also write

6) Aw)= 2 fz(n).

nu

Let J1 (z) denote the Bessel function of the first kind of order one (see
secs 7¢2.1). Then Hardy proved for all u >0

@) lim %A+ + %4 - o]

€E> 0
=qu+u” § n =% rz(n)J,[Zﬂ(nu)x].
n=-1

If u is not an integer, the left-hand side of (7) is simply 4 (u). It can be
proved that .

Aw)-7u=0®w?)
is true for every v > 1/3 and is not ture for any v < 1/4.
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There exists a large number of papers on the theory of lattice pdints;
in'particular, the number of lattice points in an ellipsoid has been inves-
tigated by van der Corput.

17.11. Bessel function identities

Researches on the order of magnitude of various numerical functions
have yielded a number of identities involving Bessel functions. The two
examples

r,(n)

v =, ) =nx + 2% z J,[Zn(nx)%]

n<x

n=1

and

2 32 rr)=x° 2 ﬂ J12[477(nx)%]
n

nlx n=-1 ®
have already been referred to. Other examples are

oln)

n

J, [47(nx)%]

1 ( 2 -]
(3) 2 ann) = ”6 x-—‘/z(y+log 2ux) + 2

nSx n=1

(4) 3" dn)=xlogx+Q2y-1Dx+%

nlz
—xk § aHdEY, Brln)® + 207 K [An o) ¥ D
n=1

where y is Euler’s constant and the prime indicates that the last term of
the sum is to be multiplied by ) if x is an integer. The infinite series of
Bessel functions can be thought of as representing exact expressions for
the error made in approximating the left-hand sides by the elementary
functions on the right.

Voronoi (1904) stated (1) without proof and Hardy\(1915) was the first
to prove it rigorously, Formula (3) is due to ngert (1917) and (4) to
YVoronoi (1904).

Delicate questions of convergence can be avoided by considering
the ‘integrated form’ of such identities in which the left members assume
the form

<E a(n) (x —n)¥/q!

Oppenheim (1926) gave a general method for deriving most of the above
and more general identities and discussed the summability by Rieszian
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means of the infinite series on the right in case of divergence, Apostol
(1951) gave a short proof of a theorem of Landau (1915) which states that
the general identity

1 g I (k) "
R S v

% (qt+h) o (n)
x a\n 4 Y%
BRATND z AN Jisq [Tﬂ (n) ]

n=1

holds if the numbers a () are coefficients of a Dirichlet series

é(s) = S al)n"
n=1
converging absolutely for Re s > k, regular for all s except for a possible
pole at s = k with residue p, and having functional equations of the form

(L) T'(s) (s) =y (_)‘_> Dk =) Gl —s).
2n 2

Such Dirichlet series have been studied in detail by Hecke (1938).
Examples of permissible coefficients a (n) are Ramanujan’s function r(n)
and the functions 7, (n) of sec. 17,3, The series of Bessel functions on
the right of (5) is absolutely convergent if ¢ > £ ~ %, but in special
instances it may converge for smaller values of gq.

An example of an identity of a different type is found in Hardy (1940):

o0 1’4 25
3 7 -47sn =9 —25/2 ( ) ,
n= Ir n)e n=1 (S +n)?"’/2
this can be shown to be a special case of the Bessel function identity
o0 y -t - - a (n)
2 nz.o a@) K (dmsn”)n =@2a)V* s VT(k-1) z m

the a (») satisfying the same conditions as in (5).
For related results in connection with ‘‘summation formulas’’ see
Ferrar (1935, 1937).
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CHAPTER XVIII
MISCELLANEOUS FUNCTIONS

18.1. Mittag-Leffler’s function £ a(z) and related functions

The function
it k
z
D E ) k; ey
was introduced by Mittag-Leffler (1903, 1904, 1905) and was investigated
by several authors among whom we mention Wiman (1905), Pollard (1948),
Humbert (1953). In this chapter E will always stand for the function (1)
which must not be confused with the physicists’ notation for the incom-
plete gamma function mentioned in sec. 9.2.

E (z), for a > 0, furnishes important examples of entire functions of
any given finite order: in a certain sense each E (z) is the simplest
entire function of its order (Phragmén 1904). Mittag-Leffler’s function
also furnishes examples and counter-examples for the growth and other
properties of entire functions of finite order, and has other applications
(Buhl 1925).

We have

(2) Ei(z)=e’, Ez(z2)=coshz, E%(z%)=2ﬂ—%e_’Erfc(—z%)

and £ _(z") for positive integern is a generalized hyperbolic function (see
also sec. 18.2). _

Many of the most important properties of E (z) follow from Mittag-
Leffler’s integral representation

1 & et
3) E = dt
®) Egfe) 27i ‘[ t* -z

where the path of integration C is a loop which starts and ends at ~eo,

206
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and encircles the circular disc |¢| < |z|"/*in the positive sense:—7<argt
< 7 on C. To prove (3), expand the integrand in powers of z, integrate
term-by-term, and use Hankel’s integral 1.6(2) for the reciprocal of the
gamma function.

The integrand in (3) has a branch-point at ¢ = 0. The complex ¢-plane
is cut along the negative real axis, and in the cut plane the integrand is
single-valued: the principal branch of t*is taken in the cut plane. The
integrand has poles at the points,

4) ¢ = z Vo g2min/a m integer

but only those of the poles lie in the cut plane for which
(5) -an<argz+2mm<am

Thus, the number of the poles inside C is either [a] or [a + 1], according
to the value of arg z.

Feller conjectured and Pollard (1948) proved that E (-x) is completely
monotonic forx >0 if0<a< 1, i.e., that

"Efn)

© D" ==

The proof is based on (3).

To investigate the asymptotic behavior of £ _(z) as z » «, first assume
that z > = along a ray which is outside the sector |arg z| < aa/2 (there
are such rays if 0 < a < 2). If there are any poles ¢t _ satisfying (5), they
will lie in the half-plane Re ¢ < 0. Deform C to consist of two rays in
the half-plane Re ¢ < 0 so that the poles, if any, lie to the left of C, also

set
e N- 1 e e =1 ,Ne
P Z' " Tz 2N
ne
in (3) and note that (1 — t*z~")7" is bounded uniformly in |z| and ¢ if
arg z is constant and ¢ is on C. Using again 1.6(2), the result is

“n

N=1 .
(7) E(2)=- —— + 0(2|™)
) Ta-

an)

z+0, |arg-z)<(1-%a)nr
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The O-term is uniform in arg z if
|arg(~2)| < (1 - % a- €e)m, e>0

The result is vacuous when a > 2.
Next assume that z »  along a ray, and |arg z| < an/2. Then there
is at least one ¢ satisfying

(8 -Yam<argz+ 27m < Yran,

and there may be several (if a> 2): these poles lie in the half-plane
Re ¢t > 0. C can now be deformed as before except that in the course of
the deformation of C the poles satisfying (8) are crossed and contribute
residues. The result then is

N=1 -n

t
S e ® -

+0(z|™)

nlp—l

zZ
9 = ————
©) E2) n; -

z > o, |argz|<%arm

where ¢, is given by (4) and summation is over all those integers m which
satisfy (8). In particular, if 0 < a < 2, m = Ois the only integer satisfying
(8), and

1 :
(10) E (2)=— expz'®+ 0(]z|™") 0<a<?2, |argz|<Yhanr, z-w
a

From (7), (9), (10), and the definition of the order of an entire func-
tion (see, for instance, Copson 1935, sec. 7.4) we infer that E (z) is an
entire function of order 1/a for a > 0. The .asymptotic expansions (7),
(9) were generalized to complex values of a by Wiman (1905).

The zeros of E a(z) were investigated by Wiman (1905). For a > 2
Wiman proved that E (z) has an infinity of zeros on the negative real
axis, and it has no other zeros. If n (r) is the number of zeros of E a(z)
in |z| <r, Wiman proved

r1/a, . r1/a. _
an sin — | <n ()< sin — |+ 1 a>2
w a w a

where [x] is the greatest integer < x. For 0 < a < 2 the distribution of
zeros is entirely different. Excluding the case a = 1 (when there are no
zeros), Wiman shows that asymptotically the zeros lie on the curve

(12) Re z'%4 log|z| + log['(~a)| =0
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and also that
(13) v ' 7 - Y%al-1<n@) <[ P~ Kal+ 1 0<a<2 a#l

Moreover, for 1 < a < 2, there is an odd number of negative zeros. Wiman
investigated the zeros of E (z) also for complex values of a.
The functional relations

4 "3 E (ze*" ™) omE _ (z*)

[
h=10

d n
(15) (—) E,")=E_ (")
dz

n=-1
d n z-ku/n
—_ =/ny _ - =/n
(16) (dz) E, ") k; rpmyn SLACL

where m and n ~ 1 are positive integers, are immediate consequences of

(1), From (16)

n=1
4 z—k/n
-2 | ny] = o~z —_
dz [e in@ M=e kzl 'd-%&/m)

and upon integration of this by means of 9,1(1)

n=1 —k
S /"’z)] n=23, ..

=, T(—k/n)
An explicit expression for E./" follows from (14) and (17). The third

equation (2) follows from (17) for n = 2 by means of 9,9(1), (2).
The integral

a7) E,, (z"")=e* [1 +

a>0

(18) [, e *E,(t%2) dt = -

1-2
was evaluated by Mittag-Leffler who showed that the region of conver-
gence of (18) contains the unitcircle and is bounded by the line Rez /%=1,
The Laplace transform of E a(ta) may be obtained from (18), and was
used by Humbert (1953) to obtain a number of functional relations sat-
isfied by E (2).
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The function

19) E, 4z)= a B>0

3 z
k§=:o I'(ak + B)

has properties very similar to those of Mitiag-leffler’s function: see
Wiman (1905), Agarwal (1953), Humbert and Agarwal (1953). The follow-
ing formulas may be obtained precisely as their special cases B =1
above,

1 t9 Bt
20) E = dt
@0 Eq ple)=57 L -z

-n

N-1 z
=— P ~N
(21 E, 4 ()= ’; TG * O™

z5 e, |arg(-z)|<(1-%a)m

N=-1 -
1 t z "
E ) = - 1-18 R _ —_ 0 =N
(22) Bg gla)=m 22, e ,Z, TE—am O
z>00, |argz|<Yham

@) E, ,()=E ()

1
Ea'ﬁ(z)=——- +zEa'a+/3(z)

rg)

r=1 .,
(24) ;.—_?o Ea'ﬁ(Zez'ﬂlh/l)= mEma”B(zm)

(25) (Ti) [P E, (N =2PTE, 4 ()

- B~ 1
(26) f:e 1A 'Ea(t"‘z)dt=1 a B>0

-2z

In (20), C is the same path as in (3). In (22), t_ is given by (4) and m
runs over all integers satisfying (8). In (24) and (25) m is any positive
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integer. The region of convergence of (26) is the same as that of (18).
The Laplace transform of tA'E o(t%) may be evaluated by means of (26)
and was used by Agarwal (1953) and by Humbert and Agarwal (1953) to
obtain further properties of £

A function of two vana.bles resembhng E, ,pWas briefly discussed by
Humbert and Delerue (1953).

The functions £  and £ «, g increase indefinitely as z » « in a certain
sector of angle aw, and approachzero as z > = outside of this sector.
Entire functions which increase indefinitely in a single direction, and
approach zero inall other directions, are also known. Two such functions
are

= O<ax<l
, T+ % (log £)™°]
i z ’ 0<a<l
- a
2T Lloglk + 1/a)

They have been discussed, respectively, by Ma].mqulst(1905) and Lindelsf
(1903).

Barnes (1906) has investigated the asymptotic behavior of E a(z ), and
also that of several similar functions, in particular of the functions

o k

z z o z 1"(1+ak)
Eo (k+0FT(1+ak)’ Z

?

o0

2T (1+ ak)
~, T(l+a+ak)’

A function intimately connected with E g is the entire function

R _— 0
@7 $la B;2) ,,Zo TP a B>

which was used by Wright (1934) in the asymptotic theory of partitions.
The connection with £ g is given by

(28) f°° T gla, Bst)de=sT"E g(s™") a>1, B>0
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& (z) can be represented by the integral (Wright 1933)

1 (0 +)
(29) ¢ (a, B; z)=?—./ u-'Bexp(u+zu_a) du a>0
wi J_

To prove (29), expand the integrand in powers of z and use 1,6(2). The
asymptotic behavior of ¢ as z » = was also investigated by Wright (1934 a,
1940). The relations

(30) azp(a, a+ B;2z)=pla, B-1;2)+ (1= B) ¢laB; 2)

d 5z
(31) ——qb(‘;’f ) b(a at B 2)
do(a, a ;2
(32) aZ———¢( = +P Z)= éla, B~1;2)+ (1~ B)éla, B; 2)

follow from (27). Since

2
(33) J, ()= C42)" ¢ (1 vals T)

Wright’s function may be regarded as a kind of generalized Bessel func-
tion. (30) is a generalization of the recurrence relation of Bessel func-
tions, and (31), (32) are generalizations of the differentiation formulas.
Some of the properties which ¢ shares with Bessel functions were enu-
merated by Wright. A generalized Hankel transformation with the kernel

x?y?
e G <a, B —— )
was discussed by Agarwal (1950, 1951, 1953a).

18.2. Trigonometric and hyperbolic functions of order r

In this section n will be a positive integer and

2nwi
(1) w=exp (—n)

The r functions

1 =»n _.
(2) hfx,n)=— X w1 exp(w”® x) i=12 w.ym

n ==t
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are sometimes called hyperbolic functions of order n. They reduce to
hyperbolic functions when r = 2.

(8) h,ix,1)=e* &, (x,2)=coshx, &,(x,2)=sinhx

In general, n will be a fixed positive integer and will, as a rule, not be
indicated. It will also be convenient to extend the definition (2) to all
(positive, zero, or negative) integers i which is tantamount to setting

4) & ”n(x, n)Y=*h i(x, n) i integer

This will often simplify the writing of formulas.
Since w” = 1, all & satisfy the differential equation

n

Yy
§) —=—4=0
) dx" ¥
and since

6) I o™=0 for integers r not divisible by n
=n for integers r divisible by =,

the k ; also satisfy the initial conditions

4k 0 if i#jf
dx 1 i i=j

i,i=1 2 ..,n

Thus,% , «.. , & _form a linearly independent set of solutions of (5), and
their Wronskian is equal to unity.
The power series expansion

oo nrti=1

® hlmm= Y — i=1,2.,n

“~, (nr+i-1!

is obtained by expanding the exponential functions in (2) and using (6);
the integral representation '

1 tn—iext
(9) hfx,n)=——0 dt i=1 w.,n
2 c

we
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where C is a simple closed curve encircling the unit circle once in the
positive sense, is proved by the remark that the evaluation of the integral
as a sum of residues leads to (2); and the relation

(10) exp(w”™ x) = S @liTha b (x, n) m integer
=1
follows from (8).

