
AUTOPILOT: Simulating Changing Concepts in
Real Data

Patrick Lindstrom1, Sarah Jane Delany2, and Brian Mac Namee1

1 School of Computing,
Dublin Institute of Technology, Dublin, Ireland

2 Digital Media Centre,
Dublin Institute of Technology, Dublin, Ireland

first-name.second-name@dit.ie

Abstract. An increasingly important area in supervised incremental
learning is learning in the presence of changing concepts. Research into
concept drift is hampered by the lack of availability of controllable ‘real
life’ datasets. In this paper we propose an approach for generating real
life data over which we have control of the concept and can generate
data exhibiting different types of concept drift. The approach uses a 3-D
driving game to produce a data stream of instances describing how to
drive around a track. The classification problem is learning the driving
technique of the driver, which can be affected by changes in the driving
environment causing changes to the concept. The paper gives illustra-
tions of different types of concept drift and how standard concept drift
handling techniques can adapt to the concept drift.

1 Introduction

In many real world classification problems the concept being modelled may not
be static but can change over time. These changes can be due to external cir-
cumstances, hidden contexts or even changes in the underlying data distribution.
Examples of changing concepts can be seen in a variety of real world applications.
Weather predictions are influenced by seasonal weather variations, customer buy-
ing preferences can be influenced by fashion trends or seasonal inclinations and
information filtering is dependent on the document content and user interest.
Concept drift would undoubtably be present in the above examples, however
it would be hard to ascertain when the concept changed, or at what rate it is
changing. Without this crucial information evaluating an algorithm for dealing
with concept drift can be problematic. Research into handling changing concepts
has been hampered by a lack of availability of controllable real world datasets.
Researchers use their own specific real world datasets (which are often not made
available due to privacy issues) or some publicly available artificial datasets [1].
There is a need to focus on finding real world datasets that show concept drift
and where there is some level of control over the concept drift.

The focus of this paper is to simulate concept drift in real data. Our approach
uses a 3-D driving game to produce a data stream of instances which describe how



to drive a car around a track. The classification problem is learning the driving
technique of the driver. The concept drift is introduced by changing the driving
environment. For example, after the weather worsens the track can become wet
from rain and the friction of the car alters and affects the driving style of the
driver. The classifier which has modelled the driver’s driving technique is then
inappropriate for the new environment and has to adapt to the new environment.

The paper is organised as follows. Section 2 discusses existing research into
concept drift concentrating on the types of drift, the data used and the ap-
proaches to handling the drift. Section 3 describes how the driving game has
been used to generate datasets exhibiting different types of concept drift. An il-
lustration of handling this concept drift is included in Section 4, with discussion
and directions for future work in Section 5.

2 Existing Work

Existing research into handling concept drift generally has two sources of data,
real world datasets and artificial datasets. Real world data sets are collected
from a naturally occurring process. Examples include financial [2], biological
[3] and spam filtering [4] data. With real concept drift data it can often be
hard to ascertain when and why the concept drift occurred. Some research has
involved tweaking real world datasets by deleting classes or including data from
new classes [5] or by manipulating class labels [6]. Datasets based on confidential
data such as financial data are generally not made available to other researchers.

Another approach is to use artificially created data sets, such as STAGGER
[7], the moving hyperplane [8] and Narasimhamurthy’s framework [1]. In this
paper we present a technique for creating real world data where the point at
which drift occurs and how quickly it occurs can be controlled.

2.1 Types of Concept Drift

Concept drift can be broadly categorised into three categories.
Sudden shift is when the concept changes abruptly. Tsymbal [9] uses the

example that someone graduating from college might suddenly have completely
different monetary concerns.

Gradual drift is when the concept gradually changes from one concept to
another. Widmer and Kubat [10] used the example of a device that gradually
begins to malfunction to illustrate the idea of gradual drift. Stanley [11] cate-
gorised drift into moderate and slow drift, depending on the rate of change.

Recurring trends or contexts is when trends or patterns can be found to
repeat themselves at intervals. Recurring trends are commonly found in seasonal
data [12].

When concept drift or shift occurs due to a change in the data distribution
it is known as virtual concept drift [10] or population shift [13]. Virtual concept
drift may manifest itself as any type of concept drift.



