Characterization of geomorphic pore structure of building materials for agent fate

C.R. Savidge, L.B. Hu, N.J. Hayden, D.M. Rizzo, M.M. Dewoolkar

School of Engineering University of Vermont

Presentation Outline

- Overview/Objectives
- Materials
- Methods and Results
- Conclusions
- Future Work

Overview of Problem

- Characterize pore structure:
 - Fluorescent microscopy
 - X-ray imaging
- Ultimate goal of rapidly predicting agent transport in field cases

Materials REDUC

Building materials: •Ohio sandstone •Indiana limestone •Concrete •Brick

Tests: •Fluorescent microscopy •CT scanning

Methods: Fluorescent Microscopy

- Saturate in fluorescent solution (FITC)
- Images provide:
 - Porosity
 - Detailed pore sizes/shapes (stage micrometer)
 - Micro beads for better visualization of pore network

Results: Fluorescent microscopy

100 µm

Methods: X-Ray Scanning

- Amherst College, MA
- Resolution: up to 1.5 µm
- Smallest pore 4.5 µm
- Estimate parameters

Results: X-Ray Scans

Addition of fluid

•Transport information per volume of fluid added

12.5 mm

•More scans with fluid in process

Methods: Image Processing

- 1. Crop original scan
- 2. Contrast enhancement
- 3. Thresholding

Methods: 3D Reconstruction

- Avizo 6.0
- Import/Stack binary images
- 3D surface
 - Material statistics

Results: Pore Surface Generation

Pore surfaces

5,000 psi concrete

D04 concrete

Limestone

Brick

All specimens 100x100x100 µm

Testing Results

Porosity					
	Lab	СТ	3D		
5,000 psi Concrete	0.12	0.16	0.16		
D04 Concrete	0.10	0.14	0.13		
Indiana Limestone	0.10	0.13	0.15		
Ohio Sandstone	0.16	0.14	0.16		
Brick	0.17	0.20	0.18		

Conclusions and Future Work

Fluorescent microscopy and X-ray imaging successfully quantified details of pore structure

STATES OF A

Advanced X-ray image analysis

Estimate of transport properties by image analysis (random walk)

- Porosity
- Tortuosity
- Specific surface
- Diffusivity
- Permeability

X-rays – continued

Comparison to measurements

	Sandstone	Brick	D04 Concrete	5000psi Concrete
Porosity	0.15 (0.16)	0.19 (0.17)	0.11 (0.10)	0.13 (0.12)
Specific surface [1/m]	7E+5	8.8E+5	1.8E+5	1.8E+5
Tortuosity	4.4	8.9	20	16.0
Permeability [m ²]	7E-14 (15E-14)	2.7E-14 (4.2E-14)	16.0E-14 (7.7E-14)	26.0E-14 (7.9E-14)

Acknowledgements

Prof. Whitey Hagadorn (Amherst College)

Financial support: HDTRA1-08-C-0021

Thank You

Image → Grid (simulation)

Simulation of Wicking Tests

