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1 A property of the Lebesgue integral

As opposed to the Riemann integral, Lebesgue integration consists in “chop-
ping up” the ordinate axis rather than the abscissa. Specifically, the integral
with respect to a measure µ is given by

∫

g dµ =
∫

g+ dµ −
∫

g− dµ, where
g+ = max(0, g),

∫

g+ dµ = lim
n→∞

n2−1
∑

k=1

k

n
µ{x :

k

n
< g+(x) ≤

k + 1

n
} + nµ{x : g+ > n},

and similarly for g−. This follows either by definition or through the limit
theorems. The integral exists if and only if both limits on the right hand
sides exist.

An implication important in probability theory is that the integral de-
pends only on the functions

y 7→ µ{x : g(x) > y}, y > 0

and
y 7→ µ{x : g(x) < y}, y < 0.

If µ is finite, we can replace these functions by the cumulative distribution
function of g

Fg(y) = µ{x : g(x) ≤ y}, −∞ < y < ∞.
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If the integral happens to be over the real line, the Lebesgue-Stieltjes integral
is defined as

∫

g(x) dF (x) =

∫

g(x)µ(x)

where µ is the measure defined by µ(]a, b]) = F (b) − F (a) if F is right-
contonuous. In probability, one regards x as a function x = X(ω) of some
underlying conceptual random element ω and writes FX instead of F .

2 Random variables

A probability space consists of a measure P defined on a σ-algebra of subsets
of a universal set commonly called Ω. One has P(Ω) = 1. A random
varable, X, is formally defined as a real-valued function which is defined
on a probability space, and is measurable in the sense that its cumulative
distribution function,

FX(x) = P(X ≤ x) = P{ω ∈ Ω : X(ω) ≤ x},

is defined for all x.
In most cases one does not know the functional relation ω 7→ X(ω),

only FX . Often one is interested in some new random variable Y given by
Y = g(X), that is Y (ω) = g(X(ω), where g is a given function. For instance,
the distribution of X, the speed of a particle, might be given, and one wants
to determine the distribution of its kinetic energy, Y = mX2/2. Now

FY (y) = P(Y ≤ y) = P{ω ∈ Ω : Y (ω) ≤ y}

= P{ω ∈ Ω : g(X(ω)) ≤ y}

= P{ω ∈ Ω : X(ω) ∈ A}

= P(X ∈ A)

where
A = {x : g(x) ≤ y}.

In the example with kinetic energy, we have

FY (y) = P(Y ≤ y) = P(mX2/2 ≤ y) = P(X ≤
√

2y/m) = FX(
√

2y/m).

It is required that g is such that P(A) is defined for all sets A = {x : g(x) ≤
y}. In other words, g is a random variable defined on the real line equipped
with a probability measure

PX(A) =

∫

A

dFX
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defined on the σ-algebra generated by intervals. It has the same distribution
function as Y , since

Fg(y) = PX{x : g(x) ≤ y} = FY (y).

3 Expectation

The expectation of a random variable X is given by

E(X) =

∫

X(ω) dP(ω)

and is said to exist if and only if the integral exists. To give a formula for the
expectation which does not involve the function ω 7→ X(ω), the following
obvious consequence of the first section is used.

• If two random variables, which may be defined on different spaces, have
the same distribution functions, then their expectations are equal.

Theorem 1 Let g be a real-valued Borel function on the real line, that is

all sets {x : g(x) ≤ y} belong to the σ-algebra generated by intervals. Define

Y = g(X). Then

E(Y ) =

∫

g(x) dFX (x).

Proof As said in the previous section, Fg = FY , so g and Y have the same
expectation. Therefore

E(Y ) =

∫

g(x) dPX (x),

since the right hand side is, by definition, the expectation of g. As noted
towards the end of the first section,

∫

g(x) dPX(x) =

∫

g(x) dFX (x).

�

The special case g(x) = x gives

E(X) =

∫

x dFX(x),

which simplifies to

E(X) =

{ ∫

xfX(x) dx for a continuous X
∑

x xpX(x) for a discrete X,

which is the definition in elementary textbooks.
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