Preventing Privacy-Invasive
Software using Collaborative

Reputation Systems

M. Boldt, B. Carlsson, T. Larsson, and N. Lindén

Blekinge Institute of Technology, Box 520, SE-372 25, Sweden
{mbo,bca}@bth.se, {tola01,nili02} @student.bth.se

Abstract. Privacy-invasive software, loosely labeled spyware, is an increas-
ingly common problem for today’s computer users, one to which there is no
absolute cure. Most of the privacy-invasive software are positioned in a legal
gray zone, as the user accepts the malicious behaviour when agreeing to the
End User License Agreement. This paper proposes the use of a specialized
reputation system to gather and share information regarding software behav-
iour between community users. A client application helps guide the user at
the point of executing software on the local computer, displaying other users’
feedback about the expected behaviour of the software. We discuss important
aspects to consider when constructing such a system, and propose possible
solutions. Based on the observations made, we implemented a client/server
based proof-of-concept tool, which allowed us to demonstrate how such a
system would work. We also compare this solution to other, more conven-
tional, protection methods such as anti-virus and anti-spyware software.

1 Introduction

Our society is continuously moving in an increasingly more computerized direction
where software has a central role [13][24]. Because of this development computer users
are in need of more aiding mechanisms to help them distinguishing legitimate software
from its questionable counterparts. Without such mechanisms we will experience a
gradual increase in the negative consequences resulted by such software, affecting more
and more of our daily lives by involving for instance mobile devices and media centres
. Sources indicate that well over 80% of all home PCs and more than 30% of all corpo-
rate PCs connected to the Internet are infected by questionable software, often labeled
spyware [28][33]. Affected computer owners are not aware of the fact that their com-
puter is infected with spyware since they rely entirely on anti-virus software and fire-
walls to protect them. However, anti-virus software does not focus on spyware, but rath-
er on more malicious software types, such as viruses, worms and Trojan horses [2].

Although some spyware programs might be malicious, many are considered to be
legitimate software distributed by highly profitable companies that is gathering infor-
mation about its users, showing targeted ads, sending user behaviour patterns, visited
websites and similar, storing them for an unknown period of time as user profiles in cen-
tral databases. Spyware are often in a legal gray zone, since they normally inform the
users of their actions, but often in such a format that it is unrealistic to believe that nor-

2.

mal computer users will read and understand the provided information. The End User
License Agreements (EULA) that the user has to agree on before using or installing the
software are often written in a legal format, sometimes spanning well over 5000 words,
and most users choose to proceed without actually studying it, giving his or her consent
to whatever might be stated in the EULA, which can be anything the software developer
wants [5][12][27].

There are numerous ongoing projects and attempts to produce effective counter-
measures for removing spyware [19][21][29]. However, this requires a classification of
some software as “harmful to the user” which is legally problematic. The main reason
for this is because the information regarding system behaviour is stated in the license
agreement which the user already has accepted, which in term could lead to law suits
[12][30]. Such legal disputes has already proved to be costly for anti-spyware software
companies [25]. As a result of this, they may be forced to remove certain software from
their list of targeted spyware to avoid future legal actions, and hence deliver an incom-
plete product to their customers, being unable to correctly classify some software as pri-
vacy-invasive.

As the problem of spyware is widely spread, and no complete protection is avail-
able, there is a need for ways to better inform the user about the software he or she uses,
while still not classifying it as “harmful to the user” and hence risking law suits. There
are numerous well-known and popular websites based on the concept of letting users
grade different services, applications, shops, and similar e.g., Flixster, IMDb.com, and
Pricerunner [10][15][22]. The main concept is to help guide other consumers to, for ex-
ample, find the best store to shop at and to avoid pitfalls and unethical sellers [34]. We
have combined this concept with a client software that helps guide the user whenever a
program is about to execute on his computer, by showing other users rating and com-
ments of the particular software. Larsson and Lindén implemented this idea into a
proof-of-concept tool during their masters thesis work! [18]. In this system the users are
asked to rate their most frequently used software, by grading it between 1 and 10. In
return they are given access to aggregated ratings for all software in the reputation sys-
tem. By using the knowledge from previous users it is possible for new users to reach
more informed decisions when installing a specific software, i.e. allowing them to stop
questionable software before it enters their computer. The proof-of-concept tool has
found a group of continuous users, which has rendered in well over 2000 rated software
programs in the reputation database.