Some of the basic formulas for hyperbolic functions of order n are

11 hi(m" x)=@i"Nn" hi(x)

dIk i(x)
dxd

(12) )

(13) A, (x +y)= i‘, Izj (:vc)hi__]._H )

j=1
(14) | &, &, n
hn hl n=1
= (2 oM a =1
......... F) m=1 i=1
h, k, b,
sn-i

Res>1, i=12 ..,n

(15) [ e h () dt = ——
Here i, j, m are any integers [except in (15) where i is restricted]. (11)
and (12) follow from (2), (13) follows from (5) since ki(x + a) is that
solution of the differential equation (5) whose j-th derivative is &, _ {a)
when x = 0, (14) is the Wronskian of 4, , .., k _which is a circulant (see
Aitken 1939, sec. 51) and can be evaluated explicitly, and (15) is the
Laplace transform of hi(t) and follows likewise from (2) or (8).

For these and other formulas see Poli (1940, 19494, the latter with a
detailed bibliography), Oniga (1948), Bruwier (1949, 1949a), and Silver-
man (1953). Poli (1949a) indicates some relations which hold when r is
a composite number, gives expansions in terms of the k,, and some
applications. Bruwier (1949b) considers 1, o, ©? ... , »"" ! as the units
of a linear algebra, the multiplication table being specified by

L
@t wl= it
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(hypercomplex numbers). e“* is a hypercomplex number, and (10) shows
that the 4 are the components of e®*. This fact is used by Bruwier to
prove the properties of the 4 (x). Matrices- whose elements in the i-th
row and j-th column are aihj-i(x’ n)/aj, where i, j =1, 2, oo , » and
@y, « 5 @, is a given set of constants, were considered by Lehrer
(1954). ’ : :

_ From (8) and 18.1(19),

(16) hx)~x*""E_ (=" i=12..,n
and in particular
(17) A (x)=E _(x")

giving the connection with Mittag-Leffler’s function.
The n functions

hing (__1)rxnr+i-1 )
(18) ki(x, Tl)=rgom z=1,2,...,n

are sometimes called trigonometric functions of order n;they are solutions
of the differential equation

n

(19)

Yy
+y=0
dx™ y

and satisfy the initial conditions
FE 0 if i#j
(20) -—T‘ 0)= 811.]. =
dx 1 i i=j i,i=12 cu,n
Here again we extend the definition to all integers i by setting

(1) & itn (x,n)=-k ‘.(x, n).

These functions have been investigated by the above-mentioned authors
and also by Mikusinski (1948). With

(22) A =exp (—T-,-i)
n
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so that A is an n-th root of —1, we have
(23) k(&)= A" R (Ax, n)

and the properties of the k ; follow easily from those of the A ;. The prin-
cipal formulas are

(24) ki()\x)= A? hi(x)
(25) k (0" x)= 0"V k (x)

dik .
(26) —’(x—) =k ._J.(x)

dx’ ¢

1 =» .
@ k)=~ X NURLIC RN L

n m=1

(28) expr2=*x)= T AUV )

i=1

1 tn-ie:t
— dt
27i t"+ 1
c

CONICETEI NIOLINING

(29) & (x)=

(31) H( E A(;-l)(an'H)k (x))_

r=1 i=1

n=i
Res>1, i=1 ..,n

o —st _ s
32) J e ki(”‘)d‘*sn+1

(33) hi(x, n)+ ki(x, n)= 2hi(x, 2n)
h(x, n)—k (2, n)= 2k, (x, 2n)

It can be seen from (27) that & 1(:\7 n) is not a periodic function except
forn =1, 2, The zeros of & (x)havebeen investigated by Poli (1949 a)
forn = 3 and by Mikusirski (1948) for any n > 1. Mikusinski’s investis
gations are based on the system of linear differential equations satisfied
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by k,(x), v, & (x) and lead to the following conclusions. Each & (x, n)
has an infinity of simple positive zeros: the zeros of & (x, n) and k (x n),
i £ j (mod n) interlace, The least positive zero of k, &, n) is between

G+n=1)1 [V 1 2@ +n - 1)1
G-11! an G-1)!

The large positive zeros of k .(x, n) are approximately equally spaced,
the distance between two consecutive zeros of k£ .(x, n) approaches

7 csc(m/n).
Quotients like % (x n)/k (x, n) may be regarded as generalizations
of tan x and ctn x: for these generalizations see Oniga (1948), Poli

(1949).

An entirely different generalization of trigonometric functions was
given by Grammel (1948, 1948a, 1950).

18.3. The function »(x) and related functions

The functions to be considered in this section are

ate g,

. () ocxtdt ( ) o0 X
1] [+]

@ gl )—/w x 1P de
’”"’3‘_0 T(B+DCGE+1)

(=, B )—/N s Bds
o8 T@E+DT@+ts D

The first of these functions was encountered by Volterra in his theory of
convolution-logarithms (Volterra 1916, Chapter VI, Volterra and Peres
1924, Chapter X): Volterra denoted v(y — %) by Alx, y), and v(y — x, a)
by A(x, y; a) or Alx, y|a). These functions also occur in connection with
operational calculus, appear inan inversion formula of the Laplace trans-
formation, and are of interest in connection with certain integral equa-
tions. Tt may be noted that (2) is the definition of p adopted in recent
papers; some of the older papers write p for a function which differs from

(2) by a factor ' (8 + 1).
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around arectangle in the w-plane whose corners are -N-%—ic, k+%—ic,
k +%+ ic, ~N —% + ic where k and N are integers, k + N >0, and ¢ is
a positive number. H (x, w) is a meromorphic function, and its poles
inside the rectangle are at w=n, n = =N, =N + 1, e , bk~ 1, k. The
residue of H at w=n is 7 2 22"/ T'(a + n + 1). I ¢ > o, the integrals
along the horizontal lines of the rectangle varish so that

1 k+¥%+ico 1 —N=Y%+ ico k a2 xatn
- Hdw-— | Hdw= _
2ni /k+%=ioco 27i - N—Y— ico n=_”l_'(a+n+1)

Clearly, the second integral is O(|x|*"¥%), In the first integral we set

) 1 ¥ ]
”"'w’=”'+”z‘=m(/“+ / )
' ) B+

It can then be shown that

1 k+¥%+ico 0 1 kY RCASFR k+%*|':io? (mo)]22
W = —— —
2mi J, %% ), Tresn ), ™

+4m oo +~ oo

-2 Rk pategy
= ” ———————————————
0 I'(a+t+1)

1 k+Y%+ico
f Hz dw-0 as k- oo,
k

27i +%=ico

and hence, making k - oo,

oo xa.+n ~N—-¥+ ico
vix, a)- — =% Hdw
ptyTla+n+1)
“N=Y%~ico

= 0 (jx| " F7%) %] > e
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Combining this result with 18,1(21), (22),

vix, @)= e+ 0(]x|*7¥) x> o0y |argx| < Yomw
=0(|x|a-N) x>0, Hu<|argx|<w

for any integer N. v
For p(x, B, a) a somewhat less complete result can similarly be

derived. Because of the branch-point of

1 Yox*t By
He, w, )~ f By
0

[sin(7w)]? I'(a+t+1)
at w = 0, one is forced to take N = — 1 and obtains, as above,
i x%tn B %+ioo
ll-(x, B, a) - HZ' mz— %ﬂi./%'—iw H(x, w, B) dw

Further progress then would seem to depend on the asymptotic expansion
of the entire function

b x"nB
i Tla+n+1)

The following recurrence formula, differentiation formulas, series,
and integral are easy consequences of (1) and (2).

an pl, B+ L a)=xpkx,B,a~-1)-aplx, B, a)

dn dn
" (12) V(x)= vix, —n) -M =v(x, a—n)
dx™ dx"
dn dn y
13) M_: p(x, B, —n), _#_(lﬁ_a)_= y(x, B, a—n)
dx™ dx™
(14) §o u” plx, n)=e ™" vixe®), § uplx,n, a)=e """ ixe?, a)
n= ]

n=

z ‘(B—-{»Dﬂu"p,(x, :B +n, a)=e-(a+1)u #(xeu, B’ a)

!
n=lo n!
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ryrEe-y+1)
re+1

ReB>-1, Rey>0

(15) f:ve“" u” ™ pulxe™? B, a)du= plx, B-7v, a)

For numerous other formulas regarding these functions see in particular
Barrucand (1951), Colombo (1950, 1953), Humbert and Poli (1944).

The occurrence of the functions v and g in operational calculus is
due on the one hand to the. formulas

had e St o~ e st
(16) e dt =v(e™?), —  dt=e** v(e”5a)
s [@+1) . I'a+t+1)

oo tBe7st
dt = ule™, Re B>-1
(17)/ D t=yule™*, B) Re 8>
0
(> oo t’B e st
—_—dt=e* ple™, B, a) Re B>-1
o IN(a+t+1) ?

which are equivalent to (1), (2) and show that the functions v, u are
Laplace transforms of simple functions; and on the other hand to the
formulas

(18) fowe-‘"v(t) dt = (s log sy Res>1
“ et (e, a)de = s~ (log s)”" Rea>-1, Res>1

0 8
(19) f:c et ult, B)dt=s"" (log s) A1 Res>1
' fow et ult, B, a)dt =51 (log s) A" Rea>-1, Res>1

which may be established by means of (1), (2), (4) and show that v and
¢ have very simple Laplace transforms. For derivations of many properties
of the functions v and p by means of operational calculus, and for the
application of these functions in operational calculus, see Barrucand

- and Colombo (1950), Colombo (1943, 1943 a, 1948), Humbert (1944, 1950),



18.3 MISCELLANEOUS FUNCTIONS 223

HBumbert and Poli (1944), Parodi (1945, 1947, 1948), and Poli (1946).

Moreover, one of the numerous inversion formulas for the Laplace

transformation
(20) f(S)=f:°e'“F(t)_ dt,

viz. the formula (Paley and Wiener 1934., p+ 39, Doetsch 1937)
1 o0
(21) F(¢)= lim ——/ f&)Yw(st,~ %+ Ai)—v(st; ~Y~Ai)l ds
Aso0 278 ],

involves v(x, a).
The integral formulas

" 2
. / exP(.i_) Ii(x, B; a) dx = 2A*! y% * P(y: Bs % a)
4y
o]

Rea>-1, Rey>0

oo 2
(23) f x exp (—:—y) plx, B, a)dx = 9Btz 172 Y u(y, By Yoa~%)
0 .

Rea>-2, Rey>0

b %2 ' x
(24) /; exp <—§;> Dv(W) i (x, B, a) dx

= 2PV AR KV Gy, By Yo - Bw)
Rea>-1, Rey>0

may be established by substituting (4) in the integrands: in the last
case, (24), use 8.3(20). These formulas show, in particular, that the
functions v, p satisfy the following integral equations

o0 2
(25) %m 7% y—x/ exp (_:—y) v(x)dx=v(y)
0 .
e ,
al y_%/ o G%)“(" B)dx =28 u(y, B)
Yy
0
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00 2
(26) Y g2 y-s/z/ x exp __x_ vix, -1)dx = viy,~1)
° 4y
oo xz
Y172 y—SIj/ X exp —4_ I‘(x, B, -1)dx = 2/311(){’ B, - 1)
Y
A / .

27) 2-% y=1 _=% . —Kv-¥% . D - d
( Tty i exp 8y -a\ g% % v(x, a) dx

=viy, a) Rea>-1
9~%v-1 % -%v-%f exp(— ) _a<2% %>y(x, B, a)dx
=28y, ,s, a) Rea>-1

In the case of the integral equation with the nucleus

1
<o (= =—
27% 5 5. % % ©XP

it is known (Stankovi¢ 1953) that (25) gives all characteristic functions
which, in a certain sense, are of regular growth; a similar statementis
likely to be true in the case of (26) and (27). For other integral equations
whose solutions involve the functions v and p see Colombo (1943 a, 1952)
and Parodi (1948).
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CHAPTER XIX

GENERATING FUNCTIONS (1)

FIRST PART: GENERAL SURVEY

19.1. Introduction

If a sequence of numbers g,, g,, +++ , is determined as the sequence
of coefficients in the expansion into an infinite series of a certain
function, this function is called the generating funection of the numbers
g,

The most frequent type of infinite series to occur in this connection
is a power series

cwy= £ g ¢
n=0

Often the g are functions of one or several variables, Xis Xyyaee s Xy,
say, and we have a relation of the form

D 66 zyi0= 5 g (55, )™

Here G is called the generating function of the functions g _(x,,v«s,% ),
and %, , 400 1X,, b are regarded as p + 1 independent variables, With the
exception of a few particularly important examples, p will always be
unity in this chapter, and accordingly we write

Cwi= £ g, )"

for the generating function G (x,t) of the functions g (x) of a single
variable.

As a rule, the power series occurring as generating functions have
a positive radius of convergence. Sometimes, however, it is useful to

1) This chapter is based on an extensive list of gemerating functions
compiled by the late Professor Harry Bateman,
Professor E. D. Rainville kindly contributed a supplementary list of
generating functions, and assisted us in the preparation of this chapter by
very helpful discussions and suggestions.

228
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consider also power series which have zero radius of convergence, that
is to say, are divergent except for ¢t = 0. If questions of convergence do
not matter, we speak of formal power series, write

@ 6o~ I g @),
n=0

and say that, G (x,t) is equivalent to or associated with the formal power
series on the right-hand side of (2)
Occasionally Laurent series, that is expansions of the form

@) 6En=- X g,

will also be considered.

Power series and Laurent series are not the only expansions which
occur as generating functions. Another type of series, which is of fre-
quent occurrence in number theory, can be exemplified by the generating
functions of sec. 17,12, Yet another type, factorial series, is fre-
quently met with for instance in combinatorial analysis.,

The name *‘generating function’’ was introduced by Laplace in 1812
A brief discussion of Laplace’s work on generating functions is found in
Doetsch (1937). Laplace used not only generating series, but also gen-
erating integrals. The most important integral of this kind is now known
as Laplace’s integral and usually written as

f(s)=f°°° e g (u)du.

The connection with generating power series is more easily seen after
a change of variable, t = ™%, Actually, both series and integrals may
be replaced by the Laplace-Stieltjes integral

4) f(s)=j;m e *dalu)

where a(u) is a function of bounded variation, and the right-hand side
is a Stieltjes integral. Many modern authors, for instance Widder (1936),
use the term ‘“generating function’” in the sense of (4). Anyone familiar
with Stieltjes integrals will see at once that generating power series,
Dirichlet series, and Laplace integrals are particular cases of (4).

19.2. Typical examples for the application of generating functions

Often the generating function of a sequence ig } of numbers or func-
tions is constructed in order to investigate the properties of the g . We
shall give a typical example from combinatorial analysis.
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In ordinary algebra multiplication is associative, i.e., (ab)e = a(be),
and similarly for any number of factors. A product of n factors is deter-
mined by the succession of these factors, and is independent of the
grouping of the factors for purposes of multiplying two factors at a time.
Even in some algebras in which the commutative law of multiplication,
ab = ba, no longer holds, multiplication is still associative. The algebra
of matrices is such an algebra. Nevertheless, there are algebras in which
the associative law of multiplication does not hold; they are called non-
associative algebras, In such algebras it may happen that (ab)e and
a(be) are different, so that the product abe may have p, = 2 different
values according as we multiply the product ab by ¢, or else a by the
product be. Note that the order of the factors has not been changed, and
the difference in the result is due entirely to the non-associative char-
acter of multiplication. Given n factors, in a pre-assigned order, we may
insert parantheses in several ways, so as to reduce the multiplication of
n factors to n — 1 multiplications of two factors at a time. With four
factors, a, b, ¢, d, we have the possibilites

(@bd)(ed)),. (a(b(cd))), (((@b)e)d), (a((be)d)), ((a(be))d)

Let p, be the number of ways of ipserting parentheses in a product of n
factors. Clearly,p, =p,=1,p,=2andp, = 5.