A change in concept may also occur when all features relevant to a concept
are not identified (also known as hidden context), for example seasonal changes
causing regular cyclical transformations in many natural phenomena [12].

2.2 Handling Concept Drift

Tsymbal [9] categorises the approaches for handling concept drift under the
headings of instance selection, instance weighting and ensembles.

Instance selection is a broad term that can be used to describe concept drift
algorithms that select which instances to train on, based on their perceived
relevance to the current concept. The most common technique is a sliding window
based technique where the classifier is retrained periodically on a ‘window’ of
new training data . Windowing techniques can be broken down into fixed size
algorithms which learn from the last n instances [14] and adaptive size algorithms
which uses some heuristic to adjust the window size [15, 16].

Instance weighting creates a bias towards certain instances by assigning high
weights to them. Instances can be weighed according to different features, such
as age or competence with regard to the current concept. Klinkenberg found that
when evaluated against a sliding window approach instance weighting compared
unfavourably [17].

An ensemble is a collection of classifiers whose predictions are combined to
classify new instances. Kuncheva [18] presents the ensemble approach to learning
in changing environments as online learning with forgetting. Online learning is
achieved by adding new ensemble members trained with the most recent data to
the ensemble and forgetting is achieved by deleting old or less-useful members.

3 Description of Approach

The approach taken to produce the real-world dataset is to use a 3-D driving
computer game to generate a data stream of instances that reflect how the driver
has driven around the track. The game was built on top of the Microsoft XNA
Racing Car Starter Kit3. Functionality to collect data about how the player
drives the car around the track and to change the driving conditions was added
to the game.

3.1 Generating the Datasets

To generate the dataset a player drives the car around the track. An instance
is saved every frame of the game. The data collected at each frame reflects the
car’s position at that point in the game and the action that the driver took. The
data collected for each instance, listed in Table 1, can be categorised as follows;

(i) classification features, labelled Fi, which reflect the position and driving
characteristics of the car such as acceleration and speed at that point.

3 http://creators.xna.com/en-us/starterkit/racinggame



(ii) the action the driver was making at that point, labelled Class.
(iii) certain meta data used for analysing the results, labelled Mi.

Table 1. Car Data Instance

Feature Description

FDTLL Distance from top left corner of car to left guard rail

FDTLR Distance from top left corner of car to right guard rail

FDTRR Distance from top right corner of car to left guard rail

FDTRL Distance from top right corner of car to right guard rail

FDBLL Distance from bottom left corner of car to left guard rail

FDBLR Distance from bottom left corner of car to right guard rail

FDBRR Distance from bottom right corner of car to left guard rail

FDBRL Distance from bottom right corner of car to right guard rail

FACC Current acceleration of car

FSP Current speed of car

FLA The action (class) of the last instance

MLN The lap number

MTS A timestamp of when the instance was taken

MCP The x, y & z co-ordinates of the car

MCD Car details, information about the car such as mass and max speed

Class The action (class) of the instance

The class of the instance is the action the user took at that sample point. The
possible actions include Accelerate, Decelerate, TurnLeft and TurnRight and
all possible combinations of these four actions. Some combinations are prevented
by the game logic such as TurnLeft AND TurnRight. This leaves nine valid
classes which are detailed in Table 2.

Table 2. Classes used

Class Dec value Binary value Description

CNO 0 0000 No operation taken by the user

CAC 1 0001 Accelerate

CDC 2 0010 Decelerate

CTL 4 0100 Turn Left

CTR 8 1000 Turn Right

CTLAC 5 0101 Turn Left AND Accelerate

CTLDC 6 0110 Turn Left AND Decelerate

CTRAC 9 1001 Turn Left AND Accelerate

CTRAC 10 1010 Turn Left AND Decelerate



Preliminary experiments show there is some redundancy among the position-
ing features but we expect that with more complex tracks (including varying
road widths sharp bends etc.) these features may be useful so we have chosen
to include them. The meta data is not used for classification, but can be used
to analyse the results. For example MCP can be examined to establish the place
the car was on the track when, for example, there was a change in accuracy.
This may indicate certain parts of the track causing problems for the classifier.