1.1 Background and Related Work

The usage of the term spyware has become increasingly popular, both by users, media
and software vendors [1][26]. It has been defined as software that “track users’ activi-
ties online and offline, provide targeted advertising, and/or engage in other types of ac-
tivities that users describe as invasive or undesirable” [6][11]. This means that it has
come to include all kinds of malicious software, ranging from software that displays ad-
vertisements based on user behaviour (adware) to trojan key loggers, as well as actual
spying software (spyware) [27]. A better term to use instead of spyware, would be pri-

1. The tool is available for free from: http://www.softwareputation.com

vacy-invasive software (PIS). In an attempt to clarify the usage of this term, Boldt and
Carlsson based their classification of privacy-invasive software on user’s informed con-
sent and negative user consequence, as shown in Table 1: [3][4].

User consent is specified as either low, medium or high, while the degree of nega-
tive consequences span between folerable, moderate, and severe. This classification al-
lows us to first make a distinction between legitimate software and spyware, and sec-
ondly between spyware and malicious software (malware). All software that has a low
user consent, or which impairs severe direct negative consequences should be regarded
as malicious software. While, on the other hand, any software that has high user con-
sent, and which results in tolerable negative consequences should be regarded as legit-
imate software. By this follows that spyware constitutes the remaining group of soft-
ware, i.e. those that have medium user consent or which impair moderate negative con-
sequences.

Tolerable Moderate Severe
Negative Negative Negative
Consequences |Consequences |Consequences
High 1) 2)
Consent |Legitimate Adverse
software software
Medium |4) 5)
Consent |Semi-transpar- |Unsolicited
ent software software

Low
Consent

Table 1: Classification of privacy-invasive software with respect to user’s
informed consent (high, medium and low) and negative user consequences
(tolerable, moderate and severe).

We base our work on Simone Fischer-Hiibner’s definition of privacy, in which she
divides the concept into the following three areas [9]:
* territorial privacy focusing on the protection of the public area surrounding a per-
son, such as the workplace or the public space

» privacy of the person which protect the individual from undue interference that
constitute for instance physical searches and drug tests

* informational privacy protecting if and how personal information (information
related to an identifiable person) is being gathered, stored, processed, and further
disseminated.

Since our work has its origin in a computer setting we interpret the above three areas
into a computer context. We argue that this is motivated since computers are being in-
creasingly more weaved together with our daily lives which affect individuals’ privacy.
Our classification of privacy-invasive software is related to the last two areas listed
above, i.e. protecting the user from undue interference, and safeguarding users personal
information, both while using computers. Therefore our view of privacy does not only

4.

focus on the communication of personal information, but it also includes undue inter-
ference that negatively affect the users’ computer experience.

In an attempt to mitigate the negative effects from PIS we propose the use of a rep-
utation system where computer users collaborate with the goal to distinguish legitimate
software from PIS. As described by Resnick et al. a reputation system “collects, distrib-
utes, and aggregates feedback about participants’ past behaviour” [23]. This can either
be part of a larger system, to give the users incentives to behave well in the future know-
ing that other users will be able to review past transactions e.g. on an auction site, or as
a system itself used for rating e.g. resellers of home appliances, Hollywood blockbust-
ers, or basically any kind of product or service. This helps new users to establish trust
towards a particular reseller or company based on other users’ past opinions about the
other party, without any personal contact with the reseller or company in question. This
is increasingly important considering the present development rate for e-commerce and
online services where customers seldom if ever meet the business representatives they
are dealing with.

2 Important Considerations

There are two main issues that need to be addressed when considering the design and
implementation of the proposed system. How to protect users’ privacy and at the same
time address incorrect information in the system. We will address these two considera-
tions individually, explaining the problem at hand, as well as proposing one or more
possible solutions that may help fully prevent the problem, or at least reduce the impact

[7].

2.1 Addressing Incorrect Information

There are a number of aspects to take into consideration when building a system that is
to gather, store and present information from multiple, unknown users. Although the
system has been set up for a clear purpose, individual users, or groups of users, may find
it more interesting to — for instance — intentionally enter misleading information to dis-
credit a software vendor they dislike, use multiple computers in a distributed attack
against the system to fill the database with bogus votes, enter irrelevant or indecent
comments, and so on. When it comes to inventing new ways of disturbing peace, the
stream of ideas seems to be never-ending.

Even though it may be done without malice, even in good faith, ignorant users vot-
ing and leaving feedback on programs they know nothing or little about may be a rather
big problem for a software reputation system, especially at a budding phase. If the
number of users is low, compared to the number of software to be rated, there is a big
risk that many software will be without any, or with just a few, votes. Even worse, if
these few votes and comments have been given by users with little actual knowledge
about the software they are rating, they may — for example — give the installer of a pro-
gram bundled with many different PIS a high rating, commenting that it is a great free
program, highly recommended. In a normal environment, this would not be a problem,
as a number of more experienced users would already have added negative feedback,
warning other users of the potential dangers with installing this software package. How-

ever, in the cases where there are few users and votes available at any point of time, this
may be a big problem.