The. last step in forming the product of n factors is the multiplication
of a product of the first m factors by a product of the last n —m factors.
There are p  different products of the first m factors and P,., different
products of the last n ~ m factors, and m may take any of the values

1, 2, eses 4 1 — 1- 'I‘hlls we have
(D) po=P Ppey +PaP g2+ Py Pye

With » =4, we obtain p, = 1.2+1:1+2.1=5; .
with n =5, we obtain p_ = 1.5+ 1:2+ 2.1 +5-1 =14, etc.
Let us now form the generating function

@ 6= £ p, e,
n=1
and observe that on account of (1), the coefficient of ¢*, for n > 2, in
(B) E@I2=p2e2+(p,p, +p,p,) t3+(p p,+P,p,+P,pg)t* ++=
is againp . There is no linear term in (3). Therefore, we have

@ [G@W12+t=GQ).
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This is a quadratic equation for G (@), and G(¢) is that root of this equation
which vanishes when ¢ = 0. We assume |4:| < 1, take (1-4¢)*% to mean
that value of the square root which has a positive real part, and obtain

B) G =%-%0-40)%,
Expanding the right-hand side of (5) in a binomial series we thus find

0 1
6 G@)=-% X (" (f) "

n=1

and, therefore,

(D) p, =122 (/) 1 (2n—2) . -
" n n—-1 n P

Apart from giving a simple formula for a computation of p , which is
independent of the computation of Ppaeys Ppogsvses formula (7) can be
used to investigate the asymptotic behavior of p_ as #n > ca From 1.18(4)
we derive that

(8) pn - ”-1/‘2 zzn—zn—slz [1+0 (n-i)j n - oo,

Generating functions are also a powerful tool in the investigation of
systems of polynomials. As an example we shall investigate Tchebycheff
polynomials, T (x), defined by the generating function

1-¢2 ]
9) Gl,t)s——= 3 T t"
©) 1) 1-2xt+:% n=o " n &%
where ¢, =l and ¢, = 2if n = 1, 2, 3, 4,... . The properties of the T, (x)
have already been reviewed in Chap. 10. An expansion of G in a geo-
metric series,

(10) G(x,t) = (1-1?) 5 (-t2+2x2)",
n=-0

shows that the coefficient of £” on the right-hand side is a polynomial in
x, that the highest power of x in the coefficient of ¢t" is exactly x", and
that the coefficient of x” t" is 2", We thus see that T (x) must be a
polynomial of x which is of degree n, and that the coefficient of x" in
T, (x)forn>1is 2™~ T,

Multiplying (9) by 1-2¢x +¢? and collecting the terms involving ¢ on
both sides, we find

e, T —2x¢ T _.+e¢ T =

n-1 n=1 n~2 n—2



232 _ SPECIAL FUNCTIONS 19.2

Since (10) gives T, = 1, T, = %, we find that
(11) Tu—. 2x TH_I + Tu_z = 0 n= 2, 3, 4,..‘. -

Let x be real and let -1 < x < 1. Then the series on the right-hand
side in (9) converges absolutely for all complex values of ¢t for which
|t| <1, since the singularities of G (x,¢) as a function of ¢ are at ¢t = t,
andt = t,, where

(12) ¢, =x+ (=2-1D%, t,=x-@&>-D¥%, |t |=|¢,|=L
Cauchy’s formula then gives

1 .
(13) €, T, (x) =57 fc £t G(x,¢) dt,

where C denotes .any simple closed circuit surrounding ¢ = 0, and such
. that [¢| < 1 on C. Integral representations such as (13) may be used to
estimate the functions represented by them. In the particular case under
consideration, it is even possible to evaluate the integral in (13) ex-
plicitly. We put

£=cos ¢, ¢, =ei¢, ¢, =e_i¢,
so that

G (x,t) = (1-t2)(t — e i®)™ (¢ —e™i®)~1,
and from (13)
(14) €, T (x) = (2mi)~! fc £ (1=-£2) (¢ — € ") (t—e ")V d1.
I n > 1, there is no singularity at infinity, and the evaluation of the
integral in terms of the residues at the poles ¢, and ¢, gives

(15) Tu(x) = cos.nqS =-cos (@ cos™! x)s

This expression is also valid when n = 0.
If we introduce in (9)

(16) x=cos¢, t=e i“",
we find
(17) G (x,8) = C*(p, ) = (L—g i@+id) =t 4 (1 — ¢ t@=id)=1_1,
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Thus G* is a sum of functions depending on ¢ + @ and ¢ — w only
and therefore
(18) —azG* __azc

d0® OBt

*

Now

(19) i=d_x"i ==(1 -x2)% a_
d¢p do ox P

_= it —_—
do diodt ot
By substituting (19), (20) in (18) we find ffom (17)

J J J J
1_:2%_][ _ZZK_..] (_)(_) =0,
(21) [( x?) Py (1 ) axG + tat, tat 0

By expanding the left-hand side of (21) in a power series in ¢ we find
that T (x) = y satisfies the differential equation

(22) 1-22)y" -2y’ +n2y =0.
The orthogonality relations of the T (x) can be obtained by computing
1
1-¢2 1-s2
(23) f > —~ (1~ x?)~* dx.

- 1-2xt+t2 1-2xs +5°

This integral is an elementary integral which can be evaluated explicitly.
The result is

1 1)
27 -]
(1—st 2

Expanding in powers of s and ¢, and comparing coefficients of s® ¢", we
see that '

0 n#m
@) [ T,@) 7, @ A-x)%ds=

~1T/€n n=m.

Although this is a somewhat laborious proof of (24), the method deserves
to be mentioned since it can be applied in many instances.

The proofs of formulas (13), (22), (24) are to some extent typical
examples for the way in which the generating function can be used in
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order to obtain integral representations, differential equations, or integral
relations for the generated functions. In general, a combination of recur-
rence relations and differential equations is obtained if it is possible to
find a relation between G and the derivatives of G with respect to¢ and to
x. For instance, if

(25) Glx,t)=(1-2ux +:) %= § P (x) ",

n=0

where P (x) is the Legendre polynomial of degree n (see Chap. 3), the
identity

(27) nPn (x) =x P"l (x) -Pn'_' (x),

and the relation,

aG
(28) (1-2tx + t3)— =G
dx
gives
(29) P;— 2% P;_‘ +P"1_2 =P _,.

If we eliminate P, _, by using (27) with n — 1 instead of n, we obtain
(30) nP,_,=P,-xP,_,.

From (27) and (30) we find

381 (1-x?» P,: =—nxP +nP _ .
Differentiating (31) with respect to x, and combining the result with (27),
we find Legendre’s differential equation

(32) A-2)P'-2xP +n(n+ 1P =0.

Difference equations can be obtained in many cases where the gen-
erating function involves an exponential function. The generating func-
tion for the Bernoulli polynomials B_(x) (see Chap. 1),

@3) teet-D""= 5 B (x)t"/n!,
n=0

~

gives
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(34) tle®-D7 [e"*ue = T [B (x+1)-B ():Y/nl.

n=0

Since the left-hand side in (34) is ¢ exp (xt), we have
(35) B"(x +1) - Bn(x) =nx"" ',

Other types of functional equations for generated functions may be
obtained in a similar manner. ‘

Finally, the existence of a generating function for a sequence g of
numbers or functions may be useful for determining

36) 3 g,

n=0

by Abel’s or Ceséro’s summation method. If
6D 60 = 5 g, ¢

and if

68) AO= £ A ",

then

B9 ADGCEH= S y ¢
n=-0

n
where

(40) y, =X, g, * A 8yt + A8,
19.3. General theorems ’

For eachn =0, 1, 2, «. , let g_(x) be a polynomial in x which is of
exact degree n. If

d
Eg"(x)sg,',(x)=g”_, (x) n=1,2, 3,

the g _(x) are said to form an Appell set of polynomials. In this case
there exists a formal power series

M) 4@~ T a " a,#0
n=-0 .

such that
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(2) A@t)e®=~ s g,(x)t".
n=o

Thorne (1945) showed: A set of polynomials g (x) is an Appell set if
and only if there exists a function a(x) which is of bounded variation in
(0, =) such that the Stieltjes integrals

p.n=_E°x"da(x) n=0, 1, 2, see
exist,
P-o #O’
and
0 n#r
ST M=) dalx) =
1 ne=r

Then the formal power series 4 (¢) is defined by
A0~ CE e/l [T et da(] .

Scheffer (1945) pmved that the set g, (x) is an Appell set if and only
if there exists a function B(x) of bounded variation in (0, ) such that

bn=‘[:oxnd3(x) | "='0’ 1’ 29 eee
exists,
boié'o’
and
(x+)"
@3) g,,(x)=f d B(t) n=0,1,2
o

Varma (1951) showed that then, with the same B(t), the polynomials

(4) g*;(x) .=f % 3Fz(—n., a,b;e,d; ~t/x) d 8(t)
o !

also form an Appell set. Here ,F, denotes a generalized hypergeometric
series(see 4,1) The generating function associated with the g* becomes

(5 A*we®~ £ g*@)u”

where



19.3 GENERATING FUNCTIONS 237

(6) 4*@w)~ [ ~ F, @,bse,d;ut) d B (o).

For examples of Appell sets see formulas 19,7(1), 19,7(2), 19.7(23) and

19.7(34),
Expansions of the type

xt

- n
f(&) n=2—oo g"(x)t
were studied by Halphén (1881) andBird (1934),

Scheffer (1939) used the notion of an Appell set as a basis for a
classification of polynomial sets. For each n =0, 1, .2, «v';, let g _(x) be
a polynomial which is precisely of degree n in x. Then there exists an
operator J which is uniquely determined by the g_(x) and which has the
following properties:

J is a linear operator acting on «" (and hence on any polynomial in z )
Let y = y(x) be any polynomial in x. Let Jfy] denote the polynomial upon
which y is mapped by J. Let J be such that, for n =1, 2, 3, «es, J[x"]
is precisely of degree n —:1 and that J[x°] is zero. Then it can be shown

that for all y

(7)

® Jhyl= f’_gf, L, @)y @)

where y ¢*? is the m-th derivative of ¥, and where
©) L @=I  +l,  x+w+! x*T

n,t n,n—1

is a polynomial in x of degree < m — 1 such that

(10) A, =mi, , + m(m - 1) Lygter +mll £0
m=1,2,3,oo.o

Now the Ln (x) (and therefore J) are uniquely determined by
(11) J.[g]=gn_ n=1,2,3,00_l.

Let & be the maximum degree of the L » () (If the degrees of the L, are
not bounded, ¥ = .} Then the set of polynomlals g (%) is said to be of
A-type k. The Appell sets are special sets of 4 -type zero. For these,

L ()=c, CAO m=1,2,3
and the ¢ _ are constants. If we associate with J the formal power series

. . 2, ., 3 . X
J,(t)~c|t+c2t te b3 beng
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we may define another formal power series H (¢) by
(12) JIH@)] =1

Then all sets gn(x) satisfying (11) can be constructed by choosing an
arbitrary set of constants an(n =0,1,2, .. ), witha #£ 0, putting

A~ ¥ a ¢,
n=0
and
(13) 4 () et °z°° g, @) "
n=

All orthogonal sets g , ) defined by a generating function of this type
have been determined by Meixner (1934) (see sec. 19,12).
The case where

(14) 1-0)B() .exp("_)= S g ()"
1-¢ n=0 "

and ®(¢) is regular for |t| < 1 has been studied by Wright (1932), who
obtained results on the asymptotic behavior of the g, (x) forn -+ oo,
Huff (1947) and Huff and Rainville (1952), proved: if

15) f@)= £ a,z"/nl
and

(16) @ = 3 b ¢,

n=-0

then
17) ¢@ fe) = g (x)en
n=-0

defines a set g, (x) of A-type k if and only if
(18) f(Z)= OFk(BI 9329"-9 Bk; O'Z),

where F, denotes a generalized hypergeometric series (see Chap. 4).
and 8,,..., B,, o are arbitrary constants. For numerous other results
on generating functions of the type (17) consult Huff (1947), and Brenke
(1945) Rainville (1947) (unpublished) observed that in the particular
case where ¢(¢) in (16) is exp ¢, the g, () in (17) satisfy
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(19) 1-5)~¢ Z ©), 2 ( ) Z (), 8, ) "
n=-0

n
n=0
For applications see 19,10(15) and 19.10(16).
Rainville (1945) proved: if
200 Hw) = £ o, x"/n!
n=-0

and

@) C,t)=etHx)= 3 g,(x)e"/nl,
n=-~0

then
(22) g,(») = Z( )
(23) xg, () =nlg, (x) - g, _, ()] n>1

(24) ké»o (“‘]-)k (Z) g,,(x):(—l)"anx"

n
(25) g ,(xy) = Z (Z) y*(1-y)""t g, @)
k=0
Fasenmyer (1947) showed: if

(26 H®)= 3 a_ x",

n=-~0

then

4 oo
(27) _H[(]. ttx)z] = ’IEO gn(x)tn
where

n\» (—n)k (’H'l)k a, k
28 = .
@8) 8,00 = 2 5, k!

In the case where H(x) is a generalized hypergeometric series F
(see Chap. 4)eachg becomes a generalized hypergeometric series

F

pt2igt2’
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K. P. Williams (1924) studied generating functions ®(2x¢ + ¢2) where
®(z) is a power series in z, and used his results for a characterization
of the Legendre and Hermite polynomials.