As instances are saved each frame, the size of the dataset generated depends
on the frame per second (fps) rate of the game which in turn depends on the
current hardware usage. The fps rate and therefore the sampling rate usually
varies between 30 and 60 fps. Each lap of the track takes about 2 minutes to
complete and results in, on average, about 8000 instances being sampled.

3.2 The Classification Problem

The player drives the car around the track for a number of laps. The instances
generated in one lap of the game can be used as training data and the data
generated from other laps can be presented in a data stream for classification as
test data. Support Vector Machines (SVMs) [19] using a linear kernel was chosen
as the classifier. We chose to use a linear kernel as preliminary experiments
showed that its performance was comparable to the more complex kernels and
did not require parameter tuning.

The following illustrative example shows that it is possible to learn the driving
technique of a player. Consider a player that drives a number of laps around the
track. The car starts off stationary. Due to its mass and acceleration capability
it takes a certain amount of time to gather speed once the player starts driving.
The driver also needs to accelerate often to overcome friction. This is reflected
in the class distribution of the first lap shown in the second column in Table 3.
There are no left turns (CTL) or right turns (CTR) in the first lap. Both turns
are coupled with an accelerate action (CTLAC and CTRAC).

The instances saved for the first lap are used as training data and an SVM
classifier is built on this data. The data from the subsequent lap is then used
as test data. Each instance from this test lap is classified and the actual action
taken by the driver is compared against the predicted action from the classifier
and accuracy calculated as the proportion of the total number of test instances
that were correctly classified. The classification resulted in an overall 97.57%
accuracy and the results, broken down into the percentage frequency of each
class and the precision and recall, are presented in Table 3.

The class distribution in the data is very skewed with very high frequencies
for the Accelerate class and low frequencies for the other classes. It is worth
noting that not all classes are used for this driver on this track.

3.3 Changing the Concept

To change the concept the game code was modified to allow the mass and ac-
celeration of the car to be adjusted while a person was playing the game. It



Table 3. Static concept class distribution details

Training Lap Test Lap

Freq (%) Freq (%) Precision Recall

CNO 0.39 1.60 0.979 0.979

CAC 92.37 90.42 0.987 0.987

CTL 0.00 0.08 0 0

CTLAC 5.23 5.61 0.833 0.845

CTR 0.00 0.00 0 0

CTRAC 2.01 2.29 0.88 0.88

was expected that this change in the game behaviour would result in a different
driving style by the player and therefore a change in the concept. The change in
mass and acceleration was designed to simulate a change in ground friction, with
a high mass car having high friction and a low mass car a lower friction. In a real
world scenario, events such as changes in weather conditions may significantly
alter the road conditions and consequently the ground friction. This would in
turn affect the way in which a driver drives the car. Future work may include a
more reality grounded approach such as introducing strong winds into the game.

To try to handle the change in concept a straightforward technique for han-
dling concept drift was used, a fixed-size sliding window approach. After 500
instances had been presented for classification to the classifier, the classifier was
rebuilt on updated training data. This new ‘window’ of training data included
the new 500 instances just processed while the oldest 500 instances were removed.

4 Handling the Drift

Two experiments were run to test the data generated to see if the expected
concept drift was present and if it could be handled. The experiments were
designed to generate a concept shift and a concept drift dataset.

4.1 Sudden concept shift

In order to simulate a sudden shift in the concept the car was driven four laps
around the track. The first two laps were driven using a heavy car with slow
acceleration. At the start of lap three the mass and acceleration of the car was
changed simulating a change in the driving conditions. The last two laps were
driven with a light car with fast acceleration. The first lap was used as training
data and the remaining three laps were presented as a data stream for classifica-
tion against the resulting classifier. The distribution details and the classification
results are detailed in Table 4. Precision and recall figures are included for each
class for each lap.