We have identified three different approaches to mitigate the problem with uninten-
tionally incorrect information. The first one involves allowing the users to rate not only
the software but also the feedback of other users in terms of helpfulness, trustworthiness
and correctness, creating a reliability profile for each user. This profile could be thought
of as a trust factor that is used to weight the ratings of different users, making the votes
and comments of well-known, reliable users more visible and influential than those of
new users. It does not directly handle the problem of inexperienced users giving incor-
rect information and ratings, if they are the only ones commenting and voting, but as
soon as more experienced users give contradicting votes, their opinions will carry a
higher weight, tipping the balance in a — hopefully — more correct direction.

The second approach is to use bootstrapping of the program database at an early
stage, preferably before the system is put to use, copying the information from an exist-
ing, more or less reliable, software rating database of programs and their individual rat-
ings into the database of the reputation system. That way, it would be possible to ensure
that no common program has few or zero votes, and in the event of novice users giving
the software unfair positive or negative ratings and comments, the number of existing
votes would make their votes one out of many, rather than the one and only.

The third approach would be to have one or more administrators keeping track of
all ratings and comments going into the system, verifying the validity and quality of the
comments prior to allowing other users to view them, as well as working on keeping the
program database updated, giving expert advice on certain programs, such as well-
known whitelisted applications, etc. However, once the number of users has reached a
certain level, this would require a lot of manual work, which could become expensive
for maintaining a free program, as well as seriously decrease the frequency of vote up-
dates.

In addition to the problem with users that unintentionally provide the reputation
system with incorrect information is the more complex threat by individuals, or groups
of people, that decide to purposely abuse the systems. In the preventive anti-PIS repu-
tation system, one such attack would be to intentionally try to enter a massive amount
of incorrect data into the database. Either to slow the system down, or even crash it, or
to target specific applications, trying to subject them to positive or negative discrimina-
tion. The main question when it comes to vote flooding is how to allow normal users to
be able to vote smoothly, and yet be able to address abusive users that attack the system.

An important aspect to take into consideration is that the server must ensure that
each user only votes for a software program exactly once. A common solution to this
kind of problem would be to let the user register a user account at the server before be-
ing able to activate the client software. For each user account, only one vote and com-
ment can be registered for a specific software. Using some non-automatable process,
such as image verification, and requiring a valid email address during the registration
of a new user account would help prevent the system for users trying to automatically
create a number of new accounts to avoid the limit imposed on the number of votes each
user can give to each software [8].

2.2 Protecting Users’ Privacy

As the system is built for protecting peoples’ privacy, we need to make sure the system
itself does not intrude on it more than absolutely necessary. If the system would store
sensitive information about its users, such as IP addresses, e-mail address, and linking
these to all software the user has ever cast a vote on, the system owner would control
this sensitive information. Any leakage of this information e.g., through an attack on the
reputation system database, could have serious consequences for all users. An attacker
getting access to this information would find a list of hosts and all software running on
each host, where some of them could be vulnerable to remote exploits. However, not
storing any data about which users have cast votes on a particular software could lead
to vote flooding and similar, as the system would have no way of ensuring that a user
only votes once.

As we need to make sure no users can vote more than once on each particular soft-
ware, we cannot get rid of the concept of users and user accounts. However, one ap-
proach would be to ensure that all kinds of sensitive information that can be of use for
an attacker, such as IP address, e-mail address, name, address, city, or similar, are ex-
cluded from the user information stored in the database of the reputation system server.
The only thing necessary to store is some kind of unique identifier for each user, such
as a user name.

As mentioned in the previous section, we need to prevent users from signing up sev-
eral times in an automatic way, and one way of doing this would be to use their e-mail
address as an identification item. However, this requires us to store the e-mail address
in the database which might not be something that people would like to store in a data-
base that keeps track of which software they are running and their opinions on it. A so-
lution to this would be to only keep a hash value of the e-mail address, as this can be
used to discover that two e-mail addresses are equal, while it is impossible to recreate
the e-mail address from the hash value. Protection of users’ anonymity could be estab-
lished by utilizing distributed anonymity services, such as Tor, for all communication
between the client and the server [32].