Truesdell (1948) studied generating functions F(z; a) which satisfy
the equation

(20) 2 F(z,0) = F(z, a+ 1).
dz

In particular, Truesdell proved the following theorem,
If F(z + t, a) possesses a Taylor series in powers of ¢, then

80) Flz+t,d)= 3 Flz, a+n)t™/nl.
n=-0

If for fixed values of g and z = z,

Flz,, D 1
G sup z,a+n+ - 540

n>o F(z_,a+n)

and if there exists a real number & < 1 such that for certain values of w

for which |w| <k
(32) |F(z +tw, a)| <e™ t>¢,

fhen, for the same values of w
(33) io F(z,a+n)w"=J;°°e"F(z+tw, a) dt,
n=0 .

provided that the series converges uniformly in.z in a domain uncluding

the fixed point z .
Other theorems of Truesdell deal with the series

(34) i"o Flz, a~n)wh

Various applications will be listed in the table of generating functions,
in particular, see sections 19,9 and 19,10

19.4. Symbolic relations

In the older literature symbolic relations were often used in order to
express certain identities in a concise form, and also in order to ab-
breviate proofs. In contemporary literature the use of symbolic relations
is rarer. We shall give two examples.
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Following Rainville (1946), we shall use the convention that the
notation = used in place of = means that exponents shall be lowered to
subscripts on any symbol such as B, P, H, L which is undefined here
except with subscripts. Thus, if B denotes the Bernoulli numbers
which can be defined by the generating function

() te=D""= S B t"/a!
n=0
we write

() B @)+ B)"

to indicate that the Bernoulli polynomial B  (x) of 19.2(33) can be ex-
pressed explicitly as

n
(3) Bd= ), C‘) B,x"".
r=o

The symbolic derivation of this expression is as follows. The gen-

erating functions (1) and 19,2(33) are in symbolic form

t(et~ - =: eBt, te*t(et-1)"" =' e Bt

By comparison,
eBlxite ezteBt=' e(z+B)t,
and (2) follows on comparing coefficients of ¢".
Similarly, if L | (x) is the Laguerre polynomial of degree n,
n
(-1)*n!
4) L (x)= —xk,
@ L, ,!Zm AT

and if P is the Legendre polynomial of degree %, the relation
(5) 2°L [P(@)]=2[L&x-1)+LG&+D]"

means that
n - =Dk n! n
6) 2 kzo W P (Z) kzo (k) Lk(x_l)Ln-k(x"‘l)"

The relations (5), (6) were proved by Rainville (1946), who gave a large
number of similar relations between the Hermite Legendre and Laguerre
polynomials. The proofs use generating functions.
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In the calculus of finite differences the symbol E is often used for the
shift. operator which increases subscripts (or any other specified vari-
able) by unity. Thus
(7) Eg"=g"+|9 Ekg,,:g,,“, . k,n=0, ]_, 2, e o

Using this operator, the generating function of Hermite polynomials
2 oo
(8) e2%t" - % Hn(x) t"/n!
n=40
may be written as

(9) e27t-t’_ efH (%)

The operator E, as defined above, acts on the (discrete) variable n.
Friedman (1952), extends its definition so as to act also on the variable
x. Given any function of x, expand it in a series of Hermite polynomials,
and apply E to the Hermite polynomials. That is to say, if

(10) f(x)=a, H (x) +a, H, (%) +.r

define
(1) Efx)=a H, (x)+a, H,(2) + .

All other variables (s, f, ¥, v ) are unaffected by, and hence commute
with, E. Multiplication by the variable x also defines an operator acting
on any function f(x). From the recurrence relation

(12) #,,,x)=2x H (x) -2n H _, (x)
we find
xH (x)=%H _, &) +nH, _, ()

Therefore, multiplication by x maps the function f (x) in (10) upon
(13) 2f () =, H (x) + ?, Bsa,_ +(n+Va,,]lH, @)

From (11) and (13) we find

(14) xEf(x) - Exf(x) = f(x).

Relations of the type (14) between two operators play a role in quantum
theory. Equation (14) illustrates that £ does not commute with x. How-
ever we may multiply any expressions involving E by quantities not
involving x and add. For instance, from
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(15) eiEtHO(x)= ozo i"H"(x)t'f/n!=e2ix‘+‘z

n=10

and
(16) [~ exp(ist =¥ t2y~2)dt = 2% y exp(-y2s?)
we find by substituting E for s that

(17) 2ya% e~ E* g o (®) =2y 7* s D "H, (x)y*/n!

n=0

(18) =f°° exp (2ixt +t% = % t2y~?ddt

(19) 2e%y ( ——)
T(1-4y9% TP\ 1-4,c

Comparing (17) and (19) gives
(20) w™' expl-22y2w )= 3 DMH, (x)y?/n!
n=-0

where w?=1-4y2,
19.5. Asymptotic representations

Generating functions may be used with good effect for the determi-
nation of the asymptotic behavior of the generated numbers (or functions)
asn > e I

W 60= F g, o

has a finite radius of convergence, then G (¢) has one or several singu-
larities on the circle of convergence, and the location and nature of these
singularities determines the behavior of g for large n. If (1) converges
everywhere, then G (t) is an entire function, and the behavior of G (¢) for
large |¢| determines the behavior of g for large n.

The case of a finite radius of convergence of (1) was first investi-
gated by Darboux (1878), and later by many authors. Darboux’s method
leads to the following general theorem formulated by Szego(1939, theorem
84).

Let G(t) be regular for |t| < 1, and let it have a finite number of

distinct singularities



244 SPECIAL FUNCTIONS -19.5

i¢, i9, i,

(2) € y € g see 4 €

on the unit circle |¢] = 1. Let

00 1 b
@) CO= F W@z tH"™ k=1,2 0 ,r

v="0

. ‘e i$
in the vicinity of e ~ *, where 6, > 0. Then the expression

(4) izo i c;k) (ak+vbk> (—e-i¢k)n

v=0 k=1 n

furnishes an asymptotic expansion of g_ in the following sense: if Q is
an arbitrary positive number, and if a sufficiently large number of terms
is taken in (4), then we obtain an expression which approximates g, with
an error which is O (n"%) as n - oo,

Any finite radius, R, of convergence can be reduced to unity by the
transformation ¢ = Ru. Darboux’s method can also be adapted to cover the
case of (proper) logarithmic singularities. The case of exponential
singularities on the circle of convergence is more difficult. It has been
investigated by Perron, Faber, Hiusler, and, more recently by Wright
(1932, 1933, 1949), who gives references to earlier literature.

Darboux’s method has been applied successfully to the investigation
of the asymptotic behavior of the classical orthogonal polynomials, and
of certain arithmetical functions. In the case of a generating function
which is entire, in many cases it is possible to find an alternative gen-
erating series with a finite radius of convergence. Hermite polynomials
(of even degree), for instance, may be generated either by 19.4 (8), or by
19.4(20), and Darboux’s method applies to the latter but not to the
former, generating function. -

The case of a generating function which is entire has been investi-
gated by many authors. Among earlier writers the most important papers
are due to Barnes, I indelof, and Watson. Ford (1936) gives a summary
of the results and references to most of the literature before 1936, and
Wright (1948) gives references to more recent literature.
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SECOND PART: FORMULAS

No completeness has been attempted in the following list. The gen-
erating functions are listed in increasingorder of complexity. A“hierarchy’’
of functions has been laid down,andis indicated in the section headings.
Each generating function is listed in the section corresponding to its
“highest’” function. No lexicographical order was developed, but the
following principles were used as guides in compiling the list, and may
help the user in finding any desired result. A function of a parameter is
considered more elementary than a similar function of the principal vari-
ables x or t. Thus, (1 + £)* appears later than (1 = 2x¢ + £2)"% A product
of an algebraic function and of an exponential function is considered
more elementary than an exponential function of an algebraic function,

Almost every entry is accompanied by references to the literature,
These references have been selected as convenient, and they do not
necessarily indicate that the generating function was introduced in the
paper referred to, nor do they give the newest or most comprehensive
source,

The generating functions of number theory have not been included
here, For these see Chap, 17, The generating functions of conbina-
torial analysis have likewise been excluded.

19.6. Rational and algebraic functions. General powers

1% 1.2 F T
= + X .
1-2¢tx +t2 n=1 P

The T, (x) are the Tchebycheff polynomials of Chap. 10.

(D

@ Q-0 Q-2)"'= § gWE)em k=0,1,2 w
n=90

n k-~
B) g = 3 (—1)""( 1) x*,
R=0 n-—m,)/

Here g(:)(x) is the k -th Ceséro mean of the first n partial sums of the
series
lex+x2+ e,

(For applications see Obrechkoff, 1934).

@ Q-2+:)%= 3 P (x)em
n=0
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The P (x) are the Legendre polynomials, (see Chap. 10

(1 - 2)% -]
5 ——= "
) 1-2¢x + 2 nzo Unsy )2
The U ,, are the Tchebycheff polynomials of the second kind (see Chap.
10).
1-¢?

= s 2 n
(6) (1—2tx_+t2)3/2 "E‘O (2r +1) Pn(x)t

The P_(x) are the Legendre polynomials of Chap. 10.

7 (1-3x+:) %= F g ()2
n=0

Recurrence relations and a linear homogeneous differential equation of
the third degree for g were derived by Pincherle (1889) The polynomials
generated by

(1=-3xt +1£3)7
have been investigated by Ps Humbert (1920),

@) 1+¢ ~ § )
1-0)*Q-2xz +£2)32 "=°6,.(x)t

S Tlh+n-v+1)(2p+1
9 g,=)= Geneyi D@D

FE+1)T(w=-v+1)

v=0
where P_(x) is the Legendre polynomial of degree v and Re & > ~1.
Applications to the problem of summability of the series of Laplace and
Legendre are given by Gronwall (1914)

(10) ' (1-)F [ 1+¢

e ———————————————— — =N n
(1 - 2z + £2)% 1] nzcg"(x)t ’

3 Tk +n-v)
(1) g, = z IF''AYTr+1-1)

v=0
For applications consult Gronwall (1914); also compare with (8).

P, (x) + P, @)

(12) A-2x+97v= § C¥@)em,
n=0
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The C? are Gegenbauer’s polynomials. Consult Chap, 10, sec, 11.1.2,
and also Gegenbauer (1874)
Letw=(~-2xt +t2)¥%, then

2¢ _ °° (1+a)n ¥ 4+a n
w(l—nt +w)2 2 Q@a+ D) Care)e

n=-90
where the C¥ are the Gegenbauer polynomials of Chap.10; compare also
(12) and Szego (1939).

(13)

(14) 1 -32+3y2-t)V= S HY(x,9)t"
n=-90

Ordinary and partial differential equations for the H” have been derived
by Devisme (1932, 1933).

(15) -2+ ~)"]""= 3 JCr)en.
n=o
For an investigation of the .c: consult Devisme (1936).
(16) A=)*=cA-t+x)"b= 3 (e), F(-n,b;e;x) t"/n!
ne 0

The notations are in those of sec.2,1. For applications (in physics) see
Gordon (1929).
Letw = (1~ 2tx + t9)% then

17 29*Bw 'l -t +w)*(1+¢ +w) B= i)o P,(.""B)(x) t"
n=90

0o 1
(18) = 3 -(a+—)"F(a+B+n+1—n,a+1 Y%~ Y%x) ",

ne=o n!

where the P,**8) are the Jacobi polynomials (compare Chap. 10 and sec.
2.8.1 where a proof is given)

19 a+o:= Y (") g
n
n= 0

where

(20)( ) ahin D o Gmnr 1) n=1,2 3,
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. X

are the binomial polynomials of x, Equation (19) is the well-known bi-
nomial theorem which was rigorously proved by Abel in 1826 .

@ (XY 2 % g en
1-¢ l=‘n===0g"x L

(x)
(23) g,(x) = x'" F(~n,-x; l-n-x;~1)
n!
(24) =2xF(l~n, 1-x%;2; 2 n>1.

The notations are as in sec. 2.1 ., References: Mittag-Leffler (1891),
Bateman (1940). The generating function is of the generalized Appell’s
type 19.3 (13) with A () = 1,

1 * oo
(25)( ”) a-07= g e
1-: n=0

An explicit expression for g_(x) can be found from (22) and 19.2(37) to
19.2(40) with A(¢) = (1 - £)~', For applications consult Pidduck (1910,
1912).

x q oo
(26) (2x¢)™¢ [(1 * z) - 1] = 3 g, ()"
1-: n=10

[see Mittag-Leffler (1891).]

27) [1+Bt(a +a t+ o+ aktk)]’/ﬁ= S g, ®)e".
n=0
The g, (x) satisfy the functional equation
(28) g,(x+y)= go g8, (%) g, 0),

and every solution of (28) in terms of polynomials can be obtained from a
generating function of the form

QL+pr § a em) /b
B=0
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by an appropriate choice of the constants 8, a 01 Gys e o Reference:
René Lagrange (1928% The generating function is of the generalized
Appell type 19,3 (13)

Let G = G.(x,¢) be that root of the equation

(29) 1+xG ~(1+G)*=xt2,
which possesses an expansion

(30) Glx,¢8) = 3 g"(x)t"/n!.
n=1

Then

9n! 1+xG - (G +1)*7] %
(31) g,(x) ={BG"" [ 5 ] }a:o

and g, = 2% (1 - x)%, The g, &) were used by Barnes (1906) for the
investigation of the asymptotic behavior (for z » o) of

i r'd+ax) |
-_—z
n=o0 n!

19.%7. Exponential functions

1) ¢-D*e*= 3 x* L &)ml t™2/(m +n)l.

n=-a

"fhe L).: are the Laguerre polynomials of Chap. 10; see also Truesdell
1948

@) exp@u-:)= £ H ()i"/nl.
n=o0

The H  are the Hermite polynomials of Chap. 10.

21(t -2 oo
@ Q-0 ep D 2 L e

(1 - t)z n=-0
2
e* 4" 2
(4) gz"(x) = ol " (x"e'x )

(see Humbert, 1923), The g, (x) have the property that

f“e"’z x* an(x)dx=f° e"‘zx'gu(x)dx:()
0 e S=0,1,2,¢c¢,"’—1
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5) explhxle-t"N= I Jx)em

n= =00

The J, (x) are Bessel functions of the first kind (see Chap. 7).

6) exp{&[u+t-(ut)"’]/3}= § 'Jh'n(x)u"t".

n,m= =00

xn+n

M J,,&)= LTSI ES) o (m+1,n+1;-53/27)

19.7

where F is a generalized hypergeometric series{compare sec.4,1). For

0’2
negative values of n, m the right-hand side in (7) means

o o
(~x/3)°
8 3 ntm .
® 3) lg-o ¢ +1+a)T{ +1+m)
For proofs and applications to the equation
U é° U 93U U

9) + -3 +U=0
ax®  ay? 82 dx dy 9z

consult P, Humbert (1930).

(10) expl{t?2-uv)x-2%/3]1= z § tlus Pl .n (x)
, R,n=-0 i
See Devisme (1932, 1933).
tn
(11) (1+4¢2)7%2 (1+2xt+41t2) exp H (x)
1+4¢2 n i!

where | = %n if n is even and [ = %n ~ % if n is odd. The Hn are the

Hermite polynomials ‘of Chap. 10;see also (2) and Szegs (1939).

z [ 1 n
(12) (1.--¢2)-;4 exp <2x 9= b [H (x)]z (/2 t)
1+'.t n=0 n n!

The H, are the Hemite polynomials of (2) [consultalso Chap.10and

Tchebycheff (1889)].

xt

(13) (1-¢)™a-t exp(—-l———>= E L"'(x)t" :

n=0
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The L*(x) are the generalized Laguerre polynomials of Chap. 10; see
also Szegd (1939).

C 1-t9%-1] e
(14) exp[x E—t—t)——-—-:l= 3 g (x)"
n=0

[Eﬂ] x—zl

= (=1 n(p-.

(15) g,(x) = (=%=)" (2 -1 1 e=D! =21 - 1)!
(16) =@ T (~%x)" 3F")('—n,l/z—l/zn,1—%n;--4-x'2)

where [4n] = Jin if n is even and [%n] = Y%n ~ ) if n is odd, and JF is a
generalized hypergeometric series; notations are as in sec. 4,1, For
applications to a problem in the theory of electrons see Mott (1932).

(A7) (1-2x0)7% explz™1[1-(1-2x0) %]} = 5 ol n+l;=Yx) e /nl .
n=0

The ,F, are Bessel polynomials. See (18), (19) and Krall and Frink
(1949), Burchnall (1951),

(18) (1-2x)7% % + %1 - 2xt)x]2'°exp2 Y bhx~1[1-{1-22x)%]}
=3 y,(x,a,b) t"/nl.
n=0

The y (x, a, b) are called generalized Bessel polynomials byKralland
Frink (1949), and satisfy orthogonality relations on the unit circle of the
complex x-plane. For a proof of (18) see Burchnall (1951) Explicit
expressions are:

c k+a-2 x \*
19) ¥ (x,a,8) = () ("* )m(_)
2G)( ;

= ,F, (~n,a-1+n;—-x/b)

(20) y"(bx, a,b)=x 1Hha g 1/022) W1 ~%e,n~Y% +%a ™"

Notations: F, is as in Chap. 4; W is as in Chap. 6;compare also sec.