It is evident that the classifier trained on lap one is successful on lap two and
fails for the subsequent laps once the concept changes. The concept change in



Table 4. Dataset 1: Concept shift dataset class distribution

Lap 1 Lap 2 Lap 3 Lap 4

Freq (%) Freq (%) Pr Rec Freq (%) Pr Rec Freq (%) Pr Rec

CNO 0.15 1.03 0 0 84.86 0 0 85.17 0 0

CAC 92.53 90.31 0.98 0.99 5.67 0.06 0.99 5.88 0.06 0.99

CTL 0 0.22 0 0 6.66 0 0 6.51 0 0

CTLAC 5.26 5.90 0.81 0.84 0.03 0.01 1 0 0 0

CTR 0 0 0 0 2.77 0 0 2.37 0 0

CTRAC 2.06 2.54 0.87 0.88 0 0 0 0.07 0.03 1

this data can be considered as being caused by a dramatic distribution change
with the driver accelerating much more significantly with the heavy car and
freewheeling more significantly with the lighter car, as would be expected. For
laps one and two the class distribution is heavily skewed towards Accelerate.
After the change in concept the car only needs to accelerate every few seconds
to combat friction and keep a constant speed. This results in the data for laps
three and four being heavily skewed towards NoOperation. The precision and
recall figures reveal that classes with few or no instances in the training data
were very hard for the classifier to correctly classify.

Figure 1 shows the accuracy over time for this dataset, Dataset 1, with accu-
racy reported for each batch of 500 instances presented. The solid line labelled
Static Model represents the static model, the accuracy based on the initial clas-
sifier trained on the data from lap one. This shows the accuracy initially fluctu-
ating between 81% and 97% and then dropping dramatically at lap three when
the concept changed consistent with the results in Table 4.

Fig. 1. Classifier accuracy plotted over time showing the sudden concept shift in
Dataset 1 (Static Model) and how it can be handled (Windowed Model).



Figure 1 also shows the results of applying the fixed-size windowing approach
to the data in Dataset 1 to handle the changes in concept. The dashed line la-
belled Windowed Model shows the results of updating the initial classifier created
from the training data with this windowing approach. As can be seen from the
graph the accuracy is slightly better on lap two and significantly better on laps
three and four.

4.2 Gradual concept drift

To simulate gradual concept drift four laps were driven around the same track.
For the first and second lap the heavy car with slow acceleration was used. On
the third lap the mass and acceleration transitioned from the values of the heavy
car to the values of the light car over 60 seconds. The fourth lap was driven with
the light car. The classifier was trained using the data gathered from the first
lap and tested with the remaining data. This resulted in the dataset shown in
Table 5.

Figure 2 shows a graph of the accuracy of this dataset, Dataset 2, over time.
The solid line, labelled Static Model shows reasonable consistent high accuracy
on lap two. However when the concept starts changing at the beginning of lap
three the accuracy declines but more gradually than that of Dataset 1, the con-
cept shift data. The dashed line, labelled Windowed Model, showing the accuracy
achieved by the updating the classifier using the windowing approach, demon-
strates the successful handling of the concept drift. The behaviour of the dashed
lines at the start of lap three on both graphs suggests that it is easier to learn a
gradual change in concept than a sudden change in concept.

Table 5. Dataset 2: Concept drift dataset class distribution

Lap 1 Lap 2 Lap 3 Lap 4

Freq (%) Freq (%) Pr Rec Freq (%) Pr Rec Freq (%) Pr Rec

CNO 0.67 2.60 0 0 74.65 0.96 0.34 84.73 0.97 0.30

CAC 91.48 89.02 0.96 0.99 15.48 0.23 0.97 6.11 0.09 0.94

CTL 0 0.08 0 0 6.44 0 0 6.60 0 0

CTLAC 5.53 5.84 0.83 0.84 0.48 0.06 0.75 0 0 0

CTR 0 0.07 0 0 2.60 0 0 2.55 0 0

CTRAC 2.31 2.39 0.86 0.87 0.34 0.10 0.6 0 0 0

There are some other interesting observations that can be made from the
data. Both graphs of the static model in Figs 1 and 2 both show a dip in accuracy
at the start of the second lap. This can be explained by the fact that the car
starts from a stationary position in the training data but is moving at speed at
the start of the second lap. Also, lap two in both graphs takes longer than laps
three or four due to the slower acceleration capabilities of the heavy car.



Fig. 2. Classifier accuracy plotted over time showing the gradual concept drift in
Dataset 2 (Static Model) and how it can be handled (Windowed Model).