3 System Design

As we have illustrated in the previous section, there are numerous aspects to take into
consideration when designing a reputation system such as this. Information has to be
gathered from the reputation system users in a way that address different ways of abuse,
without interfering with normal usage and / or the protection of the users’ privacy.
When considering votes and comments, the system has to be able to handle possible
abuse, as well as to properly balance the weight of different users’ ratings and allow us-
ers to grade each others, thus improving the credibility of the more expert users and de-
grading that of users not taking voting and commenting in the system seriously.

The system will be comprised of three major parts, a client with a graphical user
interface (GUI) running on each users’ workstation, a server running on one or more
machines handling all requests and commits from the clients, as well as a database stor-
ing all data. The system will also offer a web based interface, which gives the users
more possibilities in searching the information stored in the database. This will be used

7.

as an extension to the GUI client, where users e.g. can read more information about
some particular software program or vendor along with all the comments that have been
submitted. The overall design is presented in Figure 1.

-,I

.H;__f—f.._p

alhoEs
bt M

wep .

Client A
Client B
d——“’—'—f—.—’.}'—. Reputation Repuration
- - — Daahase

Client

Figure 1 The architectural design for the proof-
of-concept reputation system.

3.1 Client Design

The most important functionality of the client is the ability to allow its users to decide
exactly what software is allowed to run on the computer, i.e. blocking all software
which the user have not explicitly given his/her permission to. This filtering capability
is implemented using a hooking device that captures the execution calls from the Win-
dows API, in order to allow the user to choose whether or not he or she really wants to
proceed with the execution of that particular software. Whenever a software is trying to
execute, the hooking device informs the client about the pending execution, which in
turn asks the user for confirmation before actually running the software requesting to
execute. The API hooking is used to capture the execution call that goes to the Windows
kernel when the operating system tries to allocate memory for the program. We used
Anton Bassov’s Soviet Protector code when implementing the API hooking functional-
ity, with slight modifications added [14]. It consists of a system driver that replaces the
API call to NtCreateSection () with its own version, and a software component
that communicates with the driver through a shared section of the memory.

The client uses different lists to keep track of which software have been marked as
safe (the whitelist) and which have been marked as unsafe (the blacklist). These two
lists are then used for automatically allowing or denying a software to run, without ask-
ing for the user’s permission every time, and thereby reducing the need for user inter-
action. When the driver discovers an execution and informs the client about it, the client
traverses the whitelist and blacklist for an occurrence of the pending software based on
aMD5 checksum calculated from the EXE-file content. If the software is found in either
of the two lists, the appropriate response is automatically sent to the driver without the
need for user interaction, otherwise the client queries the server and fetches the infor-
mation about the executing software to show the user and take action based on the user’s
decision.

The proof-of-concept tool also allows the user to submit ratings and comments, as
described in the previous sections, as well as to view compiled information from other

users and run statistics about the software about to execute. The user is only asked to
rate software which he has executed more than a predefined number of times, currently
50 times. This ensures that the user has been using the software for some time and there-
fore has developed some sort of opinion about it. To minimize the user interruption
there is also a threshold on the number of software the user is asked to rate each week,
currently two ratings per week.So, when the user has executed a specific software 50
times she will be asked to rate it the next time it is started, unless two software already
has been rated that week.

3.2 Server Design

In addition to the processing of software ratings the server also handles the database
containing registered user information, ratings and comment for different software that
users have previously voted on. The clients communicates with the server through a
web-server that handles the requests sent by the client software, as well as displaying
web pages for showing more detailed information about the software and comments in
the database. XML is used as the communication protocol between the client and the
server.

The only data stored in the database about the user is a username, hashed password
and a hashed e-mail address, as well as timestamps of when the user signed up, and was
last logged in. The e-mail address is only there to make it more difficult for a person to
create several different accounts, as it is possible to sign up only once per e-mail ad-
dress, and each address used to sign up must be a valid e-mail address, since it is used
for the confirmation and activation of the newly created account.

From this data, it is not possible for us or anyone else getting in hold of the database,
to identify a specific user, as long as the username (over the contents of which we have
little control) does not reveal too much detailed information. And as our implementa-
tion does not store any IP addresses associated with the users, it is also impossible to
determine which hosts are running which software, and from there try to launch an at-
tack against a specific host. What can be traced however, is every user’s submitted rat-
ing, comment and answers for each software he or she has ever rated, as well as each
user’s submitted remark (positive for a good, clear and useful comment or negative for
a coloured, non-sense or meaningless comment) for every comment he or she has ever
rated. But as mentioned previously, it is impossible to directly or indirectly associate
this data with a particular host, but only to a username, hashed password, hashed e-mail
address and two timestamps, which does not put the user at any actual risk from using
this software.