2°0

4.7 and (17).

(1) A-0)AB exp(li t)= §° g,x)e",
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(22) g,,(x)=- f

n=0
see (13) and sections 2,1 and 6,9,2 for the notation. The L;fe—' are the
generalized Laguerre polynomials. Reference: Wright (1932),

zt

te 00

@) ——= £ B,)eYal
Ze" 00

(24) ——= X E_(x)t"/n!.
e'+1 n=o n

Here B (x) is the Bernoulli polynomial and E  (x) is the Euler polynomial
of degree n. Let

(25) B, =B_(0)

(26) E,=2"E (4

The B’I are the Bernoulli numbers (cf, Chapter 1) and the E'I are the
Euler numbers.

@7 B, = ) (':) B ="V
v=90

@8 E, @)= ) (") 2VE (x -4)".
14
V=0

For a report on the extensive literature and for numerous results and
applications consult Fort (1948) and Nérlund (1924). For generalizations
compare (30), (34) to (37) and (57).

e™~1

= OEO x tnt
et=1 =0 £, )

(29)

The g"(x) are closely related to the Bernoulli polynomials [see (23),
and also Hermite (1878) and Berger (1888) for generalizations and appli-
cations]

tlext

(30) W = "50 B ’(21’ x)t"/nl.



19.7 GENERATING FUNCTIONS 253

The B ‘nl’ (x) are called generalized Bernoulli polynomials. Compare (23)
and see also Norlund (1920, 1924). Some special cases are:

@Bl BMW(x)= [ (s=1)(s=2) »os (s —n) ds,

x

z+1

l-n

n!
(32) B’(,H”(x) =l_! -dx—l_—n- (x=1)(x~2) +er (x—n) I>n

B’(‘l)(x+y) = 2 ( n) x(x-—l) . (x_r +1) Bf,l_-,"()’)
r
r=o

-1

+t oo

(33) 2te™ P ez P 3 o (@x)t*/nl.,
p-t¢ P+1 n=1 n

The o " are polynomials in x of degree n if p # 0u If p - o,
m(’f’(x) - 2"B, (4x%)
where B (x) is the Bernoulli polynomial [ef. 19.4(3), (23)]. The m(ﬁ’(x)

can be expanded into a series of functions

sin ulx, cos p.lx l='l, 2, 3,000
where y,is the /-th real root of

pcosp+psinp=0
For this and other results and for applications to a problem in the con-
duction of heat compare Koshliakov (1935).

t
1 -1 .u( —]_) )
(34) (e ) el e¥= 3 BUDGlo,,w,0)tY/al,
. it

t ¢ 0
35) 271 (e 1) e (71 4 Dert= £ ECGlo,, 0, o) e/l

R i
©, *» ot

36) — e*t= 3 B;l’(x|w',...,wl)t’f/n!

(e ! —].) sep (ewlt.-_.]_) n=10

2lex
w,t wlt

e +1) (e

37 = § E,(,“(x|a),, e s @;) t7%/nl

+1) r=eo

l='l, 2, 3, e o



254 SPECIAL FUNCTIONS 19.7

The B"'“ B”) are the Bernoulli polynomials of order —{ and I, re-
spectlvely. The £ O E ”’ are the corresponding Euler polynomials of
higher order. For results "and applications of these polynomials see
Nérlund (1920, 1924).

38) - Dt¥(e'-D7= 3 @© ()",
n=0

ven+i

39 =12 =D = £ W, e,

v,n+t

Imschenetzky (1884) investigated the ® ., W, pey forv=0,1,2, .
They are closely related to the generallzed Bernoulli and Euler poly-
nomials of (34) to (37); see also Nérlund (1924),

(40) explx(1+t-e¥] = 020 g, &) t"/n!
n=0

Mahler (1930) introduced the g, (%) for the investigation of the zeros of
the incomplete gamma function {see Chap. 9 and also (41), (46)].

(41) explat+x(l—e®]= %‘0 gl x)e/nl,

The g(“’ have been investigated by Toscano (1950), Related functions
are those studied by Hilb (1922), compare (46), and Mahler (1930), com-
pare (40), Toscano (1930) gives references to the older literature where
the g‘“’ have been introduced in connection with problems of actuarial
mathematics. Some of the results of Toscano (1930) are:

d
(42) g*(a) - g(x) =— — g ().
dx

Equation (42) relates the g‘“’ with the functional equation studied by
Truesdell (1948). The g“"’(x) is a polynomial of degree n both in x and a

. d \"
43) g,"“’(x) =x %e* (x——) x%e "%,
dx

If Aa is the difference operator defined by
(44) A, f(a) = fla +D—=fa),
then

n _1)"
45) 6 Loxp(cx 8 Jla"= Y 0

a=0

-3 R N
m! #"AG et
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Toscano gives expansions of g(‘”(x) in a series of Laguerre polynomials
L'B (consult Chap. 10) andproves the following integral relation

f:oe"‘ xana[Z (xu)*%] g;ﬁ’(x) dx = (-])nykae=u g'(l"'—ﬁﬂ’(u).
The relation
e® g’(:"’(—x) = § (@+m)"x*/m!

2=0

has been stated by Whittaker and Watson (1935), page 336.
(46) exp (e *~tx) f:o exp (sx —e®) ds = 020 g,@)e",
n=90

The g, (x) were used by Hilb (1922) to construct a solution of the func-
tional equation :
47) u(x+1)=~xu(x)=k(x)

where & (x) is given, Hilb shows that under certain conditions % (x),

48) 3 g, @)k " (x) = u(x)

n=0
is a solution of (47). Here £ = k (x) and % ™ is the n-th derivative of
k{x).
49) e~ (l+a~1g)* = °2° a_x"(n!)'xpn(x) "
n=-0
The p, (x) are the Poisson-Charlier polynomials of Chap. 10; see also
Szegd: (1939),

(50) (1-¢)™et*=exp[x(22+12/24£3/3 + )]
= ? g, (x) "

The g,(x) are a set of polynomials of the generalized Appell s type
19.3(13). With the notation of sec, 2,1,

n n=- l() n
(51) g,,(x)=2 ’:n_l;"l" - "' ey xi-27),

Sylvester (1879) investigated the g,(x) and showed that the numbers
g,(1/4) can be used for the computation of the number of different terms
in the determinant of a skew-symmetric matrix of degree 2n, Similarly,
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gn(l/B) is significant for the computation of the number of different terms

in a determinant of degree 4n which is skew-symmetric with respect to
both diagonals.

(52) (1+8)77e* €%2%) _ oxpx(=23/3 + £4/4  vor )]
= § g n (x) t",
n=0
The g (x) are a generalized Appell set of type 19.3(13) which is related
to the Hermite polynomials (see Chap. 10), Consult van Veen (1931) for

results and applications to the problem of asymptotic behavior of Hermite
polynomials,

(53) (1_;2)—}4._- (i + :)’ et

= (1-22) 7% exp[x(2/2 + £3/3 + s )] = 3 g,(x)¢t".
n=20

The g, (x) are a generalized Appell set of polynomials of type 19.3(13)
They have been introduced by Tricomi (1949) for the investigation of the
asymptotic behavior of Laguerre polynomials (see Chap. 10). The
fundamental recurrence relation is

(54) m+D) g, = (n+e-Dg,.,+2xg,_,

(55) e~*(L+an)t= S (~D"A (x)¢"

n=o
The A (x) are sometimes called Appell’s polynomials. They are related
to a special case of the g _(x) defined by 19.3 (13), This can be seen by

writing

e *(1+xt) /= explx[s ™' log (1 + s) - 11} s = xt.
We have

dA
(56) dx" =xAn_I +x2An_z TR An(x)=x"+‘ .-__i' P. xl-|’

- LY —'
im X P o=e"'.
n>0 a=-+1

The numbers P are used for the computation of a number-theoretical
function [see Appell (1880)L
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t = B®
(57) (e,_l) =,=2° 2,

The B !® generalize the Bernoulli numbers [see Chap. 1 and compare
with (25)]; B l2) is a polynomial in x of degree n and is a special case of
the polynomlals of R. Lagrange (1928) [cf. 19.6(27)]. For another gener-
ating function see 19.8(6); theory and applications in N&rlund (1920,
1924). By a slight modification [see (58)] the Stirling polynomials are
obtained from the B ‘%),

l—e=t\ -zt -
(58) - =l+(x+1) X ¢, ()",
n=0

The ¢, (x) are called Stirling polynomials. They are connected with the
Stzrlmg numbers C | () and @:"’ by the relations

n+1)!

(59) C’(::' ='(n——r)! ')b,—| (n) r= ]., 2, 3, 11}
D™ (m+r)!
n _ —_— -
60) €7, —ooDr ¥poq(=n=1).
Here, 1/10 is defined to be % and the Stirling numbers are defined inde-
pendently by
61) @), = 2 C"’ n=r C:°’= 1
r=o0
1 oo (_ l)r @(I‘)
6 = —_n @ ) _ 1
( 2) (t) _2 t"+' n

63) t"=~ 2 gm

n=r+1

(~2),

Definition of (t)n is as in sec. 2,1, References: N. Nielsen (1906);
Norlund (1924). See also (57) and 19,8 (7).

64) (1 -8)7% explx[(1-0)7% - 1]} = go g, )"

65) g,(x)=@N"xe™" [d‘(ixz)] (w2 o)
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66) (1-0)""2explx[(1-0)"2-1 = 3 (@n+Dlp_()"/(2"n0)?
n=0

ahe”* d et gy,
(67) P,.(x)-=2xp(n+3/2) d(xz)] FEe

For applications of the g _, p_ in (65), (67) to the theory of hyperbolic
differential equations, see Courant and Hilbert (1937) pp. 391-398.

19.8. Logarithms, trigonometric and inverse (rigonometric functions.
Other elementary functions and their integrals

1-1-8)* o .
(1) —log(l —_t) = nzo &+t )¢

@) 8,4 @ =ENH" j‘: w(l~w) s (n—1~u)du.

See Appell (1929), Jordan (1929) and com{&re with 19,6(19) and 19,10(14),
Applications to the computation of % n™"

3) [~log(1-0)]<(Q-0)"*= § 4¥)(x)s"/nl K=1y2 3, e
n=0

The asymptotic behavior of the 4 0() for n » = was studied by Narumi
(1929). Here A4 ‘K)(x) is the coefficient of tX/x ! in the expansion of

T(n+t+x)
I'(r+t)

in powers of t. Application to the proof of theorems about functions which
are regular in the unit circle |z] <1 and have exactly one singularity with
a prescribed location (z=1) and type on |z| =

@) [-xlogl+]™¥= T g ()"
n=0

1 ® Ax Y -1
, S v 0.
(5) g, I‘(V)j{ (n) e~ ATl d) Re v>

( )\x) is the binomial polynomial 19,6 (19) of degree n in Ax
n
[see Lerch (1905)].
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00 (x+n) n
6) [t log(l+t)]*=x Z 5 !
n=0

where the B (:) are defined in 19,7 (57); see Nérlund (1920, 1924),

x+n n!

(7) [t log(l-0]*=1+xt 3 ¢ (x+n)e™

n=o
The ¢ are the Stirling polynomials; see 19,7(58) and Nielsen (1906).
(8) kte*tcsc(kt) = 020 g, @ k)t",
n=90

Let 4n]l = %n if n is even and [%n] = %n — % if n is odd. Let the con-
stants b, be defined by

9) 020 b nt2"=tsech te

[%"] kle
(10) gn(xak)= Z bhm-

a=-0
For this result and for applications to the problem of approximating a
function for which the mean value of the function and its derivatives are '
given see Léauté (1881). Appell (1897) showed that for -k <x <k

g. (k) =21"k272 3 (D' cos(Im/k)  m>0
2 1=1

(x,k) =2(-1)2 2+t g2t l§ Dy =tgin (U px/k).
=1

g2-+1

The g, are connected with the Bernoulli polynomials of 19.7 (23).

~5.(1)

= § "
n=0 gn (x)

En (xv

sinh xt

hte

(1)

can be reduced to 19,7(23) (Bernoulli polynomials). Applications to
two-point expansions of analytic functions by Whittaker (1933).
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2" l+x l-x
80 = et [B"( 2 ) —B"( 2 ):l

(12) “—= p g"(x)t".
cosh ¢ n=0

Thg g, e related to Euler polynomials [see 19.7(24) and also Whittaker

(1933)]

(13) B7x) ¥ cos(x2=2x)% = I ey ()2 "/n!
n=-o0

(14) Ghoe) % sin2-200% = § J,_ (2)t"/n!
n=90

where J_ (x) is the Bessel function of the first kind of order v (see
Chap. 7 for the notations) Referencé:Glaisher (1873).

(15) (cos t)*= 3 c;(xjt"

n=o0
(16) ¢™'sint) = ¥ & (x)e",
A= 0
For applicationd t thé theory of Bernoulh numbers and other pro-

perties of the ¢ ; _;,é‘ldié'éé Nielser (1914) dad compare with Norlund
(1920, 1924) and 19.7 (57)

P z =y . ;_%iz-
(17) exp(x tan™'¢) = (L+u)
1-i:t,

See 19-6 (22)-

(18) exp(x sin~'¢) = OEO g, x)t"
n=-0
(19) g,x)=1, g,x)=x

x2(x24+2%)(x2+42) o [x2 +(2£-2)7]

1
(20) gzk (x) =(2—k)!.

@1) g, @ _=mx(x2+12) (x2+32) oo [224(2k=1)2].
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This is a generalized Appell set of type 19.3(13) with A(¢) = 1. The
explicit form of the g _(x) can be obtained by introducing sin ¢ = ¢t and
differentiating (18) with respect to ¢.

(22) exp[f'ts"(1+s)"(1—s)"‘ds]= § g, x)t".
n=0

See Mittag-Leffler (1901) and compare with 19.6 (22).

1 [=<]
(23) exp{mf ( - ] }= Y gne)en
n=90

See Mittag-Leffler (1901).

(24) e* [ e™utdu=—t 5 g ()"
-t

n=0

See Rogowski (1932).

(25) lﬁ (1+exh) = 3 g ()" x| < 1
=1 n=0

(26) g, (x) = x¥ntnn lﬁ (1-xH7',

=
For results and applications to the theory of probability see Qettinger
(1867)s

19.9. Bessel functions. Confluent hypergeometric functions (including
special cases such as functions of the parabolic cylinder)

In this section the notations of Chap. 7 for Bessel functions and of
Chapters 6 and 8 for confluent hypergeometrlc functions and their special
cases have been used.

() Jie2-22]% = £ J (x)ev/n!
n=0
See Chap, 7 and Truesdell (1948).

@ @) T [26+0%]= S xTHHN T | (x) (~0)"/n ]
n=20

See Truesdell (1948).

(3) (+t)%eJ [2(x+t)y]— E xhakn g a_n(x)t"/n!

n=o0

See Truesdell (194.8).
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@ eFJ, [1-29%] = ngo P_(x)t"/n!