5 Conclusions and Future Work

This paper presents an approach to generating a real world dataset for incre-
mental learning of changing concepts. The advantages offered by such a dataset
include the opportunity to control the timing and extent of the concept changes
introduced. We have shown that we can introduce and handle changes to the
concept, both concept shift, a dramatic immediate change and concept drift, a
more gradual change.

However, research into handling concept drift in real world situations has to
consider a number of important factors. It is important to be able to identify
when the concept changes and to have the capability of providing the classifier
with ‘correctly’ labelled data from which to learn the changing concept. Spam
filtering is an example of a real world application which handles concept drift
where the capability of providing correctly labelled data is relatively straight-
forward. The user of the system can indicate errors by the classifier, which may
indicate concept changes, by highlighting missed spam emails or by retrieving
incorrectly labelled legitimate emails.

In order to simulate a real-world situation, the scenario offered by the driving
game should take into consideration factors such as these. Our experiments in
this paper have assumed that ‘correctly’ labelled instances are available from
which to learn. We envisage that future work will consider how we can simulate
such real world factors. Rather than waiting for the car to crash, changes in the
concept could be triggered by monitoring the position of the car on the track
with respect to the guard rails. Correctly labelled data could be provided by
requesting the player to take over the controls when changes in the concept are
anticipated. Consideration of such issues will allow a more realistic simulation
of a real world scenario.



References

1. Narasimhamurthy, A., Kuncheva, L.I.: A framework for generating data to simu-
late changing environments. Proceedings of the 25th conference on Proceedings of
the 25th IASTED International Multi-Conference: artificial intelligence and appli-
cations table of contents (2007) 384–389

2. Abdullah, M., Ganapathy, V.: Neural network ensemble for financial trend predic-
tion. TENCON 2000. Proceedings 3 (2000)

3. Tsymbal, A., Tsymbal, A., Pechenizkiy, M., Pechenizkiy, M., Cunningham, P.,
Puuronen, S.: Handling local concept drift with dynamic integration of classifiers:
Domain of antibiotic resistance in nosocomial infections. In: Computer-Based Med-
ical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on. (2006)
679–684

4. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for
tracking concept drift in spam filtering. Knowledge-Based Systems 18(4–5) (2005)
187–195

5. Klinkenberg, R.: Using labeled and unlabeled data to learn drifting concepts.
Workshop notes of the IJCAI-01 Workshop on Learning from Temporal and Spatial
Data (2001) 16–24

6. Black, M., Hickey, R.: Maintaining the performance of a learned classifier under
concept drift. Intelligent Data Analysis 3(6) (1999) 453–474

7. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine
Learning 1 (1986) 317–354

8. Kolter, J., Maloof, M.: Dynamic weighted majority: a new ensemble method for
tracking concept drift. In: Data Mining, 2003. ICDM 2003. Third IEEE Interna-
tional Conference on. (2003) 123–130

9. Tsymbal, A.: The problem of concept drift: definitions and related work. Informe
técnico: TCD-CS-2004-15, Departament of Computer Science Trinity College 4
(2004) 2004–15

10. Widmer, Kubat: Learning in the presence of concept drift and hidden contexts.
Machine Learning 23 (1996) 69–101

11. Stanley, K.O.: Learning concept drift with a committee of decision trees. Computer
Science Department, University of Texas-Austin (2001)

12. Widmer, G., Kubat, M.: Special issue on context sensitivity and concept drift.
Machine Learning 32 (1998) 83?201

13. Kelly, M.G., Hand, D.J., Adams, N.M.: The impact of changing populations on
classifier performance, San Diego, California, United States, ACM (1999) 367–371

14. Kubat, M.: Floating approximation in time-varying knowledge bases. Pattern
recognition letters 10 (1989) 223–227

15. Widmer, G., Kubat, M.: Learning flexible concepts from streams of examples:
Flora 2. (1992) 463–467

16. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector ma-
chines. Proceedings of the Seventeenth International Conference on Machine Learn-
ing (ICML) (2000) 11

17. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-
ing. Intell. Data Anal 8 (2004) 281–300

18. Kuncheva, L.I.: Classifier ensembles for changing environments. In Roli, F., Kittler,
J., Windeatt, T., eds.: 5th International Workshop on Multiple Classifier Systems
(MCS 2004), Springer (2004) 1–15

19. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York,
Inc (1995)