Software ratings are calculated at fixed points in time (currently once in every 24-
hour period). During this work users’ trust factors are taken into consideration when
calculating the final score for a particular software. In addition to these software ratings
the proof-of-concept tool also calculates specific software vendor ratings. This is done
by simply calculating the average score of all software belonging to the particular ven-
dor.

As a protection mechanisms, the reputation system has implemented a growth lim-
itation on users’ trust factors, by setting the maximum growth per week to 5 units.
Hence, you can reach a maximum trust factor of 5 the first week you are a member, 10

9.

the second week, an so on. Thereby preventing any user from gaining a high trust factor
and a high influence without proving themselves worthy of it over a relatively long pe-
riod of time. The second limitation of the trust factor is a minimum level of 1 (which is
also the rating for new users), and a maximum of 100.

3.3 Database Design

Each software represented in the database will hold a set of information that is linked
directly to the executable file. The most important information is the unique software
ID number which is generated by utilizing a hash algorithm over the file content. Since
this ID is a product of the file data (its program instructions) it is also directly connected
to the software behaviour. This means that it is impossible to change the software be-
haviour without also changing the ID. In other words, it is impossible to alter the pro-
grams behaviour and still keep the ratings associated with the software in the database,
which is an important property for a software reputation system. Since the fingerprint
is generated through an hash algorithm (in this case an MD5 digest) the risk of two dif-
ferent files having identical fingerprints is virtually non-existent. In addition to user rat-
ings and comments the following information is stored for each software in the data-
base:

+ Fingerprint of software executable, in this case a generated MDS sum.

+ File name of the software executable.

* File size of the software executable.

+ Company name of the software company that produced the software executable.
+ Software version number.

Information about both the company name and file version is dependant on the soft-
ware developer to put these values into the program file, which unfortunately is not al-
ways true. The rest of the data is metadata that always can be retrieved once the com-
plete file is in ones possession.

Since hash functions are used, the fingerprints will be different even between files
with small modifications, in effect, two different versions of the same program will end
up having different fingerprints. This also means they will be considered as separate
software executables by the reputation system server, and as such their votes and ratings
will be separated from each other. Although a drawback with this approach is that there
will be many different database entries for slightly different versions of the same pro-
gram, this may in fact be beneficial to the user. For example, one version of an applica-
tion may be well known to cause degraded performance, display banners, and so on,
while in the next version, the developers have fixed the performance issues and decided
to use other means to finance their work, and thus the contents of the reputation system
will correctly present this to the user.

Furthermore, it is be possible for the system to provide users with valuable infor-
mation about the vendor of a specific software by calculating the mean value over all
software ratings the company in question has received. Giving the user an indication of
how well the software developed by this company has previously fared in the reputation
system. That way, the user may choose to base his decision on ratings and comments

10.

given not only on the current software executable, but also on the derived total rating of
the software developing company.

4 Discussion

In this section we will discuss what impact the introduction of a software reputation sys-
tem would have on privacy-invasive software. We will also bring up some issues with
the proof-of-concept implementation together with improvement suggestions. In the
end we make a comparison between existing countermeasures against PIS and the soft-
ware reputation system.

4.1 System Impact

Offering users mechanisms that enhance informed decisions regarding software instal-
lation increase the liability of the user. In a way, these mechanisms transfer some of the
responsibility concerned with the protection against PIS to the users themselves. As us-
ers are being confronted with descriptions about behaviours and consequences for PIS,
they are also assumed to assimilate and use this information in a mature and reasonable
way. Based on the reputation system, it would be up to the users themselves to decide
on whether or not to allow certain software to enter their system.

Computer users today face similar difficulties when evaluating software as consum-
ers did a hundred years ago when evaluating food products. In the nineteenth century
food industry, distribution of snake-oil product flourished [31]. These products claimed
to do one thing, for example to grow hair, while they instead made unwitting consumer
addicted to habit-forming substances like cocaine and alcohol. In 1906 the Pure Food
and Drug Act was passed by the United States Congress, allowing any manufacturer not
complying to the rules to be punished according to the law [17]. As a consequence the
manufacturers followed these rules, allowing consumers to trust the information on the
food container to be correct. Further allowing them to make informed decisions on
whether they should consume a product or not, based on individual preferences such as
nutritiousness, degree of fat or sugar, price, or allergies. As long as the food does not
include poisonous substances or use deceptive descriptions it is up to the consumer to
make the final decision. Although the distribution of physical snake-oil products were
mitigated in 1906, its digital counterpart continue to thrive under the buoyant concept
of spyware. An important distinction between food products and software is that the
former one relies on physical factories and companies with employed personnel, which
software does not. It is possible for anyone with the programming skills to produce soft-
ware which then is spread globally over the Internet. Since users do not always have the
option to relate the software to a physical manufacturer we believe it is important for
them to instead be able to use other users’ previous knowledge about the product in
question, offered to them by a software reputation system.