() e*Lem= £ (-2 P [(1-2)H]e"/n!

(6) . (ex)%] = "go L, (x)t"/n!

@) II2tG-DA I [2tG+D¥1= S @)2P ()i,
n=-20

Here P, L are the Legendre and Laguerre polynomials (see Chap.
10). References and applications: for (4), (5), (6), Rainville (1945);
for (7), Bateman (1905)

8) et o (l+a-xt) = —_B g,

n=o
The L& are the generalized Laguerre polynomials of Chap. 10; see
also Szegd (1939
©) et 4] (2:%) = 3 " L™ tY/T (a+n+1).

n=-0

The L% are the Laguerre polynomials of Chap. 10; see also Truesdell
(1948) p- 2.

(10) e* oF [L+a; Lt2(x2-1)]= e’t[‘/ztz(l—xz)].—aJa[t(l—xz)%]

= § [@a+D 17 CoH () e
n=90

where C” is the Gegenbauer polynomial of Chap. 10; see Truesdell
(1948).

o L%(x):"
t —%a_ Y - L CEP .
(11) e*(xt)™**d [2(x2) %] . =20 Cn+a+l)

The L% are the Laguerre polynomials of Chap. 10; see Szegs (1939).
(12) Fl+a;%e(x-DIF [1+B5%¢t (x+1)]

=M (a+ DT (B+1) (42) "% %B (1 —x) %2 (L4 x) %8

x J \[2t Q-]¥} I 22 (x+ DI¥)
00 P’(Ia,,ﬁ)(x)tn
T L, 042, 04P),
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The P @8) are the Jacobi polynomials. Consult Chapters 10, 7 and 2 for
the notations and Bateman (1905) for a proof. In the case a = B, the
right-hand side involves Gegenbauer polynomials; for @ = B = 0, the
P(""B) are the Legendre polynomials (compare Chap. 10) and (12).
becomes (7 ‘

(13) D.(x+t) exp[4(2xt+tH)] = z (m) D, (x)e""".
n

The D, (m = 0, 1, 2, ... ) are parabolic cylinder functions[compare sec.
8.2 and Prasad (1926)].

n
.

2 (), LS )

A S . .
(]-4) (1 ) |F;Gal+aa (1+a)

n=0

Here p is arbitrary; the L& are the generalized Laguerre polynomials of
Chap. 10, Reference: Chaundy (1943)

(15) (L+4¢9)=¢ F y 4x%t2 3R2ct3x3 F 1 5 4x%;2
+ s Y6s )+ c+lim—usr
IS B2 ) T s(1e A et 1 2 1+4:2

2xt(1+4t%-8c¢t?) 3 4x2t?
1 = 2

(raeer TN\ P Toape

( )l 21 n
(21)'2 #, e}

where [ = %n if n is even and [ = Y%n ~ } if n is odd. The H  are the
Hermite polynomials of Chap. 10. Reference: Brafman (1951)

(16) e~? 5 (-5,a+1; x+1)

e (a+b+1) (—z)"
= z WF( b,a+n+1; x)

n=o0

See Truesdell (1948

19.10. Gamma function. Legendre functions and Gauss’ hypergeometric
function. Generalized hypergeometric functions

The notations in this section are: for I', (a), see Chap.I 1; for
F, ,F, see Chap. 2; for P~ see Chap. 3; for qu see Chap. 4.

l"(m.+x+t) ) "y
Y '..EOA &) e"/nls
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The Afn"’ are the functions defined in 19,8(3); see also Narumi (1929)

v x v—u+n n
@ Q-2egee?)7EH P#[(l 2xt+t2)é:| 2 ( > Bt

vy X~ °° V+’L n
(3) (1—:2xt-,|-t2)4 Pl;[(]_—szz)%] = 2 ( n ) va;n(x)(—l)
n=g9

4) [1-12-20-x2) %2 B8Pz +t(1-29%]= S P+ @) t"/n!
n=-190

- —xh1-k kv p n n
(5) MM-2:(Q-x*%] {[1 2:(1 xz)%]%f 2 Py+n(x)t /n!

See Truesdell (1948).

1 1-
RT'P (-H) < t) Z P (cosx)F (-2r ~-1) ¢t
where

(M) R=(1-2t cosx+t?)%, F (2)= ,F(~v,v+1,%+%z;1,1;1)

Here P, is Legendre’s function; P (n = 0, 1, 2, ... ) Legendre’s poly-
nomial (see Chapters 3 and 10); ,F, is a generalized hypergeometric
series (see sec, 4.1,1)., References: Bateman (1934), Rice (1940)

1 L w
(8) —1:' ZF; [4, Vz; ps ~4 xt (l—t) .2] = ng-o 3[;; (-n,n+1, é; ]_,P;x)t"

Here _F, ,F, denote hypergeometric and generalized hypergeometric

series. References: Rice (1940), Fasenmyer (1947); see also 19,3 (27),
19.3 (28) and sec, 4.7,

9 A-071798 F B4+Ya+sB, 1+% o+ fs Lvas 26(x-1)(1-1)"?]

- 2 M p(a-,B)(x) tn
=, Q+a), n

(10) (L+8)7""*"B F [+ %a+%B, 1+ %a+%B; 1+ B; 26z +1)(1+¢)7?]

i o0 (1+a+',8)n @ B) n
"z 1+8), P et

n= 0
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The P’(I""B) (x)are the Jacobi polynomials; the ,F, is the hypergeometric
series. Consult Chapters 2 and 10 for the notations and Watson (1939) for
a proof,

(11) (L-x2)7P _F, Dhp, Yip +%; 1+a; ¢* (- 1) (1~22) 7]

- 3 (p)n aty n
—-ngo (2a+1)nCh (x)t

where the C¥ are the Gegenbauer polynomials of Chap. 10. Reference:
Brafman (1951). The parameter p is arbitrary. For a = 0, the C” become
Legendre polynomials.

(12) ,F (p,1+a+B~p;l+a;h-%t~Yw)
x F, (p, L+ a+B~p; 1+ B; Yo+ Yt~ Y w)
i @, Q+a+B-p)
~ (1+a, 1+B),

n=

n P;sa,ﬁ)(x) ",

where w = (1 = 2xt + £9)%, P,(,""/g) is the Jacobi polynomial of Chap,
10, and p denotes an arbitrary parameter. Reference:Brafman (1951) The
special cases a= B and a = 8 = 0 give generated functions which are
multiples of the ultraspherical or Gegenbauer polynomials and of the
Legendre polynomials (cf. Chap, 10).

: - " 2a,2b,a+b,~n;
13) [F(a,b;e;—-1)]2 e*t= —_— I: 2 AR
(13) [F (a,b33-0)] DA P

n=o0
Here F is the hypergeometric series as in secs 2.1; ,F, isa generalized
hypergeometric series as in secs 4.1. Reference: P. Humbert (1924).

—(B)" t".
o,
Here F is the hypergeometric series. Consult sec. 2,1 for the nota-

tions and see Appell (1929) for applications. The g, ., are the functions
19.8(2) Let :

(14) fo-z.F(a.,B;y;t) da= go 8psy (®)

(15) et JE @b, .b

, 5 —x2ty) = § g, x)t"/nl.
=0
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Then for any ¢
(16) (1-6)7¢ _E,[Yc, Y%c+%,a;%, b, ,b,5~x2¢2(1~£) 2]

[ -]

= Z ), g,x)e"s

n!
n=o0

see Rainville (1947). Compare with 19,3 (19).
(17) e*(1-x?)%" Jolm+l, melss B, Yom+%, Y%m+1;-4 2 (1-x2)]

72" m! o0 t"

- F(m+%) T'(m+%) nzo Pen® m+n)!

The Pn" are the Legendre functions of Chap. 3; see Truesdell (1948)
(18) (1-9)°7' E [Ya~%;Ya;4xb™" (1-£)"7]

~ 3 y,(x,a,b)(@~1), t"/n!
n=90

The y , (x,a, b) are the generalized Bessel polynomials, Compare 19.7(18)
(Rainville, unpublished )} Equation (18) is a special case of (23)

(19) (1-220)7" ,F [1,%;-4¢2(1-228)"2 ~ 3 H_(x)¢"
n=0

The H , are the Hermite polynomials of Chap. 10. Reference: Rainville
(1947) '

(“)"' H_ @)™

ni

20) (1-220)7% F Do, Yo+ l—4e2(1-200)"] ~ Y,

n=0

The #, are the Hermite polynomials of Chap. 10, Reference: Brafman
(1951).

1 a|,uuo,a; Axt
(21) 1_2 pF:, ) ) g _(1x £)?
b], [ LTI b H

q
n=-0 P 9 %, '1, b| g see y bq;

Notations are as in sec. 4,1.1, See also 19,3 (27), 19.3 (28) and Fasen-
myer(1947).
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Ay G,y eee y A3
(22) (1-:)4\},“1?«':‘g ' P H
1 st see g Bq;

o (A)n -n, a|, e 9 ap; ] n
= —_— F X t
DR i

Chaundy (1943).

a,...,a;1_1_4 Y
(23) (1-4xe)~%2¢"1[1+(1-4xe)%]'~¢ PF'I|: ! p (1-4x0) :l

By wwsBgy 2%

_ °E° -n,c+n,1~B -n, ..., 1-=Bq—n; (1P Hat )snt"
n=o 9¥2'P l-a,~n, ..., l-a -n;
where
(28) A =(a,)n(a2),l e la), 1

B, B, (Bq)n n!
Rainville (1947).

a,, oo 9 A5 _ _ o0 -n, ai, eee 9 ap; tn
(25) e'qu I:ﬁ‘, e s 13:; xt] - ..Eo P"‘Fq [ Bys wee s Bq; x:l n!

Rainville (1947

[

G (&
. Yt (- D= ) 2t p@Blgyn
(26) F, [y, 8 1+ 0, L+ B3 %t (x-1), Yo (x+1)] g Ao G, e

where F, is Appell’s hypergeometric function of two variables (see
Chap. 5); P (:"B)is the Jacobi polynomial of Chap. 10,

19.11. Generated functions of several variables

(1) Q-x)"2(1~-yt) A= §o g(x, y) E"
n=
The g, (x,y) are called Lagrange’s polynomials.

@) g, ()= 2 @, B, ATy,

rl(p-r)!
r

Applications to statistics and general reference: J. L. Lagrange (1867)
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3) (1+t))\'(l+xt)“(1+yt)”= 2 < ) F(~n,~p,~v, \~n+1;x,y)t"
n ‘
n= 0
where F, is Appell’s hypergeometric series in two variables (see Chap.
5)% Reference: Devisme (1932, 1933).

(4) exp(xt—yt? +:3/3) = 3 U, &,y)e".
n=-o0

Explicit (but complicated) expressions for the polynomials U were
given by Devisme (1932, 1933); also given are applications to

3*U 93U 93U 3 U

+ + =0,
dx® 9gy® 9z? 0% dy Jz
and related partial differential equations.

(5) explilx(L+¢2)% —ytl} = 3 8,(x,y)t"
. n=0

_ [%n]
© g, (xy)=(iy)" (4 mx)% 2
k=o0

Gix/y D HD, ()
I'h-2k+1) k!

where [%n] = %n if n is even and [%n] = %n ~ % if n is odd, and where
H ;'_3% is the first Hankel function of order & — %. See Hall (1936) and,
for applications to a problem in the theory of conduction of heat see

Green (1934),

(1) [(Q-xt~ys)2+ (245D (1-x2-y?2)] % 2= b3 8an(ry)ets™

»,n=0
Letp=1-x2-y2and a>—-%. Then
D" I'(a+DI'(2a+m+n+1) —a grtnpatatn
ono2mtnpint T'(2a+1) ].-'(¢1+m+n+1).p dx* dy™
consult Koschmieder (1924).
Put

(8) g,

9 o¢x,y) =ax?+2bxy+ecy?, a>0, A=ac-52>0,
Aylx,y) = cx? ~ 2bxy + ay?
E=ax + by, n=0bx+cy.
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The polynomials generated by

(10) explté+sn-Y%o(t,s)l= 3 q, ,(xy) L
a,n=0 m' n!
(1) explex +sy - %ule, )= ¢, tmy)—=
,.'n= o n.

are Hermite polynomials in two variables. For their properties, and for
generalizations to several variables, see Appell and Kampé de Fériet
(1926) For generating functions of products of such polynomials see
Koschmieder (1937, 1938) and Erdélyi (1938)

SOME GENERATING FUNCTIONS OF SEVERAL VARIABLES

Let%,, o , 2, be variables and let

(12) G, () = l'I (1-ix Q= 2 =D"s t"

r=1 r=0

Then s =1,s, =%, +x, + «» +x,and s _is ther-th elementary sym-

metric function of * , vee , ¥ ;0 Letk = 0, 1, 2, oo, , and let

(13) p, =x, +x"+~u +x’;

be the sum of the k-th powers of the variables, Then we have

d so
14) 2 (og G,) k1,
(14) at(°g ) k§1pkt

Multiplying both sides in (14) by G and comparing the coefficients of
the powers of ¢ on both sides gives Newton’s recurrence formulas from
which expressions for the p, in terms of the s ¢an be obtained. Let
¥, k=1, 2, 3, e ) be variables and let

(15) exp[ 2 (yk/k)z"]_1+ s B "

n=1

Then

(16) B (y,s «.. ,y) Z

a a a
1}, 2_"},"

a
a'a!..pa']_‘zz.un"
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where the sum is taken over all non-negative integers a,, ... , a, for which
(17) a,+2a, ++= +na,=n.

Now let & | and s be defined by (12), and let p, be defined by (13). Then
(18) [Go(t)]-I =‘n§O hn(x' 9 000 xl) t”

where

(19) & (x5 00 ,%) =B (p,sPys e sp,)

(20) s (x,, cee, ) = (=17B (=p,, = py5 see » =p,)-

For r > I, the left-hand side in (20) is identically zero which means that
then, the right-hand side gives an algebraic relation between the sums
of powers of %, «. , %+ The proof of these formulas follows from the
remark that

(21) exp 2 P,, -'exp(—logG)—
k=1

(22) exp —-t" =G, ()
(. )

The functions B are used in the theory of group characters. See Little-
wood (1940) for other explicit expressions for the B . With a slight
change in the definition, the B, have been thoroughly investigated by

For generating functions in several variables, consult also sections

11.5, 11.6, and 11.8 where generating functions for spherical and hyper-
spherical harmonic polynomials are given. See Appell and Kampé de Fériet
(1926) for the harmonic polynomials investigated by these authors.

()

19.12. Some generating functions connected with orthogonal polynomials

In this section, two sets of generating functions are given which were
constructed from the point of view of the theory of orthogonal polynomials.