It should be noted that a reputation system against PIS tightly affect the PIS classi-
fication in Table 1:. The introduction of this type of user-oriented countermeasure
would transform the classification of PIS as shown in Table 2:. As computer users are
given a tool to make informed decisions regarding the behaviour and implications of
software, it is possible to apply a sharp boundary based on user consent between all soft-

11.

ware in the PIS classification. Using the added knowledge provided by the reputation
system would render in that all PIS that previously have suffered from a medium user
consent level, now instead would be transformed into either a high consent level (i.e.
legitimate software) or a low consent level (i.e. malware). In other words, all software
with medium user consent, i.e. spyware, is transformed into either legitimate software
or malware in the classification. Since anti-malware tools handle all malicious and de-
ceitful software, the information about the rest of the software could be trusted to be
correct, i.e. any software using deceitful methods is regarded as malware and are treated
as such. This allow users to rely on the information when reaching trust decisions re-
garding their computer system. Another aspect of this type of countermeasure is that no
single organization, company or individual is responsible for the software ratings, since
these are calculated based on all votes submitted by the users. Making it hard for dis-
satisfied spyware vendors to sue the reputation system owners for defamation.

Tolerable Moderate Severe
Negative Negative Negative
Consequences |Consequences |Consequences
High Legitimate Adverse Double agent
Consent |software software
Low Con- [Covert Semi-parasites |Parasites
sent software

Table 2: Difference between legitimate software and malware with respect to
user’s informed consent and negative user consequences.

4.2 Improvement Suggestions

One issue that we soon discovered during tests of the proof-of-concept tool was the
question of system stability. As we give the users the ability to deny the execution of
important system components, and the Windows operating system is not prone to grace-
ful degradation, we also handed them the ability to crash the entire system in a single
mouse click. This further enhances the need for a white list system to ensure proper op-
erating system functionality in order to avoid inadvertedly bringing the operating sys-
tem down when running the software client. However, given that the user has the free
choice to block any program, there is no way to guarantee that the operating system will
not be crashed, especially at an initial phase where the user is learning how to use the
software client.

A possible approach to this problem would be an enhanced whitelisting system that
could examine the file about to execute, to determine if it has been digitally signed by
a trusted vendor e.g., Microsoft. In case the certificate is present and valid, the file is
automatically allowed to proceed with the execution. It would also be possible to im-
plement a signature handling interface in the reputation system client that allows the
user to whitelist and blacklist different companies through their digital signatures,
which — in turn — could considerably lower the need for user interaction.

The introduction of an enhanced whitelisting system with signature verification ca-
pabilities would provide an important building block for a software policy manager. By
using the information available in the reputation system it would be possible for corpo-

12.

rations or individual users to set up policies for what software is allowed to execute on
their computers. Such policies could for instance take into account whether the software
has been signed by a trusted vendor, the software and vendor rating, or any specific be-
haviour reported for the software e.g., if it show pop-up advertisements or include an
incomplete removal routine. This would allow system owners to define policies for
what software is allowed to install and run on their computers e.g., by specifying that
any software from trusted vendors should be allowed, while other software only is al-
lowed if it has a rating over 7.5/10 and does not show any advertisements. A solution
like this imply that the reputation system also includes a preference module that holds
the users’ software preferences that should be enforced.

Another improvement suggestion involves allowing for instance organisations or
groups of technically skilled individuals to publish their software ratings and other feed-
back within the reputation system. This information is then available for any other users
of the reputation system. Allowing computer users to subscribe to information from or-
ganisations or groups that they find trustworthy, i.e. not having to worry about unskilled
users that might negatively influence the information. The subscribed information
could of course also be used in parallel with the other software feedback which is based
on all reputation system members’ votes.

4.3 Comparison with Existing Countermeasures

One major difference between traditional anti-spyware software and the reputation
system based solution we propose is that in the latter, we are able to gather more com-
plete and useful information regarding the behaviour of software. Instead of a black and
white world where an executable is branded as either a virus or not, we are able to touch
the previously mentioned gray zone in between. We gather and present information
about software that is important and useful to the users, and hard to find. For instance,
although an application may not be classified as a virus or spyware, users may think
twice about running it if they are informed that it displays pop-up ads, registers itself as
a start-up program and does not provide a functioning uninstall option. This kind of dis-
couraging information will not be provided by the vendor of the application and can
only be received from users who have experienced it first-hand and are willing to share
their experiences to help others.

Currently available countermeasures against PIS, such as anti-spyware and anti-vi-
rus applications, have the benefit of specialized, up to date and reliable information da-
tabases that are updated on a regular basis. The drawback is a large database that must
be downloaded and updated locally on the client, as well as traversed whenever a file is
analysed. Furthermore, the organization behind the countermeasure must investigate
every software before being able to offer a protection against it. The relevance and re-
liability of the information provided by the anti-spyware and anti-virus software may
be more reliable than that of users of a reputation system. However, the reputation sys-
tem is able to cover more details that may be useful to the user, such as if the software
displays ads, alter system settings, and so on, and with a sufficiently large user base, the
sheer amount of data gathered helps compensate for the afore mentioned reliability is-
sue. Also, by using a more flexible classification, where the user is provided the infor-
mation about the software and is allowed to make an informed decision about allowing

13.

it to run or not, one is able to avoid the high contrast environment of anti-virus software
and similar, where an executable is either strictly malicious or it is totally safe.

Different protection systems (e.g., anti-virus or anti-spyware tools) are built on dif-
ferent approaches, and the technology as well as pricing varies. In truth, it would be
foolish to believe that either one approach would be a perfect solution to the problem at
hand, and the view of the problem itself may differ. However, when looking at the de-
velopment of the computer world, the Internet, and the on-going arms race in virus and
spyware development, it is obvious that more than just one kind of protection is needed,
and that there is no silver bullet. At the same time, we firmly believe that a specialized
reputation system such as the one we propose would be a useful way to be able to pen-
etrate the gray zone of half-legitimate software and to better inform users of what to ex-
pect from the software they are about to execute. It can be seen as trying to share and
transfer knowledge between users, improving their level of expertise, instead of creat-
ing an expert system that handles all the decisions for the users, being ultimately respon-
sible for the failure when the protection fails.

5 Conclusions and Future Work

This paper explore how to construct a specialized reputation system to be used for
blocking privacy-invasive software. The fundamental idea is that computer users could
be strong together if they collaborate to mitigate the effects from privacy-invasive soft-
ware. The co-operation is based on that each users rate the software that they use most
frequently. These aggregated ratings from the users are then transformed into software
reputations that are available for all participants in the system upon installation of new
software.Various methods to address incorrect information in the system, be it inten-
tional or unintentional, are proposed without deteriorating users’ privacy.

To further explore the possibilities, we designed and implemented a client and serv-
er-based proof-of-concept tool, which currently include well over 2000 rated software
programs. Each time a user is about to execute a program, the client pauses the execu-
tion, downloads information and rating about the particular software from the server,
and asks the user whether he or she would like to allow or deny the software to run. We
further propose how this system could be enhanced by adding functionality that allow
users to produce software policies that are automatically enforced by the client pro-
gram. Such policies could take into account whether the software in question has re-
ceived a rating above a certain value, whether it is digitally signed by a trusted vendor,
or if it is free from a set of predefined unwanted behaviours.

As future work we will investigate how and to what extent this proof-of-concept
tool affect computer users’ decisions when installing software. In addition to this we
will also examine the possibility of using runtime software analysis to automatically
collect information about whether software has some unwanted behaviour, for instance
if it shows advertisements or includes an incomplete uninstallation function [20]. The
results from such investigations could then be inserted into the reputation system as
hard evidence on the behaviour for that specific software.

14.

6 References

W. Ames, “Understanding spyware: risk and response”, in IEEE IT Professional, Volume
6, Issue 5, 2004.

K. P. Arnett, “Busting the Ghost in the Machine”, in Communications of the ACM, Vol-
ume 48, Issue 8, 2005.

M. Boldt, “Privacy-Invasive Software - Exploring Effects and Countermeasures”, Licen-
titate Thesis Series No. 2007:01, School of Engineering, Blekinge Institute of Technology,
Sweden, 2007.

M. Boldt and B. Carlsson,“Privacy-Invasive Software and Preventive Mechanisms”, in the
proceedings of the IEEE International Conference on Systems and Networks Communica-
tions (ICSNC06), Papeete Tahiti, 2006.

J. Bruce, “Defining Rules for Acceptable Adware”, in the Proceedings of the 1
Bulletin Conference, Dublin Ireland, 2005.

M. Christodorescu and S. Jha, “Testing Malware Detectors”, in the proceedings of the
ACM International Symposium on Software Testing and Analysis, 2004.