Let g,(x) (r= 0, 1, 2, ... ) be a sequence of polynomials, such that
g, (%) is of degree n and let a(x) be a function of bounded variation such
that the Stieltjes integrals
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(1) f_:g,,(x) 8. (x) dalx) = A

exist forn, m = 0, 1, 2, «e » If X, =0 forn £-m, the g, &) form an
orthogonal system, if also A _— "for n=0,1, 2 i, the system is
called orthonormal (see Chap. 10). If da/dx = w(x) exists, itis called
the weight function associated ‘with the g . If w is zero outside an
‘interval @ < x < b, we shall write an integral from a to b in (1) and we
shall call the g, an orthogonal or orthonormal system for (a, 4). Watson
(1933, 1934) has found explicit expressions for the bilinear generating
functions

2) §° g, () g, o)t

where the g are the orthonormal systems derived from the Legendre,
Gegenbauer, Jacobl, Laguerre and Hermite polynomials of Chap. 10,
Using the notations of Chap. 10, Watson’s results can be summarized
as follows:

(3) s (r+%) P (2) P (y) t"

n=0

m

1 (1-¢2) dw
“2n Jo ll—2t[xy+(1-xz)'/z(1—yz)mcosw]+tziw

For explicit expressions for
(4) §° P (x)P.(y)¢"

see Watson (1933)

(r+v)n! '
2p-1 2 2y %Y (1 o 2)Y KV S ) (v} n
(5) 227 L2 Q-2 (1-y?) Z s CYWCY )
(1 xz)%”(l—yz)%”/ v(1-22) (smw)z”"'dw
n 11-2¢ [y +(1 2 2¥4(1~y 2) cosw]+tz¥"’+'

Let

nil(n+a+B+1)

g-a=p-1
Fr+a+) Mz +B+1)

6) 6,=(2n+a+B8+1)

that is,
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@ 67" = [, 1-0)21+x) B[P A(x)]? dx,

Let
(8) u=%1-2)%5(1-n%, v=%1+2)% Q+y)%.

9) & =Y%(¥ +17%),

(10) y = {[(k sec w)? —u? - v?]2 - 442 p2}¥%
(1) z, =k secw)* +u?-v2+y

(12) z,=(k secw)® —u?+v2+y.

Then

n=0

(13) [(l—x)(l PIEE L+ 2)1+PI%B S 6, P(“'ﬁ)(x)P(“'ﬁ)(y)t"

= t%'%"'_yﬁ— {uavﬁk

f%ﬂ 2k secw bk secw\ B cos[(a—B)w]dw
) ) y cos? “ycostw

19 n ¥ e B W F ol W H () tn!

n=0

dxyt —(x2+y?) (1+t3)
= 7% (1-£2)™% D
7 )™% exp 2119
This formula was already derived by Mehler (1866); see also Erdélyi
(1938)
g !

(15) (ay)¥oe~ss¥y Y mw(x) LoG) e
n=0

. 1+t ' 2(xy)%]
=t Ha(l-p) ! ! I
’ (1-6)7" exp l: (e ty) 1-¢ :I “|:1_t

where I is the modified Bessel function of Chap. 7. This is the Hille-
Hardy formula; see also Myller-Lebedeff (1907)
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Meixner (1934) determined all orthogonal polynomials g, (x) which
possess a penerating function of the form

(16) f@) explzu®l= = g, () ¢%/nl.
n=0

He shows that there are only five possibilities:

(i) Polynomials expressible in terms of Hermite polynomials

. d L2\
D) (@)= expHikt?, w@) =1, ——=exp <22) .

(ii) Polynomials expressible in terms of (generalizéd) Laguerre

polynomials

| kt t
=(1-, 'k/>\2 _— - —
(18) f(e) =(1-A0) exp , ule) a

Aae=1)
d
(19) _d_a =0 x>k/
X
] |
(20) === (o 4 b/ NI/ gt ~ <z <k/\
- 4

(iii) Polynomials expressible in terms of Poisson-Charlier poly-
nomials

(21) () = (L-ne)k /N e he/A
(22) u(e) =~A""log(1l - Atk

Bere a(x) is constant except for
(23)x=xn=h-‘k—hn ’l=0, 1,2,000
where a(x) has a jump defined by

1 E\"
(24) alx_+0)-qalx -0)=— | —] .
n n n ! AZ
(iv) Hypergeometric polynomials; discrete variable
(25) () = [1-pe) ™™ (L= ae)~X W Gmhy
u(t) =(A—) 7" [log (1 — pt) —log(l — A¢)]
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where A and y are real and a(x) is constant except for
(26) xzxn =k//\"(/\,—ﬂ)n n = O, 1, 2, YY)

where a(x) has a jump such that

©@7) alx+0) - alz~0) = (_ ) > (_k/w)) .
A n

(v) Hypergeometric polynomials; continuous variable; we have
again equations (25) with A and u conjugate complex and

(28) Im A > Im p.
Then, for —e <x <

P A
(29) d—“ <-_> 76" b (@) Tg)

where

B0 =t —, gt E
p=A  pA~q) A= A=)

and where

< 7

()

In all cases, differential equations or difference equations for the g (x)
can be established.

For references to other cases in which the generated functions involve
orthogonal functions compare the end of sec. 19,11,

(31)

19.13. Generating functions of certain contihuous orthogonal systems

The Hemite, Laguerre, Legendre, Gegenbauer and Jacobi polynomials
arise from the investigation of certain linear differential equations of
the Sturm-Liouville type. After multiplication by a weight function, the
orthogonal functions thus obtained are the eigenfunctions of a Sturm-
Liouville problem which in these cases has a discrete spectrum. For
the linear and bilinear generating functions of these systems see sec.
19,12,

For another range of the varlable, the same differential equation may
have a continuous spectrum. Let f (x) be the corresponding system of
eigenfunctions. Then the integrals
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Jevf, @ dv, [tf @) f (dy,

taken over an appropriate range of values of y, may be called the linear
and bilinear generating functions for the fy (x); this agrees with Laplace’s-
original definition of a generating function (cf. sec, 19.1),

In this section, linear and bilinear generating functions are given for
the pa.rabolic cylinder functions Du of Chap, §; the confluent hyper-
geometric functions MK and W, " of Chap. 6; the Gegenbauer functions
C": and the hypergeometnc functmns corresponding to the Jacobi poly-
nomials (cf. Chapters 2 and 10)

For proofs and for references to applications of continuous orthogonal
systems to boundary value problems consult Erdélyi (1941).

(1) exp(Yx2-xt-Y%¢t?) =(2ni)" 'f"”‘” tYT'(-) D (x) dv

c—1ioo
¢ <0, |argt|<Y4nrm
11-¢? ixyt
2) (L+t3)7% ———x2+y?) +-
@ ) exp[41+tzx y)+1+t:2

1 Y c+ ico -—y=1
=_(/2ﬂ.) f L D,x) D_,_,@y)+D, (-x)D_,_,(=iy)ldv
2ni J,_;, sin(-va) v !

~1<e<0, |argt|<k%n
t-1

(3) T@u+1)(L+2) 211 x4+% exp (/x —_
t+1

= (@mi)7" [ R Gt )T Gt ), () d

le| <% +Re p, |argt| <=

(exy )% x+y l-t [2(txy)"
@ 1+t exl)(-T 1+t JZ“. T+c

1 F'G-x+p) T4+x+p)
- K
2mi f, T el M, ) de

|argt| < =

where sz, denotes the Bessel function of the first kind of order 2 (cf.



276 SPECIAL FUNCTIONS 19,13

Chap. 7), and where L is a path from —i to i separating the poles of
T (%—k+p) from those of ' (% +x+p)..

With the Hankel function [-IZ‘L’ of the first kind instead of Jz#’ 4)
becomes ' ,

% ' %

txy x+y 1-¢ 2 txy)”

(5) e exp|(—— —JH" | —— (exy)
1+ 2 1+t 2p 1+t

=(27i)"! J;;Ke K =) () WK'#(x) WK,/.L(y)

+ VRV )W, (-)]dx

where
U) =T G—x—~p) T G~x+p).
The Gegenbauer functions C: can be defined by

T{p+2v)
T'(p+1) T'(20)

where F denotes the hypergeometric series of 2,1, For =0, 1, 2, s , CZ
is the Gegenbauer or uliraspherical polynomial of secs 11.1.2, The
linear generating function is

(6) CZ(x) = Flp+2v,=-psv+%; Y~Yx)

| T v
(1) (L+2m+x2) = h2a” g, _2Rey<c.<O.
2i J, 0 sin (gn) -

Evaluation of the integral in (7) by means of residues gives 11.1(16)

The most significant case in which Gegenbauer functions with non-
integer subscript 4 appear in mathematical physies is = -% + i 0, o real;
in this case the C%‘ll are involved in the definition of the associated

+ .
conal harmonics. The normalized form of these as introduced by Weyl

(1910) is
(x2-1)%1

ST FU-mltptl el %-Ya)e* e

l= 0, 1, 2, Y1}

(8) ¢j.’(x, ) = N%

where

FQQ+p+l)

={-D! A _ - .
9 N=G1D"(g+%) cm lm)l"(l+p-—l)
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Let

(10) o==y - (x2-1)% (y2 - D* cos (¢~ 0).
Then

(1D (2-1) Q+2t@ +t2) ™3

c+ too '
=i_/ 2 ¢ L(x ¢)¢ ’(y,e)dg -1<e¢<0,
c= 1= -

o COS (/,ur)

For the generalization of the Jacobi polynomials we have the following
results, Let
(12) S=[1+2(1-2x) ut* +u2]*%
(18) T=[1+2(1-2y)ut™% + u2¢t"']%
(14) V—[1+2(1-2x)z+z2]%.

-1 vy =1 Yy =-a
s (y) ( ) V- ”1>
2 tx

- (2171:)_ C+too

I'-v) F(y+1/) tYF-v,a+y; ¥ x) dy

c—i

0<-c <Rey

and

(16) ¢-%e [ 4o (S—ut%—l T-ur%-1)7-'
u
0

-2ux -2uy

S—utb+1 T-ut™%+1\7 "% du
x —
2 2 - ST

=(27:)"! j;c_t:a Q) tY F-v,a+v;y;%) F-v,atv; 3 9) do

0<-c <Rea, Re(a-y)<-c<Rey

where

(17) () =T'(=v) I'(a+v) T'(y+v) I'(y~a-1).
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If the parameter v in (7), or the parameters g, y in (15), (16) do not
satisfy the respective inequalities, the path of integration must be
indented so asto separate the different groups of poles of the integrands.
These curved paths may be deformed so as to coincide with the straight
line from ¢ — ioo to ¢ + i, If we do so, a number of poles are crossed,
contributing a sum of residues. Our generating functions are nowasum
plus an integral and represent the eigenfunctions of a “‘mixed’” spectrum.
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1
All numbers refer to pages., Numbers in italics refer to the definitions,

A

Absolute invariant, 17ff.
Accessory parameter, 57
Algebraic numbers, 167
Almost all, almost no, 175
Appell polynomials (see Polynomials)
Arithmetical differentiation, 172
Arithmetical functions, 169
asymptotic behavior of, 174f.
explicit expressions for, 169 ff.
general theorems on, 175
generating functions of, 169 ff.
properties of, 1711
relations for, 1714,
Arithmetical integration, 172
Automorphic forms, 30f.
metrization of, 31
Automorphic functions, 1., 7
Burnside’s, 35
general theorems for, 27 ff,
of groups of parabolic substitutions,
121,
of infinite cyclic groups, 14 ff.
of several variables, 12, 35f.
of subgroups of the modular group,
21 1.
of the icosahedral group, 11
of the lambda-group, 22f.
of the modular group, 17
Siegel’s, 361.
simple, 9
Whittaker’s, 34

B

Bernoulli numbers, 189, 241, 252,
257, 260,

Bernoulli polynomials (see
Polynomials)

Bessel polynomials (see Polynomials)

Binomial polynomials (see
Polynomials)

C

Character (mod m),
imprimitive, 194
primitive, 194
Character (mod n), 193 ff.
principal, 193 ff,
Charlier polynomials (see Polynomials)
Circulant, 214
Confluent hypergeometric functions,
251, 2611., 275ff.
Congruence, 175
Coordinates,
ellipsoidal, 46 f., 96 fl.
oblate spheroidal, 95ff,
of confocal cones, 48 ff.
of confocal cyclides of revolution,
50ff.
of confocal elliptic and hyperbolic
cylinders, 91ff.
of confocal quadrics, 44,
prolate spheroidal, 93f.
sphero-conal, 49 ff., 73
Coprime, 168
Cyclides of revolution,
coordinates of, 50ff,
harmonics associated with, 84 ff,
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D

Darboux’s method, 244
Decomposition, 175
Dedekind-Liouville formula (see
Mobius’ inversion formula)
Discontinuous groups, 5
classification of, 26 ff,
fundamental regions of, 5ff.
generators of, 5
limit points of, 6
Divisors,
number of, 168

E

Eisenstein series, 17 ff,
Ellipsoidal harmonics, 48, 69, 73
81f.
integral representations of, 83
Ellipsoidal wave functions, 91f., 97
1594, (see also Lame wave
functions)
differential equation of (see
Lamé’s wave equation)
integral equations for, 162f.
Elliptic functions,
Jacobian, 45ff., 51
Elliptic modular functions, 16 ff.
Euler numbers, 252
Euler polynomials (see Polynomials)
Euler product of 3, f (), 169
Euler’s function ¢ (1), 168, 193
Euler’s identities, 176 ff.

F

Floquet’s theorem, 99, 119
Fuchsian equations, 57, 160

G

Gaussian sums, 187 ff.

Gegenbauer functien, 275 ff.

Gegenbauer polynomials (see
Polynomials)

Generalized Bessel polynomial
(see Polynomials)

Generating function,

bilinear, of Gegenbauer
polynomials, 271

bilinear, of Hermite
polynomials, 272

bilinear, of Jacobi
polynomials, 272

bilinear, of Laguerre
polynomials, 272

bilinear, of Legendre
polynomials, 27

of an Appell set of polynomials,
236, 2551., 262

of Appell polynomials, 256

of Bernoulli numbers, 241, 252

of Bernoulli polynomials, 234,
252 1.

of Bessel coefficients, 250, 260

of Bessel functions, 250, 260 ff.

of Bessel polynomials, 251, 266

of Charlier polynomials, 255

of Fuler numbers, 252

of Euler polynomials, 252ff.

of Gegenbauer polynomials, .246 ff.
262 ft., 265, 271

of Hermite polynomials, 242, 249 ff.
263, 266, 269, 272

of hypergeometric polynomials,
247 1., 251, 255, 264, 266 fl.

of Jacobi polynomials, 247, 262 ff.
267,272

of Lagrange’s polynomials, 267

of Laguerre polynomials, 249ff., 251 ff.,
262ff., 272

of Legendre functions, 264, 266

of Legendre polynomials, 234, 245 ff.
261, 264 ff., 271

of parabolic cylinder functions, 263

of Poisson-Charlier polynomials, 255

of Stirling numbers, 257

of Stirling polynomials, 257, 259

of Tchebycheff polynomials, 231, 245ff.

Generating functions, 228 ff.

and asymptotic representations, 243 ff.

and orthogonal polynomials, 270 ff.
(see also Gegenbauer, Hermite,
Jacobi, Laguerre, Legendre,
polynomials)

and symbolic relations, 240ff.

bilinear, 271ff,

continuous, 274 ff.
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general theorems for, 235 ff.

in number theory, 169ff., 245
Group, 167

alternating, 9

discontinuous (see Discontinuous

groups)

dodecahedral, 9

finite, 9

Fuchsian, 26, 32f.

icosahedral, 9

Kleinian, 27

lambda-, 22,34

modular, 16 ff., 34

modular, Hilbert’s, 35 ff.

modular, of degree n, 37 fi.

modular, subgroups of the, 21f.

of homographic substitutions, 5

H

Harmonic polynomials, 83
Hermite polynomials (see
Polynomials)
Heun functions, 60 ff.
‘integral equations for, 72
Heun polynomials, 62
Heun’s equation, 57 ff., 98
Hille-Hardy formula, 272
Hill’s equation, 133
Hill’s problem, 133
Homographic substitution, 2
Homographic transformation, 2
elliptic, 4
fixed points of, 3f.
hyperbolic, 4
loxodromic, 4
parabolic, 4
Hyperbolic functions of order =,
206, 2121, 216
Hypergeometric polynomials (see
Polynomials)
Hypergeometric series, 201., 23,
236, 2381f., 2591., 263 ff., 276 ff.

]

Jacobi polynomials (see
Polynomials)

Jacobi’s identities, 177, 182

Jacobsthal’s sums, 187

Jordan’s function Jk (), 168

K
Kloosterman’s sums, 188
L

L -series, 192, 194 ff.
Lagrange’s polynomials (see
Polynomials)
Lagrange’s theorem on four squares,
182 :
Laguerre polynomials (see
Polynomials)
Lamé functions, 44 f., 61f., 63 ff.,
97
algebraic, 62, 68, 71, 88
coexistence of, 67, 71
degenerate, 74ff,
doubly-periodic, 71, ff., 81
finite (see Lamé-Wangerin
functions)
integral equations for, 72ff,
Legendre function expansions
of 67, 69
of imaginary periods, 69 ff.
of periods 2K and 4K, 64 ff.
of real periods, 63ff., 68
of the second kind, 67 ff.
periodic, 63 ff., 88
transformation formulas for, 70
trigonometric expansions of,
651., 68
Lamé polynomials, 62, 67, 69, 73 ff.,
81f.
transformation formulas for, 70
Lamé-Wangerin functions, 75£., 84,
86, 88
integral equations for, 79 ff.
power series representing, 77 ff.
series of exponentials representing,
78 fI.
Lamé wave. functions, 97
characteristic curves for, 161
of the first kind, 161
of the second and third kinds, 163
arthogonal properties of, 162
Lamé’s equation, 47, 52, 55ff., 59,
61, 86
algebraic forms, 56 ff.
asymptotic behavior of the char-
acteristic values of 4 in, 68
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characteristic values of & in, 63 ff.
degenerate cases of, 741,
imaginary transformation of, 69 ff.
Jacobian form of, 55

solutions of, 62 ff.

trigonometric form of, 56

associated, 98

asymptotic forms of solutions
of, 106 fl.

characteristic exponent of,
99, 106

expansions of solutions of,

Weierstrassian form of, 56 1001., 103 ff.
Lamé’s wave equation, 97, 159 ff. integral equations satisfied by
power series expansions of solutions of, 109 ff.
solutions of, 159f. integral relations for solutions
solutions of, 159 ff, of, 107 ff., 110
subnormal solutions of, 160 modified, 92, 120
Laplace’s equation, 45ff,, 49ff,, solutions of the first kind of,
80, 83 99, 108, 129
Lattice points, 196 ff, solutions of the third kind of,
Legendre-Jacobi symbol, 183 f.., 99, 129
186 ff., 193 stability chart for, 101
Legendre polynomials (see stable and unstable regions of,
Polynomials) 101
Legendre’s equation, 134, 234 subnormal solutions of, 107
Liouville’s function, A(n), 169 Meissel’s formula, 172
Mittag-Leffler’s function £ a(z),
M 206 ff., 215
functions related to, 2111
Mathieu functions, 91f,, 93, 974, generalizations of, 210f., 215
99, 108, 111f. Modified Mathieu functions, 120ff.

addition theorem of, 132
approximations to, 125
asymptotic forms of, 125ff.
Bessel function expansions
of, 117 .
characteristic curves for, 111
expansions in series of, 132
expansions of, in series of
parabolic cylinder functions,
127 £,
Fourier expansions of, 115ff,
infinite series involving, 1281,
integral equations for, 114 ff., 117
integrals involving, 130, 132
normalization of, 111f.
of fractional order, 114
of the first kind, 111fF.
of the second kind, 119ff.

orthogonal properties of, 114, 132

products of, 129 ff,, 133
symmetry properties of, 113

Mathieu’s equation, 75, 92, 97 ff., 134ff.

algebraic, 98

approximations to solutions of, 105ff.

asymptotic forms of, 122, 125f.
Bessel function expansions of,
1201,
integral equations for, 124
integral relations for, 122., 130
of the first kind, 93, 120
of the second kind, 120 #,
of the third kind, 93, 122
Modular equations, 24ff,
Modular forms, 18, 30, 36, 39f., 178
Modular functions (see also Elliptic
modular functions)
of the nth degree, 3611,
Modular group (see Group, modular)
Mgbius’ function p (), 169
Mébius’ inversion formula, 171ff.
generalizations of, 172
Multiplicative functions, 169, 171, 185
completely, 169
Multiply-periodic functions, 12ff.
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N

Non-associative algebra, 230
Normal solutions, 52
of Laplace’s equation, 47, 49f., 86
of the wave equation, 92, 941., 97,
150
Number theory,
functions of, 167 fl.

(0]

Orthogonal polynomials (see
Polynomials)

P

P -symbol, 57 ., 77f.
transformations of, 58I,
Parabolic cylinder functions,
263, 275
Partitio numerorum, 189
Partitions, 175f.
asymptotic formulas for, 178 ff.
asymptotic theory of, 211
congruence properties of, 1781,
enumerating function of, 176
enumeration of, 176
generating functions for, 176
restricted, 175
theorems on, 178
Poisson-Charlier polynomials
(see Polynomials)
Polynomials,
Appell, 256
Appell set of, 235 ff., 255, 261
Bernoulli, 234 ff., 252 1., 259
Bessel, 251
binomial, 248 ff., 258
Charlier, 255, 273
Euler, 252 1., 260
Gegenbauer, 246 ff., 262 ff., 265,
271, 274
generalized Bessel, 251, 266
Hermite, 240, 242 ff., 249 ff., 256,
263, 266, 267, 269, 2711., 274

hypergometric, 247 ff,, 251
255, 264, 266 ff., 273 ff,
(see also Gegenbauer, Jacobi,
Legendre polynomials)

Jacobi, 247, 262f., 267, 2714.,
274

Lagrange’s, 267

Laguerre, 241, 249ff., 252, 255,
262 ff., 2711., 274

Legendre, 234, 2404, 245 ff., 262,
264 ff., 271, 274

orthogonal, 238
(see also Gegenbauer, Hermite,
Jacobi, Laguerre, Legendre
polynomials)

Poisson-Charlier, 255, 273

Stirling, 257, 259

Tchebycheff, 231#., 245f.

Prime numbers, 168
distribution of, 191 ff., 195
Prime number theorem, 192

Q

Quadratic law of reciprocity, 186
Quadratic residue, 186

R

Ramanujan’s function r(»), 184, 198 ff,
Ramanujan’s sums, 188
Reciprocity,
quadratic law of, 186
Riemann-Schwarz triangle functions,
(see Triangle functions)
Riemann’s hypothesis, 172, 1914.
Riemann’s zeta function (see Zeta
function)
Rogers-Ramanujan identities, 177

S

Schwarz’s function, 34
Shift operator, 242



288 SPECIAL FUNCTIONS

Spherical surface harmonics, 73, 80ft.
Sphero-conal harmonics, 84
Spheroidal wave functions, 91f., 94, 96
1341, 1451,
approximations to 143 ff,, 151 1.
asymptotic forms of, 137, 143, 1524,
Bessel function expansions of, 1351,
1414., 148
characteristic exponent of, 135
differential equation of, 94, 96, 98,
134 1.
integral equations for, 157
integrals involving, 144 ff., 156 ff.
Legendre function series for, 138,
14114, 147, 149
modified, of the first kind, 94, 96
modified, of the third kind, 95 ff,
normalization of, 137, 147
oblate, 150
of the first kind, 137, 139, 146
of the second kind, 137, 149
of the third kind, 137, 149
order of, 134
orthogonal properties of, 149, 158
power series expansions of, 141
products of, 141f.
prolate, 150
relations between, 138ff., 148 ff.
Standard form of n (integer) 168, 169ff.
Stereographic projection, 2
Stirling numbers, 257
Stirling polynomials (see Polynomials)
Sturm-Liouville problem 61, 64, 69, 76,
82, 1111., 114, 132, 161, 274
Symplectic geometry, 36

T

Tchebycheff polynomials (see Poly-
nomials)

Theta functions, 19, 178, 1811,
Poincaré’s, 301., 35, 39

Totient, 168

Triangle functions, 33f.
group of, 34

Trigonometric functions of order n,
215,

U

Uniformization, 29, 32ff,
Uniformizing variable, 7, 32, 45

\'
Valuation, 167
w

Waring’s problem, 189
Wave equation, 91, 128, 133

z

Zeta function,

Dedekind’s, 192

Epstein’s, 192, 195 fi,

Riemann’s, 170, 189 ff.
approximate functional equa-~
tion of, 190
Euler’s product for, 189
functional equation of, 190
zeros of, 190 ff.



INDEX OF NOTATIONS

A
a (0) characteristic value of
" h in Mathieu’s equation, 111

2 e .
a" & ) characteristic value of
h in Lamé’s equation, 63

a '_: * 2) characteristic value of
h’ in Lamé’s equation, 70
An(x) Appell’s polynomial, 256

B
‘b (6) characteristic value of
" h in Mathieu’s equation, 111

»" (kz) characteristic value of
"h in Lamé’s equation, 63

b’ :(k z) characteristic value of
h’in Lamé’s equation, 70

Bn Bernoulli number, 241

Bn (x) Bernoulli polynomial, 234

Bil)(x), B'(‘l)(xlw) generalized
Bernoulli polynomials, 253
C
c, (m) Ramanujan’s sum, 188

c .(kz) characteristic value of
" b in Lamé’s equation, 75

c (x) Gegenbauer polynomials,
" 246

(z) Gegenbauer function
(see vol. I, 178)

c=cn z, 62

cen(z, 9) Mathieu function, 111

cn u Jacobi’s elliptic function,
(see vol. II, 322)

Ce (z, ) modified Mathieu
functlon, 120

D

d{n), d, (n), 168

D (x) parabohc cylinder function
Y (see vol. II, 117)

d=dn z, 62

dn » Jacobi’s elliptic function
(see vol. II, 322)

E
E (n) partition function, 175
En Euler number, 252
E (x) Euler polynomial, 252
m(x), (l)(x(a)) generalized
" Euler pSlynomials, 253
E (z) Mittag-Leffler’s

% function, 206
Ea ,6(2) generalized Mittag-

Lefiler function, 210
Ec:(z, k 2), Es:(z, k 2)
Lamé functions of real
periods, 63

289



290 SPECIAL FUNCTIONS

Ec’*(z, kz), Es’"(z, kz)
n n .
Lamé functions of imaginary
periods, 70

F

F* (2, k%) Lamé-Wangerin
"function, 75

Feyn(z, o), Fekn(z, 6)

modified Mathieu functions,
120 ff.

G

8, &, invariants of Weierstrass’

elliptic functions, 17
G, n(x, y) Hermite polynomial

in two variables (see vol. II,
285)

‘Gey"(z, o), Gekn(z, @) modified

Mathieu functions, 121#.
H

Ak i(x’ n) hyperbolic function of
order n, 212

H (x) Hermite polynomial (see
"vol, 11, 193)

HI n(x, y) Hermite polynomial

in two variables (see vol. II,
285)

Hc:(a, Bs y) HS:(‘I’ By

ellipsoidal harmonics, 82

J

J(z) absolute invariant, 17f.
J (n) Jordan’s function, 168
J (x) Bessel functlon of the
Yfirst kind (see vol. 11, 4)
K

k. modulus of Jacobian elliptic
functions, 45

k (x, n) trigonometric
function of order n, 215
kn(x), 172

Kv(z) modified Bessel function
of the third kind (see vol. II,
5)

L

L (s, x) L-series, 194
Ln(x) Laguerre polynomial, 241

L:'(x) Laguerre polynomial, 249

M

M modular group, 16

M « #(z) confluent hypergeometric
function (see vol. I, 264)

Mey)(z, 0) modified Mathieu

functions, 122
N

Ne:'i)(z, &) modified Mathieu

functions, 122
P

p (n) number of partitions, 175
Pl(")’ Py (n) numbers of

restricted partitions, 175
P, (x) Poisson-Charlier polynomial,
255
P (x) Legendre polynomial (see
vol. II, 178)

(a'"B)(x) Jacobi polynomial, 247

P‘:'(z) Legendre function (see
vol. I, 122)

Ps‘: (z, 0), Ps‘: (x, 6) spheroidal

wave functions, 138
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Q z

Q@) 174 8
Qsl:(z, o), Qs:j(x, 6) Z(:‘)(s)(i> Epstein’s zeta

spheroidal wave functions, fanction, 105

138
R GREEK LETTERS
y Euler’s constant (see vol, I,
r k(n)’ 180 p. 1)
S A discriminant of Weierstrass’
canonical form, 17
() A Laplace’s operator, 45
s”( h 187 €°=1, en=2, n=12 ..
S (m, n) Gaussian sum, 187 (s)
S (u, v, n) Kloosterman’s é s) 189
sum, 188 6’y «.. , 0. Theta functions of

zero argument, 19
An) Liouville's function, 169
A(z) modular function, 221,

sH (j)(z, 0) spheroidal wave
Y functions, 135
s =sn z, 62

sen(z, 0) Mathieu function, 111 AP (6) characteristic value of
snu Jacobi’s elliptic functions A(ns)phl:;ldal wave functions, 135

(see vol. 1, 322) A(z) automorphic function of

Sc:(ﬁ, ¥) Ss:(ﬂ, y) ellipsoidal Ms’ 24
surface harmonics, 81 p(n) Mdbius’ function, 169
Se (z, ) modified Mathieu function, i, B) F("s B, a), 217
" 120 v(n), 168
viz), vix, a), 217
T 7(x) number of primes, 191

oln), ak(")’ 168
r(n) Ramanujan’s function, 184,
Tk(n) kth totient, 168

¢(n) Euler s function, 168
qS(a, B; z) E.M. Wright’s generalized
Bessel function, 211

T (x) Tchebycheff polynomial, 231
n

U

U(n) partition function, 175

U, (x) Tchebycheff polynomial, 246 ¢k (=), 168
w (I)q(s) gth Jacobsthal sum, 187
WK IL(Z) confluent hypergeometric ‘P’(jj )(é ) spherical Bessel functions,
function (see vol. I, 264) 135
&(s), 190

x(m), xi(m) characters, 193
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MISCELLANEOUS NOTATIONS

arg z argument (or phase) of complex
number z

Im z imaginary part of z (complex)

Re z real part of z (complex)

a=b (modn), 175

@ = I'(a + n)/T'(a)

k
(-) Legendre-Jacobi symbol, 186

m|n, m[n, 167
(m, n), 168

( ) 2(x=Dees(x-n+1)

binomial coefficient, 247
[x] largest integer <x

2, 3, X ,0 1,ies
p dn ma)=1 p dn

~ approximate or asymptotic equality
_{: Cauchy principal value of an
integral
(o+)
f : loop integral
[}