5™ Virus

C. Dellarocas, “Immunizing Online Reputation Reporting Systems Against Unfair Ratings
and Discriminatory Behaviour”, in the proceedings of the 2nd ACM Conference on Elec-
tronic Commerce, 2000.

J. Douceur, “The Sybil Attack”, in the proceedings for the 1st International Workshop on
Peer-to-Peer Systems, 2002.

S. Fischer-Hiibner, “IT-Security and Privacy: Design and Use of Privacy-Enhancing Se-
curity Mechanisms”, Springer Verlag, Berlin Heidelberg, 2001.

Flixster, http://www.flixster.com, 2006-09-13.

N. Good et al., “Stopping Spyware at the Gate: A User Study of Privacy, Notice and Spy-
ware”, in the proceedings of the Symposium on Usable Privacy and Security, Pittsburgh
USA, 2005.

N. Good et al., “User Choices and Regret: Understanding Users’ Decision Process about
Consentually Acquired Spyware”, in I/S: A Journal of Law and Policy for the Information
Society, Volume 2, Issue 2, 2006.

A. Greenfield, “Everyware - The Dawning Age of Ubiquitous Computing”’, New Riders,
Berkeley CA, 2006.

Hooking the native API and controlling process creation on a system-wide basis,
http://www.codeproject.com/system/soviet protector.asp, 2006-11-23.

Internet Movie Database, http://www.imdb.com, 2007-02-23.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, R. A. Kemmerer, “Behaviorbased Spyware De-
tection”, in the proceedings of the 15th USENIX Security Symposium, 2006.

Landmark Document in American History, “Pure Food and Drug Act of 1906, http://
coursesa.matrix.msu.edu/~hst203/documents/pure.html, Last checked: 2006-10-16.

T. Larsson and N. Lindén, “Blocking Privacy-Invasive Software Using a Specialized Rep-
utation System”, Masters Thesis No. 2006:14, School of Engineering, Blekinge Institute
of Technology, Sweden, 2006.

LavaSoft Ad-Aware, http://www.lavasoftusa.com/software/adaware, 2006-09-19.

A. Moshchuk, T. Bragin, S. D. Gribble, H. M. Levy, “A Crawler-based Study of Spyware
on the Web”, in the proceedings of the Network and Distributed System Security Symposi-
um Conference Proceedings, Virginia USA, 2006.

15.

Norton Internet Security, http://www.symantec.se/region/se/product/nis index.html, 2006-
09-19.

Pricerunner, http://www.pricerunner.com, 2006-09-13.

P. Resnick, K. Kuwabara, R. Zeckhauser, E. Friedman, “Reputation Systems”,in Commu-

nications of the ACM, Volume 42, Issue 12, 2000.

2 3rd

R.S. Rosenberg, “The Social Impact of Computers edition, Elsevier Academic Press,

San Diego CA, 2004.

See you later - anti-Gators, CNET News.com,
http://news.com.com/2100-1032 3-5095051.html, 2006-09-19.

K. Schultz, “Sticking It to Spyware”, in InfoWorld, Volume 27, Issue 38, 2005.

J.C. Sipior, “A United States Perspective on the Ethical and Legal Issues of Spyware”, in
Proceedings of 7" International Conference on Electronic Commerce, Xi’an China, 2005.

Spyaudit, http://www.earthlink.net/spyaudit/press/, 2006-09-12.

Spybot -Search & Destroy, http://www.safer-networking.org, 2006-09-19.
“Spyware”:Research, Testing, Legislation, and Suits, http://www.benedelman.org/spy-
ware/, 2007-03-01.

Technology Review, “The Pure Software Act of 2006”, http://www.simson.net/clips/
2004/2004.TR.04.PureSoftware.pdf, Last checked: 2006-10-16.

Tor: anonymity online, http://tor.eff.org, 2007-02-24.

Webroot Software — Internet Spyware and statistics about infection rates, http://www.we-
broot.com/resources/stateofspyware/excerpt.html, 2006-09-12.

G. Zacharia, A. Moukas, P. Maes, “Collaborative Reputation Mechanisms in Electronic

Marketplaces”, in the proceedings of the 32nd Hawaii International Conference on System
Sciences, 1999.

	Preventing Privacy-Invasive Software using Collaborative Reputation Systems
	1 Introduction
	1.1 Background and Related Work

	2 Important Considerations
	2.1 Addressing Incorrect Information
	2.2 Protecting Users’ Privacy

	3 System Design
	3.1 Client Design
	3.2 Server Design
	3.3 Database Design

	4 Discussion
	4.1 System Impact
	4.2 Improvement Suggestions
	4.3 Comparison with Existing Countermeasures

	5 Conclusions and Future Work
	6 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

